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We study localization and delocalization in a class of non-Hermitian Hamiltonians inspired by the problem
of vortex pinning in superconductors. In various simplified models we are able to obtain analytic descriptions,
in particular, of the nonperturbative emergence of a forked strudthee appearance of “wings”in the
density of states. We calculate how the localization length diverges at the localization-delocalization transition.
We map some versions of this problem onto a random walker problem in two dimensions. For a certain model,
we find an intricate structure in its density of stafe%1063-651X99)05406-9

PACS numbsds): 02.50-r, 05.20:-y, 11.10-~2z, 71.20-b

I. INTRODUCTION only breaks parity as expected but is non-Hermitian, and thus
has complex eigenvalues. It is represented by a real non-
Non-Hermitian random matrix theoryl] has been ap- asymmetric matrix, with the reality implying that & is an
plied recently to a number of interesting physical situationseigenvalue, thefE* is also an eigenvalue.
An interesting issue among these physical situations is the With no impurities (v;=0) the Hamiltonian is immedi-
study of localization-delocalization transitions in non- ately solvable by Bloch’s theorem with the eigenvalues
Hermitian random Hamiltonians. Earlier discussions of lo- )
calization in the context of random walks in random envi- mn
ronments and related hydrodynamical problems may be E“:tCO{T_'h)' (n=01,...N=1) @)
found in [2]. More recently, Hatano and NelsdB] have
mapped the problem of the vortex line pinning in supercon{racing out an ellipse. The corresponding wave functions
ductors to a problem involving a non-Hermitian random z,{;J(”)~exp 2minj/N are obviously extended. Note that in the
Hamiltonian. When a current is passed through a supercorimit of zero non-Hermiticity f=0) the ellipse collapses to
ductor, vortex lines tend to drift in a direction perpendiculara segment on the real axis as expected. With impurities
to the current, but this tendency is counteracted by impuritiepresent the spectrum can be obtained by numerical work as
on which the vortex lines are pinned. It is expected that atvas done extensively by Hatano and Nelson and as is shown
some critical current the vortex lines become unpinned oin Fig. 1.
delocalized. In the simplest model of this problem, the phys- Two “wings” have emerged out of the two ends of the
ics is modeled by a quantum particle hopping on a ringellipse. Some eigenvalues have become real. Evidently, the
whose rightward(or counterclockwise hopping amplitude ‘“forks” where the two wings emerge out of the ellipse rep-
te"/2 is different from its leftward hopping amplitude resent a nonperturbative effect, and cannot be obtained by
te "/2. Note thatih may be thought of as an imaginary treating the impurities perturbatively. It is thus something of
gauge field. On each site of the ring is a random potemtjal a challenge to obtain the two wings analytically. In this pa-

which tries to trap the particle. The Hamiltonian per, we address this and other problems.
As discussed in Sec. IV di5] this behavior could be
H=Ho+W (D understood qualitatively by a simple example. In ordinary

is thus the sum of the deterministic hon-Hermitian hopping
term

t .
HOij=§(eh5i+1,j+e_h5i'j+1), |,J:1,...,N (2)

(with the obvious periodic identification+ N=i of site in-
diceg and the Hermitian random potential term

Wij=w;6; ;. ()

The number of sitebl is understood to be tending to infinity.
This problem has been studied by a number of autf+3] FIG. 1. The spectrum of the Hamiltonian in E¢) for h
fO||0W|ng Hatano and Nelson. Note that the Hamiltonian not_— 0.5, t=2, andN =400 sites. Shown here is the spectrum for one
particular realization of site energies taken from a flat distribution
with —2=<w;<2. A finite fraction of eigenvalues has clearly
*Electronic address: joshua@physics.technion.ac.il snapped onto the real axiéThe coordinate axes have been sup-
TElectronic address: zee@itp.ucsb.edu pressed to make the appearance of the snapped eigenvalues)clearer.
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Hermitian quantum mechanics, it is a familiar textbook dic-sired simplification is to replace thé random impurities in
tum that nearby eigenvalues repel. In contrast, two nearbiq. (3) by a single impurity. With this simplification we do
eigenvalues in the complex plane, separated along the imagiot need to specify the precise form of the non-Hermitign
nary direction, attract each other under a Hermitian perturbabeyond assuming that it is translationally invariant. We thus

tion. To see this consider thex2 matrix replace thew, ; in Eq. (3) by
ie O 0 w Wi j=W 6 16; 1, 6)
+ . S
0 —ie w 0 ’ wherew is drawn from some probability distributioR(w).

Our task is to calculate the averaged Green function

with eigenvaluestie?—w?. Thus, forw<e, the original 1
eigenvaluesti e attract each other, but remain on the imagi- G(Z,Z*)=<N tr m> (6)
nary axis. However, as soon as= ¢, they snap onto the real 0
axis and start repelling each other. Let us start with the elyf the random Hamiltoniafl = H,+ W, from which we may
lipse in the absence of impurities. Near each tip of the elzg|culate the eigenvalue density I8f
lipse, there is a pair of eigenvalues separated slightly along away from the location of the spectrum o1, in the
the imaginary direction and lying on opposite sides of thecomplex z plane we expand Eq(6) in powers of 1/¢
real axis. They attract each other and thus approach the reaIHO), and thus obtain
axis, but as soon as the two “friends” arrive on the real axis,
they immediately repel each oth@s well as the eigenvalue 1[ 9 1
already on the real axisObviously, this process repeats it- G(2)=Go(2)— E(Z—H ) ‘J
self with the next pair of eigenvalues, and thus leads to the 01,
1 k—1

