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We present a detailed repddee S. Seret al, Phys. Rev. Lett77, 4855(1996] of our numericaland
analytical studies on the relaxation of a classical particle in the potentifld = +x2/2+x*/4. Both of the
approaches confirm that at all temperatures, the relaxation fundogs velocity relaxation function and
position relaxation functiondecay asymptotically in timeas sinfgt)/t. Numerically calculated power spectra
of the relaxation functions show a gradual transition with increasing temperature from a single sharp peak
located at the harmonic frequeneay; to a broad continuous band. The télaxation is also found whewi(x)
is a polynomial in powers of? with a nonvanishing coefficient accompanying #feerm inV(x). Numerical
calculations show that in the cases in which the leading terid(ix) behaves as®" with integern, the
asymptotic relaxation exhibitst¥/ decay wherep=1/(n—1). We briefly discuss the analytical approaches to
relaxation studies in these strongly anharmonic systems using direct solution of the equation of motion and
using the continued fraction formalism approach for relaxation studies. We show that the study of the dynamics
of strongly anharmonic oscillators poses unique difficulties when studied via the continued fraction or any
other time-series construction based approaches. We close with comments on the physical processes in which
the insights presented in this work may be applicaf#4.063-651X99)09306-X]

PACS numbds): 67.40.Fd, 65.90ki

I INTRODUCTION wherex; ,x; denote the velocity and the position of soitie

] ] ) particle of massm, B;>0, k;;,; denotes the spring con-
There is a close connection between the behavior of @tants of the springs connecting the nearest-neighbor masses,
classical particle relaxing in an anharmonic multiwell poten-5 4 T, is an unspecified anharmonic piece in the one-body
tial at a fixed temperature and a number of more compleX,,iantia| landscape which, in general, involves terms of
physical phenomena such as the dynamical processes ass |(X2ni+2) or higher. We note that,>1 and is an integer
. e . . . I/ .
ated with structural phase transitiofiy and with relaxation Thus, by appropriate choice & one can construct a one-
processes in glassy systefs3]. An important illustrative body potential which can be a cosh, cos, exp, or some other
example is that of the Krumhansl-Schrieffé(S) model, yp . » XD, .
function. A;, B;, C; are real coupling constants which de-

which is a simplistic model for displacive structural phase X . .
termine the potential energy landscape of pariicks can be

transitions[1]. The KS-type model can be described by a™=""" i
Hamiltonian H=3;(H;+H, ,,,), whereH; andH; ., are positive or negative. Let us assume that as the total energy of

of the following forms:

1. AiXi2 Bi i2ni Ki
Hi=pmx+ —=+ = +CLom>2n) - ()
and
Kiio1
Hi,i+1:%(xi_xi+1)2: 2

* Author to whom correspondence should be addressed.
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the system,E—0, each particle finds itself in a bounded
potential. From now on, for the sake of simplicity, let us also
suppose thak; j ;=K.

If we setA;=B;=C;=0 in Eq. (1), then the dynamical
problem for the Hamiltoniail can be analytically solved for
all N including in the limitN— . It has been shown by Fox
[4], Florencio and Le¢5], Vitali and Grigolini[6], and oth-
ers that in the thermodynamic limit, i.e., Bs—, the nor-
malized velocity autocorrelation function of any particsay
i), (vj(t)v;(0))/(v;(0)*)=(kgT/m)Jo(wot), wo=k/m,
where Jo(wot) is a zeroth-order Bessel function which de-
cays in time in an oscillatory algebraic mannkg, is the
Boltzmann constant. The decay exponent here behaves as
t~32[4-6]. This behavior is robust for the other dynamical
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correlations, such as the position and acceleration autocorrgqx) = cosh§) and V(x) = cos§) in Ref. [7]. As we shall
lations, of the harmonic-oscillator chain as wil. see, in all of these cases, the relaxation function decays as-
As we shall demonstrate below, =0 andA;j#0, B;  ymptotically in time as 1/ We then present a brief discus-
>0, the asymptotic relaxation of any corresponding autocorsion of relaxation in which the leading anharmonicity in the
relation function turns out to bsignificantly slowerthan  potential is of the formx?", wheren>2, where one encoun-
t~32 We will not discuss the consequences of the terms witliers asymptotic relaxation of the formt?/ where ¢=1/(n
coefficientsC; in this work except to say that our numerical —1). We then apply this result to discuss the special cases of
analyses reported iiY] reveal that the asymptotic relaxation n=1 andn—ce. It is possible to prove this result, which was
of a single classical particle in an anharmonic potential ignitially arrived at using numerical methods, via some limit-
controlled by the leading anharmonic term amot by the ing analyses as done by Sarkd(]. It should be noted,
higher-order terms in a potential such as that described bljowever, that SarkargL0] or any existing analysg4.1] do
Eq. (1). not solve the dynamical problem as a function of time, but
If k<|A|, k<B;, then it is not unreasonable to expect rather succeed in obtaining the behavior of the lowest fre-
that there would be a distinct separation of relaxation mechaquency of the anharmonic oscillator as a functon of total
nisms arising from the noninteracting and the interactingenergy to leading order in energy. A powerful analytical tool
parts of the Hamiltonian. The slower relaxation, arising fromfor studying relaxation phenomena relies upon the continued
the anharmonic interactions, could presumably dominate afsaction formalism(CFF [12-17. While a large class of
t—oo. An intuitive argument in favor of the case that the systems can be readily probed using the CFF, it turns out that
slower one-body relaxation may win out as time« comes  one encounters grave difficulties in implementing the CFF in
from noting that coupling oscillators via nearest-neighborstudying relaxation processes in strongly anharmonic oscil-
harmonic springs in a locally anharmonic potential withlators[18,19. In closing, we discuss these difficulties, we
leading anharmonicity of fornx?" will not effectively fur- ~ summarize our numerical and analytical work, and discuss
ther stiffen the localx®" anharmonicity. The argument is its implications.
expected to be quite robust at low temperatures in which the We begin by presenting the derivation of the asymptotic
amplitudes of motion of the particles are small and are domil/t behavior of the relaxation function starting from the for-
nated by the acoustic mode, i.e., in the so-called “ordermal solution of the Duffing oscillator in Sec. IlA. The ex-
disorder” regime[1,8]. Since there is no phase transition for tension of the asymptotic relaxation analyses to cases with
models such as in Eq$l) and (2) in one dimension, the leading anharmonicity of the form®", wheren>2, is pre-
above-mentioned argument, namely that the long time relaxsented in Sec. Il B. We then go on to describe in some detail
ation will be dictated by local anharmonicities, may eventhe numerical method employed in calculating the relaxation
hold at all finite temperatures. Difficulties could arise, how-functions in Sec. Ill. The studies on relaxation processes in
ever, if the two-body interaction becomes strongly anharother potentials with leading quartic and with leading higher-
monic such that the local anharmonicity will be strongly af- order anharmonicities are presented in Secs. IV and V, re-
fected by the two-body interaction. We shall return to a morespectively. The analytical approach to studying relaxation
technical discussion of the connections between the ongdrocesses in anharmonic oscillators, such as the continued
body and the many-body relaxations later in Secs. VII andraction formalism(CFF), presents a unique set of problems
VIII in this paper. in getting to the correct answers. These issues are discussed
A detailed understanding of relaxation in one-dimensionain Sec. VI. The applications of these results to many-body
(1D) multiwell potentials could lead to greater insights into Systems of interest in condensed matter and statistical phys-
the dynamics of not only the KS model but in models ofics are presented in Sec. VIl. We summarize the work and
thermally activated dynamics in the glass transition and ofresent open questions of broad interest in the analyses of

