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To understand the origin of the dynamical transition, between high-temperature exponential relaxation and
low-temperature nonexponential relaxation, that occurs well above the static transition in glassy systems, a
frustrated spin model, with and without disorder, is considered. The model has two phase transitions, the lower
being a standard spin glass transitigm the presence of disordeor fully frustrated Ising(in the absence of
disordey, and the higher being a Potts transition. Monte Carlo results clarify that in the modebwitlithou?)
disorder the precursor phenomena are related to the GrifbthBotts transition. The Griffiths transition is a
vanishing transition which occurs above the Potts transition and is present only when disorder is present, while
the Potts transition which signals the effect due to frustration is always present. These results suggest that
precursor phenomena in frustrated systems are due either to disorder and/or to frustration, giving a consistent
interpretation also for the limiting cases of Ising spin glass and of Ising fully frustrated model, where also the
Potts transition is vanishing. This interpretation could play a relevant role in glassy systems beyond the spin
systems cas¢S1063-651X99)03106-3

PACS numbeps): 05.70.Fh, 02.70.Lg, 75.10.Nr

Experiments on glassy systems such as structural glasseshould occur also in fully frustratedFF) Ising system$12]
ionic conductors, supercooled liquids, polymers, colloidswhere, due to the absence of disorder, there is no Griffiths
and spin glasseéSG) [1] show that precursor phenomena phase while the percolation temperatdigis finite. Recent
occur at some temperatufie® well above the static transi- simulations[13] on the two-dimensiona{2D) and 3D FF
tion. In particular, the density-density or spin-spin autocor-Ising model in fact show the existence of nonexponential
relation function in glassg] or spin glassef3] has a tran-  relaxation below a temperature equal within the numerical
sition from a high-temperature exponential behavior to gorecision toT .
low-temperature nonexponential behaviorTdt. Many at- One might wonder whether also in spin glas$&s- T, or
tempts to relate these dynamical transitions to thermodyinsteadT* =T, since both results would satisfy Randeira’s
namic[4] or, alternatively, percolatiof5,6] transitions are criterion. Unfortunately, it is found thak, is less but close
present in the literature, each one supported by numericdb T, and it is very difficult numerically to locate precisely
simulations[5—8]. In particular for SG models, where ran- T* to distinguish betweeii, andT,.
dom distributed ferromagnetic and antiferromagnetic interac- In order to better understand the role of the percolation
tions give rise to frustration, Rander&t al. [4] suggested transition and the location of* in the spin glass model in
that T* should be smaller than the Griffiths temperatlige  this paper we consider a frustrated model in the presence of
[9], i.e., the critical temperature of an Ising ferromadri€y. disorder, wherd . is quite a bit larger thait,, so that it can
Intuitively the reason is that the randomness of the modebe easily distinguished. The numerical results allow us to
allows the presence of exponentially rare large unfrustratedonclude tha™* =T.. Moreover, in the absence of disorder,
regions that reach an ordered stateTat each one with a i.e., in the FF caséwithoutT,), the relevant role oT , in the
characteristic length and a characteristic relaxation time. Thdynamical transition is confirmed, giving a scenario consis-
distribution of relaxation times below, gives rise to a non- tent with all the previous results. In particular, the model
exponential global relaxing correlation for the system, thereconsidered here clarifies the physical meaning of relat-
fore T*<T,.. Numerically it is found thaf™* is close toT, ing it to a Potts transition that vanishes in the SG case and in
[1,7.9. the FF Ising case. Therefore, in the SG case there are two

It has also been suggested that a mechanism which woulanishing transitiongthe Griffiths atT, and the Potts tran-
lead to nonexponential relaxation in frustrated systems is asition atT,) in the paramagnetic phase that give rise to non-
sociated with percolation of the Fortuin-Kasteleyn—Coniglio-exponential relaxation. However, sintg> T, the first tran-
Klein [11] (FK-CK) clusters, which can be proved to occur sition dominates hiding the effects of the lower transition at
at a temperaturd,<T.. Since it is argued that above the T,. In the FF Ising model instead there is only the vanishing
percolation transition the available phase space becomeransition atT, which now can be manifested, marking the
rather ramified, enough to slow down the dynamics, this perenset of nonexponential relaxation.
colation mechanism implies that nonexponential relaxation Let us consider the following frustrated model with

