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Semianalytic solution of the Kramers exit problem for a small ferromagnetic particle
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The distributionQ(t) of magnetization reversal times in a small uniaxial particle is computed here directly
from Brown’s Fokker-Planck equation. Constant applied field and axial symmetry are assumed. The Laplace

transform ofQ(t) has the fornfg(z) =F,(2)/F,(z) where the regular functiorfs;(z) are defined by a solution
of a Volterra integral equation. A separate integral equation is derived for the furdffigfz)/dz, and the

poles and residues @(z) may then be found numerically with arbitary precisif81063-651X99)07006-3

PACS numbsgs): 05.40.Jc, 75.50.Tt, 75.60.Lr, 02.50.Ey

I. INTRODUCTION the angled is spanned by the easy axis and the magnetiza-

) ~ tion vectorM, |I\7I |=Mg. The corresponding Fokker-Planck
The Kramers exit probleril] for a small ferromagnetic  gquation has the simple forfa,5,d
particle was formulated by Browf2] who wrote down the

relevant Fokker-Planck equation and calculated the thermal P 9 )

relaxation ratex for a uniaxial particle in external magnetic 9r 5(1_)( )

field applied parallel to its easy axis. The thermal relaxation

rate is the single parameter of the Markovian decay lawwhere the reduced temperature=kgT/2K and the reduced

W(t)=e *! that holds[3,4] for a thermally activated exit time r=27Kt; 7 is a dissipation constant aft= P(x, 7) is

over an energy barrier of heigil®E such thatAE>KgT, the normalized probability distribution of the magnetization

whereT is temperature anllg is the Boltzman constant. In vector orientation.

this limit kcexp(—AE/kgT), and the thermal relaxation rate

is identified with the first nonzero eigenval(i,6] of the Il. THE REVERSAL TIMES DISTRIBUTION

Fokker-Planck equatiork=—\;<<—\, for n=2. At very o L

short timest<x ! the relaxing system is assumed to un- For definitness we shall now assume that the applied field

dergo a local equilibrizatiofgoverned by the higher eigen- N€(0.1), so that the energil) has a local maximum at the

values and the exit procesgjoverned byi,) commences POINt Xo=—h=0, and two local minima ak.==*1. We

only after a local quasistationary state has been establishddrther assume that at time=0 the particle is in the less

[1]. The initial state of the relaxing system is irrelevant. ~ Stable “down” state, i.e., that the initial distributioR(x,0)
Deviations from exponential decay are to be expected, if§ localized within the interval £ 1,—h). The problem is

particular, at large biasing fields, which lower the barrierthat of finding the probability,

height AE. These non-Markovian processes have been, to h

date, studied mostly by means of numerical simulatices, Wl(t):f dx P(x,t), 3

e.g., Ref[7]). Recently, however, Coffegt al.[8] made use -1

of the fact that Brown’s Fokker-Planck equation for an axi- L . .,

ally symmetric system depends on only one phase-spac¥1(0)=1, that the particle is in the “down” state at-0.

variable and derived semianalytic expressions for correlatiofgn0ring backscattering we impose on the distribution func-
functions of a thermally relaxing uniaxial particle. The ton P(x,7) the absorbing boundary conditidn(—h,7)=0

method of Coffeyet al. is based on a continued fraction ex- and write[4]

pansion formalism. We proffer here an alternate treatment,

based on the so-called shooting method of adjoi@t40], dWiy(7) _ (1—h2)&P(X'T)
and express the decay law(t) in terms of a solution of a dr 7 X
Volterra integral equation. A particularly simple result, dis-

cussed here in some detail, is obtained if backscattering iy virtue of Eq.(2). The distribution of exit time€Q(7) is
neglected; a somewhat more complicated expression holdsfiius fully determined by the single derivativ®/dx|,_ _j,.