relaxation in related complex systems. slow relaxation problems in Sec. VIII.
In a recent Lettef7], we have presented results which
show that the relaxation of a classical particle in anharmonic [l. ANALYTIC BEHAVIOR

potentials follows a power law which depends upon the order
of the leading anharmonic term. For potentials with a leading ) ) ) ) _
quartic anharmonicity, the relaxation functions show & 1/  In this section we derive analytic results for the behavior
decay_ In the present paper, we first present a detailed d|§.f the canonical VelOClty autocorrelation function in the limit
cussion of the behavior of a particle relaxing in the potentiald —>. We use the formal solution of the Duffing potential
V(X) = =x2/2+x*/4. Choosing the %" sign in this poten- V(x)=x2/2+rx*4, r>0, as the starting point for the deri-
tial results in a single symmetric well with a minimum>at ~ vation. We do not work out the case for the double well
=0, while choosing the “” sign leads to a symmetric explicitly but refer the interested reader to the treatment of
double well with minima ak= =+ 1. Throughout the remain- Davis [9] for working out the minor modifications in the
der of this paper, for the sake of clarity we will refer to the formulae in Eqs(3)—(8) and(12) below. We shall argue that
first case as the Duffing well and to the second case as tHB€ asymptotic relaxation properties of a particle in the Duf-
double well, respectively, although the so-called double-welfing and double wells are identical.

A. Quartic anharmonicity: Duffing and double wells

case is one realization of the case of the Duffing @l We The location of a particle with a fixed energy moving in
refer the reader to our study [i7] for a discussion and for the Duffing potential is given by
results on relaxation in potentials that differ from the Duffing o

and double wells but possess leading quartic anharmonicity. _ :
. . X . . x(t)y=C E a,sin(2p+1)wt,
In particular, we briefly discuss relaxation processes in cases ® =0 P in2p+ 1w ®
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where the leading terms of the consta@ta, are

Cap=a, (4)
Ca;=(—ra’32)(1—21ra?/32+461r%a*/1024+ - - -),
©)
Ca,=(r2a%/1024(1—43ra?%32+---),..., (6
and the frequencw is
w=(1+3ra?/4+3r%a*/128— 57r3a%/4096+ - - - )12, -

In the above expressions, the varialaleis obtained as a
function of E by substituting the formal solutions for(t)
and v(t) into the Hamiltonianp?/2m+V, where m=1,
yielding

561E5/2
o172

9E3/2
27/2

a=(2E)"%- (8)

The normalized microcanonical ensemble velocity autocor-
is obtained by substituting

relation function (VACF)
dx(t)/dt into the equation

(v(O)v(t)e f—w
2 - o '
<U(0) >E j v(t/)v(t/)dtl

— o

v(tHo(t' +t)dt’

9

where the subscrifi is used to distinguish the microcanoni-

cal from the canonical.
The VACF can be greatly simplified by noting that

1 [t
lim —f cog2n+1)wt’ cog2m+1)w(t’ +t)dt’

tg—* tO
yielding the result
Oty C i BT cosZpt Dot
E =
<U(0)2>E - o
Cngo ag(2p+ 1)2
(11
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Replacinga by its lowest-order expansion iR, setting y
equal to 3/4, and substituting the normalized microcanoni-
cal VACF into the canonical VACF with the assumption that
the density of stateg(E) = const at low enough energié®

be elaborated upon in Sec. 1) Besults in

(v(0)u(t)) foxefﬁECOS(lﬂE)tdE

<v(0)2>can fwe—BEdE
0

(14

Rewriting cos(3-yE)t as cost)cos(tE) — sin(t)sin(ytE) and
evaluating the integrals

* - BE I
fo e PE cog ytE)dE PO (15
and
Fe*ﬁE sin(ytE)d E=—7t (16)
0 Y 'y2t2+B2

results in a form for the low-temperature canonical VACF,

<U(O)U(t)>can _ Bz cogt)— yBtsin(t)
<U(O)2>can 72t2+'82 .

