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We present a detailed report@see S. Senet al., Phys. Rev. Lett.77, 4855 ~1996!# of our numericaland
analytical studies on the relaxation of a classical particle in the potentialsV(x)56x2/21x4/4. Both of the
approaches confirm that at all temperatures, the relaxation functions~e.g., velocity relaxation function and
position relaxation function! decay asymptotically in timet as sin(v0t)/t. Numerically calculated power spectra
of the relaxation functions show a gradual transition with increasing temperature from a single sharp peak
located at the harmonic frequencyv0 to a broad continuous band. The 1/t relaxation is also found whenV(x)
is a polynomial in powers ofx2 with a nonvanishing coefficient accompanying thex4 term inV(x). Numerical
calculations show that in the cases in which the leading term inV(x) behaves asx2n with integer n, the
asymptotic relaxation exhibits 1/tf decay wheref51/(n21). We briefly discuss the analytical approaches to
relaxation studies in these strongly anharmonic systems using direct solution of the equation of motion and
using the continued fraction formalism approach for relaxation studies. We show that the study of the dynamics
of strongly anharmonic oscillators poses unique difficulties when studied via the continued fraction or any
other time-series construction based approaches. We close with comments on the physical processes in which
the insights presented in this work may be applicable.@S1063-651X~99!09306-X#

PACS number~s!: 67.40.Fd, 65.90.1i
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I. INTRODUCTION

There is a close connection between the behavior o
classical particle relaxing in an anharmonic multiwell pote
tial at a fixed temperature and a number of more comp
physical phenomena such as the dynamical processes as
ated with structural phase transitions@1# and with relaxation
processes in glassy systems@2,3#. An important illustrative
example is that of the Krumhansl-Schrieffer~KS! model,
which is a simplistic model for displacive structural pha
transitions@1#. The KS-type model can be described by
Hamiltonian H5( i(Hi1Hi ,i 11), whereHi and Hi ,i 11 are
of the following forms:

Hi5
1

2
mẋi

21
Aixi

2

2
1

Bixi
2ni

2ni
1CiG i~xi

m i ;m i.2ni ! ~1!

and

Hi ,i 115
ki ,i 11

2
~xi2xi 11!2, ~2!

*Author to whom correspondence should be addressed.
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whereẋi ,xi denote the velocity and the position of somei th
particle of massm, Bi.0, ki ,i 11 denotes the spring con
stants of the springs connecting the nearest-neighbor ma
and G i is an unspecified anharmonic piece in the one-bo
potential landscape which, in general, involves terms
O(x2ni12) or higher. We note thatni>1 and is an integer.
Thus, by appropriate choice ofG i one can construct a one
body potential which can be a cosh, cos, exp, or some o
function. Ai , Bi , Ci are real coupling constants which d
termine the potential energy landscape of particlei. Ai can be
positive or negative. Let us assume that as the total energ
the system,E→0, each particle finds itself in a bounde
potential. From now on, for the sake of simplicity, let us al
suppose thatki ,i 115k.

If we set Ai5Bi5Ci50 in Eq. ~1!, then the dynamical
problem for the HamiltonianH can be analytically solved fo
all N including in the limitN→`. It has been shown by Fox
@4#, Florencio and Lee@5#, Vitali and Grigolini @6#, and oth-
ers that in the thermodynamic limit, i.e., asN→`, the nor-
malized velocity autocorrelation function of any particle~say
j ), ^v j (t)v j (0)&/^v j (0)2&5(kBT/m)J0(v0t), v05Ak/m,
whereJ0(v0t) is a zeroth-order Bessel function which d
cays in time in an oscillatory algebraic manner,kB is the
Boltzmann constant. The decay exponent here behave
t23/2 @4–6#. This behavior is robust for the other dynamic
6497 ©1999 The American Physical Society
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correlations, such as the position and acceleration autoco
lations, of the harmonic-oscillator chain as well@5#.

As we shall demonstrate below, ifk50 and AiÞ0, Bi

.0, the asymptotic relaxation of any corresponding autoc
relation function turns out to besignificantly slowerthan
t23/2. We will not discuss the consequences of the terms w
coefficientsCi in this work except to say that our numeric
analyses reported in@7# reveal that the asymptotic relaxatio
of a single classical particle in an anharmonic potentia
controlled by the leading anharmonic term andnot by the
higher-order terms in a potential such as that described
Eq. ~1!.

If k!uAi u, k!Bi , then it is not unreasonable to expe
that there would be a distinct separation of relaxation mec
nisms arising from the noninteracting and the interact
parts of the Hamiltonian. The slower relaxation, arising fro
the anharmonic interactions, could presumably dominate
t→`. An intuitive argument in favor of the case that th
slower one-body relaxation may win out as timet→` comes
from noting that coupling oscillators via nearest-neighb
harmonic springs in a locally anharmonic potential w
leading anharmonicity of formx2n will not effectively fur-
ther stiffen the localx2n anharmonicity. The argument i
expected to be quite robust at low temperatures in which
amplitudes of motion of the particles are small and are do
nated by the acoustic mode, i.e., in the so-called ‘‘ord
disorder’’ regime@1,8#. Since there is no phase transition f
models such as in Eqs.~1! and ~2! in one dimension, the
above-mentioned argument, namely that the long time re
ation will be dictated by local anharmonicities, may ev
hold at all finite temperatures. Difficulties could arise, ho
ever, if the two-body interaction becomes strongly anh
monic such that the local anharmonicity will be strongly a
fected by the two-body interaction. We shall return to a m
technical discussion of the connections between the o
body and the many-body relaxations later in Secs. VII a
VIII in this paper.

A detailed understanding of relaxation in one-dimensio
~1D! multiwell potentials could lead to greater insights in
the dynamics of not only the KS model but in models
thermally activated dynamics in the glass transition and
relaxation in related complex systems.

