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We study the evolution of interacting individuals located on the sites of a regular lattice. The individuals
play a two action game in which the players either cooperate or defect with respect to a certain issue. The main
rule of the game is that a player does not change his action when he and his opponent have held the same
action in the previous round. Numerical simulations performed on a square lattice show a stationary state in
which the lattice has a finite number of cooperators and defectors and two frozen states, one full of cooperators
and the other full of defector§S1063-651X99)03806-4

PACS numbes): 02.50.Le, 05.50tq, 64.60.Ht

[. INTRODUCTION The main rule of the game is that a player does not change
his action when he and his opponent have held the same
The problem of the conditions for emergence of cooperaaction in the previous round. This leads to the existence of
tion among individuals who behave according to their self-two frozen(absorbing states, one in which the lattice is full
interest was introduced and analyzed by Axelfddl The Of cooperators and the other full of defectors. Numerical
ana'ysis is made W|th|n the framework Of game theory by th§imu|ati0ns were Carried out in one and two dimenSiOHS.
use of atwo actiongame known as the prisoner’s dilemma in Simulations on a Square lattice have shown that besides the
which the players either cooperate or defect with respect to V0 frozen states there is also a stationary active state in
certain issue. The prisoner’s dilemma game is such that fophich the lattice has a finite density of cooperators and de-
any choice of one p|ayer’ Cooperation or defection, the Otheiectors. Our simulations show that the active state is present
gets a higher payoff by choosing the defensive strategy of? two dimensions but not in one dimension.
always playing defection. However, if both players choose

such a defensive strategy the total payoff will be smaller than Il MODEL
the total payoff they would get if both had chosen coopera- '
tion. This is the static solution of the game. Consider a population dfl players located on the sites of

The dynamical approach to the problem was introducedh regular lattice. The game evolves as a succession of rounds
by Axelrod [1] and widely used by other authof®,3]. At  occurring at time intervals in which the individuals play ei-
each move, the players revise their choices and play accordher cooperatioC) or defection D). At each time step a
ing to specific rules or, using a more appropriate term used iplayer, chosen at random, revises his action according to a
game theorystrategies The next move may depend only on rule (strategy that specifies the outcome depending upon
the last move or may include the whole history of the gamewhat his neighbors have played in the previous round. The
so far. The strategy may be deterministic, such as the tit-formodel is a stochastic process governed by a master equation
tat strategy, or probabilistic. Here we consider the evolutionwhose transition rates will be given below.
of the game to be a Markov process in which strategies are A given player interacts only with the players belonging
probabilistic ones and depend only on the last move. Moreto a small neighborhood, here defined to be the nearest
over, the Markov process is considered to be of the continuneighbor players. But, following Axelrod], we assume that
ous time type, described by the master equation, in contrast given player interacts with them one at a time. Four pos-
to a probabilistic cellular automaton in which the states aresible outcomes may occur in a two action game between a
updated synchronously. given player and his opponen€C, CD, DC, and,DD,

In this paper we deal with the problem of finding the which Nowak and collaboratois$] call “reward,” “loss,”
conditions for the emergence of cooperation in the evolutiori‘temptation,” and “punishment,” respectively. The rules
of games within the context of the technical resources of ave propose for conducting the game are distinct from those
representation by lattice gases and its formalism. Thus, wadvanced by Szaband Tdke [9].
present models for the evolution Nfinteracting individuals First of all, a player is chosen at random, say player
located on the sites of a lattice. The individuals play the twoSecond, this player revises his action in the following way.
action game only with individuals belonging to a small A neighboring opponent, say playgris chosen also at
neighborhood which intends to simulate real interactiongandom.
among individuals of a population. Similar spatial games (&) If in the previous round both playersandj, have held
have been considered before by several author®]. In a  the same action, that is, if the previous outcomes were “re-
narrower context, we come to focus more specifically on thevard” or “punishment,” then the player does not change
work developed by Szaband Tde [9] and related to it we his action and plays as before.
aim, in this article, to obtain similar results with distinct and  (b) If, on the other hand, they have held distinct actions
much more simplified rules to be described below. then two cases should be considered.
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(1) Playeri has playedC and player has played, that
is, the previous outcome was “loss.” In this case player
playsD, with a transition rate.

(2) Playeri has played and playerj has playedC, that
is, the outcome was ‘“temptation.” In this case another
neighboring opponent, say playkris chosen at random. If
playerk has playedC then playeri changes his action, and
plays C, with a transition rateéh,. If, however, playelk has
playedD then playeri changes his action, and plags with
a transition rateo,.

The model has three parametexsb,, andb,, but they

can be reduced to only two if one rescales the time. Thus we

define the retaliation parametet a/b, and the cooperation
parametec=Db, /b,. The parameter may be interpreted as

the strength with which a player retaliates against his oppo-

nent who has defected when he has cooperated. Increasi
the strength of retaliationwe expect a decrease in the num-
ber of cooperators. The parametegives the degree of co-
operation among individuals. Increasingve expect an in-
crease in the number of cooperators.