This form gives an excellent representation of the canonical
VACEF at all times for8=100 as will be shown in the section
on numerical results. In the long-time limit, the expression
reduces to

(17)

@0V~ (BlsinY
t—o <U(O)2>can t

. (18

Interestingly, this expression describes the long-time behav-
ior of the VACF for all temperatures. This can be shown
easily by retaining higher-order terms hin the expression

for the VACF at a fixed energy before substituting into the
equation for the canonical VACF. Keeping tergis 0 in the
summation leads directly to the appearance of poweEsiof

the integrals while retaining higher-order terms in the expan-
sion for w leads to trigonometric functions with arguments
involving higher powers oE. This results in contributions to
the canonical VACF from integrals of the form

The above result is an exact form for the microcanonical
VACF, but a much simplified form for the canonical VACF
can be obtained as follows. One begins by retaining only the
lowest-order terms ofv (0)v (t) )g in a. First expandingo to
lowest order ina yields

J'pre*ﬁE[cos( YtE),sin(ytE)]
0

X[coq C,tE?),sin(C,tE?)]- - -dE, (19
where the terms in square brackets indicate that one or the
other trigonometric function is chosen. Replacing the sin and
cos functions containing arguments with powerd&agjreater
than 1 with their series expansions simply results in contri-
butions from a sum of integrals of the form

w=(1+3ra?/4)?=1+3ra?s8. (12

Substituting this expression intw (0)v(t))g and retaining
only the p=0 term in the summation gives

(v(0)v(t))e

W =cog1l+ 3I'f:12/8)t.
E

(13 f:t'Eme-ﬁE[cos( YtE),sin( ytE)]dE, (20)
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where all of the powers dE have been collected 8™, with  analysis, with the assumption that the form of the leading
| and m related by the inequalityn=I1+1. These integrals nonconstant term in the formal solution fa(t) is sinwt,

have the closed forms leads to the result for the VACF,
l,= fmtlEme_'BECOE(’ytE)dE (U(O)v(t)>can:,82005(\/§t)+Y’BtSin( \/Et) 27
0 <U(0)2>can ’y’2t2+,82 .
CtmI(B—iyt) ™ (BHipt) ™ ]
- 2(B2+ Y221 (21 As shown below, this result agrees well with the numerical
simulations.

and
B. Higher-order anharmonicity

Izzf t'EMe ™ PE sin( ytE)dE We now outline the approach of Sarkdi0] in extracting
0 the behavior ofw(E) for various potentials with leading an-

tmI[(B—iyt)™ 14 (B+iyt)™ 1] harmonic terms of the form?", wheren>2 and is an inte-

2, 2:2\m+1 ' (22) ger.
2(B+yt9) Starting with Eq.(12) and rewriting it as
In the long-time limit, the integral$; andl, have the be- o ]
havior R f exp PEexp(®@(E))itw(E)dE
<v(0)v(t)>can_ 0
; _tl-m-1 - - @ !
tlm ™t , M odd; 0, m even (23) <U(O)2>can f expﬁBEdE
0

and (28)

lim 1,~t'""™1 m even; 0,m odd. (24)  we first assume, without any proof for now, thh(E) has

t—oo an (n—1)th-order stationary point &=0. This implies that

) i o ~all derivatives ofw(E) up to and including the n(—2)th
Sincem—| is at least 1, all contributions to the canonical 5rger must vanish & =0 but the 0 —1)th-order derivative
VACF arising from retaining higher-order terms Ehdecay  \yoyld be nonvanishing. We also note that the density of
faster than X/ In the long-time limit, the only surviving term statesg(E), goes to a nonzero constantis:0. To see this
is —(Bly)sin@)/t. We will show in Sec. IV that this pepayior ofg(E) we note that the number of statb§E)
asymptotic form does indeed match the numerical simulagith energy up toE is proportional to the area in thep
tions at long times for all values ¢8. plane enclosed by the contour of enefyAs E—0, the

It should be noted that the derivation presented above fofation becomes essentially harmonic and this area is propor-
the canonical VACF can easily be modified to obtain thejonal to E. Thus 9(E)=dN(E)/dE— const.

canonical autocorrelation. functions 'for .other derivatives of ¢ ®(E) has an 6— 1)th stationary point irE, then
X(t). For example, repeating the derivation igt) anda(t)
would lead to the expressions for the microcanonical auto- (v(0)v(t))ean

correlation functions «Rg exp(it®(0))+im/2q]

<v(0)2>can
XOX(D) C?Y a’cog2p+1)ot X[q!/t| @ Do) 1M (1/g)/q, (29)
X X E p=0
(x(0)?) - % 25 whereq=(n—1) and®{@}(0) is theqth derivative ofd
E c2> af, evaluated aE=0. This leads us to the following prediction
p=0 for asymptotic relaxation as—o:
and O)v(t
. <l)<(()ov—)(2>)>°a”occoiw(0)t+w/2(n—1)]/t1’(“1>. (30)
1%
oait C2Y, a%(2p+1)*cod2p+1)wt en
{a( )a(2 ))e __ PO As we shall see later, our numerical analyses are consistent
(a(0)%) - ’ with the asymptotic behavior predicted by the analyses be-
- c2> aZ(2p+1)* low. Y i ’ ’
"0 (26) The assumption regarding the- 1)th-order stationary

point in w(E) made above can be justified as follows. We
respectively. In the limit that only thp=0 term in the sum- first observe tha(E)=dJ(E)/dE, whereJ(E), the action,
mation is retained, all of the canonical autocorrelation funcdis by definition$p(x)dx, wherep(x) is the momentum of

tions are identical. the particle as a function of its position. To establish that
For the double well potential, we find that in the limit of w(E)~ w(0)+«E"", wherex is some constant, we must
low frequency, the frequency of the oscillator is given byshow thatJ(E)= a,E+ a,E"+ - - -, where «; and a, are

w=+\2—y'E, wherey’ is a constant. Repeating the above appropriate constants.
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SinceJ(E)=¢p(x)dx and is symmetric about=0, one

can write
uE | X% xon
J(E)—4fo 2 E—?—% dx,

where U(E) is the right turning point. For a harmonic
potential, U(E)=U(E)=y2E. This implies that for the
harmonic caseJ(E)=Jo(E)=a4E and that in gen-
eral, J(E)=Jyo(E) + 8J(E). Thus, we need to establish that
the leading term in 8J(E)=/ " VE= (x?2)dx

— VB JE—x%12— (x*"2n)dx of the order E". Observe
here that forn>2, Uy(E)>U(E). As argued by Sarkar
[10], one can write an expression f6d(E) as follows:

