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Feynman’s ratchet and pawl: An exactly solvable model
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We introduce a simple, discrete model of Feynman'’s ratchet and pawl, operating between two heat reser-
voirs. We solve exactly for the steady-state directed motion and heat flows produced, first in the absence and
then in the presence of an external load. We show that the model can act both as a heat engine and as a
refrigerator. We finally investigate the behavior of the system near equilibrium, and use our model to confirm
general predictions based on linear-response th¢8t063-651X99)07506-§

PACS numbegs): 05.40—a

INTRODUCTION due to the fact that analogous mechanisms have been pro-

Feynman’'sratchet and pawkystem[1] is a well-known posed as 5|mple_ mo_dels of motor proteins.
Our purpose in this paper is to introduce an exactly solv-

(but not the earliedt2,3]) example of a proposed “mechani- able model of Feynman’s microscopic heat engine. This

cal Maxwell's demon,” a device whose purpose is to convert o . .
. . . model is discrete rather than continuous, but it captures two
into useful work the thermal motions present in a heat reser-

) . . ) . i ssential features of the original examplig:a periodic but
voir. The idea is beautifully simple: set up a ratchet and paw! L . .
. . L asymmetric interaction potential between the ratchet and the
so that a wheel is allowed to turn only in one direction, then

attach that wheel to a windmill whose vanes are surroundeﬁéwvI (corresponding to the sawtooth shape for the ratchet's
by a gas at a finite temperature; see Fig. 46-1 of Rt eeth), and(ii) two “modes” of interaction(corresponding to

o CL " the pawl being either engaged or disengaged from the

Every so often, an accumulation of collisions of the gas mol- : .

) . ratchej. [Note that a particléor, more generally, a reaction

ecules against the vanes will cause the wheel to rotate by one ~ = : - .

notch in the allowed direction, but presumably never in thecoordlnate:, evolving from one sufficienctly deep potential-

forbidden direction. Such rectification of thermal noise could(Or free) energy minimum fo another, behaves much as if

e hopping from one site to another on a discrete lattice. See,
be harnessed to perform useful wdduch as lifting a flea : ) -
: o L for instance, Fig. 6 of Ref15].] These features are sufficient
against gravity, in direct violation of the second law of ther-

. . - . for the model to reproduce the behavior discussed by Feyn-
modynamics. Of course, in order for statistical fluctuations to . S
an. Related discrete models of noise-induced transport

cause rotation at a perceptible rate, the ratchet and pawl mu . . .
b P P ave appeared in the literatufé6—1§; however, in our

be microscopic, and this points to the resolution of the para- del i F i Ieh . licitl
dox. If thermal motions of the gas molecules are sufficient tdnode (as in Feynman's exampl¢he transport is explicitly

cause the wheel to rotate a notch, then the thermal motion &ifiven by a temperature difference between two reservoirs.
the pawl itself will occasionally cause it to disengage from N Sec. I, we will introduce our model—a system in con-
the ratchet, at which point the wheel could move in the “for- tact with two heat reservoirs—and consider it in the absence
bidden” direction. Feynman compared the rates of the twaPf an external load. We will solve for the net rate at which
processes—rotation in the allowed and the forbidderthe device produces directed motion, in terms of the reser-
directions—and found them to be equal when the system igoir temperature§ , and Tg [Eq. (14)]. We will also solve
maintained at a single temperature. Thus no net rotatiofor the net rates of heat flow from reservéirto the system,
arises, and the second law is saved. and from the system to reservdd; see Fig. 3. For zero

Since the failure of the ratchet and pawl system to perexternal load, these rate®, andQg, must be equal, as we

form work arises from thermal fluctuations of the pawl, ayj|l indeed find them to be. We will finally use these results
natural solution to the problem is to reduce these fluctuationg, sgve for the entropy production rate.

by externally cooling the pawl to a temperature below that of

the gas. In th!s case the dewcg does mc_ieed_ operate as dfgainst an external loddWe will again solve exactly for the
signed, but this no longer constitutes a violation of the S€Cirected motion and heat flows. in termset (f,Tx,Tg). In

ond law: the ratchet and pawl is now effectively a micro- . .~ he heat floné qé i
scopic heat engine, capitalizing on a temperature differencg‘IS situation, the heat flowa and Qg are not necessarily

to extract useful work from thermal motions. equal; the difference between them is @ver W which
While the ratchet and pawl was introduced in Feynman’she device delivers against the loadVhenW>0, the sys-
Lecturesprimarily for pedagogical purposes, recent yearstem operates as a heat engine. Conversely, one can imagine
have seen a renewed interest in this sysfém22), largely  that for some parameter values, the system will operate as a
refrigerator, creating a net flow of heat from the colder to the
hotter reservoir. In Sec. lll we will use our analytical results
*Electronic address: chrisj@lanl.gov to show that our model indeed exhibits both these behaviors
TElectronic address: maz@iriss.ipj.gov.pl (heat engine and refrigerajorFinally, in Sec. IV we will

In Sec. Il, we will allow the device to perform work
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d if the value of AE associated with the jump is zero or nega-
tive, then the jump takes place; XE>0, then the jump
ot occurs with probability exp{ AE/Tg). Similarly, during ev-
A ery infinitesimal time intervabt, there is a probability” 6t
that the mode will attempt to change, and the attempt is
accepted or rejected according to the Metropolis algorithm
(at temperaturd ).
i=1 We have introduced three parameters, which we will view
as being “internal” to the systend, «, andI’; these essen-
o Model +  Mode?2 tially set the relevant lengthd), energy ), and time U %)
scales. The two remaining parametérs and Tg, we will
view as “external.”
The analogy between our model and Feynman'’s ratchet
and pawl runs as follows. First, the position of our particle

consider the near-equilibrium regime of small load and tem_corresponds to an angle varialisspecifying the orientation