(Z_ Ho) 1 ‘J ' @
bitrarily chosen bond, without changing the spectrum. Thigvhere
leads to an extraordinarily simple argument that the states 1 1
corresponding to complex eigenvalues are extended, that is, Go(z):<— tr > (8)
delocalized. LetH#=Ey. Assume thaty is localized N~ z—Hp
around some sitej. We can always gauge the non-
completely in the limitN—<. It follows from this simple
argument that if we replace the periodic boundary condition
in solving Hiy=Ey by an open chain boundary condition, @nd so
the localized part of the spectrum of E@) would not be 1 9Gy(2) &
affected. But forH with an open chain boundary condition, _ _ 1 96olZ K K1
the gauge transformation just mentioned may be used to G(2)=Go(2) N 9z 21 (WHGo(2)]

gauge away the non-hermiticity completely, meaning that the

Hamiltonian is in effect Hermitian with real eigenvalues. We —Gu(2)— 1G] W

thus conclude that all localized eigenstates of @g.corre- =Go(2) N oz \1—WGO(Z) '
spond to real eigenvaluggn the largeN limit). In other

words, the states corresponding to complex eigenvalues af@bserve that the effect of the single impurity on the Green
extended, that is, delocalized. function is of order IN, as should be expected.

Remarkably, non-Hermitian localization theory is simpler ~We stress again that up to this point we did not adhere to
in this respect than the standard Hermitian localizationany specific translationally invariatit, nor did we specify
theory of Anderson and othef8]. To understand the local- any particular probability distributioR(w) in our derivation
ization transition, one has to study only the density of eigenof Eq. (9). We also note that our derivation is exact for any
values, or equivalently, the one-point Green function, rathewalue ofN.
than the two-point Green function. For finite N the singularities of5y(z) are isolated simple
poles located at the eigenvalues ldf. The effect of the
single impurity on any of these poles would be to move it
around in an amount which depends on the typical scale

In this section our philosophy is to find the simplest ver-the distributionP(w). Thus, if z=z, is one of the poles of
sion of the hopping model described in the IntroductionGg(z), we expect that for small values of the scal¢éhe full
which we can solve exactly, but yet manages to capture th&reen’s functionG(z) will also have a pole near=z,.
essential physics involved, including the nonperturbativeThus, in the vicinity ofz=z, (ignoring all the other polgs
emergence of the two “wings” along the real axis. The de-we may approximate

is the Green function ofly. Due to the translational invari-

ance ofH, we have

formation of the wings. o
Hatano and Nelson emphasized thé§ has a special XZ (wk)

property, namely, that by @on-unitary gauge transforma- k=1

Hermiticity to a link which is located arbitrarily far away

from the sitej, where| | is exponentially small. Thus, if we

cut the ring open at that link, the effect on the Schinger ( 1

tion, all the non-Hermiticity can be concentrated on one ar-
equation would be exponentially small, and would vanish

e Ho) 1’1: Go(2)

(€)

II. SINGLE IMPURITY CASE
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Wi+ o=Eihy, i=Eii_,. (15

As a consequence,

1
Gold~ 7 7 (10

Substitution of Eq(lO) into Eq. 9 yields the simple result

1 1
G(Z)NN z—2p—WIN/" (1)
from which we extract the localization length of the stédte

Equation(11) is nothing but the result of first order pertur- simply as
bation theory(after all, we ignored the effect of all states
other than the eigenstate associated with

We can now understand the nonperturbative emergence of
wings under very general circumstances. Evidently, besides
the “trivial” poles just mentioned,G(z) also has a pole At the points where the wings join onto the circle the local-
wheneverwGy(z)=1 with w in the support ofP(w). We ization length diverges as expected.

1
L(E)~W. (17)

have The Green function associated with Ed4),
e [ 2u, Po(X"Y") _i . 1
Go(z.2 )—f X iy (12) N 20 z—exp(2miniN)’

where po(x,y)=(1/N)Z; s(x—ReE;) 8(y—Im E;) is the may be approximated in the largelimit by
density of eigenvalueg; of Hy. All we require for the fol-

lowing discussion is thapo(X,y) = po(X,—Y). This is true (2)= % dw 1 [ 0, [7<1
for all the Hamiltoniandd, considered in this paper. Then on Go 2ai w(z—w) | 1/z, |z|>1.
the (positive) real axisGqy(x) is real, and decreasing outside

the spectrum oH,. [Indeed, it is well known that we can Substituting this expression into E(®) we obtain
interpret the real and imaginary parts 6f(z,z*) as the

electrostatic field E=(EX,Ey)=(ReGO,—Im Gy) gener- 0, [7<1

ated by the charge densipy.] Thus, if the real quantity & G(2=y{1 1 W (18)
lies betweenGo(Xegqd and zero(where Xeqqe denotes the 4 _<_> |z|>1.
intersection of the edge gf, with the real axiy we will z Nz

have a pole on the real axis at somgw). Averaging over
w we thus obtain a wing on the positive real axis. A similar
discussion can obviously be given for the negative real axis
It is also clear that there is no solution wiGqy(z)=1 for z
outsidep, and away from the real axis.

The probability distributiorP(w) will in general depend
on some set of parametelns} and for some givefr;} it is
of course possible that @/ does not lie betweeq(Xedqd 1
and zero. Thus, for some critical valugg} there will be a P(w)= E[5(W—r)+ S(w+r)], (19
transition at which the wings, and hence the localized states
associated with them, disappear.

In the N—< limit the eigenvalues o, become dense
and will either trace out a curve in the complex energy plane 1 r ( 1 1

rz+r

Note that independently oP(w) the disk inside the unit
ircle remains devoid of eigenvalues. To get hold of the cor-
rection G(z) — (1/z) in the outer region it is instructive to
carry out some explicit calculations with particular probabil-
ity distributionsP(w).

