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Nucleation theorems applied to the Ising model
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We use Monte Carlo simulations to study a single cluster of “up” spins in a sea of “down” spins in the
three-dimensional Ising model. We evaluate the growth and decay rates for clusters of different sizes, identify
the critical size for which these rates are equal, and obtain the internal energy of the critical size cluster. The
results of the simulations at different temperatures and magnetic fields are used together with the first and
second nucleation theorems to predict how the cluster nucleation rate changes when the external magnetic field
and the temperature are changed. Our results are in agreement with literature values, but our method requires
significantly less computational effort than the simulations reported earlier and avoids the difficult evaluation
of free energied.S1063-651X99)08206-9

PACS numbgs): 05.50-+q, 02.70.Lg, 64.60.Qb

I. INTRODUCTION
E=-J> ssy—hX s, 1)
The nucleation of clusters of spins in Ising systems has {im) !

beﬁ\r) ﬁttlijdr"e? (\;\glrdelty r': g:e dllt(:ratutr)(:s?ﬁ, i?ﬁg.r[n%,zt]i).n-rh% twhere{lm) denotes summation over nearest neighljeash
conventiona ect method 1o obta ormation abou pair counted only ongeJ is the spin-spin coupling constant,

nucleation is to follow the evolution of a population of clus- and h is the parameter describing the interaction with an
ters of different sizes in a large system. The critical size for

which decay is just as likely as growth is obtained from theexternal field. b=uH, wherep is the magnetic dipole mo-

. o X ment of the spin particles and is the external magnetic
size distribution of clusters or the size dependence of th(ﬁeld) The values of thez component of the spins, are
. |

cluster free energy. Counting the number of clusters reaChinlqastricted to+ 1. For a three-dimensional cubic lattice the

the critical size or following the evolution of the magnetiza- coupling constant may be expressed in terms of the numeri-

tion then gives the nucleatlon rate. .. cally determined critical temperatufie, according toJ/k T,
In contrast, we study a single cluster and determine |ts:0 221 6567]: T, marks the transition temperature between
growth and decay rates to obtain the critical size. Our simu;, ~" v e P

lations give the size and the excess internal energy of thg1e ferromagnetic and paramagnetic stateld a(0.

critical cluster as functions of temperature and external mag-romﬁ Igggt:jcescgf gl;(iegﬂgpefzg bi emglz;ﬁdbg g‘veaﬁ;?es dOf
netic field. We use this information in conjunction with the 9 y PSP

first and second nucleation theoref8s-6] to obtain thede- [8]. The steady-state rate of nucleation of clus@q'ssthe_net
rivatives of the nucleation rate with respect to temperaturenumber of clusters that grow through the critical size per

and external field. If we know the nucleation rate for one SEMn?jnt(;ee(C:::rl%fsgipc?uns?elstitr:c?hthl\(jlloz?ee Cg ?%nsrtecl)tcehsag;grgm_/th
of conditions, we can therefore use the nucleation theorem% y y

to predict the nucleation rates for other temperatures angamics are writterg; andy; , respectively. Under conditions

fields. Our predictions are consistent with the nucIeationagegegh?hpoﬁurl:gop (;fllstglate(ijt;*pi ngsl Iin thi\e/ snyztem di-
rates reported in earlier studies as well as with the predic- ed by the number ot lattice s SNy, 11S given by

tions of classical nucleation theory.

The required number of lattice points in our three- | = _ 'Bllnl _ )
dimensional3D) Ising model calculations is of the order of 2
10°, whereas the studies involving the entire population of 1+i=2 ]:Hz (v 1By)

clusters require lattices with more than £0Points. The
?hmou_r;.t Ofl ClPUtt|me needed to ttht{ja'Ct thbe Sltzi 0}3”(:( fr?eigy Ypon applying the principle of detailed balance to relate the
e critical cluster using our method is abou of the time o o -1 ;
needed for direct nuclgation simulations ’ I t91the Bi, we obtainl =[N=;-,P(i)] “, where P(i)
: = B; "exg Fy(i)—2hi}/kT, k is Boltzmann's constant, and
F,(i) is the excess Helmholtz free energy of theuster[6].
Il. THEORY From these relations it is easy to prove that

