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We describe in detail and extend a recently introduced nonperturbative renormalizatiolg@upethod
for surface growth. The scale invariant dynamics which is the key ingredient of the calculation is obtained as
the fixed point of a RG transformation relating the representation of the microscopic process at two different
coarse-grained scales. We review the RG calculation for systems in the Kardar-ParisitBRRZhginiversal-
ity class and compute the roughness exponent for the strong coupling phase in dimensions from 1 to 9.
Discussions of the approximations involved and possible improvements are also presented. Moreover, very
strong evidence of the absence of a finite upper critical dimension for KPZ growth is presented. Finally, we
apply the method to the linear Edwards-Wilkinson dynamics where we reproduce the known exact results,
proving the ability of the method to capture qualitatively different behavi®$063-651X99)07606-0

PACS numbegs): 05.10.Cc, 64.60.Ak, 05.70.Ln, 68.35.Fx

I. INTRODUCTION multiplicative noise[9]. In particular, one of the most de-
bated issues in this context is the existence of an upper criti-
The idea that scale invariance is at the origin of criticalcal dimension, above which the system is well described by
phenomena associated with equilibrium second order phagke nontrivial infinite-dimensional limit10].
transitions has proven to be very fruitful. The analysis of Although the usual approach fails for KPZ, the presence
scale transformations in equilibrium statistical systems, nowof generic scale invariance suggests that also for this system
known as renormalization groufRG), has indeed allowed the basic idea of the RG approach should be applicable in
for the explicit calculation of critical exponents and, more-some form.
over, has led to the introduction of new fundamental con- Real-space approaches have proven useful wherever stan-
cepts such as scaling and universality. dard perturbative techniques ffill1-13. This, for example,
The extension of the RG approach to nonequilibrium pheis the case of fractal growth, and in particular for diffusion-
nomena, where scale invariance is widely observed, and thamited aggregation12]. However, the attempts to apply
identification of new universality classes, is of great impor-standard real-space techniques to the KPZ prokjend to
tance from both theoretical and practical points of view.surface growth in generalfail because of a fundamental
Technically, the RG ideas can be implemented in differentechnical difficulty: The anisotropy of the scaling properties
ways. The most standard one for systems at equilibrium is tof the system. That is, in order to cover with blodks the
consider their stationary probability distribution written in Kadanoff sens¢13]) a surface, isotropic blocks cannot be
terms of continuum coarse-grained fields, and study themsed: Lengths in different directions must scale in different
perturbatively around their corresponding upper critical di-ways, and the relative shape of blocks has to depend upon
mension. The most systematic way to extend the previouthe scale via an exponent that is unknown. This makes con-
methods to nonequilibrium systems, where in general theeptually nontrivial the application of real-space RG proce-
stationary probability distribution is not known, is to cast dures to surface growth processes.
them into a continuum dynamical equatifh], or equiva- In this paper we investigate the scale invariant properties
lently into a generating functional or acti¢f]. This last one of generic interface growth processes through the introduc-
can, in principle, be treated using the same perturbative techion of a real-space method. To achieve this goal we intro-
nigues developed to deal with equilibrium systems. How-duce some new ingredients permitting us to overcome the
ever, there are some cases where perturbative methodforementioned problem. In particular, we introduce the idea
around a mean field solution are not suitable. In these casdébat the statistical properties of growing surfaces on large
the € expansion fails to give information on the relevant scales can be described in terms of an effective scale invari-
physics. This turns out to be governed by a strong couplingant dynamics for renormalized blocks. Such dynamics is the
perturbatively inaccessible fixed point. The prototypical ex-fixed point of a RG transformation relating the parameters of
ample of this class of systems is the well known Kardar-the dynamics at different coarse-graining levels. The study of
Parisi-Zhang(KPZ) equation for surface growtf8], where the RG flow, of the fixed points, and of their stability gives
the properties of rough surfaces have not been so far exthe universality classes and their associated exponents.
plained satisfactorily in generic spatial dimension. This is a As a first application of the method, we study the KPZ
problem of great theoretical importance since the KPZ degrowth dynamics and obtain accurate estimates for the
scribes not only the properties of rough surfajges6], butis  roughness exponefivhen compared with numerical resylts
also related to the Burgers equation of turbulefi¢g to  in spatial dimensions frond=1 to d=9. Furthermore, an
directed polymers in random medi@], and to systems with analytical approximation allows us to exclude the existence
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of a finite upper critical dimension for KPZ dynamics and
suggests that the roughness exponent decayddsrllarge
dimensions, shedding light on a currently much debated is-
sue.

In order to show the generality of the new real-space
scheme and test its accuracy, we also apply it to the well
known linear theory, the Edwards-Wilkins¢oBW) equation. ¥
We reproduce the expected behavior in different dimensions, % hk
confirming the general applicability of the method.

The paper is organized as follows. In Sec. Il we present ¥
the general RG method, the main concepts, the basic equa- ~ L
tions, and discuss all the approximations involved. In Sec. llI
we review some results associated with KPZ growth and
apply the new RG method to such problem. We present some FiG. 1. Covering procedure of a particular microscopic surface

simple analytical approximations, explicit results for spatialwith cells of sizeL,xh,. Blocks below(above the surface are
dimensions up tad=9, and discuss the large dimensional considered to be occupidgmpty).

limit in detail. In Sec. IV we report results on the analysis of
the Edwards-Wilkinson equation. In Sé¢ a critical discus- We now introduce the real-space renormalization group

sion of the method and of the results is reported. PartiagRSRG procedure aimed at the study of the stationary state
accounts of the work presented here have already been pugnd in particular at the determination of the roughness expo-

lished recently, with a slightly different notatiga4,15. nenta. The following subsections are structured as follows.
In Sec. Il A we introduce the geometric elements or blocks
Il. REAL-SPACE RG FOR SURFACE GROWTH (equivalent to the Kadanoff blocks in standard RSRG meth-

| d he RG hod | id od9 suitable to deal with anisotropic situations. In Sec. 11 B

n oraer to present the method let US CONSIOer a 980 giscuss the effective dynamics of the previously defined
neric surface growﬂl model Whefe the height is a Slngleblocks at a generic scale. In Sec. IIC we introduce the RG
valued function h(x,t), with x the positon in a equation and explain how the roughness exponent is deter-

d-dimensional substrate arndienoting time. The possibility mined. Finally in Sec. Il D we analyze critically the approxi-
of having overhangs will not be considered here, as they argations involved in general in the method.

known to be irrelevant for the asymptotic behavior of KPZ-
like growth[16]. The generic growth model under consider-
ation can be either described at the microscopic level by a
stochastic equation or by a discrete dynamical rule. In the The first nontrivial problem in the development of a

first caseh andx are continuous variables, while in the latter RSRG approach is to find a sensible description of the ge-

A. Geometric description

they are discrete. ometry of the growing surface at a generic scale, i.e., how to
strate of linear sizé, is defined by the anisotropy of the system, the shape of the blocks must

depend on the scale. Therefore, subdividing a cell in subcells
1 R — is not a feasible task and the explicit construction of the
WA(L,t) = d > [h(x,H—h(t)]?, (1) block-spin transformation is not possible.
X Hence we develop an alternative strategy. To obtain a
description at a generic scalkeof the growing surface, we

where consider a partitioning of thed( 1)-dimensional space in
_ 1 R cells of lateral size =L ,b* and vertical sizé,. Hereb is
h(t)=Tg > hixt). (2)  a constant and labels the scaléFig. 1).
X A cell is declared to be empty or filled according to a
If we start the growth process from a flat configuration, forma!or_Ity rulg. In this way we pellss from the microscopic de-
short times the roughness grows as spnpuon h(x,t) to a cparse—gra}med one at. scéleully dg—
fined by the numbeh(i,k,t) of filled blocks in the columii.
W(L,t)~tA (3y  Heights at scalé are measured in units df,. The only
characteristic vertical length at scddés that fixed by typical
until it reaches a stationary state characterized by intrinsic fluctuations of the surface of a lateral slzg This

suggests taking

W(L)~L*. 4
) @ hi= VeW(L ~ L, (5)