perature difference. We will show that our model com‘irmsOf the ratchet wheel. When the particle accomplishes a net

eneral predictions based on linear-response theor displacement of three lattice sites, to the right or to the left,
9 P P Y. this is equivalent to the ratchet being displaced by one notch,

or tooth; see Fig. 1(Thus, the distance 8in our model
I. ZERO EXTERNAL LOAD translates to an angular intervaél =27/Ngein, Where
yteeth is the number of teeth along the perimeter of the
ratchet whee). Since we want to keep track of the wheel
ver long intervals of time, possibly including many full ro-
ations, # varies from—o to +<«, rather than being a peri-
odic variable from 0 to zr.
When a ratchet and pawl are “engaged”—that is, when
the pawl actually presses against the teeth of the ratchet—
- _ - then there exists an interaction energy, arising from the com-
inS?m)rilﬂl(?n?'.Pit—r’]”1./P‘+1—’i_eXp( ﬁE/TB)’. W?]ere AE egPression of the spring that holds the pawl against the ratchet,
=Ui1— Ui s the instantaneous change in the particle's, iop pag the form of a periodic sawtooth potential in the
potential energy, associated with the jump froro i+1.

W th tatiot ™ to denote th tential ¢ variable 6. In our model, the analogue of this interaction
€ use the notalioly = to denote the potential energy of onarqy is the discrete sawtooth potentif? ; mode 2 thus
the particle at site; the superscriptn denotes the “mode

of the potential, to be explained momentarily. The integercorr.esponds to the situation in which the ratchet presses
ndex i runs fro’m—oo to 4+ and we are usi.ng units in against the pawl. By contrast, mode 1 C(_)rresponds to the
which Boltzmann's constark ~ 1 ratchet and pawl! begin “dlsengaged,”_as will occur every so
B~ () often as a result of thermal fluctuations of the pawl. Of

Next, we assume that the potential energy functif? course, in Feynman's system, the potential energy of the
has two possiblenodesm=1,2, and that it changes stochas- gisengaged mode is always greater than that of the engaged
tically between these two. In the first mode, the energy ot,,qqe (due to the spring compression needed to actually
each site iszzerd:Ji(l)=0. In the second mode, the energy is pjace the pawl out of reach of the ratchet's t@givhereas in
periodic: U{¥'=a-[(i mod 3)-1], wherea is a positive  our model this is not the caset{")=0. This, however, does
constant with units of energy. As shown in Fig. 1, the secongot change the problem in any qualitatively significant way.
mode is a discrete version of an asymmetric sawtooth poten- aAs mentioned, the motion of the particle from site to site
tial. We assume that the stochastic process governing thg  thermal process occurring at temperaftige while the
changes between modes is also a thermal process, driven Byychastic “flashing” between modes occurs at temperature
a heat reservoir at temperatdfg. Thus, the probability rate 1, Thus, in the context of the analogy with the physical
of a change to mode 2, starting from mode 1, relative to thgatchet and pawiT denotes the temperature of the gas sur-
probability rate of the reverse mode change, is given by th‘?ounding the panes connected to the ratchet wheelTarig
detailed balance factor expQE/Ty), where AE=U®  the temperature at which the pawl is maintained.
— U is now the(site-dependeiichange in particle energy ~ To analyze the model, we first note that it maps nicely
due to an instantaneous change from mode 1 to mode 2. onto the problem of a spin-1/2 partickecoupled to a spin-1

We now describe more precisely these two stochastic proparticle B with the following energy function:
cesses, governing the jumps of the particle, and the change
between modes. We assume the processes are independent,
and each is a Poisson process occurring at altafehat is,
during every infinitesimal time intervadt, there is a prob-
ability I' 6t that the particle will attempt a jump to a neigh- whereS,= +1/2 andSz=0,* 1. Here, spinA represents the
boring site. An “attempt” looks as follows. First, the par- mode (pawl), and spinB represents the particléatchej.
ticle decides(randomly, with equal probabilijywhether to  When spinA is “down” ( Sy=—1/2), the energy of the
try jumping to the left (-d) or to the right ¢-d). Then the system is independent of the state of sBjras with mode 1;
Metropolis algorithn[23] is used to satisfy detailed balance: when spinA is “up,” the energy is— «, 0, or + a, depend-

FIG. 1. Potential energy(™ is shown for both modesm
=1,2, in the absence of an external load; the lattice spacimy is
and site 1 is labeled explicitly.

Consider a particle that jumps between neighboring site
along a one-dimensional regular lattice, wheiis the lattice
spacing. We assume that the particle is coupled to a he
reservoir at temperatuiB;, and that its jumps are thermal in
nature. That is, the probabilitper unit timg of making a
jump to sitei + 1, starting from site, is related to the prob-
ability rate of the inverse process by the usual detailed bal

1
E(Sa.Sg)=a SA"’E Sg, 1
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just a rotation of spirB (by +120°), thenP(n—n’) is the
probability of generating this move, given an attempt to
changeSg . If the transition involves changes in the states of
both spins, theP(n—n")=0. Examples of these rules are

P(1—4)=1, P(1-2)= %, P(1—5)=0,

L (€
P(3—6)=e %A, P(4—>5)=§e“”TB, P(4—2)=0.