In a recent Letter@7#, we have presented results whic
show that the relaxation of a classical particle in anharmo
potentials follows a power law which depends upon the or
of the leading anharmonic term. For potentials with a lead
quartic anharmonicity, the relaxation functions show at
decay. In the present paper, we first present a detailed
cussion of the behavior of a particle relaxing in the potent
V(x)56x2/21x4/4. Choosing the ‘‘1 ’’ sign in this poten-
tial results in a single symmetric well with a minimum atx
50, while choosing the ‘‘2 ’’ sign leads to a symmetric
double well with minima atx561. Throughout the remain
der of this paper, for the sake of clarity we will refer to th
first case as the Duffing well and to the second case as
double well, respectively, although the so-called double-w
case is one realization of the case of the Duffing well@9#. We
refer the reader to our study in@7# for a discussion and fo
results on relaxation in potentials that differ from the Duffi
and double wells but possess leading quartic anharmoni
In particular, we briefly discuss relaxation processes in ca
re-
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V(x)5 cosh(x) and V(x)5 cos(x) in Ref. @7#. As we shall
see, in all of these cases, the relaxation function decays
ymptotically in time as 1/t. We then present a brief discus
sion of relaxation in which the leading anharmonicity in t
potential is of the formx2n, wheren.2, where one encoun
ters asymptotic relaxation of the form 1/tf, wheref51/(n
21). We then apply this result to discuss the special case
n51 andn→`. It is possible to prove this result, which wa
initially arrived at using numerical methods, via some lim
ing analyses as done by Sarkar@10#. It should be noted,
however, that Sarkar’s@10# or any existing analyses@11# do
not solve the dynamical problem as a function of time, b
rather succeed in obtaining the behavior of the lowest
quency of the anharmonic oscillator as a functon of to
energy to leading order in energy. A powerful analytical to
for studying relaxation phenomena relies upon the contin
fraction formalism~CFF! @12–17#. While a large class of
systems can be readily probed using the CFF, it turns out
one encounters grave difficulties in implementing the CFF
studying relaxation processes in strongly anharmonic os
lators @18,19#. In closing, we discuss these difficulties, w
summarize our numerical and analytical work, and disc
its implications.

We begin by presenting the derivation of the asympto
1/t behavior of the relaxation function starting from the fo
mal solution of the Duffing oscillator in Sec. II A. The ex
tension of the asymptotic relaxation analyses to cases
leading anharmonicity of the formx2n, wheren.2, is pre-
sented in Sec. II B. We then go on to describe in some de
the numerical method employed in calculating the relaxat
functions in Sec. III. The studies on relaxation processes
other potentials with leading quartic and with leading high
order anharmonicities are presented in Secs. IV and V,
spectively. The analytical approach to studying relaxat
processes in anharmonic oscillators, such as the contin
fraction formalism~CFF!, presents a unique set of problem
in getting to the correct answers. These issues are discu
in Sec. VI. The applications of these results to many-bo
systems of interest in condensed matter and statistical p
ics are presented in Sec. VII. We summarize the work a
present open questions of broad interest in the analyse
slow relaxation problems in Sec. VIII.

II. ANALYTIC BEHAVIOR

A. Quartic anharmonicity: Duffing and double wells

In this section we derive analytic results for the behav
of the canonical velocity autocorrelation function in the lim
t→`. We use the formal solution of the Duffing potenti
V(x)5x2/21rx4/4, r .0, as the starting point for the der
vation. We do not work out the case for the double w
explicitly but refer the interested reader to the treatment
Davis @9# for working out the minor modifications in the
formulae in Eqs.~3!–~8! and~12! below. We shall argue tha
the asymptotic relaxation properties of a particle in the D
fing and double wells are identical.

The location of a particle with a fixed energy moving
the Duffing potential is given by

x~ t !5C(
p50

`

ap sin~2p11!vt, ~3!
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where the leading terms of the constantsCap are

Ca05a, ~4!

Ca15~2ra3/32!~1221ra2/321461r 2a4/10241••• !,
~5!

Ca25~r 2a5/1024!~1243ra2/321••• !, . . . , ~6!

and the frequencyv is

v5~113ra2/413r 2a4/128257r 3a6/40961••• !1/2.
~7!

In the above expressions, the variablea is obtained as a
function of E by substituting the formal solutions forx(t)
and v(t) into the Hamiltonianp2/2m1V, where m51,
yielding

a5~2E!1/22
9E3/2

27/2
1

561E5/2

217/2
•••. ~8!

The normalized microcanonical ensemble velocity autoc
relation function ~VACF! is obtained by substituting
dx(t)/dt into the equation

^v~0!v~ t !&E

^v~0!2&E
5

E
2`

`

v~ t8!v~ t81t !dt8

E
2`

`

v~ t8!v~ t8!dt8

, ~9!

where the subscriptE is used to distinguish the microcanon
cal from the canonical.

The VACF can be greatly simplified by noting that

lim
t0→`

1

t0
E

2t0

t0
cos~2n11!vt8 cos~2m11!v~ t81t !dt8

5dnm cos~2n11!vt, ~10!

yielding the result

^v~0!v~ t !&E

^v~0!2&E
5

C2(
p50

`

ap
2~2p11!2 cos~2p11!vt

C2(
p50

`

ap
2~2p11!2

.

~11!

The above result is an exact form for the microcanoni
VACF, but a much simplified form for the canonical VAC
can be obtained as follows. One begins by retaining only
lowest-order terms of̂v(0)v(t)&E in a. First expandingv to
lowest order ina yields

v.~113ra2/4!1/2.113ra2/8. ~12!

Substituting this expression intôv(0)v(t)&E and retaining
only thep50 term in the summation gives

^v~0!v~ t !&E

^v~0!2&E
5 cos~113ra2/8!t. ~13!
r-

l

e

Replacinga by its lowest-order expansion inE, setting g
equal to 3r /4, and substituting the normalized microcanon
cal VACF into the canonical VACF with the assumption th
the density of statesg(E)5 const at low enough energies~to
be elaborated upon in Sec. II B! results in

^v~0!v~ t !&can

^v~0!2&can

5

E
0

`

e2bE cos~11gE!tdE

E
0

`

e2bEdE

. ~14!

Rewriting cos(11gE)t as cos(t)cos(gtE)2 sin(t)sin(gtE) and
evaluating the integrals

E
0

`

e2bE cos~gtE!dE5
b

g2t21b2 ~15!

and

E
0

`

e2bE sin~gtE!dE5
gt

g2t21b2 ~16!

results in a form for the low-temperature canonical VACF

^v~0!v~ t !&can

^v~0!2&can

5
b2 cos~ t !2gbt sin~ t !

g2t21b2 . ~17!