The crossover between the two behaviors occurs at a char-
acteristic timetg, that scales witl. asL?. This is the time where \/c is a proportionality constant that will be discussed
scale over which correlations decay in the stationary statdater. This equation expresses the requirement of scale in-
The exponents, B, andz are to a large extent universal for variance in the geometric description. Any other choice
many different growth processes, and are related by thwould result either in a redundant descriptighh, /W(L,)
trivial scaling relation3= a/z. —0 ask—»] where too manyinfinite) blocks would be
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needed to describe fluctuations in the same column, or in addition of occupied blocks at a generic coarse-grained scale,

too coarse descriptiohif h,/W(L,)—»~ ask—x]. By im-  thatis,

posing Eq(5), we always have a meaningful covering of the . ) 1 N

surface upon scale changes. Observe that since in general rlh(i,k)—h"(i,K)]=r(X X, - X €)

a#1, the shape(i.e., the ratio of vertical to horizontal )

length of the blocks changes with the sc&leContrarily to  The number of parameters, is in principle arbitrary, al-

the usual RG approach, the definition of the block-spin transthough in the applications presented below it will be limited

formation depends explicitly on the roughness expongnt to one[17]. It is clear that the more complete the parametri-

the calculation of which is the final goal of the method. zation the better the final description of the statistical scale
The constant in Eq. (5) fixes the unit of measure of our invariant state. We will discuss this problem in detail in Sec.

blocks. Its optimal value can be determined as follows. Thdl D.

distribution of microscopic height fluctuations within a block

can be mapped into aeffectivedistribution with the same C. The RG equations
averageh and standard deviation. For simplicity we take itto g tar we have defined the geometrical and dynamical
be bimodal,

aspects of the coarse-graining procedure. These give us the
necessary ingredients to introduce the RG transformation.

P[h(x)]=ps{h(x)—[h+(1—p)h,]} The explicit derivation of it is based on the following prop-
_ erty of the roughnes¥V. Let us consider al-dimensional
+(1-p)d{h(x)—[h—ph]}. (6)  system of linear siz& and partition it in (/b)? blocks of

size bY (labeled by the index). It is straightforward to
This distribution results from mapping all points with micro- yerify that the total roughness can be decomposed as

scopi_c he@ht larger thamto h+ (1— p)h, and those smaller (L
thanh to h—ph,. The parametep describes the degree of W2(L)=

asymmetry of the distribution: The fluctuations inside a =
block can then be calculated, using Ef), as

1 —
po [N —h()I?

(L/b)d . -
WA(L)=p(1-p)h{, (7) by 2, [ —hT? (10

which implies that the constaitis given by — .. ) . , i
whereh(j) is the average height within blogk The inter-

1 pretation of this formula is simple: The first term on the right
=—. (8) hand side is the averaged value of the roughness within

P(1=p) blocks of sizeb?, while the second term is the fluctuation of

e the average value df among blocks.
For a symmetric dls_tr|b_ut|o_rp)=_1/2 and theref_ore;=4. In . In our coarse-graining procedure this property is read as
general the hglght distribution is not symmetric, e, there Sollows: If one takesL=L,, ;=bL, the first term on the

some nonvanishing skewness and one must coneiele. right hand side i8V?(L,), the total roughness within a block
of sizeL,; the second is the roughness of the configuration

B. Dynamic description in which blocks of size., are considered as flat objects. This

The second step in the construction of the RG proceduréecond c.ontribution is ozbviously proportiqnal to the square
is the definition of the effective dynamics at a generic scal®f the height of a block . Hence, employing Eq5),
k, i.e., the determination of the growth rules for the blocks ) ) ) ) ) )
defined in the preceding subsection. The effective dynamicsW(Li+1)=W(Ly)+ o“(b,k)hi=[1+cw*(b,k)JW=(L)
will depend on a set of scale-dependent parameters. The . 2
changing of scale induces a flow in the parameter space =Fo(K)W (L), (12)

whose fixed points correspond to the scale invariant dynam- . . .
; P P y where w?(b,k) is the roughness in the stationary state of a

ics.
Analogously to what happens in the usual application Oisystem' oh¢ sites of unit height thzat evolv;es according to the

the RG approach to equilibrium systems, it may happen thafynamical rules specified byt xg, - - - X§), and

mechanisms not appearing in the microscopic rule are gen-

erated upon coarse graining. In the language of equilibrium Fo(k)=[1+cw?(b,k)]. (12

systems this means that operators not included in the bare

Hamiltonian can be generated iteratively. Conversely, microNote that the dependence on the sdals only through the
scopic ingredients can prove to be irrelevant and be progregparametergx,}.

sively eliminated when going to coarser scales. Therefore, Equation (11) is the equation that relates the width at
exactly as in the equilibrium case the choice of the paramscales k and k1. In order to proceed further, we must
etrization of the effective dynamics is not trivial: Principles evaluate the functiof,(k), or equivalentlyw?(b,k). To do
such as the preservation of symmetries and conservatiosp, we identify all the possible surface configurations of a
laws must be the guidelines. In general, the effective dynamsystem composed & sites, and write down a master equa-
ics will be defined in terms of the transition rates for thetion for their associated probabilitigs,
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exists, then the parametet characterizes the scale invariant
api=2 piPii—pi Pio. (13)  dynamics of the system. The knowledge of it directly allows
. J the determination of the exponenta. Since
P;_; is the rate for the transition between configuraii@md WA(Lys1)/W?(Ly) is equal tob®* we have
j and depends on the set of parameteqg. Imposing the

stationarity conditiond,p;=0 and the normalizatiorE, p B Iimilo WA(Ly41)
=1 the master equation can be solved. If we &&fl the @ m210% W2(L,)
roughness of configuratioin then we can write
1 1
= lim ilongb(k)= §|09be(X*)- (21

WA (b,k)=2 pi(k)W?. (14) e

o analyze the stability of the fixed point we linearize the

Depending on the particular structure of the master equatio G transformation around it

the explicit solution of the previous equation may be difficult
or impossible. In such cases it may be more useful to deter- ok kD ok ok

mine w?(b,k) numerically by performingrelatively small Xier 17X =ROG) =XF=RI(X) (xe=x7). - (29)
Monte Carlo simulations. We will describe examples of both
analytical and numerical computations @f(b,k).

Let us suppose now thai?(b,k) has been determined.
Equation(11) gives an explicit relation between the rough-
ness at two different scales. Observe that so far the sca
invariance idea has not been implemented. We have ju?

Hence if|[R’(x*)|<1 the scale invariant dynamics specified
by x* is an attractive fixed point under changes of scale.
Extension of the previous formalism to the casengda-
ameters of the dynamics is straightforward. THRG trans-
rmations are obtained by imposing the consistency of the
escription of the same system when divided fhahd 4

studied how the width changes upon changing the level o locks, in 4' and 16 blocks, and so ofi17]

description. The last task to be performed is the determina-
tion of the RG transformation relating the parameters of the
dynamics at scalk with those at scalk+ 1. This is done by
means of a self-consistency requirement for the description Let us discuss now the approximations involved in the
of the same system at two different levels of detail, i.e., themethod. There are two steps where approximations come
total width of a system should be independent of the size ointo play: The first is the choice of the parametrization of the
the blocks we use to describe it. To make this idea morgcale invariant dynamics. The second is the computation of
precise, let us consider the case of a dynamics parametrizegP(b,k).