X2n

U(E) 2 2
ser= [ e Vel 5
\/E—XEdXETl(E)JrTZ(E). 32

(31)

dx

Uo(E)
J’_
U(E)
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The first step in the calculation of the microcanonical au-
tocorrelation function is the determination of the period of
motion for a given fixed energy. Particular care is taken at
this stage since the accurate determination of the canonical
autocorrelation function at long times depends crucially on
the cancellation of a large number of terms of comparable
magnitude but opposite sign. Small errors in the calculation
of 7(E) can lead to large errors in the phase relations be-
tween different microcanonical ensembles at long times. A
rough estimate of the period is obtained by integrating the
classical equations of motion for a particle in the Duffing
potential using a third-order Gear algorithm. The uncertainty
in 7 at this stage is given byr=ét/n, where 6t is the
integration time step and is the number of periods of mo-
tion integrated over. The values< 67) and (r+ d7) are
then used as the bracketing values in a root finding routine
which locates the zero of the functidi{7)=v(0)—v(7),
wherev (1) is obtained by integrating the equations of mo-
tion using a time stept = 7/1024. This procedure is used to
determiner to a level of accuracy such that botk(0)
—x(7)| and|v(0)—v(7)| are less than ¥10 8. Once a
sufficiently accurate value of has been obtained, the func-

U(E), which is the turning point of motion in the steeper tions x(t), wv(t), and a(t), and in turn, (x(0)x(t)),
potential, can be determined through perturbative technique® (0)v(t)), and(a(0)a(t)), are tabulated at 1024 equally

and is given by

_ (2E)™ Y2 2n-1 2n-312
U(E)—\/(ZE)— 5+ gz (2E) T
(33

Using the expression folJ(E) above, one can show
that T,(E)~E3""Y2 To calculate T,(E), we observe
that VE—x?12—JE—x?12—x®"2n=[ (x2"/2n)/
VE—x212]f(x), where f(x)=[1—V1-y(x)]/y(x) with
y(X)=(x?"/2n)/E—x?/2. The range ofx [O,U(E)] maps
onto the rangg0,1] for y and thusf(x) is bounded above by
1 and below byos with 1>0¢>0. The crucial point here is
that o is independent oE. Thus, T,(E) is bounded above
and below by K and oK, respectively, whereK
=[5 E((x?"/2n)/ JE—x%2)dx. This integral turns out to be
of orderE". SinceT,(E) is bounded from above and below
by quantities of ordeE" in the limit E—O0, it must be of
order E" in this limit. Therefore, T,(E)~E?"~%? is domi-
nated byT;(E), which is of orderE" asE—0 and hence
J(E)=a,E+ a,E"+ - - -, which we set out to establish.

IIl. NUMERICAL METHOD

spaced times spanning one period of motion. For the Duffing
oscillator, the position, velocity, and acceleration autocorre-
lation functions should all be identical in the long-time limit,
but they are evaluated as an additional test to make sure that
the results of the calculation are consistent. The values of the
microcanonical autocorrelation functions required in the in-
tegration are obtained via a linear interpolation between table
entries.

The range of energies over which the microcanonical au-
tocorrelation functions are calculated is determined by the
temperature of the system. We choose as the lower limit of
integration an energy slightly higher than the potential mini-
mum, typicallyE,,;,=5x10"', and, as the upper limig .
such that expf BEmay is less than X 10! The canonical
autocorrelation functions are evaluated using the microca-
nonical autocorrelation functions tabulated at up to 5000 dis-
tinct energies. For the Duffing well, fewer than 1000 ener-
gies are typically needed to obtain good results. Calculations
involving the double well usually require a larger number of
microcanonical function evaluations in order to accurately
perform the integration over energies in the vicinity of the
barrier height. The integration is carried out using a simple
trapezoid rule. A higher-order integration scheme was not
employed since we used an unequal energy spacing to maxi-

Here we describe the numerical method used to calculat&ize the number of function evaluations in the lower energy

the canonical ensemble autocorrelation functions. The key téegion. Calculations carried out using equally spaced ener-
the approach is the fact that at a fixed energy the autocorréies show no significant deviation from those using unequal
lation functions are periodic with the same periochs the ~ spacings. During the numerical integration, care is taken to
motion of the particle in the Duffing potential. The microca- Minimize the effects of roundoff error by summing the con-
nonical autocorrelation functions need only be calculatedributions to the integral from highest to lowest energy.

over one period of motion with the values at longer times
given by(v(0)v(t+ 7))=(v(0)v(t)). The evaluation of the
canonical autocorrelation function can be done in a straight-
forward manner by first evaluating the microcanonical auto- In this section we compare the numerical and analytic
correlation functions at a number of discrete energies in theesults for the Duffing and double well oscillators witlset
range E,,<E<E,.x and then performing the integration equal to 1. We can do this without any loss of generality
overdE. since the same trends in the behavior of the canonical VACF

IV. RESULTS OF NUMERICAL SIMULATIONS
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and corresponding power spectrum obtainedrfaiill occur B I Y o NN WS WA B
for different values ofr, only at higher or lower tempera- ]
tures. For these systems, the numerical and analytic results -
for the canonical VACF complement each other particularly
well. The analytic form based on the lowest-order energy
expansion of the formal solution agrees with the numerical
result at all times for low temperatureg#® 100) and at long
times for higher temperatures, but fails to describe the short-
time behavior of the VACF at higher temperatures. This is I
due to the fact that the low-temperature limit of the analytic P do—mo o I W L F
solution neglects contributions from terms involving higher ' '
powers oft~". The numerical approach, on the other hand,
has been found to be most reliable at short times. For low
temperatures, using fewer than 2000 energies, the Duffing L
well VACF's can be evaluated numerically for long times & o.o—: -
(t=20000) yielding results that agree with the asymptotic = 1 r
solution, while at higher temperatures spurious behavior of 5] o
the VACF's begins at considerably shorter times. ] [

5 L
£0.0 -
)

0.5+

0 I“.5(),...100'.I'150I.‘.200
A. Duffing oscillator (a) t(s)

A comparison between the numerical and analytic results
for the canonical VACF aB=100 is shown in Figs. (k) and
1(b). The two sets of results agree to within roughly 1% over .
the entire range of times studied, with the largest relative 057
errors occuring at shorter times. It should be noted that the ]
difference between the analytic and numerical results is os-
cillatory, suggesting that even better agreement would be
obtained by retaining higher-order terms in the expansion of o] n r
the microcanonical VACF leading to additional corrections ] r
to the canonical VACF of the forficos(),sin(t)]f(t). 1 C