This form gives an excellent representation of the canon
VACF at all times forb>100 as will be shown in the sectio
on numerical results. In the long-time limit, the expressi
reduces to

lim
t→`

^v~0!v~ t !&can

^v~0!2&can

5
2~b/g!sin~ t !

t
. ~18!

Interestingly, this expression describes the long-time beh
ior of the VACF for all temperatures. This can be show
easily by retaining higher-order terms inE in the expression
for the VACF at a fixed energy before substituting into t
equation for the canonical VACF. Keeping termsp.0 in the
summation leads directly to the appearance of powers ofE in
the integrals while retaining higher-order terms in the exp
sion for v leads to trigonometric functions with argumen
involving higher powers ofE. This results in contributions to
the canonical VACF from integrals of the form

E
0

`

Epe2bE@cos~gtE!,sin~gtE!#

3@cos~c2tE2!,sin~c2tE2!#•••dE, ~19!

where the terms in square brackets indicate that one or
other trigonometric function is chosen. Replacing the sin a
cos functions containing arguments with powers ofE greater
than 1 with their series expansions simply results in con
butions from a sum of integrals of the form

E
0

`

t lEme2bE@cos~gtE!,sin~gtE!#dE, ~20!
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where all of the powers ofE have been collected inEm, with
l and m related by the inequalitym> l 11. These integrals
have the closed forms

I 15E
0

`

t lEme2bEcos~gtE!dE

5
t lm! @~b2 igt !m111~b1 igt !m11#

2~b21g2t2!m11
~21!

and

I 25E
0

`

t lEme2bE sin~gtE!dE

5
t lm! @~b2 igt !m111~b1 igt !m11#

2~b21g2t2!m11
. ~22!

In the long-time limit, the integralsI 1 and I 2 have the be-
havior

lim
t→`

I 1;t l 2m21, m odd; 0, m even ~23!

and

lim
t→`

I 2;t l 2m21, m even; 0, m odd. ~24!

Since m2 l is at least 1, all contributions to the canonic
VACF arising from retaining higher-order terms inE decay
faster than 1/t. In the long-time limit, the only surviving term
is 2(b/g)sin(t)/t. We will show in Sec. IV that this
asymptotic form does indeed match the numerical simu
tions at long times for all values ofb.

It should be noted that the derivation presented above
the canonical VACF can easily be modified to obtain t
canonical autocorrelation functions for other derivatives
x(t). For example, repeating the derivation forx(t) anda(t)
would lead to the expressions for the microcanonical au
correlation functions

^x~0!x~ t !&E

^x~0!2&E

5

C2(
p50

`

ap
2cos~2p11!vt

C2(
p50

`

ap
2

~25!

and

^a~0!a~ t !&E

^a~0!2&E
5

C2(
p50

`

ap
2~2p11!4cos~2p11!vt

C2(
n50

`

ap
2~2p11!4

,

~26!

respectively. In the limit that only thep50 term in the sum-
mation is retained, all of the canonical autocorrelation fu
tions are identical.

For the double well potential, we find that in the limit o
low frequency, the frequency of the oscillator is given
v.A22g8E, whereg8 is a constant. Repeating the abo
l

-

or

f

-

-

analysis, with the assumption that the form of the lead
nonconstant term in the formal solution forx(t) is sinvt,
leads to the result for the VACF,

^v~0!v~ t !&can

^v~0!2&can
5

b2cos~A2t !1g8btsin~A2t !

g82t21b2
. ~27!

.

As shown below, this result agrees well with the numeri
simulations.

B. Higher-order anharmonicity

We now outline the approach of Sarkar@10# in extracting
the behavior ofv(E) for various potentials with leading an
harmonic terms of the formx2n, wheren.2 and is an inte-
ger.

Starting with Eq.~12! and rewriting it as

^v~0!v~ t !&can

^v~0!2&can

5

ReS E
0

`

exp2bE exp„F~E!…i tv~E!dED
E

0

`

exp2bEdE

,

~28!

we first assume, without any proof for now, thatF(E) has
an (n21)th-order stationary point atE50. This implies that
all derivatives ofv(E) up to and including the (n22)th
order must vanish atE50 but the (n21)th-order derivative
would be nonvanishing. We also note that the density
states,g(E), goes to a nonzero constant asE→0. To see this
behavior ofg(E) we note that the number of statesN(E)
with energy up toE is proportional to the area in thex-p
plane enclosed by the contour of energyE. As E→0, the
motion becomes essentially harmonic and this area is pro
tional to E. Thus,g(E)[dN(E)/dE→ const.

If F(E) has an (n21)th stationary point inE, then

^v~0!v~ t !&can

^v~0!2&can

}Re@exp„i tF~0!…1 ip/2q#

3@q!/ tuF$(q)%~0!u#1/qG~1/q!/q, ~29!

whereq5(n21) andF$(q)%(0) is theqth derivative ofF
evaluated atE50. This leads us to the following predictio
for asymptotic relaxation ast→`:

^v~0!v~ t !&can

^v~0!2&can

}cos@v~0!t1p/2~n21!#/t1/(n21). ~30!

As we shall see later, our numerical analyses are consis
with the asymptotic behavior predicted by the analyses
low.

The assumption regarding the (n21)th-order stationary
point in v(E) made above can be justified as follows. W
first observe thatv(E)5dJ(E)/dE, whereJ(E), the action,
is by definitionrp(x)dx, wherep(x) is the momentum of
the particle as a function of its position. To establish th
v(E);v(0)1kEn21, wherek is some constant, we mus
show thatJ(E)5a1E1a2En1•••, where a1 and a2 are
appropriate constants.
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SinceJ(E)5rp(x)dx and is symmetric aboutx50, one
can write

J~E!54E
0

U(E)A2S E2
x2

2
2

x2n

2n Ddx, ~31!

where U(E) is the right turning point. For a harmoni
potential, U(E)[U0(E)5A2E. This implies that for the
harmonic case J(E)[J0(E)5a1E and that in gen-
eral, J(E)5J0(E)1dJ(E). Thus, we need to establish th
the leading term in dJ(E)[*0

U0(E)AE2(x2/2)dx
2*0

U(E)AE2x2/22(x2n/2n)dx of the order En. Observe
here that forn.2, U0(E).U(E). As argued by Sarka
@10#, one can write an expression fordJ(E) as follows:

dJ~E!5E
0

U(E)AS E2
x2

2 D2AE2
x2

2
2

x2n

2n
dx

1E
U(E)

U0(E)AE2
x2

2
dx[T1~E!1T2~E!. ~32!