D. Approximations

by only one parametex,. Let us take a system of side With respect to the first problem, it is reasonable to expect
=Ly». By applying Eq.(11) we have that under coarse graining the microscopic dynamics will
> > flow towards a scale invariant dynamics depending in prin-

WAL+ 2) = Fo(Xir D)WL e 1) (15 ciple on an infinite number of parameters. This proliferation

analogous to what happens in RSRG approaches to equi-
rium systems. The restriction to a finitand small num-
ber of parameters involves unavoidably an approximation,
W2(Lys 2) = Fp(Xer 1) Fo(X) WA(Ly). (16) due to the projection of the RG flow onto the subspace
spanned by these parameters.
The same quantity can alternatively be computed by consid- However, a very important difference with respect to
ering directly the whole system as composedBy systems  equilibrium critical phenomena is that here the scale invari-

This procedure can be iterated again on each of the resultirﬁ0
systems of sizé ., ,, obtaining

of sizeL,. Applying again Eq(11) ant dynamics is “self-organized critical,” that is, there are
) ) no relevant operators. Only irrelevant fields, with negative
W (L 2) =Fp2a(xig W (L) (17 scaling dimensions, need to be parametrized. The system is

by definitionon the critical manifoldand, by iteration of the
SRG transformation, it converges to the stable fixed point,
without any fine tuning of parameters. The projection onto a
Fu2(Xe) low-dimensional parameter space yields a projected RG flow
Fo(Xgs1) = =——, (18)  which will share these same properties. The fixed point in
Fb(X) this subspace, being the projection of the actual fixed point in
the high-dimensional space, will have the same qualitative
properties. Even the simplest parametrization capturing the
Fp2(Xy) correct symmetries of the dynamics can provide a quite ac-
Fox) | (19 curate determination of the properties_of the system in thisf
case. On the contrary, when relevant fields are present, as in
This equation provides the evolution of the parameter undefecond order phase transitions, truncation effects are quite
a change of scale. dramatic. The reason is that relevant fields have, in general, a
If a fixed pointx* such that nonvanishing component on any discrékattice) operator.
Any approximation due to truncation is amplified by the RG
x* =R(x*) (20 iteration thus driving the flonout of the critical manifold

Imposing the consistency of the two procedures one has
implicit RG transformation forx,,

or explicitly

1

Xk+1=R(X)=Fy
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along the relevant directions. The determination of the fixedinear term is generated by microscopic processes giving rise
point becomes then very difficulig]. to lateral growth, i.e., the fact that growth velocity is normal

The second source of approximation is the computation ofo the local surface orientation.
w?(b,k). As stated above this quantity is the stationary Exact resultg4,6] indicate that ind=1 there is only a
roughness of a system composedbfsubstrate sites evolv- rough phase for KPZ withw=1/2. Instead, standard field
ing according to the dynamical rules specified by the paramtheoretical methods predict the presence ofoaghening
eters (i, ... xQ). This is a perfectly well defined quantity transition aboved=2 [19]; i.e., there are two RG attractive
that may in principle be computed to any degree of accuracfixed points and an unstable fixed point separating them.
by solving the master equation. However, very often theMore specifically, there is a Gaussian fixed point with
structure of the master equation is too complicated to allow=0 describing a flat phaséharacterized by a vanishing
for a full solution. One then has to devise suitable simplifi-renormalized nonlinear couplingand a nontrivial one de-
cations to make the analytical computation feasible. This inscribing the rough phadén which the renormalized nonlin-
volves approximations that affect the final result. We will seeear coupling diverges in perturbation thepryerturbative
an example of this way of proceeding and discuss how thenethods fail to give any prediction for the exponents in the
effect of the approximation can be controlled. Alternatively,rough phase. Fod>2, an e expansion §=2+¢) around
whenb andd are not too large, one can resort to the numeri-the Gaussian solution can be performed and the exponents at
cal evaluation ofw?(b,k). In practice this boils down to the roughening transition evaluated to all orders in perturba-
performing Monte Carlo simulations of small systems evolv-tion theory[20,9. These results seem to indicate the pres-
ing with different values of the parametdps}. It is impor-  ence of an anomaly id=4 for the roughening transition.
tant to stress that the Monte Caf®IC) procedure involves This has been interpreted as an indication that 4 is the
no approximation, except for the fluctuations associated witlupper critical dimension for the rough phase, i.e., for the
statistical sampling. We will describe below an example ofstrong coupling fixed poinf21-23. Above this dimension
this alternative way of computing?(b,k). the exponents should take the values knowndere [10].

A delicate issue is also the choice of the boundary condiApplications of nonperturbative methods such as functional
tions. In the conceptual framework described aba&b, k) renormalization groug24] and Flory-type argumentt25]
is the roughness of a section of sikeof an infinitely ex-  also suggested thdt=4, in agreement with a d/expansion
tended surface. This would suggest the use of open boundafg6] around thed= limit. The mode-coupling approxima-
conditions. On the other hand, when integrating out degreetion led to contradictory results, suggesting the existence of a
of freedom relative to height fluctuations inside the cell, onefinite d; [21] or d.=<° [27]. Arguments for a finitel, based
should not consider the fluctuation of the average slope. Thien directed 28] or invasion[29] percolation have also been
slope effect is eliminated if one uses closgé., periodi¢  proposed.
boundary conditions. Even though the choice of the appro- On the other hand, numerical results seem to indicate that
priate boundary conditions is not trivial, we will see, in the the exponentr decays continuously with the system dimen-
KPZ case, that the use of periodic or open boundary condisionality up tod=7, excluding thereford =4 as upper criti-
tions has little effect on the value of the exponent. Furthercal dimension30].
more, one expects that both truncation errors and those in- Finally, some doubts have been cast on the validity of the
duced by neglecting fluctuations of boundary conditionscontinuum approach to study rough surfafgs]. Summing
vanish as the parametérgrows. Arguments in support of up, the issue of the behavior of the KPZ dynamics dor

this conclusion are reported in Appendix A. =2 is a highly debated one, and it is extremely desirable to
have alternative approaches shedding light on the problem.
Ill. RG FOR KPZ DYNAMICS In what follows we present the application of our new RG

scheme to KPZ growth.
A. The problem of KPZ growth g
The Kardar-Parisi-Zhang equation is the minimal con-

