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Scale invariant dynamics of surface growth
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1The Abdus Salam International Centre for Theoretical Physics, P.O. Box 586, I-34100 Trieste, Italy
2International School for Advanced Studies (SISSA) and Unita` INFM, via Beirut 2-4, Trieste I-34014, Italy

3Dipartimento di Fisica and Unita` INFM, Universitàdi Roma ‘‘La Sapienza,’’ I-00185 Roma, Italy
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We describe in detail and extend a recently introduced nonperturbative renormalization group~RG! method
for surface growth. The scale invariant dynamics which is the key ingredient of the calculation is obtained as
the fixed point of a RG transformation relating the representation of the microscopic process at two different
coarse-grained scales. We review the RG calculation for systems in the Kardar-Parisi-Zhang~KPZ! universal-
ity class and compute the roughness exponent for the strong coupling phase in dimensions from 1 to 9.
Discussions of the approximations involved and possible improvements are also presented. Moreover, very
strong evidence of the absence of a finite upper critical dimension for KPZ growth is presented. Finally, we
apply the method to the linear Edwards-Wilkinson dynamics where we reproduce the known exact results,
proving the ability of the method to capture qualitatively different behaviors.@S1063-651X~99!07606-0#

PACS number~s!: 05.10.Cc, 64.60.Ak, 05.70.Ln, 68.35.Fx
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I. INTRODUCTION

The idea that scale invariance is at the origin of critic
phenomena associated with equilibrium second order ph
transitions has proven to be very fruitful. The analysis
scale transformations in equilibrium statistical systems, n
known as renormalization group~RG!, has indeed allowed
for the explicit calculation of critical exponents and, mor
over, has led to the introduction of new fundamental co
cepts such as scaling and universality.

The extension of the RG approach to nonequilibrium p
nomena, where scale invariance is widely observed, and
identification of new universality classes, is of great imp
tance from both theoretical and practical points of vie
Technically, the RG ideas can be implemented in differ
ways. The most standard one for systems at equilibrium i
consider their stationary probability distribution written
terms of continuum coarse-grained fields, and study th
perturbatively around their corresponding upper critical
mension. The most systematic way to extend the previ
methods to nonequilibrium systems, where in general
stationary probability distribution is not known, is to ca
them into a continuum dynamical equation@1#, or equiva-
lently into a generating functional or action@2#. This last one
can, in principle, be treated using the same perturbative t
niques developed to deal with equilibrium systems. Ho
ever, there are some cases where perturbative met
around a mean field solution are not suitable. In these c
the e expansion fails to give information on the releva
physics. This turns out to be governed by a strong coupl
perturbatively inaccessible fixed point. The prototypical e
ample of this class of systems is the well known Kard
Parisi-Zhang~KPZ! equation for surface growth@3#, where
the properties of rough surfaces have not been so far
plained satisfactorily in generic spatial dimension. This i
problem of great theoretical importance since the KPZ
scribes not only the properties of rough surfaces@4–6#, but is
also related to the Burgers equation of turbulence@7#, to
directed polymers in random media@8#, and to systems with
PRE 591063-651X/99/59~6!/6460~16!/$15.00
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multiplicative noise@9#. In particular, one of the most de
bated issues in this context is the existence of an upper c
cal dimension, above which the system is well described
the nontrivial infinite-dimensional limit@10#.

Although the usual approach fails for KPZ, the presen
of generic scale invariance suggests that also for this sys
the basic idea of the RG approach should be applicabl
some form.

Real-space approaches have proven useful wherever
dard perturbative techniques fail@11–13#. This, for example,
is the case of fractal growth, and in particular for diffusio
limited aggregation@12#. However, the attempts to appl
standard real-space techniques to the KPZ problem~and to
surface growth in general! fail because of a fundamenta
technical difficulty: The anisotropy of the scaling properti
of the system. That is, in order to cover with blocks~in the
Kadanoff sense@13#! a surface, isotropic blocks cannot b
used: Lengths in different directions must scale in differe
ways, and the relative shape of blocks has to depend u
the scale via an exponent that is unknown. This makes c
ceptually nontrivial the application of real-space RG proc
dures to surface growth processes.

In this paper we investigate the scale invariant proper
of generic interface growth processes through the introd
tion of a real-space method. To achieve this goal we int
duce some new ingredients permitting us to overcome
aforementioned problem. In particular, we introduce the id
that the statistical properties of growing surfaces on la
scales can be described in terms of an effective scale inv
ant dynamics for renormalized blocks. Such dynamics is
fixed point of a RG transformation relating the parameters
the dynamics at different coarse-graining levels. The stud
the RG flow, of the fixed points, and of their stability give
the universality classes and their associated exponents.

As a first application of the method, we study the KP
growth dynamics and obtain accurate estimates for
roughness exponent~when compared with numerical result!
in spatial dimensions fromd51 to d59. Furthermore, an
analytical approximation allows us to exclude the existen
6460 ©1999 The American Physical Society
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PRE 59 6461SCALE INVARIANT DYNAMICS OF SURFACE GROWTH
of a finite upper critical dimension for KPZ dynamics an
suggests that the roughness exponent decays as 1/d for large
dimensions, shedding light on a currently much debated
sue.

In order to show the generality of the new real-spa
scheme and test its accuracy, we also apply it to the w
known linear theory, the Edwards-Wilkinson~EW! equation.
We reproduce the expected behavior in different dimensio
confirming the general applicability of the method.

The paper is organized as follows. In Sec. II we pres
the general RG method, the main concepts, the basic e
tions, and discuss all the approximations involved. In Sec
we review some results associated with KPZ growth a
apply the new RG method to such problem. We present s
simple analytical approximations, explicit results for spat
dimensions up tod59, and discuss the large dimension
limit in detail. In Sec. IV we report results on the analysis
the Edwards-Wilkinson equation. In Sec. V a critical discus-
sion of the method and of the results is reported. Par
accounts of the work presented here have already been
lished recently, with a slightly different notation@14,15#.

II. REAL-SPACE RG FOR SURFACE GROWTH

In order to present the RG method let us consider a
neric surface growth model where the height is a sing
valued function h(xW ,t), with xW the position in a
d-dimensional substrate andt denoting time. The possibility
of having overhangs will not be considered here, as they
known to be irrelevant for the asymptotic behavior of KP
like growth @16#. The generic growth model under conside
ation can be either described at the microscopic level b
stochastic equation or by a discrete dynamical rule. In
first caseh andxW are continuous variables, while in the latt
they are discrete.

The roughness of a system, when considered on a
strate of linear sizeL, is defined by

W2~L,t !5
1

Ld (
xW

@h~xW ,t !2h̄~ t !#2, ~1!

where

h̄~ t !5
1

Ld (
xW

h~xW ,t !. ~2!

If we start the growth process from a flat configuration,
short times the roughness grows as

W~L,t !;tb ~3!

until it reaches a stationary state characterized by

W~L !;La. ~4!

The crossover between the two behaviors occurs at a c
acteristic timets , that scales withL asLz. This is the time
scale over which correlations decay in the stationary st
The exponentsa, b, andz are to a large extent universal fo
many different growth processes, and are related by
trivial scaling relationb5a/z.
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We now introduce the real-space renormalization gro
~RSRG! procedure aimed at the study of the stationary st
and in particular at the determination of the roughness ex
nenta. The following subsections are structured as follow
In Sec. II A we introduce the geometric elements or bloc
~equivalent to the Kadanoff blocks in standard RSRG me
ods! suitable to deal with anisotropic situations. In Sec. II
we discuss the effective dynamics of the previously defin
blocks at a generic scale. In Sec. II C we introduce the
equation and explain how the roughness exponent is de
mined. Finally in Sec. II D we analyze critically the approx
mations involved in general in the method.