The Ising lattice is an array of magnetic particlsping Jlni In B,
that interact with each other and with an external field. The (—) =(i) <(—' > (3
energy of the system is given by 9(2h/kT) T 9(2h/kT) T

where the angular brackets denote an average weighted by

*On leave from Department of Physics, P.O. Box 9, 00014 Uni-the P(i), for example{g(i))=2=/_,9(i)P(i)/={Z,P(i), for
versity of Helsinki, Finland. some functiong(i). If P(i) is sharply peaked, the averages
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can be expressed &g(i))~g(i*), where the critical siz&* Thus the critical cluster determined by the condition
is the size of cluster for whichy;=;, which maximizes JAF(i)/di=0 has the sizé* =[T'kT/3h]® and the free en-
P(i). ergy of formationAF (i*)/kT=413/27(2h/kT)?. The Zel-
This allows us to derive the first nucleation theorg81]  dovich factor takes the form
1/2 T
:f\ﬁi*(zs)_ )
3V

for the Ising model:
alng; \"* Z=
=i*+(—B') ~i*+1. 4
T
_ _ . ~ The growth rate i3« =i* ?® andn, is proportional to the
The final form has been obtained using an approximatexponential of the energy of a single isolated up spip,

A(2hIKT)/ .
analysis ofg; , which is described in the Appendix. Further- «exd2(h—6J)/kT]. The nucleation rate can only be evalu-

-1

adinl KT

R aiZ
d(2h/KT)

aZAF(i))i*

more, the second nucleation theorgsb] takes the form ated up to an unknown proportionality factor. Finally, the
” excess internal energy at the critical size in the classical
(alnl) _EX N aln/&’i)' N EX N 2J ) framework is given by
I Jopr kT2 L IT ey kT2 KT

E,=AF,+TAS,=AF,—T(JAF,/dT) kTZ(FkT)ZaF
again using an approximate form for the growth rgteto X X > x T ) 3h ) T’
obtain the final term. The superscrifit means that the value 9
i=i* is inserted after evaluating the derivative. The eXCess | o F _kTi2/3
internal energy of a critical clustdg} is defined as the dif- X '
ference in the coupling part of the internal enefgye first
term in Eq.(1)] between a system containing one cluster in a . SIMULATIONS
sea of down spins and a homogeneous systhspins up. We use a simple cubic lattice and set up a clustei of
All these results are independent of the cluster definition. spins withs,=+1 surrounded by a sea of spins wigh

Our simulations, described in Sec. Ill, produce data for— _ 4 A spin is defined to be part of the cluster if it and at
the size and excess internal energy of the critical cluster ag st one of its nearest neighboring spins have spin \&lue
functions of temperatur€ and external field parameterBy ~ _ 1 \we generate a sequence of configurations representa-

integrating_ the nucleation t_heorems we can then determing o of the canonical ensemble by following the Metropolis
the behavior of the nucleation rak€h/T,T) when the tem-  r19] scheme, such that the probability for a spin to flip is

perature and the external field are changed. The integratio'qlin(l exfi— AE/KT]), whereAE is the change in the energy
constant can be determined if the nucleation rate is known s the’system due t'o the flip.

a reference temperatulig and magnetic field,. Integrating Our strategy is to find the critical cluster kinetically. Clus-

Egs.(4) and(5) gives ters above the critical size tend to grow in the stochastic

hKT ) dynamics of the Monte Carlo simulation. This is a reflection

InI(h/TO,TO)—InI(hO/TO,TO)=J °2(i* +1)d
h

0/kTg

_ of the fact that the system free energy can be reduced by
kTo doing so. Similarly, clusters smaller than the critical size

(6)  tend to shrink, for the same reason. The critical size has

equal rates of growth and decay or, equivalently, it denotes
and the cluster with the highest free energy.
In principle, simply by observing the evolution histories
N1 (ho/To, T)=In1(ho/To,To) of marr)ly indﬁvidual (E)|L)l/SteI’S under the Monte Carlo dynamics,
T, (E* T. 23 T2 T the relative rates of growth and decay as a function of size
¢ X c c
- f ) <_) (77 may be extracted. However, the tendency for clusters to
TolTe Te move away from the critical size means that information in
this important region will be relatively sparse. Instead, we
These results have been written in a manner that makes exalculate growth and decay rates as ensemble averages of
plicit the dimensionless form of the integrands and integracertain well-defined quantities at a fixed cluster size. In this
tion variables. The propertié$ andE; of the critical clus-  way, uniform statistics may be gathered over the interesting
ter are functions of andT. range of cluster sizes.