. . . . B. Simplest RG scheme
tinuum equation capturing the physics of rough surfaces. Af-

ter appearing in 198(3], an overwhelming number of stud- 1. Parametrization of the dynamics
ies has been devoted to elucidate its propeftes). It reads The modeling of the dynamics at a generic scale should
3] keep the number of parameters to a minimum and catch all
Jh(x.t) N the relevant physical mechanisms of the process. The main
&t, = V2h+ E(ﬁh)2+ n(x,t), (23 feature of the KPZ dynamics is lateral growth. Therefore we

take as the only parameter defining the dynamics at a generic
scalek the ratiox, between lateral and vertical growthe.,

d-dimensional substrate of linear site v and\ are con-  aqdition of an occupied block on coluniris

stants andy is a Gaussian white noise. As a consequence of
a tilting (Galilean invariance[7,4,5 a+z=2, and since in — - :
. ) ri=r[h h(i)+1 24
generalz= a/ B, there is only one independent exponent, say =rth()=h()+1] 249
a. The difference between the KPZ equation and the linear
equation(Edwards-Wilkinsol, describing surfaces growing —14 N (i
under the effect of random deposition and surface tension, is ! ij%i max{ Oh(j)—h(b)].
the presence of a nonlinear term proportional ta'his non- (25
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FIG. 2. Growth rates for the KPZ dynamics in a typical configu-

ration FIG. 3. Nonequivalent surface configurations for a system of

size 2(top) and 4(bottom) with periodic boundary conditions and
where jNNi meansj nearest neighbor of.Equation (25) Ahpa=1.
states that the rate for lateral growth is proportional to the

difference in height between neighboring columfg. 2). P,_1=0,
Overhangs, known to be irrelevant on large scéldd, are
not allowed. This dynamics can be seen as a generalization P, .»=2,
of the Eden growth model. (26)
A few observations are in order. We call the paramater P, =1+2x
2—1 ko

appearing in Eq(25) the “lateral growth” parameter, but
this is an abuse of language; cannot be identified with the
parametei of the KPZ equation. Instead the term that mul-
tiplies x, in Eq. (25) is a combination of the discretized ' . . . -
Laplacian, of the discretized square gradient, and of othellr.1 conflguratlon 1 only vert|c_a| grqwth is_possibién two
discrete operators. The explicit dependence oh » and\ siteg leading always to configuration 2. Only one site can

cannot be disentangled. Other parametrizations are clear|)Stéad grow in configuration 2 and the rate for this is the
possible and they will be discussed below. sum of the rate of one vertlcal and two lateral contributions.
Equation(25) has the nice feature that it contains as lim- Hence the master equation reads
iting cases both the random deposition procegs=0Q) and 5
the infinitely strong “lateral growth” §,= ) leading to flat P1
surfaces. I\XOS'[ imgortantly, ?t is easyx{(o se)e bkfa{:o? is, by Tt~ (1 2Xdpa—2p1, @7
construction, a fixed point of the RSRG witla=0. This
feature makes possible the determination of the upper critical
dimension above which the stable solution lead&te0. In
this situation we expeck* =« to be an attractive fixed
point. Below the critical dimension, on the other hand, the,
fixed point x* =0 must be unstable and an intermediate
fixed point with finite« must appear. The RSRG accommo-
dating for a fixed point ak* =« naturally allows us to ad- 2
dress the issue of the upper critical dimensionality. pr=m——
3+ 2%y

P,_,=0.

Ip2
i 2P (142x0p2. (28)
Imposing the stationarity conditio,p,=d;p,=0 and the
normalizationp,+ p,=1 one has

(29
2.d=1

We restrict ourselves for the moment to the One_and then considering that the width associated with configu-

dimensional case and illustrate in detail the application of thdations 1 and 2 is, respectively, 0 and 1/4,

RG approach, i.e., the computationof(b,k), the determi-

nation of the scale invariant dynamics, and of the exponent 02(2X) = . (30)
a. It is very instructive to consider first the dynamics Eq. 4(3+2x)

(25) supplemented by the condition that the height difference i , )

between adjacent columns is restricted to values such th&Pr the system of sizb®=4 one finds in an analogous way
|Ah|<Ah,,. With Ah.= 1. This greatly reduces the num-

ber of possible surface configurations, allowing for a full wX(4x)=
analytical treatment. For the system of skze 2, assuming ’
periodic boundary conditions, there are only two nonequiva-

lent configurations, while for the system of size 4 there areéPlugging these two expressions into the RG equatits)
six of them (Fig. 3. Using the definition Eq(25) of the  with c=4 (in d=1 the distribution is known to be symmet-
growth rates for the addition of a block, one has simply, forric) one finds that the explicit form of the RG transformation
b=2, is

51+ 86x,+ 402
A(AT+106x,+ 68X+ 8x7)

(31)
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L O Numerical results o s
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FIG. 5. Value ofa as a function of the dimension obtained by
the application of the method with sméll compared with numeri-
cal data by Ala Nissileet al. The best fit to the RG values gives
slope—0.7. We expect this exponent to converge-td for large
dimensions.

FIG. 4. Results fod=1 and differentAh,,,. The intersections
between solid[representing the 1/21gB,(x)] and dashed lines
(representing the 1/2 Igd=4(xX)/F(X)]) give x* on the horizontal
axis anda on the vertical axigsee Eq.(21)]. Observe that, as
Ahpay is increased, the exact value=1/2 is rapidly approached.

293+ 804+ 636¢2+ 1603+ 32x4 superficial configurations and makes the analytical determi-
R(x)= > 3 (32 nation of the functionw?(b,x,) impossible. Still this task
2(59+ 148+ 156¢"+ 64x%) can be performed numerically via simulation of systems of
such a small size. Figure 4 reports the results obtained by
considering increasing values dfh.,, The value of

and that there exists only one finite fixed point for

X*~2087D.... (33) X"(Ahpay converges already foAhp,=8 to x*=0.726,
corresponding to a value=0.507 . .. in excellent agree-
Such a fixed point is attractive since ment with the exact value. Further increasea bf,,, do not
change the results, indicating that in the scale invariant dy-
R'(x*)=—-0.03548.... (349  namics the probability of steps larger than 8 is negligible.

Hence no matter how small or large the microscopic value of 3 g1
X is, upon coarse graining the dynamics flows towards an '

attractive scale invariant dynamics, characterized by a ratio The computation via Monte Carlo method @f(2x,)
x* of the lateral to vertical growth rates. The roughness asand w?(4x,) can be performed with very little computa-

sociated with this scale invariant dynamics is tional effort also in higher dimension. We considerdd
=1, ...,9with less than a week of CPU time of a worksta-
1 tion. The results are reported in Table | and summarized
— ] * ) ~
a= 2'092Fb:2(x )=0.1773% ... (39 graphically in Fig. 5. We find a finite attractive fixed point

for all dimensions, with an exponeat in remarkably good
that must be compared with the known exact value1/2. agreement with the best numerical results availdl3@).

The apparent poor performance of the method is due tdhis is the first theoretical approach providing estimates for
the assumption thath,,,,= 1, which allows for full analyti- the roughness exponent that match in all dimensions with
cal treatment, but is clearly wrong. The point is that even ifnumerics. No anomalies are found fib+=4 where other ap-
at the microscopic level the dynamics is of restricted typeproaches find an upper critical dimension. The extrapolation
the effective dynamics at generic scale defined by the renote d—« suggests that the fixed point is always stable and
malization procedure will proliferate in a nonrestricted one.that « decreases witld but remains always nonvanishing.
Allowing larger steps fh,.,=>1) increases the number of The fixed point parameter* grows exponentially with the

TABLE I. Values of the fixed point parametgt and of the roughness exponent computed with the RG
with b=2, compared with the numerical results of Ala-Nisslaal.

d 1 2 3 4 5 6 7 8 9
x* 0.726 2.77 6.96 15.91 31.96 63.5 124.5 242 468
aRG 0.507 0.363 0.294 0.238 0.206 0.182 0.164 0.149 0.137

®num 0.5 0.387 0.305 0.261 0.193 0.18 0.15
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FIG. 6. Behavior of the curves,(x) in d=1 [see Egs(36) and

37] FIG. 7. Plot of the RG estimate for the roughness exponess

a function of the inverse system size. Empty symbols are for data
obtained with periodic boundary conditions. Full symbols refer to

dimension. These results are confirmed by an analytical e>%Ioen boundaries

pansion of the method in high dimensions, that is presented
in Sec. 1lID. the values of the exponent in d=1 (empty circle$. Ob-
serve that fluctuations are extremely small. The value of the
C. Robustness of the results fixed point parametex* is reported in Fig. §empty circle$.
Again it remains practically unchanged whemrows.
1. b>2 . . .
. ) In higher dimensions the results are less stable. The val-

In order to analyze the stability of the results upon in-yes ofe and ofx* for d=2, 3, and 4 are reported in Figs. 7
creasing the value df it is convenient to introduce the func- and 8, respectivelgempty symbols A clear trend is present
tion for d=2: the exponent initially decreases lass increased,

1 then reaches a minimum and starts growing. This behavior is
: " , i
a,(x)= Elog/F/(x). (36) reflected in the value ok* that first grows and then de
creases.