A. Geometric description

The first nontrivial problem in the development of
RSRG approach is to find a sensible description of the
ometry of the growing surface at a generic scale, i.e., how
build the analog of a block-spin transformation@13#. Given
the anisotropy of the system, the shape of the blocks m
depend on the scale. Therefore, subdividing a cell in subc
is not a feasible task and the explicit construction of t
block-spin transformation is not possible.

Hence we develop an alternative strategy. To obtai
description at a generic scalek of the growing surface, we
consider a partitioning of the (d11)-dimensional space in
cells of lateral sizeLk5L0bk and vertical sizehk . Hereb is
a constant andk labels the scale~Fig. 1!.

A cell is declared to be empty or filled according to
majority rule. In this way we pass from the microscopic d
scriptionh(xW ,t) to a coarse-grained one at scalek, fully de-
fined by the numberh( i ,k,t) of filled blocks in the columni.
Heights at scalek are measured in units ofhk . The only
characteristic vertical length at scalek is that fixed by typical
intrinsic fluctuations of the surface of a lateral sizeLk . This
suggests taking

hk5AcW~Lk!;Lk
a , ~5!

whereAc is a proportionality constant that will be discuss
later. This equation expresses the requirement of scale
variance in the geometric description. Any other cho
would result either in a redundant description@if hk /W(Lk)
→0 as k→`] where too many~infinite! blocks would be

FIG. 1. Covering procedure of a particular microscopic surfa
with cells of sizeLk3hk . Blocks below~above! the surface are
considered to be occupied~empty!.
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6462 PRE 59CASTELLANO, MARSILI, MUÑOZ, AND PIETRONERO
needed to describe fluctuations in the same column, or
too coarse description@if hk /W(Lk)→` as k→`]. By im-
posing Eq.~5!, we always have a meaningful covering of th
surface upon scale changes. Observe that since in ge
aÞ1, the shape~i.e., the ratio of vertical to horizonta
length! of the blocks changes with the scalek. Contrarily to
the usual RG approach, the definition of the block-spin tra
formation depends explicitly on the roughness exponena,
the calculation of which is the final goal of the method.

The constantc in Eq. ~5! fixes the unit of measure of ou
blocks. Its optimal value can be determined as follows. T
distribution of microscopic height fluctuations within a bloc
can be mapped into aneffectivedistribution with the same

averageh̄ and standard deviation. For simplicity we take it
be bimodal,

P@h~x!#5pd$h~x!2@ h̄1~12p!hk#%

1~12p!d$h~x!2@ h̄2phk#%. ~6!

This distribution results from mapping all points with micr

scopic height larger thanh̄ to h̄1(12p)hk and those smalle

than h̄ to h̄2phk . The parameterp describes the degree o
asymmetry of the distribution: The fluctuations inside
block can then be calculated, using Eq.~6!, as

W2~Lk!5p~12p!hk
2 , ~7!

which implies that the constantc is given by

c5
1

p~12p!
. ~8!

For a symmetric distributionp51/2 and thereforec54. In
general the height distribution is not symmetric, i.e., there
some nonvanishing skewness and one must considercÞ4.

B. Dynamic description

The second step in the construction of the RG proced
is the definition of the effective dynamics at a generic sc
k, i.e., the determination of the growth rules for the bloc
defined in the preceding subsection. The effective dynam
will depend on a set of scale-dependent parameters.
changing of scale induces a flow in the parameter sp
whose fixed points correspond to the scale invariant dyn
ics.

Analogously to what happens in the usual application
the RG approach to equilibrium systems, it may happen
mechanisms not appearing in the microscopic rule are g
erated upon coarse graining. In the language of equilibr
systems this means that operators not included in the
Hamiltonian can be generated iteratively. Conversely, mic
scopic ingredients can prove to be irrelevant and be prog
sively eliminated when going to coarser scales. Theref
exactly as in the equilibrium case the choice of the para
etrization of the effective dynamics is not trivial: Principle
such as the preservation of symmetries and conserva
laws must be the guidelines. In general, the effective dyn
ics will be defined in terms of the transition rates for t
a

ral
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addition of occupied blocks at a generic coarse-grained sc
that is,

r @h~ i ,k!→h8~ i ,k!#5r ~xk
1 ,xk

2 , . . . ,xk
n!. ~9!

The number of parametersxk
i is in principle arbitrary, al-

though in the applications presented below it will be limit
to one@17#. It is clear that the more complete the parame
zation the better the final description of the statistical sc
invariant state. We will discuss this problem in detail in Se
II D.

C. The RG equations

So far we have defined the geometrical and dynam
aspects of the coarse-graining procedure. These give us
necessary ingredients to introduce the RG transformat
The explicit derivation of it is based on the following prop
erty of the roughnessW. Let us consider ad-dimensional
system of linear sizeL and partition it in (L/b)d blocks of
size bd ~labeled by the indexj ). It is straightforward to
verify that the total roughness can be decomposed as

W2~L !5
1

~L/b!d (
j 51

(L/b)d H 1

bd(
i P j

@h~ i !2h̄~ j !#2J
1

1

~L/b!d (
j 51

(L/b)d

@ h̄~ j !2h̄#2, ~10!

where h̄( j ) is the average height within blockj. The inter-
pretation of this formula is simple: The first term on the rig
hand side is the averaged value of the roughness wi
blocks of sizebd, while the second term is the fluctuation o
the average value ofh among blocks.

In our coarse-graining procedure this property is read
follows: If one takesL5Lk115bLk the first term on the
right hand side isW2(Lk), the total roughness within a bloc
of sizeLk ; the second is the roughness of the configurat
in which blocks of sizeLk are considered as flat objects. Th
second contribution is obviously proportional to the squ
of the height of a blockhk

2 . Hence, employing Eq.~5!,

W2~Lk11!5W2~Lk!1v2~b,k!hk
25@11cv2~b,k!#W2~Lk!

5Fb~k!W2~Lk!, ~11!

wherev2(b,k) is the roughness in the stationary state o
system ofbd sites of unit height that evolves according to t
dynamical rules specified by (xk

1 ,xk
2 , . . . ,xk

n), and

Fb~k![@11cv2~b,k!#. ~12!

Note that the dependence on the scalek is only through the
parameters$xk%.

Equation ~11! is the equation that relates the width a
scales k and k11. In order to proceed further, we mu
evaluate the functionFb(k), or equivalentlyv2(b,k). To do
so, we identify all the possible surface configurations o
system composed ofbd sites, and write down a master equ
tion for their associated probabilitiesr i ,
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] tr i5(
j

r j Pj→ i2r i(
j

Pi→ j . ~13!

Pi→ j is the rate for the transition between configurationi and
j and depends on the set of parameters$xk%. Imposing the
stationarity condition] tr i50 and the normalization( ir i

51 the master equation can be solved. If we callWi
2 the

roughness of configurationi, then we can write

v2~b,k!5(
i

r i~k!Wi
2 . ~14!

Depending on the particular structure of the master equa
the explicit solution of the previous equation may be diffic
or impossible. In such cases it may be more useful to de
mine v2(b,k) numerically by performing~relatively small!
Monte Carlo simulations. We will describe examples of bo
analytical and numerical computations ofv2(b,k).