As our first concrete example, we take

with some scale. We then find from Eq(18) that

[analogous to the ellipse associated with &g, or fill out a G(z)— 2Nz
two-dimensional regiofas, for example, in two-dimensional
hopping problems We now focus our attention on at the
hopping HamiltonianH, in Eq. (2). To make things as
simple as possible we let the parameters in(@gtend to the
(maximally non-Hermitiahlimit h—o~ andt—0 such that

, |z|>1. (20

If r>1, thenG(z) has two new poles on the real axiszt
==r, each with a residue 1X2 The critical value forr to
induce these two new poles ig=1. The existence of this
critical value is a nonperturbative phenomertimough its
(13) particular numerical value is retrospectively not surprising at
all, being set by Eq(14)]. From Eq.(17) we find that the
—0). In this limit Eq.(4) changes into localization length of the states associated with these poles is
L(r)~1/Inr, and they thus become extendedrasr,=1.
Consider next the box distribution

te"—2

(and obviouslyte ™"

2min
E,=exp (n=0,1,...N—-1), (14

1
_ = 22
and the ellipse associated with Hg) expands into the unit P(w)= 2V oV =w?), (2D

circle. Furthermore, the full Schdinger equation K,
+W) ¢y=E becomes simply for which
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1)1 1 -V Finally, we stress that our derivation of E(@) was not

1- N) Z vy [4>1 (22 limited to one-dimensional hopping. GiveBo(z) for a
translationally invariantH, in any number of dimensions,
The eigenvalue density(x,y) (with z=x+iy) is related to ~ G(2) as given by Eq(9) is still valid outside the support of

the Green function by the general relatid] the spectrum oH. In general, the spectrum &f, in higher
dimensions will fill a two-dimensional region in the complex

energy plane. In order to calcula&(z,z*) in that region,
and in fact, to see how that region is affected by the impu-
rity, we might have to resort to the method of Hermitization
which gives discussed inf5].

G(z)=

1 9
p(x,y)=;EG(z,Z*), (23

1
P(XY) = 55y 0 OV =[x]), [z=|x]>1. (24 lll. MAXIMAL NON-HERMITICITY AND MANY
2NV IMPURITIES: “ONE-WAY" MODELS

[Here we also use the fact that in the cut pléawéh the cut In the preceding section, our exact reg@ltwas obtained
running along the negative real axigy/dz*)Inz=(1/2)(9,  for any value of the parametér We may perhaps hope that
+idy)Inz=—7m6(—x)&y).] As in the previous example, non- we can study the many impurities problem in the particularly
perturbative effects generate a critical value Yornamely,  symmetric case provided by the lin{it3), namely,te"—2,
V.=1. ForV>V,, the density of eigenvalues develops twote~"—0, in which the ellipse of eigenvalues becomes the
symmetric wings of lengttV—V, such that the fraction of circle (14). Thus, we will study the case of maximal non-
eigenvalues residing in these wings isN)/1—(1/V)]. The  Hermiticity in whichH is given by

localization lengthL(E) of states that reside in the wings is

finite for |E|>V, and diverges logarithmically 4&|— V. Hij=8i+1;+twW; 6, i,j=1,...N (28)
As our final example for this section we consider the
Lorentzian distribution (with the obvious periodic identification+ N=i of site in-
dices) We refer to this class of models in which the particle
Pw)=_" 1 (25) only hops one way as “one-way models.”
T W2+t y?’ We have found a particularly simple example in which

with its long tails extending to infinity. The fraction of real- 1

izations in which an impurity potential is stronger than the P(w;)= 5[ 8(wi—r)+8(w;+r)]. (29
unit scale set by Eq(14) is (2/7) arctany. We find that

outside the unit circle We now proceed to calculate the density of eigenvakjea

this “one-way sigh model,” using the master formula

1 iy
G(Z)_E_N_ZZ+i’y0(|mz)_2—i70(_lmz)}’ |z|>1 1
(26) pY)={§ Z S(x—ReE;) 8(y—ImE;)
and thus using Eq23) we find that as in the previous ex- 19 4

ample, the density of eigenvalues develops wings along the

1
=—— —Inde((z—H)(z*—HT)]>,
real energy axis given by 7 92 97" < N

(30
Y

Puingd X, Y) = N X2t 72 O(x*—1) 8(y). (27)

where we defined=x+iy [a careful derivation of Eq30)

is given, for example, in Sec. Il ¢&]]. It is at this point that

Due to the long tails of E¢25), the wings extend to infinity, the simplification associated with taking the large non-

and the fraction of states that reside in them isHermiticity limit may be appreciated: the determinantzof

(2/N7) arctany, namely, the fraction of “strong” impurity —H for H in Eq. (29) is simply

realizations divided byN. Note also that there is no critical

value fory, namely, the wings appear for all positive values

of y. def{z—H)=
Note that to obtain the analog of E®) in the case of two

impurities already involves a nontrivial combinatorial calcu- . . . .
b y (For arbitraryt andh the corresponding formula is consider-

lation involvingG;;, Gj;, andGj;, wherei andj denote the . .
locations of the two impurities(It is clear though, that the ably more _compllcateﬁi.Note that Eq.(31) IS completely
ymmetric in the{w;}, and thus, for a given set of site ener-

results of this section as they stand are still applicable to thgymmetr > e
problem with many impurities, as long as the separation ped!es tis mgiependent (.)f the way th? Impurities are arfanged
tween impurities is larger than the localization lengtRe- along the ring. Averaging over the impurities we obtain
markably, however, we show in the next two sections that NN

taking the maximally non-Hermitian limif13), which re- (In det(z—H)>=2‘N2 ( )|n[(z_r)n(z+r)N—n_1]_
stricts the particle to “one-way” hopping, we can readily n=0 \ N

treat the generic problem of many impurities. (32

N
1T (z—wi))—l. (32
k=1
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In the limit N— oo, the binomial coefficient appearing in Eq. Since each term in the preceding equation factorizes, we fi-
(32) is sharply peaked as a functionmfiroundn~N/2, and  nally arrive at the general formula
thus to first approximation