U(E), which is the turning point of motion in the steep
potential, can be determined through perturbative techniq
and is given by

U~E!5A~2E!2
~2E!2n21/2

2n
1

2n21

4n2 ~2E!2n23/21•••.

~33!

Using the expression forU(E) above, one can show
that T2(E);E3n21/2. To calculate T1(E), we observe
that AE2x2/22AE2x2/22x2n/2n5@(x2n/2n)/
AE2x2/2# f (x), where f (x)5@12A12y(x)#/y(x) with
y(x)5(x2n/2n)/E2x2/2. The range ofx @0,U(E)# maps
onto the range@0,1# for y and thusf (x) is bounded above by
1 and below bys with 1.s.0. The crucial point here is
that s is independent ofE. Thus,T1(E) is bounded above
and below by K and sK, respectively, where K
5*0

U(E)
„(x2n/2n)/AE2x2/2…dx. This integral turns out to be

of orderEn. SinceT1(E) is bounded from above and belo
by quantities of orderEn in the limit E→0, it must be of
order En in this limit. Therefore,T2(E);E2n23/2 is domi-
nated byT1(E), which is of orderEn as E→0 and hence
J(E)5a1E1a2En1•••, which we set out to establish.

III. NUMERICAL METHOD

Here we describe the numerical method used to calcu
the canonical ensemble autocorrelation functions. The ke
the approach is the fact that at a fixed energy the autoco
lation functions are periodic with the same periodt as the
motion of the particle in the Duffing potential. The microc
nonical autocorrelation functions need only be calcula
over one period of motion with the values at longer tim
given by^v(0)v(t1t)&5^v(0)v(t)&. The evaluation of the
canonical autocorrelation function can be done in a straig
forward manner by first evaluating the microcanonical au
correlation functions at a number of discrete energies in
range Emin<E<Emax and then performing the integratio
over dE.
es

te
to
e-

d
s

t-
-
e

The first step in the calculation of the microcanonical a
tocorrelation function is the determination of the period
motion for a given fixed energy. Particular care is taken
this stage since the accurate determination of the canon
autocorrelation function at long times depends crucially
the cancellation of a large number of terms of compara
magnitude but opposite sign. Small errors in the calculat
of t(E) can lead to large errors in the phase relations
tween different microcanonical ensembles at long times
rough estimate of the period is obtained by integrating
classical equations of motion for a particle in the Duffin
potential using a third-order Gear algorithm. The uncertai
in t at this stage is given bydt[dt/n, where dt is the
integration time step andn is the number of periods of mo
tion integrated over. The values (t2dt) and (t1dt) are
then used as the bracketing values in a root finding rou
which locates the zero of the functionf (t)5v(0)2v(t),
wherev(t) is obtained by integrating the equations of m
tion using a time stepdt5t/1024. This procedure is used t
determinet to a level of accuracy such that bothux(0)
2x(t)u and uv(0)2v(t)u are less than 131028. Once a
sufficiently accurate value oft has been obtained, the func
tions x(t), v(t), and a(t), and in turn, ^x(0)x(t)&,
^v(0)v(t)&, and ^a(0)a(t)&, are tabulated at 1024 equall
spaced times spanning one period of motion. For the Duffi
oscillator, the position, velocity, and acceleration autocor
lation functions should all be identical in the long-time lim
but they are evaluated as an additional test to make sure
the results of the calculation are consistent. The values of
microcanonical autocorrelation functions required in the
tegration are obtained via a linear interpolation between ta
entries.

The range of energies over which the microcanonical
tocorrelation functions are calculated is determined by
temperature of the system. We choose as the lower limi
integration an energy slightly higher than the potential mi
mum, typicallyEmin5531027, and, as the upper limit,Emax
such that exp(2bEmax) is less than 1310211. The canonical
autocorrelation functions are evaluated using the micro
nonical autocorrelation functions tabulated at up to 5000 d
tinct energies. For the Duffing well, fewer than 1000 en
gies are typically needed to obtain good results. Calculati
involving the double well usually require a larger number
microcanonical function evaluations in order to accurat
perform the integration over energies in the vicinity of t
barrier height. The integration is carried out using a sim
trapezoid rule. A higher-order integration scheme was
employed since we used an unequal energy spacing to m
mize the number of function evaluations in the lower ene
region. Calculations carried out using equally spaced en
gies show no significant deviation from those using uneq
spacings. During the numerical integration, care is taken
minimize the effects of roundoff error by summing the co
tributions to the integral from highest to lowest energy.

IV. RESULTS OF NUMERICAL SIMULATIONS

In this section we compare the numerical and analy
results for the Duffing and double well oscillators withr set
equal to 1. We can do this without any loss of genera
since the same trends in the behavior of the canonical VA
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and corresponding power spectrum obtained forr will occur
for different values ofr, only at higher or lower tempera
tures. For these systems, the numerical and analytic re
for the canonical VACF complement each other particula
well. The analytic form based on the lowest-order ene
expansion of the formal solution agrees with the numer
result at all times for low temperatures (b>100) and at long
times for higher temperatures, but fails to describe the sh
time behavior of the VACF at higher temperatures. This
due to the fact that the low-temperature limit of the analy
solution neglects contributions from terms involving high
powers oft2n. The numerical approach, on the other han
has been found to be most reliable at short times. For
temperatures, using fewer than 2000 energies, the Duf
well VACF’s can be evaluated numerically for long time
(t.20 000) yielding results that agree with the asympto
solution, while at higher temperatures spurious behavio
the VACF’s begins at considerably shorter times.