backscattering is taken into account. o We calculate the Laplace transform &f(z), together
_ We assume coherent rotation of magnetization and congjth its residues, using the shooting method of adjoints
sider a uniaxial particle with saturation magnetizatidn, [9,10]. In order to implement this method we take the

anisotropy constanK, and nucleation fieldH,=2K/Ms. | 5pjace transform of the Fokker-Planck equati@h define
The particle is subject to an external magnetic fieldap- e quantities

plied parallel to its easy axis, and for its energy we wirzg

h+ J
. 7
7 ox

P, @

def

==Qi(n), @

x=—h

E=K(1—-x2—2hx), 1) y1(x,2)=(1—x?)P'(x,2), (5)

whereh=H/H, is the reduced applied fiels,=cosd, and yz(x,z)=|5(x,z), (6)
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andP’ =dP/dx, and write the transformed E) as inner intergration ovex, is easily done using the trapezoidal
rule, but the outer integral over; has a weakremovableg
d vy Y1 1 singularity atx;= —1, and we adopt here a piece-wise linear
Ud_x(yz) =A( Y2) - P(X,0)< ) (7)  approximation only for the regular part of the integrand.
If the function &,(x,z) is known, then formal differentia-
where the matrixA=A(x,2) is tion of Eq. (12) with respect toz yields a weakly singular
Volterra integral equation for the functiaf,(x,z)/dz that
x+h z—2x(x+h)+1—x? determines, by virtue of Eq11), the residues of the reversal
lal(1-x3) 0 ' ® times distributionQ(z). The function&;(—h,z) has infi-

nitely many simple rootg") along the negative real axis of
Equation(7) is to be solved with the natural boundary con- the complexz plane, and in the vicinity of théth root we
dition y,(—1,z)=0 and the absorbing boundary condition write £,(—h,z)~(z—z")d¢&,(—h,z")/9z.
yo(—h,z)=0. The other two boundary conditions, for the as
yet undetermined quantitiss (—h,z) andy,(—1,z), follow lIl. DECAY LAW
from the identity[9]
Equation(11) makes it possible to study the decay of an

1(-h arbitary initial state. We chose here the simple singldaj

Ya(=Dé&(=D=yi(=hé&i(- h):;ﬁl dXP(X.0)61(X).  jnitial ~ distribution  P(x,0)=8(x+1)  for  which

9 0Q4(2)&(—h,z)=1. Sample plots of this functio,(z) are
shown in Figs. 1 and 2. In plotting these figures we scaled

where the functiong;(x,z) satisfy the adjoint equation, the real axis of the complexplane, introducing the notation,
d (51) (51) (zY)¥2  if z=0
o =-AT| |, (10 =
dx\ &, & p(2) { —(—z)¥2 if z=0, (3

andAT is the transpose of the matri According to Egs. and the mean first passage time,
(4) and (5) the quantity of interest is the function

y1(—h,z), and in order to find it we impose on the adjoint —hdx, e5®D) [x
equation (10) the initial conditions &(—12z)=1 and Y=j —2f dx, e 202, (14)
&,(—1,2)=0 with which the identity(9) yields -1 1-xp It
- B 1 —h Within this scale the poles @1(2) are almost equidistant.
Qi(2)= &(—h2) ) 1 dx P(x,00€1(x,2). 1D For P(x,0)=8(x+ 1) andé;(—1,2)=1 the real time exit

times distributionQ4(7) is given by the equation,
This simple formula, expressesing the switching times distri-
bution in terms of the initial probability distributioR(x,0), o) (T)_E
is the central result of the present paper. We note that both ! i
the numerator and the denominator of the right-hand side are
regular functions ofz so that the poles oél(z) coincide ~ and the normalization OQl,(T) then serves as an indepe_n-
with the zeroes of,(—h,z). dent check on the numerical accuracy of the computation.
According to Eq.(10) the desired functior,(x,z) satis- The .probab|I|1yW1(~r) that the particle has not reversgd at
fies the Volterra integral equation, the timer=0 Fher} follows, and we plot a sample fam|ly of
these curves in Fig. 3. The low-temperature exponential de-

9&1(—h,2)

-1
— ) exp(7zM), (15)

e rx e—e(x) cay is defined by the Markovian limit, and for this reason we
E(x)=e* @ e ¢ J dx, 5 concentrate here on the opposite limit of high temperatures
T J-1 1-x1 and setoc=1. A striking feature of the shown plots is the