The classical formulas for the Ising model are presented The simulation begins with a single up spin in the middle
here for completeness since we compare the results of owf the lattice. This seed is grown by selecting a nearest-
simulations with the predictions of the classical theory. Ac-neighbor lattice point at random and flipping it according to
cording to the classical theofy3,9], the nucleation rate has the Metropolis probability. This “select-and-try-to-flip” pro-
the form1=Zp;xn,exd —AF(i*)/KT], where, for Ising sys- cedure is repeated until the cluster has been grown to a de-
tems,AF(i) is the (Helmholt? free energy associated with sired size. After the growth and decay rates have been cal-
the formation of an cluster,Z is the Zeldovich factor, and culated for this particular size, we can grow or shrink the
n, is the concentration of isolated up spins. The free energgluster to any other size.
of formation is given byAF (i) =T'kTi?3— 2hi, wherel is a The calculational procedure for a cluster of a particular

dimensionless parameter related to the surface tension, taksize can then be divided into two parts. One task is to obtain
from Heermanret al. [10] (note thathyeerman 2hmiswork) -~ the probabilities that a particular configuration of the cluster

kT T kT, T2
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successful flip of the intervening spin would increase the size
of the cluster by two spins in one Monte Carlo step.

We can estimate the likely importance of this effect. For
the 3D cubic lattice, the probability for an isolated down spin
to flip per attempt is exj2(h—6J)/kT], which is around 0.02
for the conditions studied. The number of second nearest
neighbors(the squared minuses in Fig) i estimated to be
of the order of 4{?¥3+2i%3), which is the result for a cubic
cluster if i is an integer number. This implies that for
>8 there is likely to be at least one spin wigh=1 among
them if the system is allowed to evolve without constraining
the flips to the boundary region. We call thessgellite spins

It turns out that we have to take the effect of satellite spins
into account to reproduce the results of earlier studies. To do
so, when adding up the probabilities for boundary spins to
flip, we also calculate the probability for the boundary spin
to haveng satellite spinsifs=1, . .. ,5),multiply this by the
= probability for a spin withng satellites to flip, and add the
resulting probability to the appropriate growth probability.

All the flips leading to sizei(+ 1) (for example, the merging
FIG. 1. Schematic picture of a cluster in the Ising lattice; see theof one satellite with a cluster of size-1) are added to the
text for details. growth probability of sizei. Similarly, we account for the
fact that a decay may occur due to the flip of a spsidethe
should grow or decay in the next Monte Carlo step and theluster, but this has a minor effect on the results. We there-
other task is to change the configuration appropriately tdore make a near-exact evaluation of the growth and decay
obtain ensemble averages of these probabilities. probabilities per Monte Carlo step for a particular configu-

To evaluate thelecayprobability for a particular realiza- ration and sampling is only involved when changing the
tion (shape of the cluster, we go through all the spins with shape of the cluster.
s,=1 that are on the surface of the clusttre circled plus- The critical size is found by studying different cluster
ses in Fig. 1 and add up the Metropolis probabilities for a Sizes and identifying the size for which the growth and decay
spin flip. Thegrowth probability for the Monte Carlo step is rates are equal. When the critical size is known, it is straight-
obtained by adding up the flip probabilities of the boundaryforward and fast to average the coupling part of the internal
spins that are nearest neighbors to the clugiee circled energy over different shapes to get the excess internal energy
minuses in Fig. 1 The expressions for the total probabilities E .
for growth and decay are derived in the Appendix. The lattice size for all our calculations was chosen to be