Let us suppose now thatv2(b,k) has been determined
Equation~11! gives an explicit relation between the roug
ness at two different scales. Observe that so far the s
invariance idea has not been implemented. We have
studied how the width changes upon changing the leve
description. The last task to be performed is the determ
tion of the RG transformation relating the parameters of
dynamics at scalek with those at scalek11. This is done by
means of a self-consistency requirement for the descrip
of the same system at two different levels of detail, i.e.,
total width of a system should be independent of the size
the blocks we use to describe it. To make this idea m
precise, let us consider the case of a dynamics paramet
by only one parameterxk . Let us take a system of sizeL
5Lk12. By applying Eq.~11! we have

W2~Lk12!5Fb~xk11!W2~Lk11!. ~15!

This procedure can be iterated again on each of the resu
systems of sizeLk11, obtaining

W2~Lk12!5Fb~xk11!Fb~xk!W
2~Lk!. ~16!

The same quantity can alternatively be computed by con
ering directly the whole system as composed byb2d systems
of sizeLk . Applying again Eq.~11!

W2~Lk12!5Fb2~xk!W
2~Lk!. ~17!

Imposing the consistency of the two procedures one ha
implicit RG transformation forxk ,

Fb~xk11!5
Fb2~xk!

Fb~xk!
, ~18!

or explicitly

xk115R~xk![Fb
21FFb2~xk!

Fb~xk!
G . ~19!

This equation provides the evolution of the parameter un
a change of scale.

If a fixed pointx* such that

x* 5R~x* ! ~20!
n
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exists, then the parameterx* characterizes the scale invaria
dynamics of the system. The knowledge of it directly allow
the determination of the exponent a. Since
W2(Lk11)/W2(Lk) is equal tob2a we have

a5 lim
k→`

1

2
logbFW2~Lk11!

W2~Lk!
G

5 lim
k→`

1

2
logbFb~k!5

1

2
logbFb~x* !. ~21!

To analyze the stability of the fixed point we linearize t
RG transformation around it

xk112x* 5R~xk!2x* .R8~x* !~xk2x* !. ~22!

Hence ifuR8(x* )u,1 the scale invariant dynamics specifie
by x* is an attractive fixed point under changes of scale.

Extension of the previous formalism to the case ofn pa-
rameters of the dynamics is straightforward. Then RG trans-
formations are obtained by imposing the consistency of
description of the same system when divided in 2d and 4d

blocks, in 4d and 16d blocks, and so on@17#.

D. Approximations

Let us discuss now the approximations involved in t
method. There are two steps where approximations co
into play: The first is the choice of the parametrization of t
scale invariant dynamics. The second is the computation
v2(b,k).

With respect to the first problem, it is reasonable to exp
that under coarse graining the microscopic dynamics w
flow towards a scale invariant dynamics depending in pr
ciple on an infinite number of parameters. This proliferati
is analogous to what happens in RSRG approaches to e
librium systems. The restriction to a finite~and small! num-
ber of parameters involves unavoidably an approximati
due to the projection of the RG flow onto the subspa
spanned by these parameters.

However, a very important difference with respect
equilibrium critical phenomena is that here the scale inva
ant dynamics is ‘‘self-organized critical,’’ that is, there a
no relevant operators. Only irrelevant fields, with negat
scaling dimensions, need to be parametrized. The syste
by definitionon the critical manifoldand, by iteration of the
RSRG transformation, it converges to the stable fixed po
without any fine tuning of parameters. The projection ont
low-dimensional parameter space yields a projected RG fl
which will share these same properties. The fixed point
this subspace, being the projection of the actual fixed poin
the high-dimensional space, will have the same qualita
properties. Even the simplest parametrization capturing
correct symmetries of the dynamics can provide a quite
curate determination of the properties of the system in
case. On the contrary, when relevant fields are present, a
second order phase transitions, truncation effects are q
dramatic. The reason is that relevant fields have, in gener
nonvanishing component on any discrete~lattice! operator.
Any approximation due to truncation is amplified by the R
iteration thus driving the flowout of the critical manifold
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6464 PRE 59CASTELLANO, MARSILI, MUÑOZ, AND PIETRONERO
along the relevant directions. The determination of the fix
point becomes then very difficult@18#.

The second source of approximation is the computation
v2(b,k). As stated above this quantity is the stationa
roughness of a system composed ofbd substrate sites evolv
ing according to the dynamical rules specified by the para
eters (xk

1 , . . . ,xk
n). This is a perfectly well defined quantit

that may in principle be computed to any degree of accur
by solving the master equation. However, very often
structure of the master equation is too complicated to al
for a full solution. One then has to devise suitable simpl
cations to make the analytical computation feasible. This
volves approximations that affect the final result. We will s
an example of this way of proceeding and discuss how
effect of the approximation can be controlled. Alternative
whenb andd are not too large, one can resort to the nume
cal evaluation ofv2(b,k). In practice this boils down to
performing Monte Carlo simulations of small systems evo
ing with different values of the parameters$xk%. It is impor-
tant to stress that the Monte Carlo~MC! procedure involves
no approximation, except for the fluctuations associated w
statistical sampling. We will describe below an example
this alternative way of computingv2(b,k).

A delicate issue is also the choice of the boundary con
tions. In the conceptual framework described above,v2(b,k)
is the roughness of a section of sizeb of an infinitely ex-
tended surface. This would suggest the use of open boun
conditions. On the other hand, when integrating out degr
of freedom relative to height fluctuations inside the cell, o
should not consider the fluctuation of the average slope. T
slope effect is eliminated if one uses closed~i.e., periodic!
boundary conditions. Even though the choice of the app
priate boundary conditions is not trivial, we will see, in th
KPZ case, that the use of periodic or open boundary co
tions has little effect on the value of the exponent. Furth
more, one expects that both truncation errors and those
duced by neglecting fluctuations of boundary conditio
vanish as the parameterb grows. Arguments in support o
this conclusion are reported in Appendix A.

III. RG FOR KPZ DYNAMICS

A. The problem of KPZ growth

The Kardar-Parisi-Zhang equation is the minimal co
tinuum equation capturing the physics of rough surfaces.
ter appearing in 1986@3#, an overwhelming number of stud
ies has been devoted to elucidate its properties@4,6#. It reads
@3#

]h~x,t !

]t
5n¹2h1

l

2
~¹W h!21h~x,t !, ~23!

whereh(x,t) is a height variable at timet and positionx in a
d-dimensional substrate of linear sizeL. n and l are con-
stants andh is a Gaussian white noise. As a consequence
a tilting ~Galilean! invariance@7,4,5# a1z52, and since in
generalz5a/b, there is only one independent exponent, s
a. The difference between the KPZ equation and the lin
equation~Edwards-Wilkinson!, describing surfaces growin
under the effect of random deposition and surface tensio
the presence of a nonlinear term proportional tol. This non-
d
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linear term is generated by microscopic processes giving
to lateral growth, i.e., the fact that growth velocity is norm
to the local surface orientation.

Exact results@4,6# indicate that ind51 there is only a
rough phase for KPZ witha51/2. Instead, standard fiel
theoretical methods predict the presence of aroughening
transition aboved52 @19#; i.e., there are two RG attractiv
fixed points and an unstable fixed point separating the
More specifically, there is a Gaussian fixed point witha
50 describing a flat phase~characterized by a vanishin
renormalized nonlinear coupling! and a nontrivial one de-
scribing the rough phase~in which the renormalized nonlin
ear coupling diverges in perturbation theory!. Perturbative
methods fail to give any prediction for the exponents in t
rough phase. Ford.2, an e expansion (d521e) around
the Gaussian solution can be performed and the exponen
the roughening transition evaluated to all orders in pertur
tion theory @20,9#. These results seem to indicate the pre
ence of an anomaly ind54 for the roughening transition
This has been interpreted as an indication thatdc54 is the
upper critical dimension for the rough phase, i.e., for t
strong coupling fixed point@21–23#. Above this dimension
the exponents should take the values known ford5` @10#.
Applications of nonperturbative methods such as functio
renormalization group@24# and Flory-type arguments@25#
also suggested thatdc54, in agreement with a 1/d expansion
@26# around thed5` limit. The mode-coupling approxima
tion led to contradictory results, suggesting the existence
finite dc @21# or dc5` @27#. Arguments for a finitedc based
on directed@28# or invasion@29# percolation have also bee
proposed.