) . o ] ) N The decreasing part of the pattern is present in the analo-
With this definition one can express the fixed point condltlongous plots ford=3 andd=4. For large dimensions, how-
Eq. (20) as ever, it is increasingly more time consuming to perform the

(X*) = arpa(X*) 37 computation for large systems. In particular, fib=4, the
@plAT) = ap2(A), largest system that could be simulatedbis 16 and for such
and see that the fixed point is stable if a system size the trend is still degreasmg. Ther_efore it is not
possible to decide from a numerical point of view whether

arz(x*)
RO = |2~ 1/ <1, (39) | ' paremp
ab(x ) H-@d=2 open
« 4 -49d=4 open
: o B D=2 Hoasd
lL.€., 1000 ¢ LN A-£Ade3 closed
\:::\ &-<d=4 closed
’ * A T
a’bz(X ) ﬁ\\ k\:\
—— <1 (39 100 ¢
ap(X*) . A Tl
x \\\\ ‘\\:0
RS ~4
Such a formula can be extended also to the case where the 0F mecocBetiiiioiooomeeo LTl
size of the larger system considered is bétbut a generic . B
. ) a --
b'>b. We study thfe stability of the results fpr grO\_/wbg)y oo @ aae P
computing e, (x) with b;=2,4,8,16... andimposing the L P S O
consistency between two succesdiye The value ofb indi-
cated in the plots is the smaller one; for instartte,4 label ‘ ‘ . .
the results obtained imposing the consistency between %00 0.10 0.20 0.30 0.40 0.50
=4 andb’=8. e
In Fig. 6 we report the plot of the curveg,(x) in d=1 FIG. 8. Value of the fixed point parametet as a function of

for b=2,4,8,16,32. Remarkably they all meet practically atthe inverse system size. Empty symbols are for data obtained with
the same point, indicating that* and « virtually do not  periodic boundary conditions. Full symbols refer to open bound-
change by increasing the number of cells. Figure 7 reportaries.
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for larger values ob « would converge to zero or to a finite 050 -

value. These data do not provide any conclusive indication omod-2 g

on whetherd=4 is the upper critical dimension for KPZ ©--0d=2 9

growth. However, as will be shown below, such a conclusion ~ %4 & - o ed; ™

is ruled out by the results with other parametrizations and by o m--md=4 =100 e

the analytical largel expansion of the method. o [
The reason for the difference in the stability of the results ~ ** [~ g ol

for large number of cells ill=1 andd=2 is probably re- S ®*~~\O ______ 3"3

lated to crossover phenomena. In the RG flow there are two |

competing fixed points; this reflects the existence of two uni-

versality classes, strong coupling KPZ and EW.dr 1 B Sstta

these fixed points are associated with the same roughness ;| .“

exponente=1/2 and to similar values of* . Therefore, any L

crossover phenomenon between the two fixed points has

little effect in our formalism. Ind=2 instead, the two scale 0.00 . ‘ . .

invariant dynamics are associated with different exponents ~ *% 010 o200 0.40 050

and also very different values of the parametér which is _ )
finite for KPZ and infinite for EW. We interpret the initial ~ FIG. 9. Value of the exponent computed using the parametri-
decrease in the value of in the KPZ case as the effect of a Zation Eq.(40) for the KPZ dynamics for various values of in
crossover caused by the presence of the EW fixed point. It jd=2 andd=4.

not clear to us, however, why the fixed point found for , ,
=2 is s0 close to the results of the numerical simulations. €Sting pattern can be spottgg. 9. While for a small num-
ber of cellsb the estimate gets worse with increasipgthe

2. Open boundary conditions opposite is true for largb. For large values of the estimate

\ ) . for a converges quite rapidly. Fopy=9 andy=20 we find
The calculation ofw”(b,k) can also be performed with , the |argest systems=0.399, suggestive of a conver-
open boundary conditions, that is, assuming that the heighfence towards 0.4. Fat=4 the sizes that can be simulated

of the columns outside the system which are in contact withe 155 small to allow the determination of the asymptotic
the boundary is the same as that of their neighbors inside the;| e of .. However, it is clearly seen that does not go to
system. This means that no “lateral growth” event can be ’

. ) ; zero asb is increased.
caused in the system by the environment around it. The same type of behavior is found by using an exponen-
The results are also_pres_ented in Figs. 7 andiled 4 parametrization of the dynamics
symbolg. Interestingly, in this case the accuracy of the
method forb=2 is not as good as for periodic boundary
conditions, but the error remains below 10%, indicating a fi=1+XkE exp{yma{0oh(j)—h(i)]}—1. (41
low sensitivity to the boundary conditions even for a small iNNi
number of cells. For a larger number of cells the difference
goes quickly to zero. In d=2 for largey the estimate o& on the largest system is
For higher dimensions the general dependence*aind  0.399, exactly as with Eq(40). In d=4 again we cannot
« onb remains unchanged: =2 « is initially high, then  precisely determine wheke is converging to. Again the data
decreases and finally increases again. The variationshwith strongly suggest that this limit is finitd=ig. 10).
are, however, less strong than when periodic boundary con-
ditions are considered. For=4 it is more clear than in the 0.50
case with periodic boundary conditions tlatoes not con-
verge to zero for largé.

040
3. Other parametrizations of the dynamics

As stated above, the parametrizati(®6) of the KPZ 0.30 -
scale invariant dynamics is by no means unique. Actually,
given the problems of slow and nonmonotonic convergence °
towards the asymptotic values, it turns out clearly that the o2}
parametrization25) is quite far from being optimal and bet-
ter parametrizations would help. In order to keep things as
simple as possible we started considering transition rates of o0
the form

0.00

rizl_’_xkj%i {ma){O,h(J)—h(l)]}V, (40) 0.00 0.10 0.20 " 0.30 0.40 0.50

_ _ o ) FIG. 10. Value of the exponent computed using the param-
with y constant; fory=1 it coincides with Eq.(25). By etrization Eq.(41) for KPZ dynamics for various values of in d
comparing the values af obtained with severay an inter- =2 andd=4.
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FIG. 11. Representation of a surface configuration with eight / \\
“high” sites andb%—8 “low"sites. 7
The study of these two alternative parametrizations of the '
dynamics consistently indicates a value ®%0.399 ind 0005 02 Y 06 08 10
=2 and a finitea>0 in d=4 suggesting strongly that 4 is ni2’
not the upper critical dimension of the KPZ. FIG. 12. Comparison of the form of the functidd, computed

One could in principle imagine a parametrization of the,yi, =0, used in the analytical calculatidsolid line), with the
effective dynamics, more in the spirit of the KPZ equation, fnction determined numerically id=7 for x=x (dashed ling
of the type For intermediate values of the function(),, lies between the two