Ta

The factors of one half come from the fact that, when the
FIG. 2. Our system maps onto that of a spin-1/2 partiéle system attempts to rotate smnthere are two possible states

coupled to a spin-1 particleB). The former is depicted in the usual for Which it can aim.

manner(as up or dowh the latter by an arrow, which can point in Our rate equations can be expressed dggdt=I"Rp,

one of three directions on the face of a clock. The thin lines denotvherep=(ps, ... ,pe) ",

the coupling between the two spins, as well as the coupling of each

spin to a heat reservoir. —2

1
2

ing on the state of spiB, as with mode 2. Thus, changes in
the state of spinA correspond to changes in the mode,
whereas changes in the state of sgncorrespond to the
particle making a jump. I8z changes from-1 to 0, or from
0to +1, or from+1 to —1, then this amounts to the par-
ticle jumping to the right; the reverse procesg$@so —1,
etc) correspond to jumps to the left. We now couple sfin
to a reservoir at temperatufg,, spin B to a reservoir at
temperatureTg, with the stochastic dynamics as outlined 0 1 0
above(two independent Poisson procegsasd solve for the
net drift of the particle. 0 0 v
This system can be visualized as shown in Fig. 2. 3pin
flips between up and down; spl performs sudden “rota- (4)
tions” by *£120°. A clockwise rotation corresponds to a
jump to the right (-d) by the particle; counterclockwise )
ones translate into jumps to the left. and we have introduced the constants
Our system has six possible states, listed in Table I. The
dynamics of the particle is described by a Markov process,

for which we can write a set of rate equations. I®(t)  Note thatu and v are monotonically increasing functions of
denote the probability that the system is found in stat T, andTg, and the temperature range< A(Tg) <= trans-
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pw=e A and v=e s, (5)

time t. Then lates to O<u (v)<1. We thus think ofu and v as “re-

dp, scaled” temperatures. '

W:F E [pnP(n'—=n)—p,P(n—n’)], n=1,....6. The long-time behavior of our system is governed by the
n’#n @ steady-state distribution of probabilitigswhich is the null

eigenvector ofR (i.e., Rp=0). Determiningp is an exercise
Here,['P(n—n’) is the probability rate at which the system, in Jordan elimination, and leads to the following resuit:
when its state i, makes a transition to stat@’. If the =x/N, where

transitionn—n’ involves only a flip of spinA, then P(n

—n’) is the probability that such an attempt will be ac- Xy=52u+28u?+ 120+ 19°+ 50>+ 21 v+ 2uv?+8u’y,

cepted, under the Metropolis rule. If the transition involves (6)
TABLE I. The six states of the system, and their energies. X;=36u+ 16u?+ 28v+ 27v°+ 513+ 25u v+ 8u v+ 2u’v,
)
State(n) Sa S E(Sa,Sg)

X3=44u+19u v+ 20v+ 492+ 1505, (8)

1 -1/2 -1 0
2 ~1/2 0 0 X,= 64+ 20v+48u+15uv, 9

3 -1/2 +1 0
4 +1/2 -1 - X5=24u+ 40v+ 200>+ 18u?+ 30w v+ 15112, (10)

5 +1/2 0 0
6 +1/2 +1 o Xe=22u’+ 16u v+ 44uv?+ 14u’v+ 15u 3+ 2602+ 1003,

(11)
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and N(,u,v)inG:lxi is a normalization factor.

When both temperatures go to zefo,v—0, we getﬁT Ta
=(0,0,0,1,0,0). This makes sense: in that limit, the system

freezes to the state of lowest energy 4. .

We now address the question of net drift. We first define Qa
anetcurrentJ=J, —J_, whered, is the rate at which spin
B is observed to change from state 0 to staté, andJ_ is @ , W
the rate of the reverse transitions, frorl to 0. This can be

interpreted by imagining an observer placed at two o’clock
on the clock face depicting spBin Fig. 2;J, (J_) is then 1 QB
the rate at which the hand of the clock passes that observer in

the clockwise(counterclockwisg direction; by “rate,” we
mean number of passes per unit time, averaged over an infi- Tg
nitely long interval of time(Of course, we could just as well
have placed our observer at six or ten o’clock; in the steady , , )
state, the current measured will be independent of where the_F'C- 3. Schematic representation of our systenin contact
observer is placeliThe current) represents thaetaverage ~Vith Wo heat reservoiréat temperature3, andTg). As implied
rate of clockwise revolutions of spiB. Since each revolu- Py the arrows, we defin@, to be the net flow of heat from reser-
tion corresponds to 3 steps of the particle to the right, thig/oir Ato the system, an@g to be the heat flow from the system to

translates into a particle drift: reservoirB. Therefore W= Q,— Qj is the power delivered as work
against an external loadln Sec. I, there is no such load; hence,
v=3dJ, (12 G,-05.)
wherev denotes thesteady-stajeaverage velocity of the  \ye can also compute the average rates at which heat is
particle. , o _ transferred between the two reservoirs and our system.
Explicit expression for the quantitiel. are given by Whenever the system makes a transition from state 1 to state
— — 4, or from state 6 to state 3, its energy drops dythis
I+ =T'(P2Razt PsRes), (133 energy is released into the reservoir at temperafyreCon-
_ — versely, during the transitions41 and 3—6, the system
J_=T'(psR23t PeRse)- (130 absorbs energy from reservoirA. The net rate at which the

. . . . system absorbs energy from reservhiirs then
(Sincel'R,, is the transition rate to statg, giventhat the y 9y
syste'm is found in state, p,I" R, is the net rqte at which Q= CYF(E;R14+53R63_51R41_567336)- (16)
transitions fromn to m are observed to occur in the steady

state) Using our results fop, we get, after some algebra: We can similarly write down an expression for the rate at
which heat flows from our system to reservir

T
TaTe)=—3d—(u—v)(1-»)(3u+4). (14 - — = -
v(Ta.Te) N('u P)(1=v)(Eutd) (14 Qe=al’ (PsRast PsRsst 2PsRas— PaRsa— PsKRes

There are a number of things to note about this result. —2547264). (17)
First, it implies that ifT,>Tg (i.e., u>v), then there is a
net flow of the particle to the left; iTg>T,, the particle  Figure 3 illustrates the sign convention which we choose in
drifts to the right. IfT,=Tg, then there is no drift, in agree- definingQ, andQg. Plugging in the values for the compo-

ment with Feynman’s analysigs well as the second law  nents ofp and R, we find thatQ,=Qg, as we could have
Next, notice that —0 asTg—= (v—1). Inthat limit, predicted, since in the steady state there is no net absorption

the change in energy arising from a jump to the left or to thegf heat by the system, nor is any of the heat delivered as

right becomes negligible in comparison to the temperature ofyork against an external load. Thus, the particle drift is

the reservoir, which drives those jumps; thus, from any latgriven by a net passage of heat frawto B, by way of the

tice site, the particle is as likely to jump to the left as to thesystem. The explicit expression for this heat flow is

right, resulting in no net drift.