On the other hand, numerical results seem to indicate
the exponenta decays continuously with the system dime
sionality up tod57, excluding therefored54 as upper criti-
cal dimension@30#.

Finally, some doubts have been cast on the validity of
continuum approach to study rough surfaces@31#. Summing
up, the issue of the behavior of the KPZ dynamics ford
>2 is a highly debated one, and it is extremely desirable
have alternative approaches shedding light on the probl
In what follows we present the application of our new R
scheme to KPZ growth.

B. Simplest RG scheme

1. Parametrization of the dynamics

The modeling of the dynamics at a generic scale sho
keep the number of parameters to a minimum and catch
the relevant physical mechanisms of the process. The m
feature of the KPZ dynamics is lateral growth. Therefore
take as the only parameter defining the dynamics at a gen
scalek the ratioxk between lateral and vertical growth~i.e.,
random deposition!. More formally, the growth rate for the
addition of an occupied block on columni is

r i[r @h~ i !→h~ i !11# ~24!

511xk (
jNNi

max@0,h~ j !2h~ i !#,

~25!
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where jNNi meansj nearest neighbor ofi.Equation ~25!
states that the rate for lateral growth is proportional to
difference in height between neighboring columns~Fig. 2!.
Overhangs, known to be irrelevant on large scales@16#, are
not allowed. This dynamics can be seen as a generaliza
of the Eden growth model.

A few observations are in order. We call the parametex
appearing in Eq.~25! the ‘‘lateral growth’’ parameter, bu
this is an abuse of language:xk cannot be identified with the
parameterl of the KPZ equation. Instead the term that mu
tiplies xk in Eq. ~25! is a combination of the discretize
Laplacian, of the discretized square gradient, and of o
discrete operators. The explicit dependence ofx on n andl
cannot be disentangled. Other parametrizations are cle
possible and they will be discussed below.

Equation~25! has the nice feature that it contains as lim
iting cases both the random deposition process (xk50) and
the infinitely strong ‘‘lateral growth’’ (xk5`) leading to flat
surfaces. Most importantly, it is easy to see thatx* 5` is, by
construction, a fixed point of the RSRG witha50. This
feature makes possible the determination of the upper cri
dimension above which the stable solution leads toa50. In
this situation we expectx* 5` to be an attractive fixed
point. Below the critical dimension, on the other hand, t
fixed point x* 5` must be unstable and an intermedia
fixed point with finitea must appear. The RSRG accomm
dating for a fixed point atx* 5` naturally allows us to ad-
dress the issue of the upper critical dimensionality.

2. d51

We restrict ourselves for the moment to the on
dimensional case and illustrate in detail the application of
RG approach, i.e., the computation ofv2(b,k), the determi-
nation of the scale invariant dynamics, and of the expon
a. It is very instructive to consider first the dynamics E
~25! supplemented by the condition that the height differen
between adjacent columns is restricted to values such
uDhu<Dhmax, with Dhmax51. This greatly reduces the num
ber of possible surface configurations, allowing for a f
analytical treatment. For the system of sizeb52, assuming
periodic boundary conditions, there are only two nonequi
lent configurations, while for the system of size 4 there
six of them ~Fig. 3!. Using the definition Eq.~25! of the
growth rates for the addition of a block, one has simply,
b52,

FIG. 2. Growth rates for the KPZ dynamics in a typical config
ration.
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P1→150,

P1→252,
~26!

P2→15112xk ,

P2→250.

In configuration 1 only vertical growth is possible~in two
sites! leading always to configuration 2. Only one site c
instead grow in configuration 2 and the rate for this is t
sum of the rate of one vertical and two lateral contributio
Hence the master equation reads

]r1

]t
5~112xk!r222r1 , ~27!

]r2

]t
52r12~112xk!r2 . ~28!

Imposing the stationarity condition] tr15] tr250 and the
normalizationr11r251 one has

r25
2

312xk
~29!

and then considering that the width associated with confi
rations 1 and 2 is, respectively, 0 and 1/4,

v2~2,xk!5
2

4~312xk!
. ~30!

For the system of sizeb254 one finds in an analogous wa

v2~4,xk!5
51186xk140xk

2

4~471106xk168xk
218xk

3!
. ~31!

Plugging these two expressions into the RG equation~18!
with c54 ~in d51 the distribution is known to be symme
ric! one finds that the explicit form of the RG transformatio
is

FIG. 3. Nonequivalent surface configurations for a system
size 2~top! and 4~bottom! with periodic boundary conditions an
Dhmax51.
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R~x!5
2931804x1636x21160x3132x4

2~591148x1156x2164x3!
~32!

and that there exists only one finite fixed point for

x* .2.087 79 . . . . ~33!

Such a fixed point is attractive since

R8~x* !.20.035 48 . . . . ~34!

Hence no matter how small or large the microscopic value
x is, upon coarse graining the dynamics flows towards
attractive scale invariant dynamics, characterized by a r
x* of the lateral to vertical growth rates. The roughness
sociated with this scale invariant dynamics is

a5
1

2
log2Fb52~x* !.0.177 352 . . . ~35!

that must be compared with the known exact valuea51/2.
The apparent poor performance of the method is due

the assumption thatDhmax51, which allows for full analyti-
cal treatment, but is clearly wrong. The point is that even
at the microscopic level the dynamics is of restricted ty
the effective dynamics at generic scale defined by the re
malization procedure will proliferate in a nonrestricted on
Allowing larger steps (Dhmax.1) increases the number o

FIG. 4. Results ford51 and differentDhmax. The intersections
between solid@representing the 1/2 log2F2(x)] and dashed lines
„representing the 1/2 log2@F4(x)/F2(x)#… give x* on the horizontal
axis anda on the vertical axis@see Eq.~21!#. Observe that, as
Dhmax is increased, the exact valuea51/2 is rapidly approached.
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superficial configurations and makes the analytical deter
nation of the functionv2(b,xk) impossible. Still this task
can be performed numerically via simulation of systems
such a small size. Figure 4 reports the results obtained
considering increasing values ofDhmax. The value of
x* (Dhmax) converges already forDhmax58 to x* .0.726,
corresponding to a valuea50.507 . . . in excellent agree-
ment with the exact value. Further increases ofDhmax do not
change the results, indicating that in the scale invariant
namics the probability of steps larger than 8 is negligible

3. d>1

The computation via Monte Carlo method ofv2(2,xk)
and v2(4,xk) can be performed with very little computa
tional effort also in higher dimension. We consideredd
51, . . . ,9with less than a week of CPU time of a workst
tion. The results are reported in Table I and summariz
graphically in Fig. 5. We find a finite attractive fixed poin
for all dimensions, with an exponenta in remarkably good
agreement with the best numerical results available@30#.
This is the first theoretical approach providing estimates
the roughness exponent that match in all dimensions w
numerics. No anomalies are found ford54 where other ap-
proaches find an upper critical dimension. The extrapolat
to d→` suggests that the fixed point is always stable a
that a decreases withd but remains always nonvanishing
The fixed point parameterx* grows exponentially with the

FIG. 5. Value ofa as a function of the dimension obtained b
the application of the method with smallb, compared with numeri-
cal data by Ala Nissilaet al. The best fit to the RG values give
slope20.7. We expect this exponent to converge to21 for large
dimensions.
RG

7

TABLE I. Values of the fixed point parameterx* and of the roughness exponent computed with the
with b52, compared with the numerical results of Ala-Nissilaet al.

d 1 2 3 4 5 6 7 8 9

x* 0.726 2.77 6.96 15.91 31.96 63.5 124.5 242 468
aRG 0.507 0.363 0.294 0.238 0.206 0.182 0.164 0.149 0.13
anum 0.5 0.387 0.305 0.261 0.193 0.18 0.15
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dimension. These results are confirmed by an analytical
pansion of the method in high dimensions, that is presen
in Sec. III D.