Note that we do not actually implement a growth or decayl0Xx 10X 10, although test calculations with different lattice
step in this procedure, except in the following case. We alsizes were performed to make sure that the results are inde-
low changes in the configuratiofshape of the cluster by pendent of this choice. Moreover, the simulation was termi-
first applying the select-and-try-to-flip procedure to thenated if the cluster reached the lattice boundaries, so we do
nearest-neighbor sites of the clusténe circled plusses in not need to specify boundary conditions. An additional check
Fig. 1) until the cluster has grown by one spin. Then thewas performed by using a lattice with periodic boundary
select-and-try-to-flip procedure is applied to the spins thatonditions and allowing the cluster to change its size freely.
are on the surface of the clustéhe circled minuses in Fig. During the control simulation the excess energy and the size
1) until the cluster has shrunk back to its original size. Everyof the cluster were recorded, allowing us to calculate the
time a flip occurs, the list of surface spins and the list ofaverage energy of the cluster as a function of size. Since the
nearest-neighbor spins are updated accordingly. Kawasakiverage energies obtained from the actual simulation and
dynamicq12] could of course be used to simulate this shapdengthier free growth and decay runs agree, we are confident
exploration at a fixed cluster size, but for simplicity we retainthat we are sampling the shape space correctly.
the Metropolis scheme. The simulations for one temperature and magnetic field

This procedure clearly restricts the cluster to change sizevere completed in about 5 min using an ALPHA EV5 333-
only by one spin at a time, located at the cluster surface. IMHz workstation with one processor. In comparison,
turns out that this is slightly too restrictive for this system. Acharyya and Stauffdrl3] report that they used a lattice of
However, a simple modification allows additional growth size 256 and CPU time of around 1.5 h on a CRAY-T3E
events to be taken into account. with 32 processors to perform their direct nucleation simula-

In simulations where the potential spin flips are not lim-tions. Thus, compared to direct nucleation simulations, our
ited to the region adjacent to the cluster, occasional eventsethod is significantly faster. The difference in time is natu-
occur where clusters merge: A change in size greater tharally due to the fact that we can perform the simulation in
unity is achieved in a single Monte Carlo step. The mostmuch smaller lattices and to the fact that we restrict the trial
frequent event of this type is where a growing cluster merge#flips to the boundary region around the cluster. We can also
with a single isolated up spin. If such a spin existed at a siteonfine our simulation to the sizes around the critical size to
two lattice spacings removed from a cluster spin, then thédentify the exact watershed, which is a further economy.
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FIG. 2. Critical cluster size as a function of external field pa- FIG- 3. Nucleation rate as a function of the magnetic field pa-

rameteth, compared with other studies. The predictions of classicaf@meterh. The unit of the nucleation rate is the number of critical
theory coincide with the results of Heermaenal. [10]. nuclei formed per Monte Carlo step and lattice site. The circled

point was used to determine the integration constant required in our

The present method of accounting for the effect of Sa,[eI_(:alcuIations. The vertical positionings of the dashed lines are arbi-
lite spins is not expected to work well when the clusters aretrary and they have been placed close to our results for clarity.
less compact, which is the case when the temperature ap-
proaches the critical temperatufg. To find the critical size  results in Fig. 3 is significant. The classical theory predic-
in these cases, we would have to abandon the idea of focu§ons suffer from the same lack of information about the
ing on a single cluster and take into account the merging oproportionality constant. For convenience the vertical dis-
two clusters explicitly. We would no longer be able to con-placement of these curves is arbitrarily chosen so that they
centrate entirely on spin flips in the boundary region aroundie close to the line representing our results and it is clear that
the cluster, with a small perturbation due to the effect ofthe slopes are in good agreement.
satellites. Unfortunately, direct simulations of nucleation appear
only to have been carried out in the literature for the single
temperature 0.58.. Nevertheless, we are able to compare
our results with classical theory for other temperatures. We