2s-state spin variables whose Hamiltonian is given by
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PSG modelWe have studied the normalized autocorrela-
tion function

Xsa(t) = xsa(t—>)

0= ed 0~ xeal1 =) @
of the time-dependent nonlinear susceptibility
17N 2
Xsdlt)= N< > Si(t"'to)a(to)} > : 3

FIG. 1. Qualitative phase diagram for the PSG model in 3D agvhere N is the total number of spind, the equilibration

function of s. Solid lines mark real thermodynamic phase transi-
tions, while dotted line marks the vanishing Griffiths transition.

Cross marks Potts vanishing transition in 8wl (*+J Ising SQ

time, xsc(0)=N, and where the bar stands for the average
over the disorder and the angular brackets for the thermal
average. Following Ref5] the infinite size behavior df(t)

case. An analogous phase diagram holds for the PFF model with laas been extrapolated at evdrplotting the data for finite

FF Ising phase at the place of the SG phds&1§ and without the
G phase.

where to each lattice site is associated an Ising $pin
==*1 and ars-state Pott$14] spino;=1,... s. The sumis
extended over all nearest-neighbor sites,0 is the strength
of interaction, ancs; j=*+ 1 is a quenched variabl¢he sign
of the interactioin

When thee; ; are randomly distributed, the model is a
superposition of a ferromagnetgestate Potts model and a

+J Ising SG and we will refer to it as the Potts spin glassthe differenceT,— T

(PSG; when thee; ; configuration is ordered in such a way

linear sized vs 1L. To test the form off (t) we fitted the
data (a) with a simple exponential, finding good fits only
asymptotically for long time and for high temperaturés),
with a stretched exponentidl, exd (t/7)?], finding that it
fails to fit the data only for short times, atid) with the form
fot "X exd (t/7)#] suggested by Ogielsk¥], finding that it fits
very well the data over all the time’s range and the tempera-
ture’s rangd see Fig. PA)] [22]. The parameterg, 7, andx
used in the fit(b) and (c) are plotted in Fig. @B). In both
types of fit the correlation functions turn out to be nonexpo-
nential forT<T,. The results show that* =T, . Since here

p IS quite large[23], it is possible to
excludeT* <T, [24].

that every elementary cell of the lattice has an odd number of pEE model We have studied the autocorrelation function

—1 signs(i.e., i_s frustratey] the Pott_s model ?s superim-  4efined by Egs(2) and (3) without the average over the
posed to a FF Ising model, and we will refer to it as the Pottgjisorder, since there is no disorder in the model in this case.

FF (PFB model. Foréd, =1 (i.e., s=1) we recover, re-
spectively, thet J Ising SG and the FF Ising model.

Both the PSG and the PFF models exhildis—1§, for
everys>1, a thermodynamic transition @(s) in the same
universality class of the ferromagnetistate Potts transition

(see Fig. 1 This transition corresponds to the percolation

transition of FK-CK clusters. For example, fe=2 at T,

The data, shown in Fig.(8), are fitted with the above-
mentioned fitting formsd), (b), and ). The fit parameters
and the integral autocorrelation tinj@1] are presented in
Fig. 3(B) and show that the onset of nonexponential behavior
is T* =T, within the numerical precisiof24].

This dynamical behavior is still present in tke=1 case
[13], where the Potts variables are not present anymore and

there is a second-order phase transition in the universalitshe thermodynamic transition &, disappears. If there were

class of the Ising transitiofil6,18. Therefore,T, for s>1

no frustration, the spin variables would become critical at

marks the Potts thermodynamic transition, which disappear!;p, like the Potts variables, giving rise in the free energy to
for s=1 [19]. Both the models also exhibit a lower transition two minima separated by an infinite barrier. However, due to
in the same universality class of the SG transition and of thérustration in the spin variables the two minima in the free
FF Ising model, respectively, for the PSE5] and the PFF  energy will evolve into a corrugated landscape. It is this
model[17]. The PSG model also has a higher Griffiths tem-corrugated landscape which gives rise to the nonexponential
perature, aff¢(s), which is the transition of the model with- behavior in the dynamics.

out disorder, namely with ak;;=1. It is easy to recognize In the disordered case one expects that the free energy
that in this case the model corresponds to the ferromagnetistarts to appear corrugated in phase space at the Griffiths

2s Potts model, therefore the Griffiths temperatdrgs)

temperaturd . due to the effect of the disorder. As the tem-

corresponds to the transition temperature of the ferromagperature is lowered &, the frustration induces more rough-

netic 2s Potts mode[14].