C. Robustness of the results

1. b>2

In order to analyze the stability of the results upon
creasing the value ofb it is convenient to introduce the func
tion

a l ~x!5
1

2
logl F l ~x!. ~36!

With this definition one can express the fixed point condit
Eq. ~20! as

ab~x* !5ab2~x* !, ~37!

and see that the fixed point is stable if

uR8~x* !u5U2ab28 ~x* !

ab8~x* !
21U,1, ~38!

i.e.,

0,
ab28 ~x* !

ab8~x* !
,1. ~39!

Such a formula can be extended also to the case where
size of the larger system considered is notb2 but a generic
b8.b. We study the stability of the results for growingb by
computingab(x) with bi52,4,8,16, . . . and imposing the
consistency between two successivebi . The value ofb indi-
cated in the plots is the smaller one; for instance,b54 label
the results obtained imposing the consistency betweeb
54 andb858.

In Fig. 6 we report the plot of the curvesab(x) in d51
for b52,4,8,16,32. Remarkably they all meet practically
the same point, indicating thatx* and a virtually do not
change by increasing the number of cells. Figure 7 rep

FIG. 6. Behavior of the curvesab(x) in d51 @see Eqs.~36! and
~37!#.
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the values of the exponenta in d51 ~empty circles!. Ob-
serve that fluctuations are extremely small. The value of
fixed point parameterx* is reported in Fig. 8~empty circles!.
Again it remains practically unchanged whenb grows.

In higher dimensions the results are less stable. The
ues ofa and ofx* for d52, 3, and 4 are reported in Figs.
and 8, respectively~empty symbols!. A clear trend is presen
for d52: the exponent initially decreases asb is increased,
then reaches a minimum and starts growing. This behavio
reflected in the value ofx* that first grows and then de
creases.

The decreasing part of the pattern is present in the an
gous plots ford53 andd54. For large dimensions, how
ever, it is increasingly more time consuming to perform t
computation for large systems. In particular, ford54, the
largest system that could be simulated isb516 and for such
a system size the trend is still decreasing. Therefore it is
possible to decide from a numerical point of view wheth

FIG. 7. Plot of the RG estimate for the roughness exponenta as
a function of the inverse system size. Empty symbols are for d
obtained with periodic boundary conditions. Full symbols refer
open boundaries.

FIG. 8. Value of the fixed point parameterx* as a function of
the inverse system size. Empty symbols are for data obtained
periodic boundary conditions. Full symbols refer to open bou
aries.
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for larger values ofb a would converge to zero or to a finit
value. These data do not provide any conclusive indica
on whetherd54 is the upper critical dimension for KPZ
growth. However, as will be shown below, such a conclus
is ruled out by the results with other parametrizations and
the analytical large-d expansion of the method.

The reason for the difference in the stability of the resu
for large number of cells ind51 andd>2 is probably re-
lated to crossover phenomena. In the RG flow there are
competing fixed points; this reflects the existence of two u
versality classes, strong coupling KPZ and EW. Ind51
these fixed points are associated with the same rough
exponenta51/2 and to similar values ofx* . Therefore, any
crossover phenomenon between the two fixed points
little effect in our formalism. Ind>2 instead, the two scale
invariant dynamics are associated with different expone
and also very different values of the parameterx* , which is
finite for KPZ and infinite for EW. We interpret the initia
decrease in the value ofa in the KPZ case as the effect of
crossover caused by the presence of the EW fixed point.
not clear to us, however, why the fixed point found forb
52 is so close to the results of the numerical simulation

2. Open boundary conditions

The calculation ofv2(b,k) can also be performed with
open boundary conditions, that is, assuming that the he
of the columns outside the system which are in contact w
the boundary is the same as that of their neighbors inside
system. This means that no ‘‘lateral growth’’ event can
caused in the system by the environment around it.

The results are also presented in Figs. 7 and 8~filled
symbols!. Interestingly, in this case the accuracy of t
method forb52 is not as good as for periodic bounda
conditions, but the error remains below 10%, indicating
low sensitivity to the boundary conditions even for a sm
number of cells. For a larger number of cells the differen
goes quickly to zero.

For higher dimensions the general dependence ofx* and
a on b remains unchanged: Ind52 a is initially high, then
decreases and finally increases again. The variations wb
are, however, less strong than when periodic boundary c
ditions are considered. Ford54 it is more clear than in the
case with periodic boundary conditions thata does not con-
verge to zero for largeb.

3. Other parametrizations of the dynamics

As stated above, the parametrization~25! of the KPZ
scale invariant dynamics is by no means unique. Actua
given the problems of slow and nonmonotonic converge
towards the asymptotic values, it turns out clearly that
parametrization~25! is quite far from being optimal and be
ter parametrizations would help. In order to keep things
simple as possible we started considering transition rate
the form

r i511xk (
jNNi

$max@0,h~ j !2h~ i !#%g, ~40!

with g constant; forg51 it coincides with Eq.~25!. By
comparing the values ofa obtained with severalg an inter-
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esting pattern can be spotted~Fig. 9!. While for a small num-
ber of cellsb the estimate gets worse with increasingg, the
opposite is true for largeb. For large values ofg the estimate
for a converges quite rapidly. Forg59 andg520 we find
on the largest systemsa50.399, suggestive of a conve
gence towards 0.4. Ford54 the sizes that can be simulate
are too small to allow the determination of the asympto
value ofa. However, it is clearly seen thata does not go to
zero asb is increased.

The same type of behavior is found by using an expon
tial parametrization of the dynamics

r i511xk (
jNNi

exp$gmax@0,h~ j !2h~ i !#%21. ~41!

In d52 for largeg the estimate ofa on the largest system i
0.399, exactly as with Eq.~40!. In d54 again we cannot
precisely determine wherea is converging to. Again the data
strongly suggest that this limit is finite~Fig. 10!.

FIG. 9. Value of the exponenta computed using the parametr
zation Eq.~40! for the KPZ dynamics for various values ofg in
d52 andd54.

FIG. 10. Value of the exponenta computed using the param
etrization Eq.~41! for KPZ dynamics for various values ofg in d
52 andd54.
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The study of these two alternative parametrizations of
dynamics consistently indicates a value ofa50.399 in d
52 and a finitea.0 in d54 suggesting strongly that 4 i
not the upper critical dimension of the KPZ.

One could in principle imagine a parametrization of t
effective dynamics, more in the spirit of the KPZ equatio
of the type

r 1511nku¹2h~ i !u1lk@¹W h~ i !#2. ~42!

However, there is no reason for believing that such a par
etrization would be better for the KPZ rough phase; ad
tional operators are very likely to be present in the sc
invariant dynamics. Moreover, the dynamics described
Eq. ~42! is plagued by numerical instabilities, as pointed o
by Newman and Bray@32#.