Finally, in the limit Tp—o (u—1), we get: . . . al’
QAAB:QA:QBZSW(IU’_ V)P(,U«,V), (18)

r
v=—21d—(1-v)%, Tr—. (15) ,
N where P(u,v)=4+14u+15v+4uv+5v°>0. The ratio

This is the limit in which changes between the modes occuf./Q/HB then gives us the average displacement of the par-
icle, per unit of heat passd#lia the systerhfrom reservoir

independently of location of the particle: every attempt toA t0 1eSErVoIrB:
change the mode is accepted. This is analogous to the situa- volr:
tion studied by Astumian and Bi¢E], where the “flashing” .
between the two modes of the potential is a Poisson process Iimﬁz : v 9 (1-»)(But4)
independent of the particle position. —AQ Qapg @  Pluw)

0. (19
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FIG. 4. Contour plot of the functiorw(u,v), where u
=exp(—a/T,) andv=exp(—alTg) are the rescaled temperatures of
the two reservoirs.
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+a

-0

Mode 1 Mode 2

o

FIG. 6. Discrete, two-mode potential energy functioff™ is
illustrated for the situation in which there is a nonzero external load.
Here we have chosei= a/4d.

=1 (Tg—>). The appearance of positive contours>0) to
the left of the diagonal, and negative ones to the right, illus-
trates the point that the drift is rightward wh@&a>T, and

Here,Ax andAQ are the net particle displacement, and theleftward whenT,>Tg.

net heat transferred from to B, over a time interval. The
factor (u—v) in Eq. (18) guarantees that the direction of the
heat flow is from the hotter to the cooler reservaoir.

In Fig. 5 we have fixed the value df, by setting u

=1/2, and have plotted, Q5 .5, and$S as functions ofv.
All three quantities hit zero at=1/2, whereT,=Tg: noth-

We can also compute the rate at which entropy is projng interesting happens when the system is maintained at a

duced during this process. The rate of entropy productio
associated with the flow of heat from reservaito the sys-
tem is Su=—Qa/T,; and for reservoirB, Sg=Qg/Tg.
The net entropy production rate is thus

. . . TA_TB .
S=Sp+Sg= ﬁQAﬁB (20)
I w
=3N In; (,LL—V)P(,U,,V)BO. (21)

I%ingle temperature. Note also thatand QAHB are opposite
in sign[in agreement with E¢(19)], while S is always non-
negative(in agreement with the second lawFinally, note
thatv —0 asv—1 (Tg—>).

In plotting these two figures, we set all the internal pa-
rameters to unitya=d=1=1.

II. NONZERO EXTERNAL LOAD

In this section we add an external load to our model. In
Feynman’s example, this load is a flea, attached by a thread

Figures 4 and 5 illustrate the results obtained in this secgy the ratchet wheel: when the wheel rotates in the appropri-

tion. Figure 4 is a contour plot of the drift, as a function of
the rescaled reservoir temperatugesind v. The contourw
=0 runs along the diagonajx=v, as well as alongv

0.5
] n=1/2
I
0.3 4\ |
11\S
] AN
1. «
4 *\-\Q _______ -
0.0 R e =
| Qu-n
-0.3 10v
-05 +—r—-+—+—77—FF—
0.0 0.3 0.5 0.8 1.0
v

FIG. 5. Driftv (multiplied by 10, heat flowQ, .5, and rate of
entropy productiorS, plotted as functions of, for fixed u=1/2.

ate direction, the creature is lifted against gravity. In our
model, we add a slope to the discrete potential:

uM_um+ifd, (22)
wheref is a real constantandi is the lattice sitg see Fig. 6.
Effectively, f is a constant external force that pulls the par-
ticle leftward if >0, rightward if f <O.

The presence of an external load allows the system to
perform work. If, in the steady state achieved for fixed
=(f,TA,Tg), the particle experiences a drif(x), then the
powerdelivered against the external load is

W(x) = fo(X). (23
By conservation of energy, this must be balanced by heat lost
by the reservoirs:

W=Qa~Qs. (24)

Our approach to solving for the steady-state behavior is
the same as in Sec. |, except that the presence of the tdrm
in the potential changes the elements7f and, therefore,

the steady-state probabilitigs
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Because the acceptance probability of an attempted move 0<f<2ald, (250
in the Metropolis scheme has the form Prob
=min{1,exp-AE/T}, each matrix elemerR;; is piecewise 2ald<f<+wo, (250

analytic inf. A little thought reveals that thé axis can be

divided into four ranges of values, over each of which theln the two extreme ranges, Eq25a and(25d), stretching to
elements ofR can be written as analytic functions of d, f, =~ — and +, the slope is so steep that the potential energy
TA, andTg. These ranges are function no longer has a sawtooth shape in mode 2. We will
ignore these ranges and focus instead on the ones for which

U doeslook like a discrete sawtooth.