) . curves plotted.
ri=1+ Vk|V2h(|)|+)\k[Vh(l)]2. (42
) o figurations withn sites at heighhy+1 and the remaining
However, there is no reason for believing that such a paramyd__ y sjtes at heighh,. The staten=0, corresponding to a
etrization would be better for the KPZ rough phase; addii4; surface, is equivalent to the state witk b, This clas-
tional operators are very likely to be present in the scalgjfication is useful because the only transitions permitted
invariant dynamics. Moreover, the dynamics described by om staten are those to state+ 1. The master equation for
Eq. (42 is plagued by numerical instabilities, as pointed outy,, probabilityp,, of being in staten (i.e., of having any of
by Newman and Bray32]. the configurations witm high siteg is then greatly simpli-
fied,
D. The d— < limit and the upper critical dimension

The results presented so far show taat0 even for a Aipn=pn-1f (N=1=n)=ppr(n—n+1). (44)
Iarge number of cells im=4, thus indicating that 4 is not r(n_>n+ 1) is the average of all the ratdQS) for the
the upper critical dimension for KPZ growth processes. Bygrowth processes that transform one configuration with

using the RG procedure it is actually possible to go beyonghigh sites in one witm+ 1 of them. We can write this quan-
this numerical conclusionithe existence of any finite upper tjty in the form

critical dimension can be ruled ouThis result is obtained

when the functionw?(b,x,) is computed analytically in the r(n—n+1)=(b%—n)+xQ,. (45
larged limit. The basic fact allowing this calculation is that ] ] o

whend>1 one expectsr<1, which suggests that surface The firstterm on the right hand side is simply the total rate of

fluctuations are small, vertical growth[1 in Eq.(25)] for configurations witm high
sites. Observe that it is obviously equal to the numb#r (
w(b,x)~b*=1+alnb+0(a?). (43 —n) of sites where vertical growth is allowe#,(},, is the

rate for lateral growth(}, is the average number of lateral

For smallb one may reasonably account for the fluctuationswalls in configurations witm high sites. Its precise compu-
of the interface by considering only two possible values oftation is not easy, since it would require the knowledge of
h(i), ho (“low sites™), andho+1 (“high sites”) (Fig. 1.  the stationary probability for each configuration belonging to
Starting from a flat surfac¢h(i)=0,Vi], one considers staten. However, whenx,=0 the computation is trivial
growth events occurring according to the rates ), with  since growth occurs only via uncorrelated deposition and
the restriction that no block can be deposited on top of amigh and low sites are randomly distributed. The number of
already grown one. Only when the whole layer at height 1 igow sites, where growth is allowed, i'—n; each of them
grown does one allow growth to level 2 and so on. Thishas & neighbors which are occupied with probabilityb?.
approximation allows the analytical evaluation @f(b,k), Hence the average number of lateral walls is
the identification of the fixed points, and the study of their
stability. We will checka posteriorithe consistence of the
results with the assumption, and see that the existence of a
finite upper critical dimension can be excluded. Let us now
present the details of the calculation. The form ofQ), for x#0 is in general more complicated, but

Within the “two layer” approximation it is convenient to a numerical computation for large dimensions, namely, for
group together all configurations with the same number ofl=7, shows that Eq(46) is a good approximation for all
high sites: we will call “state”n the set of all surface con- values ofx, (Fig. 12. We assume the validity of E¢46) for

n
an(bd—n)zdgj. (46)



6470 CASTELLANO, MARSILI, MUNOZ, AND PIETRONERO PRE 59

all values ofx, . This leads to 150 5 . ;
o O LHS numerical

d n OO O RHS numerical

+ — — + . —— LHS analytical
r(n—n+1)=(b"=n) 1+2d g% (47 10 | % T LS enalvieal

The stationary solution of Ed44) is g o
e o, S 0

pn—pom, n=1,...b%—1. (48) o

1.20

. . o o il
By imposing the normalization condltloEE:olpnzl and

T . . nE
approximating the sum by an integral one obtains L N
toof = __Tmeezi
1+ b 2dInb+I| 1+2dx B (49 T
= — n nf ——— e R e
po 2dx, b9+ 2dx, o L |
0.0 100.0 200.0 300.0
Equations(48) and (49) provide a complete description of X

the stationary probability density. Given that the roughness 5 13 piot of the left- and right-hand sides of E48) as

of all configurations witm high sites isn/b%(1—n/b%), the computed numerically inl=7 and analyticallyEq. (51)].

total roughness of the surface can be computed as

site. Their rate in state is r ,,=n, that must be compared to
n the total rate of processes not violating the restriction

2 — _
(b, %) ngo p“(l F)F' (50 —n+1) computed forx=x*. By imposing r(n)<r(n
—n+1) we get

pd—1

Using the fact thab%>1 and assumingx,>1, we obtain

2dn
b n<(bd—n)(1+ FX*)' (55)

w?(b,Xy) =Poggy (51)

. . . ) ) Let us considen=b%—1 which is the situation that maxi-
equation(20) yields, to leading order il P

2d(b%—-1
x*=29%1n2. (52 bd—1<1+ Lbd—)x*. (56)
The assumptionlx,>1 is therefore self-consistent for suffi- g )
ciently larged. Notice that an exponential dependencecbf ~ Sinceb®>1, this means
on d was already found in the numerical implementation of d 42
b%<2dx* ~2%"“d. (57)

the methodFig. 8). Using Eq.(21) one obtains the value of

the roughness exponent L .
g P Hence the two layer assumption is correctlier 2 but fails

1 1 for b=4. Therefore the value ab?(4x,) is systematically
*=3in22d’ (53)  underestimated by E@51) since fluctuations involving more
than two layers are neglected despite being likely. The con-
Finally, by computing the derivative of the RG transforma- sequence of this on our results is understood by considering
tion at the fixed point Eqg. (18). In such a formula we estimate correctly the left
hand side, while the right hand side is underestimaked.
) 13). Since the fixed point parametef and the exponent
* 52 g oA, (34 are given by the intersection of the curves it is clear that we
get an upper bound fot* and a lower bound fow. This is
we see that the fixed point is attractive for all finite dimen-confirmed by the comparison of our estimateagfEqg. (53),
sions. and x* with the numerical results of Ala-Nissilat al. and
In conclusion, we find that for large the RG has a fixed the value ofx* computed numerically fod=1, . .. ,9(Fig.
pointx* corresponding to an exponeat-1/d and therefore  14).
strictly positive in all finite dimensions. On the contrary, the  These results have been obtained for the smallest values
existence of a finite upper critical dimension would haveof b, namely,b=2. In the previous sections we showed that
implied, ford>d., either the absence of a finite fixed point for low dimensions the results for sméllare in good agree-
or its instability. ment with numerics, but for largdr there are deviations. A
At this point we must use the analytical result to check thevery reasonable question therefore concerns the robustness
consistency of the two layer assumption. Such an assumptioof the larged results whenb grows. As we have shown
is correct provided the rate of its violation is negligible for above, the two layer approximation breaks downkfor2. In
all values ofn. Processes violating the assumption are thoserder to extend the above calculation to largesne should
in which an event of vertical growth occurs on top of a highreplace the two layer approximation with some less restric-

R'(x*)=-1
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IV. RG FOR THE EDWARDS-WILKINSON DYNAMICS

o | 1 So far we have applied the new RG method to a KPZ-like
o . / dynamics. Now we intend to show that it is more general and
+ X 101 L = L] i 7

can be applied to growth mechanisms belonging to univer-
10° | o 1 sality classes other than KPZ. In particular, we study in this
_, ‘ L section its application to the exactly solvable, Edwards-
« " o 2 3 6 8 Wilkinson equation for which the roughness exponent is
. known in any dimension. In particulag=1/2 in d=1,

- while =0 for d=2 with logarithmic corrections al=2.