1 149 <
(Indet(z—H))~In[(z—r)N?(z+r)N2-1]. (33 G(z,z*):<_—>—N— >

(We also get the correct normalization since in this approxi- (37)
mation 2 NN!/[(N/2)!1?~1.) In order to calculate the den-
sity of eigenvalues we may now insert E3) (and its
counterpart foH) into Eq.(30), but due to the simplicity of
Eqg. (33) we can avoid doing so and simply identify the
branch singularities of the right hand side of E8@). These

where in each term we average owelagainst the arbitrary
distribution P(w). A simple check reveals that E(R7) is
consistent with Eqgs.(29) and (33). The averages((z
—w) %) may be obtained of course by deriving the generat-

. o ing function
singularities clearly occur at
1
znzt\/r2+e4”'“ N, n=0,1,...N/2 (39 g(z)=<ﬁ>. (38

which define the support of the density of eigenvalues. ) ) ) o
To summarize, we see that the original unit circle specit is worthwhile to mention here that a derivation of E87)

trum of the deterministic part of Eq28) is distorted by the PY €xpanding in powers of the “one-way"” hopping piece

randomnes$29) into the curve Ho=ZXi[i){i + 1| in Eq.(28) has the nice feature that starting
from any sitei on the chain, the terms that contribute to the
Z?=r’+€e'% 0=<¢<2nw (35)  trace(even without taking the averagare precisely those in

which the particle hopped an integer number of complete
in the complexz plane. Clearlyy.=1 is a critical value of.  revolutions around the chaimvhich is why the averages in
For r<1, the curve(35) is connected, whereas for>1 it  Eq.(37) are all raised to the powat]. This observation may
breaks into two disjoint symmetric lobes that are located trovide a physical explanation of why the determinégt)
the right and to the left of the imaginary axis. The lobe onis completely symmetric in the site energies: the particle
the right intersects the real axis &,;,=\r’—1 and at visits all sites equally as it hops, wherever thgs are.

Enax=Vr2+1. As r is decreased to,=1 the two lobes As a concrete application of E€37) we now concentrate
touch at the origin and merge into a single curve wien on the Lorentzian distribution(25) P(w)=(y/w)(W?
becomes smaller than=1. +v%)~1. We haveg(z,z*)=[z+ivy sgn (Imz)] ! and ob-

These analytical predictions agree quite well with resultsviously
of numerical simulations we carried out for three values of
in the different regimes <1, r=r,=1, andr>1 (which 1 \¥
we do not show hepe For a system ofO(100) sites we Z—W
observed some scatter of the numerical results around the
analytical curve(35). The width of that scatter can be Thus, using Eq(37) we obtain the exact result
roughly estimated for any giver, on Eg.(35) by keeping

1 k
z+iy sgn(Im z))

=[9(z,z*)]“ (39

(in addition to the leading termall terms in the sun{32) G(z2*)= 9(zz*) _ [z+iysgn(Im 2)JNt
with |n—(N/2)|<Ne(zy), where €(zy) is determined by ’ 1-[g(z,z*)]N [z+iysgn(imz)]N—1"
steepest descent. Then the branch singularities on the right (40)
hand side of Eq(32) would have been bounded between the
curves We would like now to calculate the density of eigenvalues.
. We first investigatep(x,y) off the real axis. Using Eq23)
+r\=¢ . = * * i
(Zz_rz)(;) ot 3 [POYV)=(Um)(9192") G(z.2*)] we find
_ 4+iaaN—1 J 1
[In another work11], it is shown that the width of the scat- p(y)=—(zEiy)"" ——% (zxiy)N—1

ter vanishes adl—«~ and that the spectrum of the Hamil-
tonian in Eq.(28) is actually one dimensional.

1 N—-1 , .
=N > 8Dz+iysgn(lm 2)—w), (41
=)
IV. MANY IMPURITIES AND CRITICAL TRANSITIONS

_ a2mik/IN i : ;
In this section we push the analysis of the preceding secWhere N , andzxiy in the first line of Eq.(41)

. ) . correspond ta being in the upper or lower half plane, re-
g?sr:rigjlﬁircl)?]rpaécvd) replace E29) by a generic probability spectively. The complex eigenvalues are thus equally spaced
i .

. . along the union of two arcs of a circle of radius one. The
Using the determinar81) A(2) Eu[Htlzl(z_”Wi)]__l W€ upper arc is that part of a semicircular arc of a unit circle
write the Green function for the “one-way” Hamiltonian (centered at the origirthat remains in the upper half plane
(28) as after being pushed a distangedownward along the imagi-

© N K nary axis.(The lower arc is of course the mirror image of the
G(z z*)=<£ &ZA(Z)> _ E 2 2 A@+1) . upper arg. Each of these arcs is thus of length arccog(2
’ N A(2) NSoi=r z—w; —1)<m and carriesn,,=(N/2m)arccos(2>—1)<(N/2)
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eigenvalues. This means that the arcs exist only as long as 1 1 \N+1 1

y<17.=1, which should be contrasted with the situation in o Ho — AH —wll

Eq. (27). There, the single impurity does not perturb the unit

circle, which persists for all values af. ) .

The rest of the eigenvalues, which do not have space twhich reflects the fact that the particle has completed one
live on the arcs, must have snapped onto the real axis arf§volution around the chain by performingt 1 steps coun-
formed “wings.” The eigenvalue density along the real axis trclockwise and one step clockwisehich can occur any-
is generated whea/ 9z* hits the step functiong(=Im z) in where along the chajnlt is thus possible to study the non-

Eq. (40) and we find that it is given by Hermitian Hamiltonian(1) by perturbing both from the
Hermitian limit and the maximally non-Hermitian limit.
(x—iy)N-1 In [5] we showed that by a Hermitization method we can