—esf<=ald, (253 For range(25b), i.e., —a/d<f<O0, the potential slopes
downward with increasing and an explicit expression fGt
—ald<f<0, (25b) is
|
3 1 1 1 0 0
"2 2 20 2 #
1 3 1 1
— e — 0 1 0
2 2 20 20
1 1 1
— — _——— 0 0 1
_— 20 2 20 ”
B 1 0 0 v vo 1 1|’ (26)
P20 2 2 2
0 1 0 o BN
2 2 2 2
0 0 V2 vo —9
K 20 2
where
o= effd/TB. (27)

For range(250, 0<f<2ald, the potential slopes upward withand we have

3 1 o 0 0
2 2 2 2 K
o 3 o 1 0 1 0
2 2 2 2
1 o 1 o 0 0 1
|z 7z iz )
R= 1 0 0 ¥ vo 1 1| (28)
TR 2 2 2
vo 3 vo 1
0 1 0 — —_——— =
2 2 2 2
V2 vo
0 0 M — — -2
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Note that botHR ® and R € reduce to the matriR of Sec. I,
wheno=1, i.e.,f=0.
As in Sec. |, the first order of business is to solve for

using Jordan elimination, only now the process is consider-

ably more tedious: terms do not cancel as nicely as when

=0. The final results for the steady-state probability vectors

p° andp® (corresponding to the two rangesfofalues are of
the form

_ Pl(u,v,0)
L b,c n=1,....6 (29

N(u,v,0)’
where thePL’s are finite polynomials in the variablgs, v,
ando, andNi=3¢_,Pl is a normalization factor. Explicit
expression for the polynomiaB!, are given in the Appen-
dix.

We can now obtaim (x), Qa(x), andQg(x) from p, as in
Sec. I. The results for the two rangesfafalues,j=b,c, are

i —3dI‘ X

v(X)—E N (30a

. Yi

Qr(x)=al' N (30b)
JL(x)= FYj 3folr X! 30
Qe(X)=a N3 N (309

whereX!(u,v,0) andY!(u,v,o) are polynomials for which
explicit expressions are presented in the Appendix.
Note that the steady-state behavior described by(&g).
clearly satisfies energy conservatimee Eqs(23) and(24)]:
Qa—Qe=fv. (3D)
Equation(30) is the central result of this papéand re-
duces to the results of Sec. | whés 0). In Sec. lll, we use
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FIG. 7. Contour (f,y)=0 is shown, for fixed average inverse
temperaturg3=1. The shaded regions are those for whieh~0,
i.e., for which the system behaves as a heat engine.

of the same sign. Let us introduce the variables,

_ Tat+Tg (32
2TATg’
Ta—Ts
Y= TATB ’ (33)

and consider the behavior of our system i) space, for a
fixed value of 8. (Note thatg is the average inverse tem-
perature of the reservoirs, andis the difference between
inverse temperaturgsBecausé,, Qg, andv are mutually
dependenfEq. (31)], we can generically explore a measur-
able fraction of the space of steady-state behaviors by vary-
ing only two independent parametefgnd vy, while holding

Eq. (30) to show that our model can act both as a heat enging,q third 3, fixed.

and as a refrigerator. In Sec. 1V, we consider the behavior of

our system near equilibrium, and we use Ef) to confirm
predictions based on a general, linear-response analysis.

lll. SYSTEM AS HEAT ENGINE
AND REFRIGERATOR

We can anticipate two different scenarios in which our

system acts as a “useful” devicé) W>0. In this case, the
system is éheat engingcausing the particle to drift up the

potential energy slope, with efficienoyeng=W/Q> , Where
Q. is the rate of heat flow out of the hotter reservdir)

W<0 andQ_.>0, whereQ_ is the rate of heat flow out of
the colder reservoir. Here the system ise&rigerator, with

efficiency 7,e= Q- /|W|. The particle drifts down the poten-

In Fig. 7 we plot the contoup(f,y)=0, having setB
=1, anda=d=I"=1. (The range ofy values for this choice
of B is —2<y<2.) To the left of this contour, we have
>0; to the rightpy <0. The shaded region thus represents the
values of ¢,y) for whichv andf are of the same sign, i.e.,
where the system behaves as a heat engine.

We can understand the placement of the shaded region as
follows. Consider a poinP on the positivey axis: f=0, y
>0 (i.e., zero external load;,>Tg). From Sec. |, we know
that the particle then drifts leftward, <0, although no work
is performed, sincd=0. Let us now imagine tilting the
potential slightly “downward” (f<0). For a small enough
tilt, we expect that the particle will continue to drift to the
left, but now this drift is uphill, and, therefore, work is done

against the external loadd/>0. We conclude that points

tial slope, and the resulting energy liberated allows for a netmmediately to the left of the positive vertical axis will cor-
transfer of heat from the colder to the hotter reservoir, with-espond to external parameters for which the system behaves

out violating the second law.

as a heat engine, and Fig. 7 confirms tk&milar reasoning

We will now use the results derived in Sec. Il to show thatapplies for the negative axis, where the regiolV>0 ap-

our simple model indeed exhibits both these behaviors.
The system is a heat engine whe¢f,T,,Tg) andf are

pears to the right.If we now continue to tilt the slope more
and more downward f( increasingly negative at fixed y
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0.04

equal) Energy conservation implies that the difference be-
tween Q, and Qg must be quadratic irf (since Qx— Qg
=W=fv=c,f?), hencecy=cg. Thus, for equal tempera-
tures and a sufficiently small slope, one of the reservoirs will
be losing heat and the other will be gaining it. If we now
slightly lower the temperature of the reservoir that is losing
heat, we have a refrigerator: heat flows out of the colder
reservoir. In our model, we have=c,=cg>0, hence for
points on they=0 axis immediately to the right of the ori-
gin, heat flows out of reservoi and into reservoiB; im-
mediately to the left of the origin the reverse holds true. This
explains why, just to the righdeft) of the origin, the shaded
region corresponding to refrigeration hugs the horizontal axis
from below(abovg. If we continue to the right along the line
.04 , . . ' v=0, increasing the value df the particle will drift ever
02 0.0 0.2 0.4 0.6 0.8 more rapidly to the left as the slope becomes ever more

f steeply inclined. The potential energy lost as the particle

slides down the incline gets dissipated into the reservoirs; for
FIG. 8. The contour,(f,y)=0 andQg(f,y)=0 are shown, Sufficiently largef, the rate of dissipation is great enough that

for fixed B=1. In the shaded regions, there is a net flow of heat outhoth reservoirs become heate('dA< 0, QB>0. This hap-

of the colder reservoir; the system then acts as a refrigerator. pens to the right of the point at which the contcl'DA:O
crosses the horizontal axis with a positive slope; for values