For B=4, Figs. Za) and 2b) show that there is a signifi- 10
cant deviation between the two results at short times, but that
the analytic form matches the simulation almost exactly at
timest>30. The reader may observe that while Fig&)1
and Zb) look identical at first sight, the magnitudes of the
VACF at large times are much smaller in Figb2 when
compared with the same in Fig(k). This is expected in
view of the fact that relaxation is expected to occur more '
rapidly at higher temperatures. E

At much higher temperatures, the discrepancy between 02§ . oy
the analytic form and the numerical results becomes more 1000 1050 1100 1150 1200
dramatic. For3=0.01, the analytic form bears virtually no ~ ® tis)

_rese_mblance to the numerical results at short times as evident £, 1. canonical ensemble VACE for Duffing well determined
in Figs. 3a) and 3b). from numerical simulations and analytic form fge= 100 at times

The power spectra of the VACF's are shown in Figs. 4—8(a) 0<t<200 and(b) 1000<t<1200, wheret is expressed in di-
for B ranging from 100 to 0.01. AB=100.0, the power mensionless form. The numerical and analytic results are indistin-
spectrum consists of a single peak located at1.0. As the  guishable in this plot. The upper panel displays the absolute differ-
temperature is increased, contributions from frequenciesnce, VACF(numerical—VACF (analytig, between the two sets
other than the harmonic frequency become increasingly imef results.
portant. At3=10.0, the power spectrum has broadened sig-
nificantly, most noticeably on the high-frequency side of the B. Double well oscillator
peak. Further increases in the temperature lead not only to a
broadening of the power spectrum, but to the formation of a Figures 9—11 show a comparison between the numerical
distinct broad peak with a maximum located above the harand analytic results for the double well at valuesBoéqual
monic frequency. At the highest temperatures, the poweto 100, 4, and 0.01. As was the case for the Duffing well,
spectrum is clearly dominated by the broad peak, but th&ery good agreement is seen between the numerical and ana-
sharp peak atv=1.0 is always present. Even g=0.01, a lytic results at low temperatures and long times. The oscilla-
vestige of the harmonic peak persists. tory nature of the difference between the two sets of results

1.ox10° —r—m——m7——F——"F—"T—"T—T [T T T T T T T}

error
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o
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FIG. 2. Canonical ensemble VACF for Duffing well determined ) ) )
from numerical simulationgsolid line) and analytic form(broken FIG. 3. Canonical ensemble VACF for Duffing well determined
line) for B=4 at times(a) 0<t<50 and(b) 1000<t<1200, where  from numerical simulation¢solid line) and analytic form(broken
tis expressed in dimensionless form. The upper panel displays tHie) for 3=0.01 at timega) 0=<t=20 and(b) 200<t=<300, where

absolute difference, VACEumerical— VACF (analytid, between t is expressed in dimensionless form. The upper panel displays the
the two sets of results. absolute difference, VACEumerical— VACF (analytig, between

the two sets of results.

again suggests that the error is due to the omission of higher-

order terms in the expansion of the microcanoncial VACF'stures, a remnant of the contribution from the harmonic fre-
The power spectra of the VACF's are shown in Figs.quency is still visible, but seems to manifest itself as a

12-16 forB ranging from 100 to 0.01. A gradual transition subtraction rather than an addition to the broadband.

is seen from a single sharp peak at the harmonic frequency It is important to state that we have found it somewhat

w=+/2 for low temperatures to a broad spectrum at highedifficult to explain the power spectra using intuitive argu-

temperatures. In contrast to the Duffing well, the broadeningnents, e.g., in terms of the peak frequencies using Bjs.

of the power spectrum begins predominantly on the low-and(7) in these systems at finite temperatures. However, this

frequency side of the harmonic peak. At the highest temperds not uncommon when analyzing strongly anharmonic sys-
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FIG. 4. Power spectrum of the Duffing well canonical VACF for ~ FIG. 6. Power spectrum of the Duffing well canonical VACF for
B=100, wherew is expressed in dimensionless form. B=1, wherew is expressed in dimensionless form.

tems, such as glasses and quantum spin systems at finggymptotic limit in time. Our calculated values ¢fversusn

temperatures. are presented in Fig. 17. On the basis of these calculations,

we predicted 7] that
V. ARBITRARY ANHARMONICITY

We have extended our work to study the asymptotic be- ¢=1n=1). (39
havior of the VACF in potentials of the form . . .
P As discussed in Sec. Il B, Sarkar's metHdd)] arrives at
the expression fokp given above and hence validates our
— 2 2n
V(x)=x[2+x/2n, (34 ¢laim. It remains difficult, however, to obtain the behavior of
_ _ _ the VACF accurately at all time regimes in view of the steep-
wheren>2. Typically, the calculations of long time behav- ness of the potential energy function and the strongly non-
ior of the VACF get progressively more difficult with in- |inear dependence @$(E) on E as discussed in Sec. II B.
creasingn. As a consequence, it is a daunting task to numeri- | et us consider the potential function in E&4) without

cally calculate the behavior of the algebraic tail in thethe harmonic term and consider cases with extreme values of
VACF, which is of the form ¥, where ¢<1, at the n, We note that the extreme limits of—o andn—1 lead to

P T YOS Y ST VO N SO S ST TN HU T SO0 Y
1.0 TSN

caa byl TN FEENEEEATE SRR NRER]
1.0 satats ! i | i
B=10.0
0-8 0.8 B=0.1 i
z o)
g =
S 08 B g 0.6 -
)
I ) N
g H
£ E
£ £
E 044 ~ & 0.4 _
s 5
g z
= 2
0.2 - 0.2 r
0.0 LA B S D B B B BN B B N BN L AL 0.0 RS R AR RS RRRRE LN RALRS RN WL
0.0 0.5 1.0 1.5 2.0 0 2 4 8 8 10
O(rad/s) @(rad/s)

FIG. 5. Power spectrum of the Duffing well canonical VACF for FIG. 7. Power spectrum of the Duffing well canonical VACF for
B=10, wherew is expressed in dimensionless form. B=0.1, wherew is expressed in dimensionless form.
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the following relaxation behavior. Far—«, the anharmo- o
nicity in V(x) becomes infinitely steep ano(E) diverges to 2]
leading nonlinear order ifE. This implies that¢—0, or S, [
1%—1. If the normalized VACF remains a constant in & ] C
time, then the system exhibits no dynamics. To see thi 2] "
meaning of the preceding statement, we observe than for ] !