D. The d˜` limit and the upper critical dimension

The results presented so far show thata.0 even for a
large number of cells ind54, thus indicating that 4 is no
the upper critical dimension for KPZ growth processes.
using the RG procedure it is actually possible to go beyo
this numerical conclusion:The existence of any finite uppe
critical dimension can be ruled out.This result is obtained
when the functionv2(b,xk) is computed analytically in the
large-d limit. The basic fact allowing this calculation is tha
when d@1 one expectsa!1, which suggests that surfac
fluctuations are small,

v~b,xk!;ba.11a ln b1O~a2!. ~43!

For smallb one may reasonably account for the fluctuatio
of the interface by considering only two possible values
h( i ), h0 ~‘‘low sites’’ !, andh011 ~‘‘high sites’’! ~Fig. 11!.
Starting from a flat surface@h( i )50,; i #, one considers
growth events occurring according to the rates Eq.~25!, with
the restriction that no block can be deposited on top of
already grown one. Only when the whole layer at height 1
grown does one allow growth to level 2 and so on. T
approximation allows the analytical evaluation ofv2(b,k),
the identification of the fixed points, and the study of th
stability. We will checka posteriori the consistence of the
results with the assumption, and see that the existence
finite upper critical dimension can be excluded. Let us n
present the details of the calculation.

Within the ‘‘two layer’’ approximation it is convenient to
group together all configurations with the same number
high sites: we will call ‘‘state’’n the set of all surface con

FIG. 11. Representation of a surface configuration with ei
‘‘high’’ sites and bd28 ‘‘low’’sites.
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figurations withn sites at heighth011 and the remaining
bd2n sites at heighth0. The staten50, corresponding to a
flat surface, is equivalent to the state withn5bd. This clas-
sification is useful because the only transitions permit
from staten are those to staten11. The master equation fo
the probabilityrn of being in staten ~i.e., of having any of
the configurations withn high sites! is then greatly simpli-
fied,

] trn5rn21r ~n21→n!2rnr ~n→n11!. ~44!

r (n→n11) is the average of all the rates~25! for the
growth processes that transform one configuration withn
high sites in one withn11 of them. We can write this quan
tity in the form

r ~n→n11!5~bd2n!1xkVn . ~45!

The first term on the right hand side is simply the total rate
vertical growth@1 in Eq.~25!# for configurations withn high
sites. Observe that it is obviously equal to the numberbd

2n) of sites where vertical growth is allowed.xkVn is the
rate for lateral growth:Vn is the average number of latera
walls in configurations withn high sites. Its precise compu
tation is not easy, since it would require the knowledge
the stationary probability for each configuration belonging
state n. However, whenxk50 the computation is trivial
since growth occurs only via uncorrelated deposition a
high and low sites are randomly distributed. The number
low sites, where growth is allowed, isbd2n; each of them
has 2d neighbors which are occupied with probabilityn/bd.
Hence the average number of lateral walls is

Vn5~bd2n!2d
n

bd . ~46!

The form ofVn for xÞ0 is in general more complicated, bu
a numerical computation for large dimensions, namely,
d57, shows that Eq.~46! is a good approximation for al
values ofxk ~Fig. 12!. We assume the validity of Eq.~46! for

t

FIG. 12. Comparison of the form of the functionVn computed
with x50, used in the analytical calculation~solid line!, with the
function determined numerically ind57 for x5` ~dashed line!.
For intermediate values ofx, the functionVn lies between the two
curves plotted.



f
es

-

o
f

a

n

he
ve
nt

th
ti

or
os
gh

o

-

on-
ring
ft

we

lues
at

ness

ric-

6470 PRE 59CASTELLANO, MARSILI, MUÑOZ, AND PIETRONERO
all values ofxk . This leads to

r ~n→n11!5~bd2n!F112d
n

bd xkG . ~47!

The stationary solution of Eq.~44! is

rn5r0

r ~0→1!

r ~n→n11!
, n51, . . . ,bd21. ~48!

By imposing the normalization condition(n50
bd21rn51 and

approximating the sum by an integral one obtains

r05H 11
bd

2dxk
F2d ln b1 lnS 112dxk

bd12dxk
D G J 21

. ~49!

Equations~48! and ~49! provide a complete description o
the stationary probability density. Given that the roughn
of all configurations withn high sites isn/bd(12n/bd), the
total roughness of the surface can be computed as

v2~b,xk!5 (
n50

bd21

rnS 12
n

bdD n

bd . ~50!

Using the fact thatbd@1 and assumingdxk@1, we obtain

v2~b,xk!5r0

bd

2dxk
. ~51!

Inserting Eq.~51! with b52 and b54 in the fixed point
equation~20! yields, to leading order ind,

x* 52d11ln 2. ~52!

The assumptiondxk@1 is therefore self-consistent for suffi
ciently larged. Notice that an exponential dependence ofx*
on d was already found in the numerical implementation
the method~Fig. 8!. Using Eq.~21! one obtains the value o
the roughness exponent

a.
1

3~ ln 2!2

1

d
. ~53!

Finally, by computing the derivative of the RG transform
tion at the fixed point

R8~x* !5211
1

2 ln 2

1

d
1O~1/d2!, ~54!

we see that the fixed point is attractive for all finite dime
sions.

In conclusion, we find that for larged the RG has a fixed
point x* corresponding to an exponenta;1/d and therefore
strictly positive in all finite dimensions. On the contrary, t
existence of a finite upper critical dimension would ha
implied, for d.dc , either the absence of a finite fixed poi
or its instability.

At this point we must use the analytical result to check
consistency of the two layer assumption. Such an assump
is correct provided the rate of its violation is negligible f
all values ofn. Processes violating the assumption are th
in which an event of vertical growth occurs on top of a hi
s

f

-

-

e
on

e

site. Their rate in staten is r up5n, that must be compared t
the total rate of processes not violating the restrictionr (n
→n11) computed forx5x* . By imposing r up(n)!r (n
→n11) we get

n!~bd2n!S 11
2dn

bd x* D . ~55!

Let us considern5bd21 which is the situation that maxi
mizesr up and minimizesr (n→n11). Then

bd21!11
2d~bd21!

bd x* . ~56!

Sincebd@1, this means

bd!2dx* ;2d12d. ~57!

Hence the two layer assumption is correct forb52 but fails
for b54. Therefore the value ofv2(4,xk) is systematically
underestimated by Eq.~51! since fluctuations involving more
than two layers are neglected despite being likely. The c
sequence of this on our results is understood by conside
Eq. ~18!. In such a formula we estimate correctly the le
hand side, while the right hand side is underestimated~Fig.
13!. Since the fixed point parameterx* and the exponenta
are given by the intersection of the curves it is clear that
get an upper bound forx* and a lower bound fora. This is
confirmed by the comparison of our estimate ofa, Eq. ~53!,
and x* with the numerical results of Ala-Nissilaet al. and
the value ofx* computed numerically ford51, . . . ,9~Fig.
14!.

These results have been obtained for the smallest va
of b, namely,b52. In the previous sections we showed th
for low dimensions the results for smallb are in good agree-
ment with numerics, but for largerb there are deviations. A
very reasonable question therefore concerns the robust
of the large-d results whenb grows. As we have shown
above, the two layer approximation breaks down forb.2. In
order to extend the above calculation to largerb one should
replace the two layer approximation with some less rest

FIG. 13. Plot of the left- and right-hand sides of Eq.~18! as
computed numerically ind57 and analytically@Eq. ~51!#.
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tive but still doable calculational scheme. We have not b
able to fulfill this task and hence we cannot directly sh
whether a fixed point exists for finitex* whenb→`. How-
ever, the two layer assumption is valid for anyb in the neigh-
borhood of the fixed pointx* 5` that gives a flat surface
a50. This fixed point exists in any dimension, and its s
bility can be safely analyzed using the previous two la
assumption as follows.