% very slow initial decay at short times. This is characteristic of
xf dXo[ 2— 2Xo( Xy + h)+1—x§]§1(x2), processes in which the initial distribution is negligibly small
-1 close to the top of the barrier; the slow initial phase of the
(12) decay here corresponds to initial equilibrizatiaithin the
well [13]. By contrast, the initial decay is faster than the
wheree(x) = — (x?+ 2hx)/20 is, up to an additive constant, exponential limifdashed line in Fig. Bif at 7=0 there is an
the reduced energig/kgT. With our choice ofP(x,0) the appreciable probability of finding the system close to the top
reduced height of the barrier to be overcome by thermal acef the barrier(not shown.
tivation is AE/kgT=(1—h)?/20. Reversals in the opposite

direction are here excluded. IV. CONCLUDING REMARKS
In order to solve Eq(12) we divide the intervak —1, . ) .
—h) into N equal subintervals of length=(1—h)/N, de- The right-hand side of the Fokker-Planck equation has the

fine the function¢;(x) by the set ofN+1 valuesé;(x(M), form of a divergence of a probability curreﬁt and it is,
n=0,1,... N, at the pointsx(”)z —1+nA, and seek then therefore, possible to relate the decay l#¥(t) to values,
these values using numerical Picard iteratiph8,11. The  which the distribution functiorP(x,t) takes on at the edges
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] ﬂ ﬂ ﬂ m {\ m (\ ﬂ W, (t) +W,(t)=1, that the particle is in the “up” state, and
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] ; ) ) def
9 | Wi (7)== Wy(7) =~ Qs(7)
: ! =o(1-h?P’'(—h,7), 17
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FIG. 1. The functiorfgl(z) along the scalefisee Eq(13)] real
axis of the complexz plane. Reduced applied field=0 and re- 0.8
duced temperature= 1 [top, with Y ~0.579] ando=0.2[bottom,

with Y ~1.232]. Ql(O)=1 by virtue of the normalizatioW(0),
=1. 0.6

o~

of a one-dimensional metastable domain. We have chosen t::
treat here Brown’s Fokker-Planck equation because of itsz
relation to recent experimental work&3], but the proposed 0.4
method is equally well applicable also to the Smoluchowski
equation and to its various generalizati¢hd]. In particular,

for an overdamped Brownian particle driven by white noise,
the probability currenti= [ V' (x) +kgTd/dx]P leads to a

very simple adjoint system whose numerical solution is al-

most trivial for any potentiaV/=V(x).

The formalism presented so far has the drawback of being O-OO ARARRARAPY AR ARARARARP AP
restricted to thermal decay of single metastable state. In ' ‘ T/T ' V
this concluding section we abandon the absorbing boundary
condition P(—h,t)=0 and outline the somewhat more  F|G. 3. The probabilityW,(7) of finding the particle in the
elaborate treatment of the thermally relaxinigtablesystem  “down” state (solid lineg versus the reduced timg'Y. Reduced
described by Eqq1) and(2). applied field consecutivelip=0 (labeled, 0.2, 0.4, 0.6, and 0.8

In analogy to Eq(3) we define in this case also the prob- (labeled, and reduced temperature=1. The dashed line repre-
ability sents exponential decay.
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W, =dW./d7. In place of Eq(9) we now havd9]
y1(—h)EP(=h) +ya(—h)ED(—h) -y (— 1) (— 1)

1(-n |
. f ax P00, (18

i=1 and 2, where the functiond” and £) are two solu-
tions of the adjoint equatiofiL0) on the interval (-1,—h).
Similarly, on the interval —h,1), there is

Y21 ED(1) =y (—h) ED(—h)—y,(—h) P (—h)

11 :
== ;f PO (), (19

and with a suitable choice of initigffinal) conditions im-
posed on Eq(10) the four equation$18) and(19) constitute
a linear system for the four unknowns(—1), y.(—h),
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yo(—h), and y,(1). A convenient choice isc®(—h)
=(1,0) andé®(—h)=(0,1) for which one obtains two so-
lutions of Eq.(10), which are continuous on the entire inter-
val (—1,1). With this choice the poles of the Laplace trans-

formed probabilitiesw;(z) coincide with the zeroes of the
function,

&-12) €M)
&(-12) 212

and we note that the pole at=0 then corresponds to the
state of thermal equilibrium; in the preceding case, where
lim;_,..W;(t)=0 due to the absence of backscattering, this
pole canceled identically.

In summary, using the shooting method of adjoints we
have reduced the one-dimensional Fokker-Planck equation to
an expression for a finite number of the discrete occupation
probabilitiesW,(t).

D(z)= zde( (20)
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