—oo, the right-hand side of the equation of motion becomes .
divergent, implying that acceleration must diverge for mo-
tion to occur. As one would then expect, in a potential that is
infinitely steep, any motion costs a tremendous amount ¢
energy and thus no time evolution is possible. i
Forn—1, Eq.(34) reveals that/(x) is entirely harmonic ?
and according to Eq.35), ¢—o. Thus the VACF does not

VACF

0.0

decay asymptotically in time, as is indeed the case for relax £
ation of the form of cosft) in the harmonic potential case. It oadl 3
should be noted that the nondecaying VACF result is distinc R 3
from the case in which the VACF remains unity, indicating
that there is no time evolution at all. O b F

1000 1020 1040 1060 1080 1100

(b) t(s)
VI. CONTINUED FRACTION FORMALISM BASED FIG. 9. Canonical ensemble VACF for double well determined
ANALYSES from numerical simulations and analytic form f8r=100 at times

. . . . . . (@) 0=<t<100 and(b) 1000<t=<1100, wheret is expressed in di-
In this Sectlpn we Prese”t a brief discussion which SU8ynensionless form. The numerical and analytic results are indistin-
geSt§ that no tlme series based approach, r_10 matter how e@ﬁiishable in this plot. The upper panel displays the absolute differ-
tensive, can estimate the asymptotic behaviof presented ence, VACF(numerica)— VACF (analytio, between the two sets

The discussion in this section centers upon our current
understanding of the continued fraction formalism which
grew out of the classic works of Mofil2], Dupuis[13],
Zwanzig[14], Lee[15], Grigolini [16], and otherg17]. In A(t)=y§=:l fLa,(t). (36)
this formalism one constructs a complete orthogonal seit of
time-independent basis vectdrswith d time-dependent co-
efficientsa,(t) (which are later identified with various fun- It is assumed tha#\(t) satisfies the Liouville equation of
damental dynamical correlationso describe a dynamical motion[e.qg., for the Hamiltonian in Eq4) this is Eq.(5)].
variableA(t) as follows[15]: Typically, one chooses §=A(t=0). The orthogonalf,’s

d-1
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FIG. 10. Canonical ensemble VACF for double well determined £ 11. Canonical ensemble VACF for double well determined
from numerical simulationgsolid line) and analytic form(broken  from numerical simulationgsolid line) and analytic form(broken
line) for =4 at times(a) 0<t=<50 and(b) 150<t=<200, wheret  |ine) for B=0.01 at timega) 0<t<15 and(b) 150<t=200, where

is express_ed in dimensionless f_orm. The upper pa_mel displays thejg expressed in dimensionless form. The upper panel displays the
absolute difference, VACHumerical— VACF (analytig, between  gpqlute difference, VACFumerical— VACF (analytio, between

the two sets of results. the two sets of results.

can be suitably defined for a chosen problem. One typicaly,qy of dynamical correlations in the canonical ensemble
choice for classical problems is the standard fluctuation for[18]. Observe that the choice df, and that of the scalar

mula, i.e., product for imposing orthogonality df,’s imply that
X, Y)=(XY)—={X){Y). 3
(XY)= (X =(X)(Y) 37) (ADAD)

Q)= 77—,
The notatior{ ) denotes a canonical ensemble average. The olt) (A0)%)
choice of such a scalar product results in parametrization of
{f,} and{a,} in terms of 8 and is hence well suited for the which is the fundamental relaxation function fa(t), the

(38
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FIG. 14. Power spectrum of the double well canonical VACF

) for B=1, wherew is expressed in dimensionless form.
FIG. 12. Power spectrum of the double well canonical VACF

for £=100, wherew is expressed in dimensionless form. the Liouville equation forA(t) with the choserf,’s, thereby

] ) ] ) satisfying a second recurrence relati®R 11) [15,16,
dynamical variable of interest. THe's are constructed via a

recurrence relatiofRR ) [12-16, A, 8, (D) =—a,t)+a, 4(t). (41)

fri=Lf,+Af, 4, (39  RRII can be Laplace transformed and written as a continued
fraction as followq15,16]:
L above being the Liouville operator
ag(2)=1Uz+A {z+A,/[z+--- to (d=1)]}),
of, oH  of, aH) (42)
LE,=> | ————— (40)
=1\ 0% dp;  Ip; IXi d being for ergodic systemgl9—21]. Thus, ifag(z) which
is a function of{ A}, 1<w<, which are functions of static
for a classical system, antl,=(f,,f,)/(f,-1,f,-1), which  correlations of the system described by the Hamiltotiaif
are functions of equilibrium correlations of the system undeffA )} is known, then in principleag(z) can be obtained

study. The dynamical correlations are obtained by solvingyvhich upon inverse Laplace transformation then yields

v ety e bty d e bo v o e
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FIG. 13. Power spectrum of the double well canonical VACF  FIG. 15. Power spectrum of the double well canonical VACF
for =10, wherew is expressed in dimensionless form. for B=0.1, wherew is expressed in dimensionless form.
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FIG. 16. Power spectrum of the double well canonical VACF Structure ofA,'s is described in detail in the latest article in
for #=0.01, wheraw is expressed in dimensionless form. The inset Ref.[20] and in[23] and can be associated in real space in a
shows the detail of the power spectrum in the vicinity of the har-linear harmonic chain with a linearly forward propagating
monic frequency.

ao(t), i.e., the relaxation function of interest. Onag(t) is
known, RR Il allows one to readily obtain all,(t)’'s. Com-
plete knowledge of f,} and{a,(t)} therefore solves for

A(t) [21].