We focused on conditions for which nucleation rates ob-calculated the excess internal energies for the critical cluster
tained from direct simulation have been reported, namely, &t temperatures between OlR4and 0.70; with ho/kTy
temperatureT=0.59T,, [10,13, and compared our results =0.24335, and performed the integration in Ed). The
with these earlier studies as well as the predictions of clasexcess internal energy of the critical cluster and the critical
sical nucleation theory. Figure 2 shows the critical clustercluster size as a function of the temperature are shown in Fig.
size as a function of magnetic field parameter at this tem4, together with the classical theory predictions. The devia-
perature. The agreement between our results and the earli@@ns from classical theory are seen to be small. The tempera-
results of Heermanet al. [10] and Acharyya and Stauffer ture dependence of the nucleation rate obtained using7Eq.
[13] is very good. The sizes given by Heermaetral. [10] ~ and the classical predictions are shown in Fig. 5. The refer-
agree with the predictions of classical theory. We also shovgnce values werd=0.59T; and 1,=4.44x10"%, again
the critical sizes obtained by our method when neglecting the

IV. RESULTS

effect of satellite spins upon the growth and decay rates. In h/(kT)=0.24335
this case the growth rates are clearly underestimated and the 180 140
critical sizes are larger. . x i (this work)

Figure 3 shows the behavior of the nucleation rate as the 160 o i (classical) 120
magnetic field is changed, while the temperature is kept con- 140 —_— E:X/kT (this work) {100 .§
stant afT;=0.59T.. We use Eq(6) to predict the nucleation | X g™\ o E /KT (classical) 5
rate, having chosen reference valigdkTo=0.22115 and & 120 80 3
lo=1(ho/Ty,To)=5.81x10 1% This reference nucleation 100 60 ©
rate is the number of critical nuclei formed per Monte Carlo 3
step and lattice site calculated using direct simulation by 80 40 g
Heermanret al. [10] (the circled point in Fig. B Our pre- 60 . 2% 20
dictions agree well with the further results of Heermaatin

al. [10]. 40
Acharyya and Stauffdrl3] report the nucleation times in

this system, which are taken to be inversely proportional to

the nucleation rate. Since the proportionality factor is un- FIG. 4. Critical cluster sizeif) and excess internal energy

known, only the slope of the dashed line representing thei(E}) of the critical cluster as a function of temperature.

0
056 058 0.6 062 0.64 0.66 0.68 0.7
e
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h/(kT)=0.24335 one-site growth mechanism is not accurate enough to de-

10”7 scribe the nucleation rate observed in direct nucleation stud-
) 10:2 ies. The effect of the merging together of one or more satel-
O 10, lite spins with the cluster has to be taken into account.
% ]8-5 We demonstrate how the second nucleation theorem and
£ qp* the easily obtainable data for the ensemble-averaged excess
% 10:2 internal energies of critical clusters can be used to predict the
c 18'9 temperature dependence of the nucleation rate. Direct simu-
2 4070 lation studies at a wider range of temperatures could be made
g 107" — This work in order to check these predictions. In the near future the
3] -12 ; : ; R ;
S 107 e Classical theory simulation technique outlined here will be used to study the
< 10 f nucleation of molecular clusters.

18“5 * Heermann et al.

0.56 0.58 0.6 062 064 066 068 0.7

e

FIG. 5. Nucleation rate as a function of temperature. The unitof 1 Nis work was funded by the United Kingdom Engineer-
the nucleation rate is the number of critical nuclei formed pering and Physical Science Research CoufEPSRQ under
Monte Carlo step and lattice site. The point marked with an asterGrant No. GR/L78499 and the Academy of Finlaiftoject
isk, taken from the work of Heermanet al. [10], was used to No. 41886 H.V. thanks K. Arstila for useful discussions.
determine the integration constant in our rates. The vertical posi-
tioning of the dashed line is arbitrary.
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APPENDIX
taken from Heermanat al.[10]. Again, only the slope of the | this appendix, we go through an evaluation of the
classical curve is significant. growth and decay ratgd andy;. We define these to be the

~Since it is our aim to demonstrate how the second nucleprobability per Monte Carlo step that the cluster will change
ation theorem can be used to extrapolate nucleation rate daig;e py plus or minus one. A Monte Carlo step is the random

to new regions of parameter space, we present the ratege|ection of a site in the Ising lattice followed by an attempt
rather than their derivatives. The slope of the classical curvg, flip the spin at that site.