1
Pwing(X,Y) = —&(y) Im————— associate with every non-Hermitian Hamiltonidra Hermit-
7 (x=iy)"~1 ian Hamiltonian. In particular, for the hopping Hamilto-
N . niansH discussed in this paper, the Hamiltoniahinvolved
=_ oY) n-ap” Sing+sinN-1)¢ the hopping of a particle with a binary internal stétall it
w wN—2uNcosNg+1 an “up” or a “down” particle) such that as it hops it flips its
42) internal state. Solving the Schiinger equation associated

with 7 amounts to a simultaneous solution of the Sehro

where we have defined—iy=u €'®. dinge_zr equations associated with the two Hermitian positive
In the largeN limit Eq. (42) tends to a particularly simple Hamiltonians Hy=(z—H)(z—H)" and H,=(z—H)'(z
form. It is clear that this form depends on whethex n, ~ —H). We see that for our “one-way” modelsl; andH,
=1o0ru>pu.. Foru>1 involve only nearest-neighbor hopping, while for the non-
Hermitian hopping models such as Ed) or its generaliza-
sing tions described in Se¢V), H; andH,, involve next-nearest-
Pwing(X,Y) =~ — —0(u?—1)3(y) neighbor hopping. This observation persists in the continuum
® of course. In the continuum the “one-way” Hamiltonian be-
vy 1 _ comes a first order differential operator and thlis H, are
= T 6(x“+y°=1)8(y) (43  second order differential operators. The generic hopping

Hamiltonian becomes a second order differential operator

[which again should be contrasted with the one impurity cas@nd thusH, andH are fourth order differential operators.
(27)], while for £ <1pying=0. [The one-dimensional spectrum predicted by Hd€)—

We thus see that foy< y.=1, there are two wings that (43 is correct. See, however, Sec. Il 2] for an impor-

bifurcate from the arcs at= *x.= = 1— 2. Integrating @nt comment
over Eq.(43) we find that the fraction of eigenvalues that

reside in the wings is Myings/N)=1—(2/m)arccoy=1 V. CONTINUUM “ONE-WAY” MODELS
— (1/ar)arccos(2%— 1), which together with the fraction of . . ) )
eigenvalues 2{,/N)= (1/m)arccos(2?—1) that reside in The discrete “one-way"” models of the two previous sec-

smaller, and vanishes at=y, . At this point the two wings that their continuum counterparts are also exactly solvable.

touch at the origin and the two arcs disappear completely. ~ Starting with the continuum non-Hermitian Sctioger
As already mentioned, there is no criticgl in the single ~ €quation

impurity case, as perhaps might be expected. The many im-

purities case is dramatically different: the long tail of the H=—(1/m)[ dy+ h]?+W(x) (44

Lorentz distribution can overwhelm the non-Hermiticity for

v>1v,., and the spectrum collapses to the real axis. We havﬁlvith constanth), we reach the “one-way” limit by letting

carried out some numerical studies. Fpraway from e 41 h andm tend to infinity with a finite ratich/m (which
=1, our analytic results fit the numerical data closely, but ag, o ¢et 1o 1/2.1n this limit, H in Eq. (44) turns into the first
y approaches, the statistical fluctuation between different j.4ar non-Hermitian operator

realizations of w;} becomes larger and larg@t y=0.9, for
example, forN as large as 400 It would be interesting to
study the character of the transition in more detail. H=—dy+W(x), (45)
It is perhaps worthwhile to remark that although in many
discussions of disordered physics the Gaussian distribution iwhich is the desired continuum “one-way” model. Clearly,
the simplest to deal with, here it leads tg@) not given by  the spectrum of Eq(44) may be solved explicitly for any
an elementary function. W(x), once the boundary conditions are specified. For ex-
Having derived a closed formu[&q. (37)] for the Green ample, if Eg.(45) is defined over &x<L with periodic
function of the “one-way” model28) (with pure clockwise boundary conditions, we have
hoppingHo= ;i ){i +1|), we may now perturb it by adding
a termAH=73;]i+1)(i| (with 7 smal) which allows the

particle to hop counter-clockwise. To first order in perturba- d(X)= iexp( fxdyW(y)— Enx), 9
tion theory, the correction to the Green functi@Y) is now JL 0
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It turns out that(y3"(x)) is independent of REy=wj.
, Thus, the numerator in E¢48) factorizes, renderin®®(x)
independenbf ReE. We therefore conclude that this con-
] . tinuum “one-way” model with periodic Gaussian-random
where, and ¢, are the eigenvectors on the right and on thepotentialw(x) is not very interesting as far as localization is
left, respectively. Imposing the boundary conditions we findconcerned:; its IPNs are independent of energy. The actual
E,=(1/L)f5dyW(y)+2iwn/L (n being an intege).Since  value of PX we found is
we know the spectruE,} explicitly, we can now consider

fov L |
n(X) ﬁex OdyW(y)+En><

2
randomizingW(x) in Eq. (45) and calculate any desired cor- K)oy L 2gLk
relation function given any distribution of the randdf(x). P00 EReX T o9, (49)
For example, ifW(x)=2,___w,exp(2minx/L) is drawn ith
from the Gaussian distribution wit
w siré(narx/L
PLW] = (1/2)ex — (L12g) 3o’ fo0-3, ST 50

e readily find that the averaged density of eigenvalues is
W . VErag Y OT CIgenvalles IS inich is a periodic array of parabolic segments. F{’s

) evidently blow up at ank#0 asL—o. In particular, one

can check thaf 5dxP™)(x) diverges, indicating that none of
the ¢,,’s in this model is square integrable, hence all states in

n=-—o

p(ReE,Im E)E< > 5( ImE— ZLLH

1 (L this model are extended.
X 0 ReE——f dx\/\/(x))>
LJo VI. RANDOM HOPPING MODELS AND THEIR MAPPING
ONTO RANDOM WALKERS
_ L —L(ReE)?/2g? ) . . .
=V Hze In this section we study a different class of models, in
which there is no site energy, but the hopping is random and
- 27N non-Hermitian. We consider the Sckinger equation
x| > s ImE——) , (47)
n=—cw L Edj=s{¢hj1ttj 191, (5D