. The parametrization Eq25) of the dynamics describes a
growth model where only deposition events can take place
- and the symmetry between up and down in lthdirection is

- clearly broken. Such a dynamics is inherently out of equilib-
rium and therefore cannot accommodate the scale invariant
1 10 dynamics of the Edwards-Wilkinson growth process, which

d is an equilibrium one, with growth rules symmetric along the

FIG. 14. Comparison of the dependencecobn d computed grqwth dire_ction. We now introduce a g_eneralized_ dynamics
with the RG in the larget limit Eqg. (53) with the numerical data of Wh'Ch admits the KPZ and EW dynamics as particular lim-
Ala-Nissila et al. In the inset, plot of the value of the fixed point 'tINg cases. -
parametex* computed numerically for smatl and compared with Let us consider the quantities
the analytical expression E¢2).

Kq(i)=>, ma{oh(j)—h(i)],

tive but still doable calculational scheme. We have not been jnni
able to fulfill this task and hence we cannot directly show (63
whether a fixed point exists for finite* whenb—c. How- o e
ever, the two layer assumption is valid for amin the neigh- K“(I)_%i max{0n(i)=h(j)]-
borhood of the fixed poink* =< that gives a flat surface
a=0. This fixed point exists in any dimension, and its sta-In the KPZ case described so far we have allowed only depo-
bility can be safely analyzed using the previous two layersition of particles and written
assumption as follows. ,
Let us introducee= 1/x. The derivative of the RG trans- ri=1+xKy(0). (64)

formation at the fixed poing* =0 is [see Eq/(38)] We now allow also for evaporation of particles. That is, we

, consider the transition rate for siteas
, _ _ 2a’b( €= 0)
R0 =) 58 ri=14x eKy(i) = (1= e)Kq(i)| (65
L I . and with probability
where now the prime indicates derivative with respect.to

To first order ine we have(see Appendix B Ppy=1/, (66)

1 o2 a random deposition/evaporation event takes pldge-h;
abz(e)Zmln[l-i-C,ueb 1. (59  +1 with probability e and h;—h;—1 with probability 1
—€), while with probability

Then = eK ()~ (1 K(I/T 67
apy(e=0)= 2 |anMb2d+2- (600  We have a “lateral” event
eKy(i) = (1—e)Kqy(i)
Analogously hi—h;+ [eKy()— (1= eKq()]” (68)
e=0)= cubdtl. 61 For e=1 only deposition is allowed and we have the transi-
ap(€=0) 2Inb* €1 tion rates for the KPZ dynamics. Faer=1/2, we have up-
down (deposition-evaporatigrsymmetry and the rates are
Hence
ri=1+xJV2h(i)|, (69)
R'(e=0)=b%"1-1>1 (62

whereV2h(i)=[K,(i) —Kg4(i)]/2 is the discretized Laplac-
and the fixed point corresponding &é0=0 is unstable. As a ian evaluated at site Therefore we expect this case to cor-
consequence, a finite fixed point witt>>0 must exist and be respond to EW dynamics. Let us verify that fer1/2 the
stable wherb— oo for any large and finital. This supports average interface velocity does not depend on the interface
the conclusion that there is no finite upper critical dimensionconfiguration(which is a basic property of EW dynamj¢s
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FIG. 15. Plot of the RG estimate for the roughness exponent
as a function of the inverse system size for the Edwards-Wilkinso

dynamics.
1 1
U:FEI Ui:FZi riAhi.
Since
A p. KD =Kq(i)
FK () — K]

1 . . Ku(ih) = Kq(i)
=n X|Ku(|)_Kd(|)|m

1
:r_i{X[Ku(i)_Kd(i)]}

and asZ;K,(i)=2;Ky4(i), we have that

v= 13 S Ky()=Ky(i)]=0.
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V. DISCUSSION

In the previous sections we have introduced a general
method for studying surface growth models by means of a
real-space renormalization group procedure. The anisotropy
of the scale invariant properties of surfaces makes the very
definition of the RSRG highly nontrivial, since the direct
integration of degrees of freedom at small scale cannot be
performed. For this reason we had to devise an alternative
route: the main ingredient is that the integration of degrees of
freedom is performed implicity by imposing the self-
consistency between two descriptions of the same object at
different levels of coarse graining. The application of such an
approach to the KPZ dynamics yields several results that can
be summarized as follows.

(1) The scale invariant dynamics is identified and param-
etrized as a function of the “lateral growth” parameter
This parameter turns out to have a nontrivial attractive fixed
rPoint under RG transformation for all dimensions.

(2) The KPZ roughness exponestestimated for smalh
is in very good agreement with large scale simulations of
discrete models.

(3) For larger values ob the estimate ofx is stable in
d=1 while it changes noticeably fat=2, presumably ow-
ing to crossover effects. Whdm— o it converges towards
the correct result.

(4) The results are robust with respect to changes in the
parametrization of the dynamics and in the boundary condi-
tions.

(5) No evidence is found of the existence of an upper
critical dimension for KPZ. Moreover, we show very strong
evidence that no such an upper critical dimension exists.

(6) By changing the nature of the parametrization of the
dynamics at generic scale, the method is able to describe the
EW dynamics and capture the existence for it of an upper
critical dimension above which only a trividflat) phase
exists.

Regarding the general nature of the approach it is worth
remarking that the key point in the method is the identifica-
tion of the scale invariant dynamics. In some sense the pro-
cedure can be seen as a kind of finite size scaling approach

With this generic dynamics we can perform the RG procegllowing for the evaluation of scaling exponents via the ex-
dure exactly as in the KPZ case. The evaluation of the functrapolation of small size MC simulations. However, the cru-
tion w?(b,x) is carried out again using small Monte Carlo cjal point is that the MC data do not directly determine the
simulations with periodic boundary conditions. The resultsexponent; they rather allow the identification of the scale

are reported in Fig. 15. Fat=1 the value ofe for b=2 is
=0.4 below the exact value 1/2, but for>2 the correct

invariant parameters of the dynamics which in turn deter-
mines the exponent.

value is rapidly approached. The situation is completely dif- With respect to the estimates of the roughness exponent

ferent ind=2. In such a case fap=2 the exponentr is

for smallb, it is remarkable that the accura@p the sense of

around 0.25, but whem is increased, the fixed point is the discrepancy with known numerical resplé@ems to be

shifted monotonically towards. In d= 3 the behavior of the

the same in all dimensiord=2. This is not the typical situ-

fixed point for finitex* is similar. From these plots we can ation in ordinary critical phenomena, where usually RSRG
conclude that the behavior of the EW dynamics is very dif-methods fail in high dimensions. There are at least two rea-
ferent ind=1 andd>1. Ford=1 there is a stable fixed sons why usual RSRG schemes are inaccurate in high dimen-
point with «=1/2. Ford>1 there is no stable fixed point sjons.

with «#0. Hence the RG method is able to capture the (a) The necessity of defining an explicit geometrical map-
difference between KPZ and EW dynamics and correctly deping between degrees of freedom at two scdsanning
scribes both the rough and the flat phases of the Edwardsule, majority rule, bond moving, eic.

Wilkinson growth. We speculate that the reason why one (b) The presence of relevant fields and the need to com-
needs to considdy>2 is probably related to the fact that on pute exponents from the derivatives of the RG transforma-
a system of sizdd=2 the discretized Laplacian and squaretion at the fixed point.

gradient take the same form.