A. Duffing oscillator

A comparison between the numerical and analytic res
for the canonical VACF atb5100 is shown in Figs. 1~a! and
1~b!. The two sets of results agree to within roughly 1% ov
the entire range of times studied, with the largest relat
errors occuring at shorter times. It should be noted that
difference between the analytic and numerical results is
cillatory, suggesting that even better agreement would
obtained by retaining higher-order terms in the expansion
the microcanonical VACF leading to additional correctio
to the canonical VACF of the form@cos(t),sin(t)#f(t).

For b54, Figs. 2~a! and 2~b! show that there is a signifi
cant deviation between the two results at short times, but
the analytic form matches the simulation almost exactly
times t.30. The reader may observe that while Figs. 1~b!
and 2~b! look identical at first sight, the magnitudes of th
VACF at large times are much smaller in Fig. 2~b! when
compared with the same in Fig. 1~b!. This is expected in
view of the fact that relaxation is expected to occur mo
rapidly at higher temperatures.

At much higher temperatures, the discrepancy betw
the analytic form and the numerical results becomes m
dramatic. Forb50.01, the analytic form bears virtually n
resemblance to the numerical results at short times as ev
in Figs. 3~a! and 3~b!.

The power spectra of the VACF’s are shown in Figs. 4
for b ranging from 100 to 0.01. Atb5100.0, the power
spectrum consists of a single peak located atv51.0. As the
temperature is increased, contributions from frequenc
other than the harmonic frequency become increasingly
portant. Atb510.0, the power spectrum has broadened s
nificantly, most noticeably on the high-frequency side of t
peak. Further increases in the temperature lead not only
broadening of the power spectrum, but to the formation o
distinct broad peak with a maximum located above the h
monic frequency. At the highest temperatures, the po
spectrum is clearly dominated by the broad peak, but
sharp peak atv51.0 is always present. Even atb50.01, a
vestige of the harmonic peak persists.
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B. Double well oscillator

Figures 9–11 show a comparison between the numer
and analytic results for the double well at values ofb equal
to 100, 4, and 0.01. As was the case for the Duffing w
very good agreement is seen between the numerical and
lytic results at low temperatures and long times. The osci
tory nature of the difference between the two sets of res

FIG. 1. Canonical ensemble VACF for Duffing well determine
from numerical simulations and analytic form forb5100 at times
~a! 0<t<200 and~b! 1000<t<1200, wheret is expressed in di-
mensionless form. The numerical and analytic results are indis
guishable in this plot. The upper panel displays the absolute dif
ence, VACF~numerical!2VACF ~analytic!, between the two sets
of results.
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again suggests that the error is due to the omission of hig
order terms in the expansion of the microcanoncial VACF

The power spectra of the VACF’s are shown in Fig
12–16 forb ranging from 100 to 0.01. A gradual transitio
is seen from a single sharp peak at the harmonic freque
v5A2 for low temperatures to a broad spectrum at hig
temperatures. In contrast to the Duffing well, the broaden
of the power spectrum begins predominantly on the lo
frequency side of the harmonic peak. At the highest temp

FIG. 2. Canonical ensemble VACF for Duffing well determin
from numerical simulations~solid line! and analytic form~broken
line! for b54 at times~a! 0<t<50 and~b! 1000<t<1200, where
t is expressed in dimensionless form. The upper panel displays
absolute difference, VACF~numerical!2VACF ~analytic!, between
the two sets of results.
r-
.
.

cy
r
g
-
a-

tures, a remnant of the contribution from the harmonic f
quency is still visible, but seems to manifest itself as
subtraction rather than an addition to the broadband.

It is important to state that we have found it somewh
difficult to explain the power spectra using intuitive arg
ments, e.g., in terms of the peak frequencies using Eqs~3!
and~7! in these systems at finite temperatures. However,
is not uncommon when analyzing strongly anharmonic s

he

FIG. 3. Canonical ensemble VACF for Duffing well determine
from numerical simulations~solid line! and analytic form~broken
line! for b50.01 at times~a! 0<t<20 and~b! 200<t<300, where
t is expressed in dimensionless form. The upper panel displays
absolute difference, VACF~numerical!2VACF ~analytic!, between
the two sets of results.
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6504 PRE 59SINKOVITS, SEN, PHILLIPS, AND CHAKRAVARTI
tems, such as glasses and quantum spin systems at
temperatures.

V. ARBITRARY ANHARMONICITY

We have extended our work to study the asymptotic
havior of the VACF in potentials of the form

V~x!5x2/21x2n/2n, ~34!

wheren.2. Typically, the calculations of long time beha
ior of the VACF get progressively more difficult with in
creasingn. As a consequence, it is a daunting task to num
cally calculate the behavior of the algebraic tail in t
VACF, which is of the form 1/tf, where f,1, at the

FIG. 4. Power spectrum of the Duffing well canonical VACF f
b5100, wherev is expressed in dimensionless form.

FIG. 5. Power spectrum of the Duffing well canonical VACF f
b510, wherev is expressed in dimensionless form.
ite

-

i-

asymptotic limit in time. Our calculated values off versusn
are presented in Fig. 17. On the basis of these calculati
we predicted@7# that

f51/~n21!. ~35!

As discussed in Sec. II B, Sarkar’s method@10# arrives at
the expression forf given above and hence validates o
claim. It remains difficult, however, to obtain the behavior
the VACF accurately at all time regimes in view of the stee
ness of the potential energy function and the strongly n
linear dependence ofv(E) on E as discussed in Sec. II B.

Let us consider the potential function in Eq.~34! without
the harmonic term and consider cases with extreme value
n. We note that the extreme limits ofn→` andn→1 lead to

FIG. 6. Power spectrum of the Duffing well canonical VACF f
b51, wherev is expressed in dimensionless form.

FIG. 7. Power spectrum of the Duffing well canonical VACF f
b50.1, wherev is expressed in dimensionless form.
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the following relaxation behavior. Forn→`, the anharmo-
nicity in V(x) becomes infinitely steep andv(E) diverges to
leading nonlinear order inE. This implies thatf→0, or
1/tf→1. If the normalized VACF remains a constant
time, then the system exhibits no dynamics. To see
meaning of the preceding statement, we observe that fon
→`, the right-hand side of the equation of motion becom
divergent, implying that acceleration must diverge for m
tion to occur. As one would then expect, in a potential tha
infinitely steep, any motion costs a tremendous amoun
energy and thus no time evolution is possible.