For the Hamiltonian in Eqs(l) and (2), if we setA;

=B;=C;=0 andk; 1=k, andA(t)=v,(t), wherev; re-
fers to the velocity of some tagged parti¢len this transla-
tionally invariant system, then it can be shown that at all

temperature$22]

AQOC:Z—k, A';"C:E, =2,
m m

(43

/6
e T GO S B
o o (4] o (4] [=]

Lo s oo bvww v bow o bw oo by o a b e s laug

_.
)

a numerical result
— Vo =(n-1)
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FIG. 17. Plot of 14 versusn. ¢ is the relaxation exponent of
any autocorrelation function which decaysta€ andn is the mea-

n

sure of leading anharmonicity.

5.0

excitation with respect to a point in space where an infini-
tesimal perturbation has been imparted.

However, if we sekk=0, n=2, andA;#0, B;#0, and
C;=0 or C;#0, then the existing studies using a large but
finite number ofA ,'s (typically with 0<»=<100) of Sen and
Phillips and of Grossmann and Sonneborn-Schmick and of
Fronzoniet al. among others suggest that at all finite tem-
peratures ag— [18,19,24

A,~v?5, (44)

Keeping in mind that in the absence of an exact solution this
power-law growth is the best available estimate, one can say
the A,’s grow overwhelmingly fast compared to the growth
in the case of the harmonic-oscillator chat?,23. Results

of our calculation ofA, for n=2 at =100 are shown in
Fig. 18.

We have recently computed the first 20 or A¢'s for
particles in potentials of the foriv(x) =x2/2+x?"/2n, for
n=3, 4, and 5. In all of these cases, we encountered diffi-
culties in computing high-ordeA,’s unless we restricted
ourselves to extremely large values gfor low values of
temperature. In spite of considering larg§eeventually, typi-
cally for v>25 or so we found that the magnitudes of the
A,’s became large and unweildy. Based upon our calcula-
tions at =4, we estimatedy,,-3~2.7, xn,-4~2.7, and
Xn=5~2.9. We suspect that these previously unpublished
values ofy are rough estimates for the actual growth rates in
theA,’s.

We are unable to obtain reliable information about the
behavior of the VACF fon=2, 3, 4, and 5 using the con-
tinued fraction formalism approach. While this failure does
not mean that the continued fraction formalism has inherent
flaws, it does clearly reiterate an issue we have noted in
earlier work[21], i.e., that continued fractions in which the
A~ vX grow faster thany=2 cannot be replaced by finite
continued fractions with an arbitrarily large number of lev-
els, however large the number of levels may be. The problem
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' ' ' ' ' As shown in earlier work21], the sequence ok ,’s for
| i » : small » and the asymptotic behavior df,’s jointly deter-
mine the relaxation properties under study. The former is
easier to find than the latter. While we cannot directly esti-
mate the continued fractions for=3,4,5 cases using any
- S O A known method, from the analyses presented in Secs. Il and
oof SN N (O CO O 1 V, we know that the asymptotic relaxations differ in each of
S T L N T O e these cases according to the formula?1where ¢=1/(n
—1) (Fig. 17). Clearly, significant progress must be made in
our understanding of the behavior of continued fractions for
, - T x>2. We are hopeful that the results dn for n=2 cases
Lo} ‘ : : - and the independent calculations of the relaxation behavior
L L = L * L ? of these oscillators at all times will stimulate further investi-
t gations into approximating nonconvergent infinite continued
fractions.

05 5 g : R E 4

VACF

-05} - A : L s B

FIG. 19. Canonical ensemble VACF for=2 (solid) and n
=3 (dotted cases showing different relaxation behavior but unable
to capture the correct long-time tails. Timés expressed as a di-
mensionless quantity. The calculations have been done using the It is now known that anharmonic oscillatdrs3,24], small
calculatedA,’s and by truncating the continued fractions. clusters[24], and similar few-body systems often exhibit
)J_]igh values ofy (i.e., y>2). Studies of many-body systems
ample, in calculating the free energy in the vicinity of al finite "’?‘“'ce d|mens!on§ appear to show.th_at Fhe_ hature of
critical point in a system which is undergoing a phase tranPropagation of an excitation in real space IS intrinsically qnc'
sition by calculating the free energy using high- or low- ferént when compared to the way in which the energy in a
temperature series expansion based approaches. Our calcuifid!l perturbation distributes itself among the infinitely
tions of the VACF for time Gst<50 forn=2 (solidy and 3  Many frequencies of an anharmonic oscillator or an anhar—
(dotted are shown in Figure 19. Figure 20 shows the samdnonically coupled few-body system. However, the precise
calculations fom=4 (upper panélandn=5 (lower panel.  °rgins of the high values of as»—c remain to be under-
While it is obvious that then=3 case exhibits slower relax- .StOOd. or mterpreted_. Such an un(_jerstandlng IS I|ke!y to help
ation than then=2 case, the calculations do not capture the!dentify other physical systems in the same restricted dy-
long time tails correctly. We see no difference between théramical universality clasg20], i.e., with the samey as v
VACFs in then=4 andn=5 cases in Fig. 20, thereby indi- —~

cating that the predicted VACFs using the direct summation 'S it Possible to estimate the growth rate &f for the
approach are unreliable. general problem posed in Eqd) and(2) in which none of

the relevant couplings vanish? The answer is yes but this is a
wfk ' R '\ , ' T daunting task which remains to be successfully carried out.
n n A Let us, however, explore some general features of what the
3 solution to the complete problem described by HEds.and
(2) must possess based upon what we already know about
g the structure of thd,’s (and hence of th& ,’s) in Eq. (36).
R We first note that for the complete problem one can always
y separate the contributions fg from H™***andH{"}, ,; and
ol Y L A the coupling of the anharmonic oscillator dynamics and the
L e e e L harmonic motion due to the two-body interactions. Hence
t one can express the terms arising from the harmonic springs
. . ; ; ; and the anharmonic on-site potentialsf%:ﬁd refers to direct
1.0 7 termg and the terms arising from the coupling of the anhar-
monic potential and the harmonic springsf§s(c refers to
cross termpas follows:

VII. APPLICATION TO MANY-BODY SYSTEMS

here is clearly analogous to what one encounters, for e

0s5P { \ {

0.0~

VACF

~0.6[

0.5 ]

00 1

VACF

f,=fd4+fC, (45)
_05 — —
where to be more precise

~-1.0- ]
I 1 1 1 !