>0, we expect the leftward drift to become progressivelyqs ¢ peyond this point the system can no longer operate as a
slower, until for some tilt we get =0. At this point the refrigerator.

leftward “thermal force” exerted on the particle due to the .
temperature difference between the resre):rvoirs, exactly bal- we car'l also underst.a.nd why the two contaQys=0 and
ances the external load. This occurs at the boundary of th@e=0 “kiss” at the origin. The result,=cg means that
shaded regioifthe contourw =0): for more negative slopes, Qa andQg are(to leading orderequal along the horizontal
the particle slides down the slope, and the system no longeaxis y=0, near the origin. However, they are alexactly
acts as a heat engine. equal along the vertical axis, sinbé=0 whenf=0. Thus,

Our system is a refrigerator wheD_>0, whereQ_ is ~ Qa andQg are equal, to leading order frand y, for a small
the rate at which heat leaves the colder of the two resenvoirgeqion around the originO,=0g=cf+by. This implies

In Fig. 8 we plot the contourQa(f,7)=0 and Qg(f,7)  that their contours are both tangent to the lipe —cf/b at
=0, again forg=1. These two contours are tangent at thethe origin.

origjn, and leIde the plane Oﬂ:()/) values as fO"OWS.QA. is Since we have expressions f@(x), QA(X)r and QB(X)r
positive for points lying above the contour, and negative bewe can compute the thermal efficienay when it acts as
low. Similary, Qg>0 (Qg<0) for points lying abovebe- either a heat engine or a refrigerator. By the second law,
low) the contourQg=0. Now, above the horizontal axis these efficiencies must never exceed the Carnot efficiencies,
(y>0) we haveT,>Ts, henceQ.=—Qg. The small 75ng@Nd 715 (Which depend only 0ff 4 andTg). Ideally, we
shaded region in the second quadrant therefore represerfiguld use our exact results to find the maximuefative
values of f,7) for which reservoilB is the colder of the two  €Tficiency(y = /") that our model achieves, both as a heat
reservoirsand it is losing heat Qg<0). Hence in this re- engine and as a refrigerator. Unfortunately, the expressions

gion our system acts as a refrigerator. Below the horizontal®" vs Qa, andQg are sufficiently complicated that we are
%iS. To>T and thusd = O, . The larger shaded region in not able to find these maxima analytically. However, at the
axis, lg~ Iaa UL =Q4. The larger shaded regio end of Sec. IV, we will present analytical results for the

the fourth ql_Jad_rant _thus al_so represents refrigeration, OnlXwaximum relative efficiencies achieved when the system op-
now reservoirA is being drained of heat. eratesclose to equilibrium

We can understand the general shape of the shaded re-
gions by assuming that, when the temperatures are equal

(y=0) and the slope is very small, the quantitiesQ, , and

0.02

0.00

IV. LINEAR RESPONSE

Qg are linear functions of the slope: Whenf=0 andT,=Tg=B"", our system is in equilib-
rium, and there results no average particle drift or heat flow.
v(f,00=c,f+0(f?), (34a In Sec. Il we briefly considered the behavior of our system
near equilibrium[see, e.g., Eq:34)]. We now consider this
Qa(f,0)=cAf+O(f?), (34  case in more detail. We will present a general analysis es-
sentially the same as that oflibiner, Ajdari, and Prosf13],
Qg(f,0)=cgf+0O(f?), (340  and then show that the exact results obtained for our model
confirm the predictions of this analysis.
with c,, ca, andcg#0. (Then c,<0, since the particle For a sufficiently small load and inverse temperature

cannot slidaup the slope when the reservoir temperatures aralifferencey, and a fixed value o (characterizing the in-
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verse temperature of the equilibrium state around which we Y
expand, we expect to be in thénear responsaegime: the
particle drift and heat flows depend linearly bandy. Let
us introduce the quantity

heat engine
®=3(Qa+Qg) (39

roughly, a “heat flux” from A to B, and let us write, to
leading order inf,y:

(v (au/af ldy f)
@) [

P/ of adlay)\y
with the derivatives ob and® evaluated at equilibriumf(
=+y=0). As per the arguments given at the end of the pre-

refrigerator

refrigerator

vious sectionQ, andQg are equal, to leading order frand heat engine
v, hear equilibrium.
The rate of entropy production is then
-Q Q M M f FIG. 9. General predictions based on linear response. The
g _ AL XB_ — BW+ yD = (f y)( 1 12)( ) shaded regions adjacent to the vertical axis indicate the values of
Tao Tg M,y Moy, ' (f,v) for which the system behaves as a heat engine; those adjacent

to the horizontal axis indicate that the system is a refrigerator. The
diagonal lines bounding these regions are the conto(fsy) =0
whereM;=—8 dvldf, Mio;=—8 dvldy, Myu=0®/3f,  and®d(f,y)=0. This figure essentially combines Figs. 7 and 8, for
andM,,= dd/Jvy, evaluated at equilibrium. The second law near-equilibrium values of, y~0.
implies that
and v: it is the “rescaled temperature” of the equilibrium
detM=0, (38)  state with respect to which the linear response behavior is
. . . . defined. Then,
whereas Onsager's reciprocity relati¢84] predicts that
M1,=Mpy, Or 9(aBLdl)?(2+19,+21£?)