Let us introducee51/x. The derivative of the RG trans
formation at the fixed pointe* 50 is @see Eq.~38!#

R8~e50!5
2ab8~e50!

ab28 ~e50!
21, ~58!

where now the prime indicates derivative with respect toe.
To first order ine we have~see Appendix B!

ab2~e!5
1

4 lnb
ln@11cmeb2d12#. ~59!

Then

ab28 ~e50!5
1

4 lnb
cmb2d12. ~60!

Analogously

ab8~e50!5
1

2 lnb
cmbd11. ~61!

Hence

R8~e50!5bd1121@1 ~62!

and the fixed point corresponding toa50 is unstable. As a
consequence, a finite fixed point witha.0 must exist and be
stable whenb→` for any large and finited. This supports
the conclusion that there is no finite upper critical dimensi

FIG. 14. Comparison of the dependence ofa on d computed
with the RG in the large-d limit Eq. ~53! with the numerical data of
Ala-Nissila et al. In the inset, plot of the value of the fixed poin
parameterx* computed numerically for smalld and compared with
the analytical expression Eq.~52!.
n

-
r

.

IV. RG FOR THE EDWARDS-WILKINSON DYNAMICS

So far we have applied the new RG method to a KPZ-l
dynamics. Now we intend to show that it is more general a
can be applied to growth mechanisms belonging to univ
sality classes other than KPZ. In particular, we study in t
section its application to the exactly solvable, Edward
Wilkinson equation for which the roughness exponent
known in any dimension. In particular,a51/2 in d51,
while a50 for d>2 with logarithmic corrections atd52.

The parametrization Eq.~25! of the dynamics describes
growth model where only deposition events can take pl
and the symmetry between up and down in theh direction is
clearly broken. Such a dynamics is inherently out of equil
rium and therefore cannot accommodate the scale invar
dynamics of the Edwards-Wilkinson growth process, wh
is an equilibrium one, with growth rules symmetric along t
growth direction. We now introduce a generalized dynam
which admits the KPZ and EW dynamics as particular li
iting cases.

Let us consider the quantities

Kd~ i !5(
jnni

max@0,h~ j !2h~ i !#,

~63!

Ku~ i !5(
jnni

max@0,h~ i !2h~ j !#.

In the KPZ case described so far we have allowed only de
sition of particles and written

r i511xkKu~ i !. ~64!

We now allow also for evaporation of particles. That is, w
consider the transition rate for sitei as

r i511xkueKu~ i !2~12e!Kd~ i !u ~65!

and with probability

Pb51/r i ~66!

a random deposition/evaporation event takes place (hi→hi
11 with probability e and hi→hi21 with probability 1
2e), while with probability

Pl5xkueKu~ i !2~12e!Kd~ i !u/r i ~67!

we have a ‘‘lateral’’ event

hi→hi1
eKu~ i !2~12e!Kd~ i !

ueKu~ i !2~12e!Kd~ i !u
. ~68!

For e51 only deposition is allowed and we have the tran
tion rates for the KPZ dynamics. Fore51/2, we have up-
down ~deposition-evaporation! symmetry and the rates are

r i511xku¹2h~ i !u, ~69!

where¹2h( i )5@Ku( i )2Kd( i )#/2 is the discretized Laplac
ian evaluated at sitei. Therefore we expect this case to co
respond to EW dynamics. Let us verify that fore51/2 the
average interface velocity does not depend on the inter
configuration~which is a basic property of EW dynamics!,
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v5
1

Ld (
i

v i5
1

Ld (
i

r iDhi . ~70!

Since

Dhi5Pl

Ku~ i !2Kd~ i !

uKu~ i !2Kd~ i !u

5
1

r i
S xuKu~ i !2Kd~ i !u

Ku~ i !2Kd~ i !

uKu~ i !2Kd~ i !u D
5

1

r i
$x@Ku~ i !2Kd~ i !#% ~71!

and as( iKu( i )5( iKd( i ), we have that

v5
x

Ld (
i

@Ku~ i !2Kd~ i !#50. ~72!

With this generic dynamics we can perform the RG pro
dure exactly as in the KPZ case. The evaluation of the fu
tion v2(b,x) is carried out again using small Monte Car
simulations with periodic boundary conditions. The resu
are reported in Fig. 15. Ford51 the value ofa for b52 is
.0.4 below the exact value 1/2, but forb.2 the correct
value is rapidly approached. The situation is completely d
ferent in d52. In such a case forb52 the exponenta is
around 0.25, but whenb is increased, the fixed point i
shifted monotonically towards̀ . In d53 the behavior of the
fixed point for finitex* is similar. From these plots we ca
conclude that the behavior of the EW dynamics is very d
ferent in d51 and d.1. For d51 there is a stable fixed
point with a51/2. For d.1 there is no stable fixed poin
with aÞ0. Hence the RG method is able to capture
difference between KPZ and EW dynamics and correctly
scribes both the rough and the flat phases of the Edwa
Wilkinson growth. We speculate that the reason why o
needs to considerb.2 is probably related to the fact that o
a system of sizeb52 the discretized Laplacian and squa
gradient take the same form.

FIG. 15. Plot of the RG estimate for the roughness exponena
as a function of the inverse system size for the Edwards-Wilkin
dynamics.
-
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V. DISCUSSION

In the previous sections we have introduced a gen
method for studying surface growth models by means o
real-space renormalization group procedure. The anisotr
of the scale invariant properties of surfaces makes the v
definition of the RSRG highly nontrivial, since the dire
integration of degrees of freedom at small scale cannot
performed. For this reason we had to devise an alterna
route: the main ingredient is that the integration of degree
freedom is performed implicitly by imposing the sel
consistency between two descriptions of the same objec
different levels of coarse graining. The application of such
approach to the KPZ dynamics yields several results that
be summarized as follows.

~1! The scale invariant dynamics is identified and para
etrized as a function of the ‘‘lateral growth’’ parameterx.
This parameter turns out to have a nontrivial attractive fix
point under RG transformation for all dimensions.

~2! The KPZ roughness exponenta estimated for smallb
is in very good agreement with large scale simulations
discrete models.

~3! For larger values ofb the estimate ofa is stable in
d51 while it changes noticeably ford>2, presumably ow-
ing to crossover effects. Whenb→` it converges towards
the correct result.

~4! The results are robust with respect to changes in
parametrization of the dynamics and in the boundary con
tions.

~5! No evidence is found of the existence of an upp
critical dimension for KPZ. Moreover, we show very stron
evidence that no such an upper critical dimension exists

~6! By changing the nature of the parametrization of t
dynamics at generic scale, the method is able to describe
EW dynamics and capture the existence for it of an up
critical dimension above which only a trivial~flat! phase
exists.

Regarding the general nature of the approach it is wo
remarking that the key point in the method is the identific
tion of the scale invariant dynamics. In some sense the p
cedure can be seen as a kind of finite size scaling appro
allowing for the evaluation of scaling exponents via the e
trapolation of small size MC simulations. However, the cr
cial point is that the MC data do not directly determine t
exponent; they rather allow the identification of the sc
invariant parameters of the dynamics which in turn det
mines the exponent.

With respect to the estimates of the roughness expon
for smallb, it is remarkable that the accuracy~in the sense of
the discrepancy with known numerical results! seems to be
the same in all dimensionsd>2. This is not the typical situ-
ation in ordinary critical phenomena, where usually RSR
methods fail in high dimensions. There are at least two r
sons why usual RSRG schemes are inaccurate in high dim
sions.

~a! The necessity of defining an explicit geometrical ma
ping between degrees of freedom at two scales~spanning
rule, majority rule, bond moving, etc.!.