0 10 20 30 40 50 fd= fhocy ganh. g ghoc-anh (46)
t

T h hoc-anh
FIG. 20. Canonical ensemble VACF for=4 (upper panéland I the above equatiorf,*®, 5™, and f°“*"refer to the

n=5 (lower panel cases showing identical relaxation behavior but basis vectors for the harmonic-oscillator chain problem only,
unable to capture the correct long-time tails. Titie expressed as for the anharmonic potential problem only, and for the sys-
a dimensionless quantity. The calculations have been done using them in which the anharmonic potentials are coupled via har-
calculatedA ,’s and by truncating the continued fractions. monic springs, respectively. Indeed such arguments have



6510 SINKOVITS, SEN, PHILLIPS, AND CHAKRAVARTI PRE 59

been used by Krumhansl and Schrieffef more than twenty anharmonic potentials with>2, the algebraic tails of the
years ago when they treated the problem of dynamics of asymptotic relaxation functions can be calculated and that
one-dimensional system of particles in on-site double wellghey show reasonable agreement.
and connected by harmonic springs. The last basis vector is Finally, we have shown that for particles in anharmonic
unknown for allv at present. Clearly one can carry this logic potentials the behavior of th®,’s exhibits some of the fast-
a bit further and write thé\ ,’s in terms of direct and cross est growth rates known to us. While we do not know how to
terms as follows: estimate continued fractions with such rapid growth\igis,
we leave the reader with the eventual result one must reach
A,=AS+AS, (47 by estimating these nonconvergent infinite continued frac-
tions, namely, the finite and asymptotic time behavior of
where relaxation funtions fom=2 and the asymptotic relaxation

behavior forn=3, 4, and 5 cases.
A= AJ((F1°92),((FaM2)) (48)
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In this paper we have presented the results of numerical
simulations, together with analytic solutions, for the canoni-
cal VACF of the Duffing and double well oscillators and of  Clearly, one’s ability to calculate the infinite continued
oscillators described by potential&(x) =x?/2+x?"/2n for  fraction in Eq.(42), which representa,(z), rests upon one’s
n=3, 4, and 5. The strong agreement between the analytisuccess in calculating, or perhaps more importantly in esti-
and numerical results, particularly at long times, gives usnating, the right-hand side of EG12). Let us therefore com-
considerable confidence in the validity of the results. Thanent on the behavior o, below. The behavior oA , as a
analytic and numerical approaches complement each othéunction of » for small v is typically very important in the
particularly well for this problem since the numerical methoddescription of the short time behavior and the long time be-
is most reliable at short times, while an analytic form whichhavior of the system under study. The asymptotic behavior
describes the short-time, high-temperature regime quicklyf the relaxation process in time is, however, very sensitive
becomes unwieldy as higher-order terms in the expansion ab the manner in whichA , behaves ag'— [21]. In the
the microcanonical VACF are retained. remainder of this paper our concern will center on the
The work described in this paper has led to some imporasymptotic behavior of , .
tant new results regarding the Duffing and double well oscil- One may begin by noting that any finite continued frac-
lators. First, we have analytically established that for thetion contains a finite number of poles and hence a finite
Duffing well, in the limitt— <, the behavior of the VACF is number of frequencies that characterize the dynamics. If any
given by —(B/vy)sin{)/t at all temperatures. Numerical continued fraction truncates naturally, it must be for a system
simulations are consistent with this asymptotic result. Secwhich shows nonergodic behavior in canonical ensembles
ond, a similar result, VACF (8/y)sin(y2t)/t, has been ob- [20,25. Thus, ifA, is an oscillatory or a decreasing function
tained for the double well case. This finding has importantof v, then the resulting continued fraction would lead to spe-
implications for the relaxation of many physical systems.cific frequencies in the dynamics. Hence, for the relaxation
Third, we have demonstrated both via the asymptotic analyfunction to go to zero as—, A, must either bendepen-
ses of Sarkaf10] and via numerical calculations that for dentof » or grow as a function ofv as v—«. While we
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cannot prove this statement analytically at this time, our nuhow large this number may be. For such continued fractions,

merical studies provide strong evidence in its support.

for any (<, one cannot obtain any asymptotic features of

Some time ago, it was shown by direct numerical analysighe relaxation functioray(t) [24,27.

that if asv goes tox

A~ X, (A1)

It turns out that fory<<2, infinite continued fractions are
convergentand hencet is possibleg at least in principle, to
obtain the asymptotic features of the relaxation function
from careful numerical analysis of large but finite continued

x<2, then Eq(43) can always be numerically estimated by fractions along the lines indicated in RE21]. However, for

replacing Eq.(43) by a finite continued fraction which typi-
cally has 16 levels, where typically Z¢<5 [21]. Upon a
numerical inverse Laplace transform of E@8) one then
obtainsag(t) for O<t<p, wherep=1(x,{) and is a large
number, 10, 2=< =<3 being fairly typical numbers. If it so
happens that the continued fraction denvergent then a

x>2, infinite continued fractions areonconvergentand
hence itis not possiblego obtain the asymptotic features of
the relaxation function from numerical analysis of large but
finite continued fractiong§21]. The casey=2 can be re-
garded as special. In a recent study, laeteal. [28] have
demonstrated a physical system exhibiting such behavior.

large enouglp can always be found for an accurate estima-The infinite continued fraction in this case is solvable ana-

tion of the asymptotic relaxation properties.
Our numerical studie§21,26 show that it may happen
that the continued fraction isonconvergenti.e., theA,’s

lytically. Numerical studies in which the infinite continued
fraction is replaced by a large but finite continued fraction do
not readily yield the correct asymptotic behavior of the re-

grow in such a way withy that such continued fractions laxation function(which turns out to be exponential degay
cannot be estimated by a finite number of poles no mattein this problem[21].
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