. detM = 430 (16+ 501+ {4+ DT

f=y=0 of

(42
v
ay

- (39

f=y=0 and we see by inspection thail,;,M,,>0; that M,

_ N =M., as mandated by Onsager reciprodiBg. (39)]; and
Also, the dlggonal elements M_ must be positive: the par- that deim >0, in agreement with the second |4f&q. (38)].

ticle must slidedownthe potential slope when the tempera- |t js interesting to consider the operation of our system as
tures are equalNl1,>0), and there must be a flow of heat g heat engine and refrigerator, in the linear-response regime.
from the hotter to the colder reservoir when the slope is zergn this regime, the conditions for these two behaviors are
(M2>0). Juicher et al.[13] have obtained identical results ;>0 for a heat enginéas beforg andy® <0 for a refrig-

for a molecular motor driven by a difference in chemical erator(sinced = Q= Qg , to leading order iff,y). In Fig. 9

potential rather than temperature. the shaded regions indicate values 6fy) for which the

¢ Usmgdg;e (_et>r<]act resu:tfdobtgln(?[d n Slec.t II:[hwe ?'ﬁere?t"system acts as a heat engine or refrigerétompare with
atev and® with respect td andy fo evaluate the elements Fig. 2 of Ref.[13]). The two diagonal lines, which form

of the matrixM for our model: boundaries of these regions, are givendy0 and®=0.

382d2C(3+4¢) aBdC(1-¢) The slopes of these lines are
| epdC(1-9) a®C[4+{(29+ ) 1/(4+30) ) L My My .
(40) v=0 M12, d=0 M22.
where

The second law, by requiring that ddt=0, guarantees that
3¢T these shaded regions do not overlgp;_o|= |\ gl

[=e *F(0<(<1), C= >0. The efficiencyof our system, when operating as a heat
(16+50)[1+(4+0)] (41) engine, is given by
[Recall that the expressions fofx), Qa(X), andQg(x) dif- . _w (a4
fer according to the sign df We have verified that, regard- g ||

less of whether we use the results valid for rarggb) (f _ _
<0), or those for rangé25¢) (f>0), we obtain the same (again usingd=Q,= Qg to leading order The Carnot ef-
results for the elements &fl.] The variable{ is akin tou  ficiencydefined for the temperaturds, andTg is
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TA=Tel |y 012 1
C _| A Bl 2
=——=—+0 . 45 ]
7,]er‘lg T> B ('}’ ) ( ) ~-_ r=1/9
. . . . 0.10
Then we can get an explicit expression for the relative effi- |
ciency (y= 5/ %) of our system, in the linear-response re-
gime: 0.08 1
r _
g 1MiMaa w7 o]
eng ﬂgng A Mo+ MooN\’ |
where A= y/f. The relative efficiency is the same for all 0.04 1
points along any straight line through the origin, and @)
gives that relative efficiency as a function of the slopef 0.02 4
the line. A similar analysis holds for the case of refrigeration:
o Thet _ _ w (47) O o0z o  ob o8 | 10
7S M1+ MA ¢

Note thaty,¢; happens to be the inverse yf,g, although the
two expressions are valid for different rangesiofvalues,
corresponding to the shaded regions in Fig. 9.
The results of the previous two paragraphs were derived .
with the implicit assumption thal;,,M »;>0. This happens Which ~depends only on the rescaled temperature
to be true for our model, but, in general, these elements capy &P @p) of the equilibrium state. In Fig. 10 we plofZ).
be either positive or negativ@r zerd, so long as they are \_/Vg see that approachesﬁzil limiting value.of 1/9 as the equi-
equal. IfM 1, andM ,; were negative, then the shaded regionglibrium temperatureT=4"" goes to zerdi.e., {—0), and
would occur in the the first and third quadrants of thiey) ~ decreases to zero ab— (i.e., {—1). For the limiting
plane, and the negative signs would not appear in Eg. valuer =1/9, our model gives a maximal relative efficiency,
and (47).
The above results imply that, near equilibrium, a micro- m _
scopic device operating between two reservoirs either can act y"™(T-0) _m
both as a heat engine and as a refrigeraibrM ;,= M,
#0), or will exhibit neither behaviofif M1,=M2=0). FOr s is the best relative efficiency, which our system can
instance, in a microscopic ratchet—and—pawl device, if the,chieve near equilibrium.
Cami a5 & heat GINiT0. a5 1 OOVOUS D1 o ey ) Srten o oo,
symmetry. What is not so immediately obvious, but foIIowsf,:wvay frompequilibrium ?/elativéveffi?:iencies as high as ’
from the conditiorM;,=M,, is that itis equally impossible  _q 5435 (heat engingand y~0.0647 (refrigeratoy. These
for a Sthtel'.’“ with symmetric tgeth to operate as a refrlgeraére greater than the near-equilibrium value quoted in Eq.
tor’Fliga:II; ;Qfgrgri(\alse?loirrf/irrseegIt@ri.peratu;bof the equilib- (50), but still far short of unity. This suggests that the effi-
rium staté we can solve for theaximalrelative efficiency ciency of our model s al\{vgys considerably lower .than' th.e
achievablé in the linear-response regime, by maximiging g(g)]rrreejrgggsllcv?tth;rrl;);nzfélC;igcyéssgg&]aa(;]%ncslléskli(r):()tls n
iconiesat cqul It o Caso, a Gepe Oy O e S ne o o . s o
single parameter characterizing the behavior of the system 5, Wouldyoperate at Carnot efficiency—was in error. We
near equilibrium: note also that Hondou and Takdgil], as well as Magnasco
and Stolovitzky[22], have shown that, within a Langevin
YA ymax_ y max_ r , model for two degrees of freedofa.g., the ratchet and pawl
9 7 (14+1-r)? coupled to two different heat reservoirs, Carnot efficiency
(48  cannot be achieved.

FIG. 10. Quantityr(¢) is plotted for the entire range of values
of the (rescaledl equilibrium state temperature €0 <<1).