agrees well with our results at the low temperatures studied, The probability that a particular sijeshould be selected is
but starts to deviate when the temperature is higher. Whegjmply 1N, whereN is the number of sites in the lattice. The
applied to the formatlon of liquid droplets_from supersatu-probability that cluster growth should then result is the prod-
rated vapors, classical theory tends to predict nucleation rat€st of three factors: first, a factas;, which is zero if the
with an incorrect temperature .dependence and. so it is intekspin is already up and unity otherwise; then a fadyr
esting to note that it behaves in the same way in the case Qfnich is zero if the spin if flipped, would create a configu-

the Ising model. _ _ , ration disallowed under the cluster definition, but unity oth-
Finally, our simulations provide numerical val_u_es of theerwise; finally, a factop; , given by the Metropolis function.
growth ratesg; and so we are able to test the validity of the Thg total probability for growth given a certain configuration
approximation made in obtaining the right-hand sides oj EdSK is then the sum of these probabilities over all sites in the
(4) and(5). We found that the derivativied In 5, /d20/kT)r;  lattice: Bi= N~'3;0;C;p; . In practice,w; andC; are unity
is within 30% of the assumed value of unity for all the con- only for down spins adjacent to the cluster: the sites shown
ditions studied and that the derivative It 3, /<9T)'h*/kT,i is  as circled minus signs in Fig. 1. The mean growth probabil-
about three times the assumed valuBkI2. These devia- ity S is then just the ensemble averagegf over all con-
tions from the values used in Eq#) and(5) do not affect figurationsK of a single cluster of size
the calculated nucleation rates significantly. Similarly, the probability for growth given a particular
configurationK is given byyiKzN*Ej(l—wj)Cj p; and in
practice the sum is restricted to the outermost sites of the
cluster: the circled plus signs in Fig. 1. The flip of a spin
We used single-cluster simulations to determine kineti-Within the body of the cluster can be taken into account, but
cally the size and excess internal energy of the critical clustelt has only a minor effect at the temperatures we are study-
in a 3D cubic Ising model at various temperatures and exterind. This expression is then averaged over the ensemble. In
nal magnetic fields. The critical size is that which is equallyfact, we should consider the probability per sweep of the
likely to grow and decay, and our results agree with thoseattice to be the correct growth rate singe and y; would
reported earlier. The advantage of our method is that resul@therwise be system size dependent, but this detail is not
are produced with remarkably less computational effort. Weémportant for our purposes.
concentrate on single clusters rather than populations of clus- The expression fog{‘ can be used to estimate the deriva-
ters, which allows us to use small lattice sizes. We also avoitives required to simplify Eqsi4) and (5). It turns out that
the laborious task of evaluating free energies. the Glauber functior{14] for the flip probability is more
We can predict the dependence of the nucleation rate ouseful for this purpose than the Metropolis function. We
the external magnetic field using the first nucleation theoremwrite the simpler expressio=N"1=,p¢, where the in-
and our simulation data for the critical size. We find that adex k runs over allowed sites for growth, where

V. CONCLUSIONS
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c_1

pk_z

1—tan|‘(

whereAE is the change in energy of the configuration asso-

ciated with the growth event, and thgh=(8K); where the

angular brackets denote ensemble averaging over configura-

tions K of a cluster of sizeé. For growth, we havédAE/dh
—2 [see Eq.(1)]. Therefore,

IB; . R B i
(m)”_<N 1; pc[1+exp —AE/2kT)] 1>

and so

=
T,

IBi -1 G\ _
(a(Zh/kT)) <N 2 —hn
so that ¢ In B, /9(2hVKT))1;<1.
The derivative of3; with respect toT is less easy to

AND IAN J. FORD PRE 59

characterize, since the statistical weight of the configurations

depends off. If we ignore this fact, the previous derivation
may be repeated, yielding the result
>i

IBi
:<2k PeNTLT

aT
where /', is the change in the number of up-down nearest-
neighbor pairs produced by the spin flip at ditavhen in
configurationK. Even this expression cannot be analyzed
further: We simply assume that, can be replaced by a
mean value of order one and replace the term in square
brackets in the denominator by unity to obtain

IB;
%

2/ JIKT?
exp(—AE/2KT)]

) h/KT,i

) ~2JIKT?B;,
h/kT,i

so that ¢In g; /aT)h,kT,i~2J/kT2, which is the approximation
used in Eq(5).
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