In a formal way, to each sitewe attach a dynamic vari-
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FIG. 1. Phase diagram in the,€) plane obtained from numeri-
cal simulation on a square lattice. The three phases are full coop-
erator (C) state for whichp=1, active statgA) for which 0<p
<1, and full defector statéD) for which p=0. The transition lines
C-A andA-D are critical lines whereas the lif@-D is a discon-

able »; that takes the values 0 or 1 according to whether thdinuous transition line. The three lines meet at the point=1.

player at sitei chooses defection or cooperation, respec-

tively. The transition ratev;(#) from »; to 1— %, is then
given by

wi(7n)=

N| Bk

1
2 | m(-matd-m)my=y

X
k(

[by7ctba(1= )], D

)]

wherej andk are nearest neighbors bfindz is the lattice

IIl. NUMERICAL SIMULATION

We have simulated the model in one and two dimensions.
The model exhibits two frozefabsorbing states: The full
cooperator statéC) in which p=1 and the full defecto(D)
state in whichp=0. In addition to these two frozen states the
model may display an active statd) for which 0<p<1.

Our simulations indicate that the active state is present in
two dimensions but not in one dimension.

The phase diagram for the one-dimensional case displays
only the two frozen states separated by a first order transition
line. The full defection state occurs for-1 whereas the full

coordination number. The master equation that governs th@ooperaﬁon state occurs fox 1, independent of the value

time evolution of the probability P(%,t) of

=(n1,72, -..,my) at timetis given by

n

d . .
GPnO=2 {wi(/POH=wi(mP(n.0} (2

wheren'=(7n, ..., 1= 5, ..., 77).

We are mainly interested in the density of cooperagors
=(m;). In the simple mean field approximation the time evo-
lution of this quantity is given by

d
giP=P(1=p)l—a+tbip+by(1-p)]. 3

The stationary solutions arp=0, the full defection(D)
state,p=1, the full cooperatioC) state, and

(4)

the active(A) state. Linearization around=0 shows that
the D state is stable for>1 and unstable for<1. Linear-
ization aroundp=1 shows that theC state is stable foc

>r and unstable foc<r.

of c. The results were obtained for a chain of 1000 sites with
periodic boundary conditions. The initial state was a com-
plete random state, that is, a configuration in which each site
was occupied by a cooperator or by a defector with equal
probability. The number of Monte Carlo steps varied from

10* to 1¢F.

In two dimensions, we have simulated the model on a
square lattice with 108 100 sites starting with a complete
random configuration of players. We have used a number of
Monte Carlo steps that varied from 4@ 1. The phase
diagram, shown in Fig. 1, displays three phases: the frozen
full cooperation statéC) with p=1, the frozen full defection
state(D) with p=0, and the active stat@®) with 0<p<1.

The active state is present only within the regionl and
c<1. In this region there are two transition lines correspond-
ing to the transitionsC-A and A-D. The densityp varies
continuously as one crosses these two lines. In the ragion
>1 andc>1 there is a transition line corresponding to the
transition C-D in which the density jumps from the value
p=1to p=0. The three lines meet at the pomtr=1.

As one varieg for a fixed value ofc<1 the densityp
varies continuously as shown in Fig. 2. Each point in this
figure was calculated by using 40onte Carlo steps. The
transition from theA state to the froze® state is a continu-
ous phase transition and its critical behavior is in the same
universality class as the direct percolation model. We have
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FIG. 2. Density of cooperatqs versus the parameterfor sev- FIG. 3. Plot of Inp versus IMAr whereAr =r—r for the case
eral values ot, obtained from numerical simulations. From left to c=0. The three lines correspond, from left to right, to tentative
right the values ot are 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, and 0.9.  values ofr.=0.798, 0.800, and 0.802. The best linear fit gives

. =0.800+0.001 and the critical exponeg=0.58+0.01.

calculated the critical exponeptrelated to the order param-
eter and found results which are in fair agreement with theye|ps to show clearly that cooperation or defection are col-
known results for.such a universality class. As an exampleiective phenomena that do not depend on how the players
we have plotted in Fig. 3, for the case o0, the Inp  choose their actions in the beginning of the game. It is im-

versus Inf.—r) and seek the best linear fit. We have foundportant to note that such a behavior is typical for all systems
for this caser,=0.800+0.001 and, from the slope of this presenting absorbing states.

plot, the critical exponenB=0.58+0.01, which is in fair

agreement with reSl_JIts for direct percolation _iﬁr% dimen- IV. CONCLUSIONS
sions[10]. Each point was calculated by using®1Blonte
Carlo steps. Also, as expected, we found that, ferc8<1 The first result of the analysis conducted above is that the

the transition from theA state to the frozel€ state is also model, in two dimensions, exhibits, in a way similar to that
continuous and belongs to the same universality class. of Szaboand Tdke [9], two frozen(absorbing states: the full
We remark that the case=c=1 corresponds to the voter cooperation p=1) state and the full defectiorpE&0) state.
model [11]. It is known that in two dimensions the voter In addition, as a summary of the above, the model also dis-
model has only two stationary states independent of the iniplays an active state for which<Op<<1 . The full defection
tial conditions[11]. In the present case they correspond tostate occurs for sufficiently large values ofand the full
the frozenC andD states. cooperation state occurs for sufficiently large values. &for
Our final result comes from the comparison with a latticecertain combinations of andr we also have an active state.
with a few number of players interacting according to the The second result has to do with the critical exponent
same rules. In this case, one observes only the two frozemssociated to the power law behavior of the order parameter
states. For fixed values of the transition rates one reacheghen the transition rates approach their critical values. Our
either state depending on the initial conditions. As the numhumerical results for the critical exponeBtput the present
ber of players grows to a large number of players the modeinodel into the universality class of direct percolation as ex-
ends up exhibiting only one of them, or the active statepected according to the conjecture by Grassbefg2} and
independent of the initial condition. So, this comparisonJanssetl13].
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