namely, each of the purely imaginary eigenvaluedHgt= with the hopping amplitudes; andt; generated randomly
—4d,, is smeared along the real axis by the fluctuations of th@ccording to some prescription.
real potentialW(x). The spectrum is thus one dimensional, If the Hamiltonian is Hermitian, thes;=t; . This Hermit-
as in the discrete case. ian problem was studied some 20 years ago by Eggarter and
It is also straightforward to calculate inverse participationRiedinger[9]. They mapped the model onto a random walk
numbers(IPN) [10] of wave functions in this model. One problem and were able to show that all the states, except for
possible definition of th&th IPN in this contextwhich goes the one alE=0, are localized, and furthermore, that the lo-
over into the usual definitiofil0] in the Hermitian cageis  calization length diverges & E| asE— 0. The existence of
given by localized states is in accordance with the arguments of
Anderson and co-workef$]. In contrast, the appearance of
L N K a(2) an extended state at precisé&y- 0 is not generic and is due
fo dX| dp(X) n(X)[“62(E—Ep) to the invariance of the spectrum under — E (as one can
- see by flipping the sign of; for i odd). Thus, the extended
D (S(E—E,)) state aE =0 is unstable under any perturbation that destroys
= n this symmetry, such as adding random site energy.
Here we extend and generalize the analysifOihto the
However, due to Eq(46) we haveqsr“:(x) ¥a(x)=1/L identi- noq-Hermitian case. Our discussion below serves also as a
cally. Thus, ¢(x) ¥n(x) is always extended, independently review of [9], since obviously at any stage we can spt
of E, renderingP ®=L1"¥, An alternative, less trivial defi- €dual tot;. Dividing Eq. (51) by ¢; and defining A,
nition of the kth IPN (which also goes over into the usual =tj-1¥j-1/#; we obtain
definition in the Hermitian cageinvolves the moments R

| ()] . Since A,-+1=E_—’Aj, (52

2

’P(k)(E):n:()

Pn(x) =€~ T y(x), where Rj=s’t;. This equation is of course equivalent to
Schralinger’s equation51) and allows us to solve foA;
iteratively and hence for the wave functigh For a closed
chain the obvious boundary conditionAs, 1=A;.

Performing a gauge transformatign— \;¢; we find that

2K we can effectively transforms’ —(\i.1/\))s’ and t;
{40 (x) 3(ReE—Eo)) (48) —(Nj/Nj1 Y. As perhaps expécte&; is inilarjiant und]er
(8(ReE—Ey)) this transformation. We see by these considerations that the

and also since Ir&,=2in/L is not random, it is enough to
study the momentéy3¥(x)) as functions of R&. Thus, we
define the contribution to thigth IPN at an arbitrary sit& as

PR (ReE,x)=
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(w(m)? (o)
0.005 025

300 n 300 n

(a) (b)

FIG. 2. Graphs of|? of two representative wave functions in one particular realization of the “clock model” with 400 lattice sites. The
wave function in(a) corresponds to the eigenvalue closest to the ofigir0.05—0.06. It is extended and its participation ratio is 0.82. The
wave function in(b) corresponds to the eigenvalue farthest from origin1.33+ 1.14. It is localized and its participation ratio is 0.01.

open chain and the closed chain are quite different. For an Rj+1)
(53

open chain, we can always use this gauge freedom to set all Aj+z=( R.
thet; equal to 1, say, with no loss of generalityhich in the !

Hermitian case would mean setting all tseequal to 1 as  we can now defing;=In A; and interpret; as the position
well, hence getting rid of randomness altogeth€@n the  of a random walker in the complex plane apds time.
other hand, for a closed chain witl sites, we have the Taking the logarithm of Eq(53) we obtain

boundary conditionyy, =14, and hence the constraint
An+1=M\1. The gauge transformation is not in general useful. Rji1

We can of course invent a variety of models. Hatano and Zj+2=2+In—p=+In
Nelson[3] considereds; = rje* andt;=r;e”“ wherer; is
taken from the flat dIStI’IbUtIOI’P(T) (1/2A)6(A2—7-2) defining the motion of the walker.

We have studied one particularly simple model which we As noted above, for the Hermitian cadg, is real and
call the “clock model,” defined by setting; andt; equal to  positive and thus the random walker stays on the real line. In
random phases. In some sense, this model is parucularly apartlcular Eggarter and Riedlinger todk(R; 1 /R;))=0 and
tractive, in that it includes no free parameters. Numerically defined o= ([In(R +l/R)]2> They made the insightful ob-
we found that the eigenvalues in the clock model are distribservation that forE ~0 the last term in Eq(54) (which
uted(in what appears to be a uniform distributjdn a disk  would otherwise be too difficult to treatould be taken into

in the complex plane, centered at the origin and with radiusaccount effectively as boundary conditions set on the walker.
approximately equal tar/2. The rotational invariance of the Consider first the—In[1+E(A;—E)/R]] part of that term.
spectrum results from our freedom to multiply the randomWhen A;~(R;/E)~(a large positive numbgr(we can al-
Hamiltonian by an arbitrary overall phase. ways think ofA; as positive, the walker’s position on the

Recall that the spectrum of any non-Hermitieor Her-  real Ime(namely X;=InA;) decreases rapidly. We can thus
mitian) hopping problem as defined in E(1) is invariant  effectively replace the term under consideration by a reflect-
underE— — E. Furthermore, in the case of the clock model, ing wall located at InR*/E) (which moves off to infinity as
the existence of an extended staté&atO (providedE=0is  E—0), whereR* is a typical value oR; . Consider now the
in the spectrum, which is always the case when the numbe’emammg Im1—E/A;] part of that term This part becomes
of sitesN is odd survives the non-Hermiticity. This is so important whenA;=0O(E), at which point the sequence of
because the Schdimger equatior{51) for E=0 implies that A; switches s|gn We can thus think of a trémr a trap
[t 1l =(tj -1/ ) 1| =19 4|, and so this state is obvi- Iocated atx~In E (which wanders off to—= as E—0).
ously extended. We expect the other states to be localizeiggarter and Riedinger showed that the localization length
with an energy dependent localization length that diverges asan be related to the lifetime of the walker. In a numerical
E—0. These expectations are supported by the numericaimulation we start with a walker being born at the wall (
studies we have don€See Fig. 2. ~ +o); typically it drifts rapidly towardsx~0, where it

We would like now to discuss the divergence of the lo-executes a random walk in its middle age, and as soon as it
calization length a€€—0. We thus focus on Eq51) for  drifts into a substantially negative region, it rapidly ap-
small E, that is,E small compared to a typical value 4f; . proaches its death at~ — .