For s=1, that is, thexJ Ising SG, Ogielski7] showed
that nonexponential relaxations appear belw separating
the paramagnetidPM) phase in a high-temperature PM
phase and a low-temperature Griffith& (in Fig. 1) PM

ness in the free energy landscape and preliminary numerical
results[25] suggest a relation betwediy anol the crossover
for = from a high-temperature power-law behavior to an
Arrhenius behavior, well seen experimentdIB6].

In conclusion, we have compared the dynamical behavior

phase. An analogous phase diagram holds for the 2D casef 2s-state PSG and PFF models, wik 2. These models

with the SG phase suppressedTie 0.

have two thermodynamic transitions, the lower temperature

Here we will analyze the dynamical behavior of the transition being a SGor FF Ising transition and the higher

2s-state PSG and PFF models, wik-2 in 2D, simulated
by standard Monte CarlgMC) spin-flip dynamics.

at T, being an Ising transition. In the disorder¢BSG
model nonexponential relaxations start to appearTat
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10 k “ ‘ g x x netic interaction and three ferromagnetic interactions per elemen-
3 ‘ = - tary cell, such that the systems are fully frustrated in a deterministic
1 way, with p.b.c. and. =20, 24, 30, 40, 50 for the temperature range
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22 24 26 28 3 32 34 36 38 2.65<T<3.25, including theT ,=2.73+ 0.03[18] where a second-
B) kBT/J order Ising transition occurs. The statistics is three times that used
for the PSG without the average over the disof@&]. Only some
data for some temperatures are sho¢#). Parameters used in part
(A) and integral correlation timd21]. In (A) and(B) symbols are

FIG. 2. PSG:(A) Nonlinear susceptibility correlation function as in the preceding figure. ) arrow showsTy,.

for L—o limit from data for square lattices with linear sizéa
lattice steps L =20, 24, 30, 40 and periodic boundary conditions
(p.b.c) at temperature range 225 <3.75(in J/kg unity), includ-
ing T,=3.641[14] and T,=2.925-0.075[16]. Since we are well
above the SG transitiofoccurring atT=0 in 2D), relatively low

=T,, i.e., at the Griffiths temperature, extendingste2 the
previous results fois=1 [7,8]. In the PFF model, where
statistics produce good d4dt20]. For clarity we show only some of there is no d|sor_der an_d the Griffiths phase is no.t present, the
the recorded data for some of the simulated temperatures and ﬂfect of frgstraﬂon which occurs di, can be mquested. In
enlarged view of the lower temperatures. Points are results of thé3Ct, we find nonexponential relaxation starting Ty for
simulation, solid lines the fits with the forift) (see text, dashed ~boths=2 ands=1 [13], where a real and, respectively, a
lines with the form(b), and dotted lines with the forrte). Where ~ Vanishing transition occur.

not shown, the errors are smaller than the point's i@ Fit pa- This scenario gives a consistent interpretation of all the
rameters used in paff): Circles are the parameters for the form €existing results about frustrated spin systems in the literature,
(c), triangles for the form(b); squares are the integral correlation and could be relevant in general to understand the high-
times[21]. Arrows showT, andT,. temperature behavior of glassy systems. In particular, we
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suggest that the relation of the precursor phenomena with the We would like to thank the CINECABologna, Italy for
Griffiths phase and the Potts vanishing transition should b&€PU time on the Cray T3D parallel computer that was used
experimentally studied in regular crystals, such as cupratesp do part of the numerical work. Partial support was given
with doping induced disorder, where both the SG case andly the European TMR Network-Fractals under Contract No.
the FF case can be reproduced. FMRXCT980183.
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