~b! The presence of relevant fields and the need to co
pute exponents from the derivatives of the RG transform
tion at the fixed point.

Due to the success of field theory in high dimensio

n
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~close todc) in usual critical phenomena, RSRG metho
have been mostly devised to work in low dimensions wh
the predictions of thee expansion become less reliabl
RSRG methods based on an explicit geometric mapp
~block-spin transformation! are quite accurate~and some-
times even exact! close to the lower critical dimension. Prob
lems related with this geometric transformation beco
worse and worse as the dimension increases. In our pers
tive, the only limitation has to do with the quality of th
parametrization of the RG transformation. For example,
parametrization of the RSRG transformation for ferroma
netic systems based on the Migdal transformation of Is
spins gives inaccurate results in highd. However, if one uses
the parametrization of thef4 theory, one recoversdc54
within the RSRG Migdal approach@33# even for ferromag-
netic systems.

In any case, notice that our RSRG method does not n
an explicit geometrical definition of the RG transformatio
Therefore it bypasses the problems related to~a!. In some
sense, this is similar to the phenomenological RG met
@34# where the RG transformation is defined implicit
through finite size scaling arguments. Remarkably, phen
enological RG calculations are quite accurate.

With respect to point~b!, as discussed above the absen
of relevant fields makes truncation errors much less imp
tant than in ordinary applications of the RG. Furthermore,
note that in the KPZ problem one has to compute expon
depending only on the RG transformation at the fixed po
i.e., the critical parameter. This is profoundly different fro
what happens in Ising-like problems, where some expon
~such as, for example, the correlation length exponentn)
depend on the derivatives of the RG transformation aro
it: As a consequencen-type exponents are rather difficult t
estimate since, even if the location of the fixed point is d
termined accurately, the computation of the derivatives
much less precise. No exponents of such type exist in
KPZ case. This is, in our opinion, a further reason for t
great accuracy of the new method with respect to the u
RSRG.

As a final point, it is worth discussing the current limit
tions of the method. It is clear from the results presented
a most important role in the method is played by the cho
of the parametrization of the scale invariant dynamics. T
is particularly true since one deals with a monoparame
description of the growth process: If one could easily int
duce several parameters and study their flow under the
the stability of the results when details are changed would
greatly improved. Within the present framework, the inc
sion of additional parameters is, however, not straightf
ward. The problem is that additional RG equations are p
vided only by the use of Eq.~11! with b, b2, b3, and so on.
This requires the computation ofv2(b,k) on systems whose
size becomes quickly prohibitively large. A remarkable im
provement of the method would therefore be the identifi
tion of additional RG transformations independent from E
~11!. Despite this difficulty, we believe that the theoretic
framework presented here constitutes an important new
ment in the field of surface growth and deserves further
vestigation, in particular with respect to possible applicatio
to other open problems, and generalization to deal with tim
dependent properties.
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In summary, in this paper we have presented a real-sp
renormalization group method developed to deal with s
face growth processes. The new method overcomes the
ficulties inherent to standard real-space renormaliza
group analysis of anisotropic situations. It is based on
definition of anisotropic blocks of generic scale and of
parametrized effective dynamics for the evolution of su
blocks. Imposing the surface width to be the same wh
using different scales~different block sizes! we write a
renormalization group equation. Its associated fixed po
define the scale invariant effective dynamics and permit u
determine the roughness exponenta.

We have employed the new method to study the Kard
Parisi-Zhang and the Edwards-Wilkinson universal
classes. In particular, for KPZ we compute thea exponent in
dimensions fromd51 to d59. The results are in very goo
agreement with the best numerical estimates in all dim
sions. Moreover, we present analytical calculation exclud
the possibility of KPZ having a finite upper critical dimen
sion. On the other hand, well known results for the EW u
versality class are obtained, confirming the generality of
method.
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APPENDIX A: THE RSRG METHOD FOR LARGE B

In this appendix we investigate the behavior of t
method for large values ofb. At the fixed pointx* , Eq. ~18!
reads

v2~b2,x* !5cv4~b,x* !12v2~b,x* !. ~A1!

If we now assume that, forb@1,

v2~b,x!.b2a@A~x!1B~x!b2v1•••# ~A2!

as it should, we find that Eq.~A1! becomes

A~x* !@12cA~x* !#22cA~x* !B~x* !b2v22A~x* !b22a

1subleading terms50. ~A3!

We see that forb→` the fixed point tends to

x*̀ : cA~x*̀ !51 ~A4!

whereas for large but finiteb

xb* 5x*̀ 2
2D~x*̀ !

A8~x*̀ !
b2D, ~A5!

with

D5min$v,2a% and
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D~x* !5H B~x* ! if v,2a

A~x* !1B~x* ! if v52a

A~x* ! if v.2a.

~A6!

The RG estimateâ of the exponenta is given by

â5
ln Fb~xb* !

2 lnb
5a

1
ln@b22a1cA~xb* !1cB~xb* !b2v1•••#

2 lnb
5a

1
ln@11b22a22cD~x*̀ !b2D1cB~x*̀ !b2v1•••#

2 lnb

~A7!

and converges to the exact value forb→`. Note that only
the finite b corrections depend onx* . In particular, if v
,2a

â5a2
cB~x*̀ !b2v

2 lnb
. ~A8!

If v.2a

â5a2
b22a

2 lnb
. ~A9!

With respect to the stability of the fixed point one finds

R8~x* !52b22a2S B

A
1

B8

A8
D b2v1•••. ~A10!

This means that, as should be expected, the fixed point
comes more and more stable asb increases: for largerb
fewer RG iterations are necessary to reach the scale inva
regime.

These results for largeb are not surprising. When th
systems become large, the effect of the boundary condit
is clearly small and also the choice of the parametrization
the scale invariant dynamics tends to become irrelev
since parameters that are not included in the explicit par
etrization are generated by the RG procedure on large
tems. Formulas~A8!–~A10! certify that the RG method is
asymptotically correct.

APPENDIX B: COMPUTATION OF v2
„B,eK…

In this appendix we present the derivation of Eq.~59!. Let
us considerb and d arbitrarily large but finite, so thatek
!bd. We have
a
.

e-

nt

ns
f
t,
-
s-

(
n51

bd21

rn5r0bd (
n51

bd21
1

Vn /ek1bd2n
5r0bdekg1O~ek

2!,

~B1!

where

g5 (
n51

bd21
1

Vn
. ~B2!

Hence

r05
1

11bdekg
1O~ek

2! ~B3!

and

rn5
bdek

Vn
1O~ek

2!. ~B4!

The roughness of a system of sizeb is therefore

v2~b,ek!5 (
n51

bd21

rn

n

bdS 12
n

bdD'bdekE
1/bd

121/bd y~12y!

Vybd

dy.

~B5!

For largeb andd and infinitely strong lateral growth param
eter 1/ek , the set of high sites will form, whenn→0, a
d-dimensional hypersphere. HenceVn will scale as the pe-
rimeter of such a hypersphere,

Vn;n(d21)/d, n→0. ~B6!

Similarly for n→bd the low sites will form a shrinking hy-
persphere andVn;(bd2n)(d21)/d for n→bd. Hence it is
reasonable to assume

Vybd5bd21V̂~y!, ~B7!

with V̂(y);y(d21)/d for y→0 andV̂(y);(12y)(d21)/d for
y→1. The form ofV̂(y) for intermediate values ofy is not
known, but we expect it to be nonsingular and not depend
on b. In conclusion

v2~b,ek!5bd11ekm, ~B8!

with

m5E
0

1

dy
y~12y!

V̂~y!
~B9!

a finite geometrical constant.
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