In the Hermitian case, we have the important observation It is perhaps satisfying that in going from the Hermitian
thatRJ-=|tJ-|2 is real and positive. Alsc: is real, and thus by problem to the non-Hermitian problem the random walker
Eqg. (52) we can takeA; to be real(for an open chain, of has escaped from the one-dimensional world and wandered
coursg@. We see from Eq(52) that for E small compared to off into the complex plane(Strictly speaking, due to the
the typical scale of, the quantityA; changes sign from site properties of the logarithm, the walker now lives on a cylin-
to site, and hence, as pointed out by Eggarter and Riedingedler with circumference 2.) Equation(54) describing the
it is convenient to iterate Eq52) twice and write two-dimensional walker is considerably more difficult to

1B
1+E(A—E)/R;]™!

1-E/A,
1+E(A—E)/R,

} . (59

i



PRE 59 NON-HERMITIAN LOCALIZATION AND DELOCALIZATION 6441
ime disk distribution of the “clock model,” with some residual
fine structure.
At this point we mention a class of hopping models in

sl I which thes's andt’s in Eq. (51) are taken from the same
R D probability distributionP(x) such thatx is always real and
PR S positive. Although the Hamiltoniahl is non-Hermitian, the
RPN SR eigenvalues, that is, the solutions of det(H)=0, are all
. 5,::'._.-.&.‘; oy .‘-:.:. . real for N large. While surprising at first sight, this fact can
gd Tx Vi PAN ES be easily understood. The crucial observation is tRat
Les et it AL Ty e L =s;t; are all real and positive. Fdi large, it does not make
ST IR TR 1.:,:.: - any difference whether the chain is closed or open as far as
RO NG SN the eigenvalues are concerned, and so we can apply the
o .:.;_-',.:},uéff .,:_, ot transformation  s;—s{=(X\j1/\))s;  and  t;—t]
Xy RO SRR =(Nj/N\j4)t; mentioned earlier to makes; =t = ﬁ
LI (which is achieved by choosing, . 1 /\j=l;/s;). Thus the
ity model is effectively Hermitian, that is, the eigenvalues
N "°' (which are gauge invariant, of coujsare real. Note that the

“gauge” transformation just mentioned does not preserve
the localization property of the wave functiafy . For in-
stance, in numerical work, it is convenient to study the par-

FIG. 3. The spectrum of the hopping “sign model” for a chain ticipation ratio, defined byP(E)= L(NZ;|y;]%), such that
with 400 sites. The amplitudesandt take on values- 1 with equal ~P—0 for a localized state anB—1 for an extended state.
probability. [In general, in addition to the eigenvector on the right corre-

sponding to an eigenvaluge,H¢=E, there is also the ei-
treat. One particularly simple case is given by the clockgenvector on the leftd"¢=E* 4. With the normalization
model in which the/R;} are pure random phases. Thus, sepaconditionZ;¢} =1, we can naturally consider the variant
ratingz;=x; +iy;, we see that as long as the term in squaredefinition of the participation ratio given byP(E)
brackets in Eq(54) is close to unity, the walker wanders in —1/(N2 |<;SJ ¢J|2)] Clearly, P is not preserved by the
they direction, with itsx coordinate hardly changing. “gauge” transformation in general, and therefore, say, a lo-

We can estimate the localization length(E) rather calized state may be gauged into an extended $tateice
crudely by noting that in thésupposedlyexponential tail of ~ versa, unless the\; are appropriately bounded as a function
the localized wave functiopA ;| ~exd +1/L(E)] and sox; of the site indeX. We thus have to do a case by case study
~=* 1L (E). Thus we estimate IL(E) to be given by some of how the\;’s behave as a function ¢fto infer the local-
averagex coordinate of the walker. In numerical studies, weization properties of the original wave functions from the
observe that indeed, with the walker startingatO it drifts ~ gauge transformed wave functions of the effectively Hermit-
into a random walk around some average, (but then ian problem, which are of course all localized, as predicted
eventually wanders off by Anderson and others.

One message of this section is that randgnon- Note that the “sign model” mentioned in the preceding
Hermitian hopping models appear to be considerably moreparagraph and the hopping Hamiltonibly in Eq. (2) both
complicated than randorfnon-Hermitian site energy mod- evade the defining conditions of this class of crypto-real
els. Indeed, let us mention that another interesting model weodels. An interesting question in mathematical physics is to
have studied, which we call a hopping “sign model,” is a calculate the fraction of eigenvalues escaping into the com-
restriction of the clock model, in whick; andt; are ran-  plex plane when the support &f(x) includes negative val-
domly (and independentjyequal to* 1. This restriction de- ues ofx.
stroys the rotational symmetry of the spectrum of the clock Finally, in connection with the question raised in the pre-
model, reducing it to a fourfold symmetry, since eigenvalueseding paragraph, we mention here a class of hopping mod-
must come in quadrupletsE, = E* (the Hamiltonian in this  els in which thes’s andt’s in Eq. (51) are of the forms;
case is real and the symmetry of the spectrum urgler ~ =t+T,; andt;=t—T,;, where the independent random am-
—E remains intadt We obtained the density of eigenvalues plitudes{T;} take values in the range T<T;<T according
numerically, and it exhibits a complicated interesting struc-to some, say, even probability distributitﬁﬂnis model is a
ture as shown in Fig. 3. It is an interesting challenge toone dimensional discrete analog of the two-dimensional
calculate this structure analytically. “model 1" in the paper by Miller and Wang iri2]). Fort2