~0.0294. (50

r(B)= Ma2May (0=r=<1).
M 11M 5, V. SUMMARY
The value ofy™ increases monotonically asgoes from 0 Our aim in this paper has been to introduce a discrete
to 1. model of Feynman'’s ratchet and pawl, and to solve exactly
From Eq.(40), we find that our model gives for the behavior of that model as a function of external load
(f) and reservoir temperature3 {,Tg). The central result,
(1-0)%(4+30) Egs. (30), gives the average directed motion)(and heat

(49

= 334404+ 4(29+90)] flows (Qa,Qg), in the steady state. We have shown that our
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model can act both as a heat engine and as a refrigerator, andhich introduced us to this interesting topic. We would also
we have investigated its behavior in the near-equilibriumlJike to thank Dr. Shankar Subramaniam and Dr. Wojciech
linear-response regime. Zurek for illuminating discussions regarding thermodynamic
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APPENDIX

Here we present explicit expressions for the polynomIFd,ls X!, andY! appearing in Sec. Il. Thé’{]’s are obtained by
Jordan elimination, performed on the matriges, j=b,c, andX; andY; then follow from Egs(12), (13), (16), (17), (29),
and(30).

PP=130(1+ 0+302) + vo2{4+3u+(4+ u)(1+2u) o+ [4+3u(3+2u) 0%} +4uo3+0(5+3u+50+4uc)]
+ V2{4+ o[4+2u+0(6+ 0+ 0%+ 30'3)]},

PY=vo?{4+3u+(12+ 7)o +[12+ u(15+ 2u) 102} + v [ 4+ 2(6+ w) o+ 6(1+ ) 0%+ o3+ 30+ 6°]

+ 301+ 0(3+ 0)]+4uc{3+o[3+u+3(1+u)al},

PY=4uc[3+0(5+30) ]+ v30[1+0(5+90) |+ va?{4(1+ o+30?) + u[3+c(9+70)]}

+v?{4+ o[ 12+ 0(18+ 0+ 502+ 95 ]},
PEZ {16+ 4(6+v)o+6(4+v)o?+ 10va’+ u[4+ 0(20+ v+ 240+ 5vo+9va?) ]},

P2 =12[4+ u+5(2+ p)o+3(2+3u) 0]+ 2uol4+ u+(4+3u) o+ (4+5u)0?]
+2v0[4+ u+(8+5u)o+(8+9u)a?],
PP=2uvo?[2+ u+(2+3u) o+ (4+3u) 02+ 2u%0[3+ o(5+30) |+ v3{2+ 40 (1+ o)+ u[1+ o(5+90) ]}
+ {4+ 60+20%B+0[1+20(1+ 0) |} + w3+ o[ 11+ 0(15+ 0+ 55%+ 953 }). (A1)

XP=130(—1-20+30%) +vo?{—4—3u—2uo+4uc?+ 3[4+ uw(5+2u) o+ v’ [ —4—3(4+ u)o—3(4+3u) o2
—(1+9u) 03+ (24 pu) o+ (6+5u)0°+ (13+9u) 08+ 2uo(— 6+ o{—4+ 602+ 3u[— 1+ (—1+ o) o]}),

YP=—180[3+0(5+70) ]+ vo?{—2u?(1+ o) (1+20)+ u[—1+(3—50)0]+4(1+ o+ 0?)} —2uc{2(1+ o+ o?)
+u[5+0(9+70) ]+ 1 [8+ u(— 1+ 0—302) + 0(10+ o{12+ o[ 3+ a(5+ 7o) D] (A2)

P$=130[1+ 0(3+ 0)]+4ua[5+ u(5+20)+a(5+30) ]+ vo?{2u?(3+ o) +4(1+ o+ 0?)+3u[3+ o (3+0)]}

+ {4+ 2p+0[6+0(4+0+30%+ o)},

PS=130(3+ 0+ 0?)+4uolu+3uc+3(1+ o+ 0?) ]+ ve{2ulo+4[3+ o(3+ o) ]+ u[15+ o(7+30) ]}

+12(12+2u(3+ o)+ o{6+ o[4+ a(3+ g+ D]},

PS=4uo[5+30(1+0)]+ v30[9+ o(5+ o)+ vo?{4[1+ o(3+ )]+ u[9+ o(7+30) ]}
+ 116+ o (14+ o {4+ o[ 9+ o(5+ o) D],

PS=0[24+20(3+20)(4+ v+ vo)+ u(28+ o{4(4+ o)+ 1[99+ a(5+ ) ]})],
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PS=2uc{4(1+ o+ 0%+ u[3+c(5+ )]} + v*{10+ 60+ 40°+ u[9+ o(5+ 0) |} + 2va?{4[ 2+ o(2+ 0)]
+u[9+a(5+0)]},
PS=2u20{5+30(1+0)]+2uva?{2(1+0)?+ u[3+ a(3+ o) ]} + 30{2[2+ 0(2+ 0) |+ u[9+ 0(5+ 0) ]}
+2{2[3+ 03+ o{2+ o[ 2+ 0(2+ o) ]P)]+ u[15+ ¢ (11+ o{3+ o[ 9+ o(5+ o) 1D} (A3)
C=g(vo[—4—5u+a4u(2+p)o+2(2+ u)?0?+(4+3u) ]+ v3(—30+20%+0?)
+2u0{—10+60°+ u[ -5+ o(—1+30) |} + v {— 22+ u[— 15+ o(—= 5+ o{— 1+ o[ 9+ o(5+ o) ]})]
to[-8+0(=2+0a{7+0[10+a(6+0) DD,
Ye=—{130[5+ 0(7+30) ]+ vo?{4(1+ o+ %) —2u’[3+ c(2+ 0)]— u[ -3+ (5+ )|} —2uc{2(1+ o+ ?)
+u[9+ o (7+50) |} + v[10— u[ — 1+ o(3+ o) ]+ o(12+ {8+ o[ 5+ o(7+ 30) )1} (Ad)
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