For n→1, Eq.~34! reveals thatV(x) is entirely harmonic
and according to Eq.~35!, f→`. Thus the VACF does no
decay asymptotically in time, as is indeed the case for re
ation of the form of cos(vt) in the harmonic potential case.
should be noted that the nondecaying VACF result is dist
from the case in which the VACF remains unity, indicatin
that there is no time evolution at all.

VI. CONTINUED FRACTION FORMALISM BASED
ANALYSES

In this section we present a brief discussion which s
gests that no time series based approach, no matter how
tensive, can estimate the asymptotic behavior 1/tf presented
in Secs. II–V.

The discussion in this section centers upon our curr
understanding of the continued fraction formalism whi
grew out of the classic works of Mori@12#, Dupuis @13#,
Zwanzig @14#, Lee @15#, Grigolini @16#, and others@17#. In
this formalism one constructs a complete orthogonal setd
time-independent basis vectorsf n with d time-dependent co
efficientsan(t) ~which are later identified with various fun
damental dynamical correlations! to describe a dynamica
variableA(t) as follows@15#:

FIG. 8. Power spectrum of the Duffing well canonical VACF f
b50.01, wherev is expressed in dimensionless form. The ins
shows the detail of the power spectrum in the vicinity of the h
monic frequency.
e
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-
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nt

A~ t !5 (
n51

d21

f nan~ t !. ~36!

It is assumed thatA(t) satisfies the Liouville equation o
motion @e.g., for the Hamiltonian in Eq.~4! this is Eq.~5!#.
Typically, one chooses f05A(t50). The orthogonalf n’s

t
-

FIG. 9. Canonical ensemble VACF for double well determin
from numerical simulations and analytic form forb5100 at times
~a! 0<t<100 and~b! 1000<t<1100, wheret is expressed in di-
mensionless form. The numerical and analytic results are indis
guishable in this plot. The upper panel displays the absolute dif
ence, VACF~numerical!2VACF ~analytic!, between the two sets
of results.
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can be suitably defined for a chosen problem. One typ
choice for classical problems is the standard fluctuation
mula, i.e.,

~X,Y!5^XY&2^X&^Y&. ~37!

The notation̂ & denotes a canonical ensemble average.
choice of such a scalar product results in parametrizatio
$ f n% and$an% in terms ofb and is hence well suited for th

FIG. 10. Canonical ensemble VACF for double well determin
from numerical simulations~solid line! and analytic form~broken
line! for b54 at times~a! 0<t<50 and~b! 150<t<200, wheret
is expressed in dimensionless form. The upper panel displays
absolute difference, VACF~numerical!2VACF ~analytic!, between
the two sets of results.
al
r-

e
of

study of dynamical correlations in the canonical ensem
@18#. Observe that the choice off 0 and that of the scala
product for imposing orthogonality off n’s imply that

a0~ t !5
^A~ t !A~0!&

^A~0!2&
, ~38!

which is the fundamental relaxation function forA(t), the

he

FIG. 11. Canonical ensemble VACF for double well determin
from numerical simulations~solid line! and analytic form~broken
line! for b50.01 at times~a! 0<t<15 and~b! 150<t<200, where
t is expressed in dimensionless form. The upper panel displays
absolute difference, VACF~numerical!2VACF ~analytic!, between
the two sets of results.
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PRE 59 6507SLOW ALGEBRAIC RELAXATION IN QUARTIC . . .
dynamical variable of interest. Thef n’s are constructed via a
recurrence relation~RR I! @12–16#,

f n115L f n1Dn f n21 , ~39!

L above being the Liouville operator

L f n[(
i 51

N S ] f n

]xi

]H

]pi
2

] f n

]pi

]H

]xi
D ~40!

for a classical system, andDn[( f n , f n)/( f n21 , f n21), which
are functions of equilibrium correlations of the system un
study. The dynamical correlations are obtained by solv

FIG. 12. Power spectrum of the double well canonical VAC
for b5100, wherev is expressed in dimensionless form.

FIG. 13. Power spectrum of the double well canonical VAC
for b510, wherev is expressed in dimensionless form.
r
g

the Liouville equation forA(t) with the chosenf n’s, thereby
satisfying a second recurrence relation~RR II! @15,16#,

Dn11an11~ t !52ȧn~ t !1an21~ t !. ~41!

RR II can be Laplace transformed and written as a contin
fraction as follows@15,16#:

a0~z!51/„z1D1 /$z1D2 /@z1••• to ~d21!#%…,
~42!

d being` for ergodic systems@19–21#. Thus, ifa0(z) which
is a function of$Dn%, 1<n,`, which are functions of static
correlations of the system described by the HamiltonianH. If
$Dn% is known, then in principlea0(z) can be obtained
which upon inverse Laplace transformation then yie

FIG. 14. Power spectrum of the double well canonical VAC
for b51, wherev is expressed in dimensionless form.

FIG. 15. Power spectrum of the double well canonical VAC
for b50.1, wherev is expressed in dimensionless form.



a

his
in
n a
g

ni-

ut

of
-

this
say
th

iffi-

he
la-

ed
in

he
-
es
ent

in
e
e
v-
lem

F
e

ar

f

6508 PRE 59SINKOVITS, SEN, PHILLIPS, AND CHAKRAVARTI
a0(t), i.e., the relaxation function of interest. Oncea0(t) is
known, RR II allows one to readily obtain allan(t)’s. Com-
plete knowledge of$ f n% and $an(t)% therefore solves for
A(t) @21#.

For the Hamiltonian in Eqs.~1! and ~2!, if we set Ai
5Bi5Ci50 andki ,i 115k, and A(t)5v j (t), wherev j re-
fers to the velocity of some tagged particlej in this transla-
tionally invariant system, then it can be shown that at
temperatures@22#

D1
hoc5

2k

m
, Dn

hoc5
k

m
, n>2, ~43!

FIG. 16. Power spectrum of the double well canonical VAC
for b50.01, wherev is expressed in dimensionless form. The ins
shows the detail of the power spectrum in the vicinity of the h
monic frequency.