The hopping “sign model” is the strictest restriction of >T? all R; are clearly positive with probability one, and thus
the “clock model.” It is thus interesting to investigate how the model is “crypto-real.” In general, the eigenvectors of
the eigenvalue distribution of the *“sign model” changesthe Hermitian gauge transformed Hamiltonian would all be
when we allow the hopping amplitudes to take on more valdocalized. Eigenvalues would start migrating into the compex
ues. For example, we studied numericallyZa model in  plane only whert?<T?,
which s; andt; took on (independently values from{*1, An amusing exception to the assertion that all states of the
*+i} with equal probability. We found that the intricate struc- Hermitian gauge transformed Hamiltonian are localized for
ture in Fig. 3 was largely washed out towards the uniformt?>T? is provided by the case in which tHg;} take on
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VII. CONCLUSION
APPENDIX: NON-HERMITIAN PERTURBATION
THEORY

We have studied localization and delocalization in a wide
class of non-Hermitian Hamiltonians. In various simplifying
|Im|l‘S we were able tO Obtain analytic eXpreSSionS. Our firSt |t iS Of course a trivia' exercise to treat the mode| in Eq

model(9), while it involved only a single impurity, was able (1) perturbatively in the strength of the random impurity.
to capture the nonperturbative essence of the localizatiomyenote the eigenvalues f, andH by {E,} and{E ,(w)},
delocalization transition. It was widely applicable to a ge-regpectively. WriteHo=S"ES with E theﬂdiagonailt matrix
neric Hy, in any spatial dimensions. For more explicit ex- yith elements(E,} (and thus the columns @& ! and the

pressions, we .ha.d to invoke the maximally non-Hermitian, Ofrows of S are the right and left eigenvectors Hif,, respec-
“one-way" limit, in which the spectrum oH, was a circle.  yely). Define

(It is difficult to imagine that comparably simple expressions

can be obtained when the spectrumtyf is an ellipse. We

were then able to analyze the problem of infinitely many E,L(W):E,ﬁz WiEp,i"'Z WiW;E i+ . (A1)
impurities, one at each site. Results were given for several ' "

representative probability distributior3(w) for the impu-  than by simple arithmetic we obtain

rity potential energy. We analyzed the phase transitions as

parameters irP(w) were varied. s 1g gs1g.
. L. . . . -1 T “p)~jv vl
We studied non-Hermitian random hopping Hamiltonians. Ei=S,'Su. Euj=> e A2
It has been known that the Hermitian one-dimensional ran- vEp woTv

g?:g|2r?1pg:1n?hEr?:;??ngar\l/vbeef&i%ptehdatl ni;o ga:)i%n?rcc))nr; \ﬁe”énd so on. It follows that the averaged density of eigenvalues

s A 2
Hermitian to the non-Hermitian problem, the random WalkerOf H is given toO(w?) by

steps off the real axis and goes wandering off into the com- w2

plex plane. We showed by numerical work that for the ran-  ;(x,y)=py(x,y) + — 2 ( 5" (x—ReE )
o . . L L N 'u,

dom phase or “clock model” the density of states appeared ©

to be uniformly distributed over a disk, while in contrast for

the “random sign” model the density of states showed a X &' (y—1Im EM)E ReE,; IME,

fascinatingly intricate structure. [

The study of non-Hermitian Hamiltonians opens up a rich 1
area for exploration. We can immediately think of many __(zgr(x_ReEM)g(y_|m E,)
guestions to be answered. For instance, consider the many 2
body problem(see alsqd3]). In the “one-way” model of Eq.
(28) the many(noninteracting fermion ground state will be XE ReE ;i — 8" (x—ReE,) 8(y—ImE,)
described by a Slater determina#it~det ;[ #;(x;)] which i
in the largeN limit assumes the fornil;.;[e'%—e'’]. The
guestion arises, even before we consider impurities, of what XE (ReEﬂi)2+[X<—>y,ReHIm]] ) (A3)
is meant by the lowest energy stateHt§. In other words, as i
we fill the system with noninteracting fermions, how do we
order the energy levels if they are arranged in a circle? Thes§
guestions may perhaps be answered by coupling the syste . L e 0
o ; and in the largeN limit there are drastic simplifications.
'goaﬁoer:](ghz;%emsuch asa _rad|at|0n field or a heat batrhich We haveE, = 1N and so InE, =0 and S.(ReE,)?
ge energy with the many body system. Iz i ®
As another set of questionsy we can ask how a non=1/N. Thus the only nontrivial quantity that comes in is
Hermitian many body system can be second quantized?

here we have used onkw;w;)=w?5,;. The result(A3)
Ids for allH, (and for finiteN). For the specifitd, in Eq.

What are some of the properties of a non-Hermitian quantum z ) :i 2 1
field theory, such as a gauge theory in which the gauge po- < ~#" Nt ;5 coshh+ik(u)]—coshih+ik(v)]’
tential A, is non-Hermitian? In a relativistic theory, if the (A4)

Hamiltonian becomes non-Hermitian, does Poindakeri-
ance imply that its other nine generators should become nonvhere k(u)=27u/N, ©=0,1,... N—1. The expression
Hermitian as well? (A3) simplifies to
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—125 ReE,—w?2>, ReE —zwdga 1+W2 6
pXY) =y > X—ReE,—w"2, ReE, p(Xy)= e 5 |cos
W2
X8l y=ImE,—w?Y, ImE,; |. (A5) xo|y=|1-— sina). (A6)
I

The sum in Eq.(A5) can be converted to an integral and To this order inw, the circle has been turned into an ellipse.
evaluated in principle. For the “one-way” model described Of course, we do not see any trace of the wings in perturba-
in the text the integral is particularly simple and we obtain tion theory.
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