Due to the success of field theory in high dimensions
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(close tod.) in usual critical phenomena, RSRG methods In summary, in this paper we have presented a real-space
have been mostly devised to work in low dimensions wheregenormalization group method developed to deal with sur-
the predictions of thee expansion become less reliable. face growth processes. The new method overcomes the dif-
RSRG methods based on an explicit geometric mappindjculties inherent to standard real-space renormalization
(block-spin transformationare quite accuratéand some- group analysis of anisotropic situations. It is based on the
times even exagtlose to the lower critical dimension. Prob- definition of anisotropic blocks of generic scale and of a
lems related with this geometric transformation becomeParametrized effective dynamics for the evolution of such
worse and worse as the dimension increases. In our perspadlcks. Imposing the surface width to be the same when
tive, the only limitation has to do with the quality of the USing different scalegdifferent block sizep we write a
parametrization of the RG transformation. For example, thd€normalization group equation. Its associated fixed points
parametrization of the RSRG transformation for ferromag-def'ne the scale invariant effective dynamics and permit us to

netic systems based on the Migdal transformation of Ising!€termine the roughness exponent
spins gives inaccurate results in highHowever, if one uses _ e have employed the new method to study the Kardar-

the parametrization of the* theory, one recovers.=4 Parisi-Zzhang and the Edwards-Wilkinson universality

within the RSRG Migdal approadi83] even for ferromag- classes. In particular, for KPZ we compute thexponent in
netic systems. dimensions frond=1 tod=9. The results are in very good

In any case, notice that our RSRG method does not necddreement with the best numerical estimates in all dimen-
an explicit geometrical definition of the RG transformation. SIOns. Moreover, we present analytical calculation excluding
Therefore it bypasses the problems relateddo In some the possibility of KPZ having a finite upper critical dimen-

sense, this is similar to the phenomenological RG method©n- On the other hand, well known results for the EW uni-
[34] where the RG transformation is defined implicitly versality class are obtained, confirming the generality of the

through finite size scaling arguments. Remarkably, phenomMethod.
enological RG calculations are quite accurate.

With respect to pointb), as discussed above the absence ACKNOWLEDGMENTS
of relevant fields makes truncation errors much less impor- . . . . . :
tant than in ordinary applications of the RG. Furthermore, we We acknowledge interesting discussions with A. Gabri-

note that in the KPZ problem one has to compute exponentalrll'(’j';' hQ/aergain,niﬁiPa}rrrI\Sig '\f‘v'oﬁzerl]lg’s Cl;.e-lt;(ra\bagjrlt’ia(i lefncg:]t'é d
depending only on the RG transformation at the fixed point ' P9 ' P y supp

. ” o . by the European Union through a grant to M.A.KGrant
i.e., the critical parameter. This is profoundly different from
what happens in Ising-like problems, where some exponen No. ERBFMBICT960925 and through the TMR Network

(such as, for example, the correlation length exponént 0. FMRXCT980183.
depend on the derivatives of the RG transformation around
it: As a consequence-type exponents are rather difficult to ~ APPENDIX A® THE RSRG METHOD FOR LARGE B
estimate since, even if the location of the fixed point is de- |, this appendix we investigate the behavior of the
termined accurately, the computation of the derivatives iSpethod for large values df. At the fixed pointx*, Eq. (18)
much less precise. No exponents of such type exist in thg,,4g
KPZ case. This is, in our opinion, a further reason for the
great accuracy of the new method with respect to the usual w?(b%,x*)=cw*(b,x*)+2w?(b,x*). (A1)
RSRG.

As a final point, it is worth discussing the current limita- If we now assume that, fds>1,
tions of the method. It is clear from the results presented that
a most important role in the method is played by the choice 0?(b,x)=b2[A(X)+B(x)b~“+- -] (A2)
of the parametrization of the scale invariant dynamics. This
is particularly true since one deals with a monoparametri@s it should, we find that EqA1) becomes
description of the growth process: If one could easily intro-
duce several parameters and study their flow under the RG,A(X*)[1—CA(X*)]—2cA(x* )B(x* )b~ “—2A(x* )b~ 2«
the stability of the results when details are changed would be
greatly improved. Within the present framework, the inclu-
sion of additional parameters is, however, not straightfor- ) .
ward. The problem is that additional RG2 eqsuations are proWe see that fob— the fixed point tends to
vided only by the use of Eq11) with b, b“, b®, and so on. % . s
This requires the computation af(b,k) on systems whose Xzt CAXo)=1 (A4)
size becomes quickly prohibitively large. A remarkable im- -
provement of the method would therefore be the identiﬁca—whereals for large but finite
tion of additional RG transformations independent from Eq. *
(11). Despite this difficulty, we believe that the theoretical ¥ = x* 2D(xz) h-A (A5)
framework presented here constitutes an important new ele- P AT (XY ’
ment in the field of surface growth and deserves further in-
vestigation, in particular with respect to possible applicationsyith
to other open problems, and generalization to deal with time-
dependent properties. A=mi{fw,2¢} and

+subleading terms 0. (A3)
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B(x*) if w<2a bd-1 bd-1 1
. — . pd _  hd 2
DOx)={ A +B(X*) If w=2a  (a6) & Pn=Pob” 2 g pa = pob’eagtO(e),
A(X*) if 0>2a. (B1)
The RG estimater of the exponent is given by where
bd-1
- InFp(x) 1
== => = (B2)
“="2imb ¢ 9= 2 o,
IN[b™ 2%+ cA(X})+cB(xF)b™ @+ -] Hence
+ =
21Inb 1
=T7picg TO(ek) (B3)
IN[1+b~2%—2cD(x* )b~ 2+ cB(x*)b~“+- - -] Po™ T4 0% g k
+
21Inb and
(A7) _bdek ,
and converges to the exact value for-c0. Note that only =0, +0O(e)- (B4)

the finite b corrections depend or*. In particular, if w
<2a

. cB(xX)b™®
“TOT T 2mb (8)
If o>2a
- b2«
a=a—m. (Ag)

With respect to the stability of the fixed point one finds

’

R'(x*)=—b%— AT b (AL0)

The roughness of a system of sizés therefore

pd—1

n n 1-1p0y(1—-y)
w?(b, €)= n§=:l pnb—d( 1- F) %bdekf ——dy.

1/pd bed
(BS)

For largeb andd and infinitely strong lateral growth param-
eter 1k, the set of high sites will form, when—0, a
d-dimensional hypersphere. Hen€kg, will scale as the pe-
rimeter of such a hypersphere,
Q,~nl@=DMd - n_.q, (B6)
Similarly for n—b¢ the low sites will form a shrinking hy-
persphere and),~ (b%—n)(@~Yd for n—bd. Hence it is

This means that, as should be expected, the fixed point b&&asonable to assume

comes more and more stable hsncreases: for largeb

fewer RG iterations are necessary to reach the scale invariant

regime.

Qyp=b4"10(y), (B7)

These results for large are not surprising. When the with Q(y)~y©@ 9 for y—0 andQ(y)~(1—y) @~ 2" for
systems become large, the effect of the boundary conditions_, 1 The form of{}(y) for intermediate values of is not

the scale invariant dynamics tends to become irrelevangpn . In conclusion
since parameters that are not included in the explicit param-

etrization are generated by the RG procedure on large sys-
tems. FormulagA8)—(A10) certify that the RG method is

asymptotically correct.

APPENDIX B: COMPUTATION OF w?%(B,e)

In this appendix we present the derivation of Esp). Let
us considerb and d arbitrarily large but finite, so thag,
<bY. We have

w?(b,e)=0b"1e 1, (B8)
with
toy(d-y)
= | dy— B9
I fo y awy) (B9)

a finite geometrical constant.
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