FIG. 17. Plot of 1/f versusn. f is the relaxation exponent o
any autocorrelation function which decays ast2f andn is the mea-
sure of leading anharmonicity.
ll

i.e., asn→`, Dn
hoc;n0, where ‘‘hoc’’ refers to the harmonic

oscillator chain. The physical meaning associated with t
structure ofDn’s is described in detail in the latest article
Ref. @20# and in@23# and can be associated in real space i
linear harmonic chain with a linearly forward propagatin
excitation with respect to a point in space where an infi
tesimal perturbation has been imparted.

However, if we setk50, n52, andAiÞ0, BiÞ0, and
Ci50 or CiÞ0, then the existing studies using a large b
finite number ofDn’s ~typically with 0,n<100) of Sen and
Phillips and of Grossmann and Sonneborn-Schmick and
Fronzoniet al. among others suggest that at all finite tem
peratures asn→` @18,19,24#

Dn;n2.5. ~44!

Keeping in mind that in the absence of an exact solution
power-law growth is the best available estimate, one can
the Dn’s grow overwhelmingly fast compared to the grow
in the case of the harmonic-oscillator chain@22,23#. Results
of our calculation ofDn for n52 at b5100 are shown in
Fig. 18.

We have recently computed the first 20 or soDn’s for
particles in potentials of the formV(x)5x2/21x2n/2n, for
n53, 4, and 5. In all of these cases, we encountered d
culties in computing high-orderDn’s unless we restricted
ourselves to extremely large values ofb or low values of
temperature. In spite of considering largeb, eventually, typi-
cally for n.25 or so we found that the magnitudes of t
Dn’s became large and unweildy. Based upon our calcu
tions at b54, we estimatedxn53'2.7, xn54'2.7, and
xn55'2.9. We suspect that these previously unpublish
values ofx are rough estimates for the actual growth rates
the Dn’s.

We are unable to obtain reliable information about t
behavior of the VACF forn52, 3, 4, and 5 using the con
tinued fraction formalism approach. While this failure do
not mean that the continued fraction formalism has inher
flaws, it does clearly reiterate an issue we have noted
earlier work@21#, i.e., that continued fractions in which th
Dn;nx grow faster thanx52 cannot be replaced by finit
continued fractions with an arbitrarily large number of le
els, however large the number of levels may be. The prob

t
-

FIG. 18. Dn versusn for n52 case calculated atb5100. The
plot shows the emergence of scaling behavior for largen.
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here is clearly analogous to what one encounters, for
ample, in calculating the free energy in the vicinity of
critical point in a system which is undergoing a phase tr
sition by calculating the free energy using high- or lo
temperature series expansion based approaches. Our ca
tions of the VACF for time 0<t<50 for n52 ~solid! and 3
~dotted! are shown in Figure 19. Figure 20 shows the sa
calculations forn54 ~upper panel! andn55 ~lower panel!.
While it is obvious that then53 case exhibits slower relax
ation than then52 case, the calculations do not capture t
long time tails correctly. We see no difference between
VACFs in then54 andn55 cases in Fig. 20, thereby ind
cating that the predicted VACFs using the direct summat
approach are unreliable.

FIG. 19. Canonical ensemble VACF forn52 ~solid! and n
53 ~dotted! cases showing different relaxation behavior but una
to capture the correct long-time tails. Timet is expressed as a di
mensionless quantity. The calculations have been done using
calculatedDn’s and by truncating the continued fractions.

FIG. 20. Canonical ensemble VACF forn54 ~upper panel! and
n55 ~lower panel! cases showing identical relaxation behavior b
unable to capture the correct long-time tails. Timet is expressed as
a dimensionless quantity. The calculations have been done usin
calculatedDn’s and by truncating the continued fractions.
x-

-

ula-

e

e
e

n

As shown in earlier work@21#, the sequence ofDn’s for
small n and the asymptotic behavior ofDn’s jointly deter-
mine the relaxation properties under study. The former
easier to find than the latter. While we cannot directly es
mate the continued fractions forn53,4,5 cases using an
known method, from the analyses presented in Secs. II
V, we know that the asymptotic relaxations differ in each
these cases according to the formula 1/tf, wheref51/(n
21) ~Fig. 17!. Clearly, significant progress must be made
our understanding of the behavior of continued fractions
x.2. We are hopeful that the results onDn for n>2 cases
and the independent calculations of the relaxation beha
of these oscillators at all times will stimulate further inves
gations into approximating nonconvergent infinite continu
fractions.

VII. APPLICATION TO MANY-BODY SYSTEMS

It is now known that anharmonic oscillators@18,24#, small
clusters @24#, and similar few-body systems often exhib
high values ofx ~i.e., x.2). Studies of many-body system
in finite lattice dimensions appear to show that the nature
propagation of an excitation in real space is intrinsically d
ferent when compared to the way in which the energy in
small perturbation distributes itself among the infinite
many frequencies of an anharmonic oscillator or an anh
monically coupled few-body system. However, the prec
origins of the high values ofx asn→` remain to be under-
stood or interpreted. Such an understanding is likely to h
identify other physical systems in the same restricted
namical universality class@20#, i.e., with the samex as n
→`.

Is it possible to estimate the growth rate ofDn for the
general problem posed in Eqs.~1! and ~2! in which none of
the relevant couplings vanish? The answer is yes but this
daunting task which remains to be successfully carried o
Let us, however, explore some general features of what
solution to the complete problem described by Eqs.~1! and
~2! must possess based upon what we already know a
the structure of thef n’s ~and hence of theDn’s! in Eq. ~36!.
We first note that for the complete problem one can alw
separate the contributions tof n from Hi

on-site andHi ,i 11
int and

the coupling of the anharmonic oscillator dynamics and
harmonic motion due to the two-body interactions. Hen
one can express the terms arising from the harmonic spr
and the anharmonic on-site potentials asf n

d (d refers to direct
terms! and the terms arising from the coupling of the anh
monic potential and the harmonic springs asf n

c (c refers to
cross terms! as follows:

f n5 f n
d1 f n

c , ~45!

where to be more precise

f n
d5 f n

hoc1 f n
anh; f n

c5 f n
hoc-anh. ~46!

In the above equation,f n
hoc, f n

anh, and f n
hoc-anh refer to the

basis vectors for the harmonic-oscillator chain problem on
for the anharmonic potential problem only, and for the s
tem in which the anharmonic potentials are coupled via h
monic springs, respectively. Indeed such arguments h
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been used by Krumhansl and Schrieffer@1# more than twenty
years ago when they treated the problem of dynamics
one-dimensional system of particles in on-site double w
and connected by harmonic springs. The last basis vect
unknown for alln at present. Clearly one can carry this log
a bit further and write theDn’s in terms of direct and cros
terms as follows:

Dn5Dn
d1Dn

c , ~47!

where

Dn
d5Dn

d
„^~ f n

hoc!2&,^~ f n
anh!2&… ~48!

and

Dn
c5Dn

c~^ f n
hocf n

anh&,^ f n
hoc-anhf n

hoc&,^ f n
hoc-anhf n

anh&! ~49!

is an unknown part which remains to be determined. Si
for k small compared toAi ,Bi ,Ci ~the order-disorder limit
@1,8#!, Dn

c would become insignificant compared toDn
d , one

would expect that

Dn'Dn
d;n2.5. ~50!

The behavior ofDn
c remains unknown fork strong.

If k is not overwhelmingly dominant compared
Ai ,Bi ,Ci , which determine the details of the anharmon
potential wells, then asn→`, Dn;nx, wherex>2.5. This
suggests that relaxation properties of such harmonic
coupled particles in strongly anharmonic wells must be
ceedingly slow, at least as slow as 1/tf, possibly even slower
~the reader may recall that using existing methods, it is ty
cally not possible to directly estimate the infinite continu
fractions which have growth ratesx.2.5) @24#.

VIII. CONCLUSION

In this paper we have presented the results of numer
simulations, together with analytic solutions, for the cano
cal VACF of the Duffing and double well oscillators and
oscillators described by potentialsV(x)5x2/21x2n/2n for
n53, 4, and 5. The strong agreement between the ana
and numerical results, particularly at long times, gives
considerable confidence in the validity of the results. T
analytic and numerical approaches complement each o
particularly well for this problem since the numerical meth
is most reliable at short times, while an analytic form whi
describes the short-time, high-temperature regime quic
becomes unwieldy as higher-order terms in the expansio
the microcanonical VACF are retained.

The work described in this paper has led to some imp
tant new results regarding the Duffing and double well os
lators. First, we have analytically established that for
Duffing well, in the limit t→`, the behavior of the VACF is
given by 2(b/g)sin(t)/t at all temperatures. Numerica
simulations are consistent with this asymptotic result. S
ond, a similar result, VACF;(b/g)sin(A2t)/t, has been ob-
tained for the double well case. This finding has import
implications for the relaxation of many physical system
Third, we have demonstrated both via the asymptotic an
ses of Sarkar@10# and via numerical calculations that fo
a
ls
is

e
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anharmonic potentials withn.2, the algebraic tails of the
asymptotic relaxation functions can be calculated and
they show reasonable agreement.

Finally, we have shown that for particles in anharmon
potentials the behavior of theDn’s exhibits some of the fast
est growth rates known to us. While we do not know how
estimate continued fractions with such rapid growth inDn’s,
we leave the reader with the eventual result one must re
by estimating these nonconvergent infinite continued fr
tions, namely, the finite and asymptotic time behavior
relaxation funtions forn52 and the asymptotic relaxatio
behavior forn53, 4, and 5 cases.
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APPENDIX

Clearly, one’s ability to calculate the infinite continue
fraction in Eq.~42!, which representsa0(z), rests upon one’s
success in calculating, or perhaps more importantly in e
mating, the right-hand side of Eq.~42!. Let us therefore com-
ment on the behavior ofDn below. The behavior ofDn as a
function of n for small n is typically very important in the
description of the short time behavior and the long time
havior of the system under study. The asymptotic behav
of the relaxation process in time is, however, very sensit
to the manner in whichDn behaves asn→` @21#. In the
remainder of this paper our concern will center on t
asymptotic behavior ofDn .

One may begin by noting that any finite continued fra
tion contains a finite number of poles and hence a fin
number of frequencies that characterize the dynamics. If
continued fraction truncates naturally, it must be for a syst
which shows nonergodic behavior in canonical ensemb
@20,25#. Thus, ifDn is an oscillatory or a decreasing functio
of n, then the resulting continued fraction would lead to sp
cific frequencies in the dynamics. Hence, for the relaxat
function to go to zero ast→`, Dn must either beindepen-
dent of n or grow as a function ofn as n→`. While we
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cannot prove this statement analytically at this time, our
merical studies provide strong evidence in its support.

Some time ago, it was shown by direct numerical analy
that if asn goes to`

Dn;nx, ~A1!

x,2, then Eq.~43! can always be numerically estimated b
replacing Eq.~43! by a finite continued fraction which typi
cally has 10z levels, where typically 2<z<5 @21#. Upon a
numerical inverse Laplace transform of Eq.~28! one then
obtainsa0(t) for 0<t<r, wherer5 f (x,z) and is a large
number, 10h, 2<h<3 being fairly typical numbers. If it so
happens that the continued fraction isconvergent, then a
large enoughr can always be found for an accurate estim
tion of the asymptotic relaxation properties.

Our numerical studies@21,26# show that it may happen
that the continued fraction isnonconvergent, i.e., theDn’s
grow in such a way withn that such continued fraction
cannot be estimated by a finite number of poles no ma
t,
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how large this number may be. For such continued fractio
for any z,`, one cannot obtain any asymptotic features
the relaxation functiona0(t) @24,27#.

It turns out that forx,2, infinite continued fractions are
convergentand henceit is possible, at least in principle, to
obtain the asymptotic features of the relaxation funct
from careful numerical analysis of large but finite continu
fractions along the lines indicated in Ref.@21#. However, for
x.2, infinite continued fractions arenonconvergentand
hence itis not possibleto obtain the asymptotic features o
the relaxation function from numerical analysis of large b
finite continued fractions@21#. The casex52 can be re-
garded as special. In a recent study, Leeet al. @28# have
demonstrated a physical system exhibiting such behav
The infinite continued fraction in this case is solvable an
lytically. Numerical studies in which the infinite continue
fraction is replaced by a large but finite continued fraction
not readily yield the correct asymptotic behavior of the
laxation function~which turns out to be exponential deca!
in this problem@21#.
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