PHYSICAL REVIEW E VOLUME 59, NUMBER 6 JUNE 1999
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Phase transitions from an active into an absorbing, inactive state are generically described by the critical
exponents of directed percolatiabP), with upper critical dimensiord.=4. In the framework of single-
species reaction-diffusion systems, this universality class is realized by the combined précessesA,
A+A—A, andA—0. We study a hierarchy of such DP processes for particle spAcies. . . , unidirection-
ally coupled via the reaction8—B, ... (with ratesu,g, - ..). When the DP critical points at all levels
coincide, multicritical behavior emerges, with density exponegswhich are markedly reduced at each
hierarchy level =2. This scenario can be understood on the basis of the mean-field rate equations, which yield
Bi=1/2"1 at the multicritical point. Using field-theoretic renormalization-group techniques=id— e di-
mensions, we identify a new crossover expongnand computes= 1+ O(€?) in the multicritical regimefor
small uag) of the second hierarchy level. In the active phase, we calculate the fluctuation correction to the
density exponent on the second hierarchy leygl=1/2— e/8+ O(€?). Outside the multicritial region, we
discuss the crossover to ordinary DP behavior, with the density expghent — e/6+ O(e%). Monte Carlo
simulations are then employed to confirm the crossover scenario, and to determine the values for the new
scaling exponents in dimensiods< 3, including the critical initial slip exponent. Our theory is connected to
specific classes of growth processes and to certain cellular automata, and the above ideas are also applied to
unidirectionally coupled pair annihilation processes. We also discuss some technical as well as conceptual
problems of the loop expansion, and suggest some possible interpretations of these difficulties.
[S1063-651%99)02906-2

PACS numbe(s): 64.60.Ak, 05.40-a, 82.20-w

[. INTRODUCTION far from equilibrium are in general not conformally invariant
since there is no symmetry between spatial and temporal
The notion ofuniversalityplays a central role in equilib- degrees of freedom. Nevertheless it appears that universality,
rium as well as in nonequilibrium statistical mechanics. Italthough probably in a weaker sense, may also play an im-
was first used by experimental physicists in order to describportant role in nonequilibrium critical phenomena. As in the
the observation that certain thermodynamic observablesase of equilibrium physics, the picture that emerges is that
measured in different and apparently unrelated equilibriunonly a few distinct universality classes seem to exist. The
systems near a continuous phase transition may exhibit thenown examples include phase transitions in driven diffusive
same type of singular behavifit]. It was, in fact, then real- systemg5], the power-law decay in annihilation-coagulation
ized that the majority of equilibrium critical phenomena be-processef6—8§], the “parity-conserving” dynamic transition
long to very fewuniversality classewhich are characterized for branching and annihilating random walks with even off-
by a certain set of critical exponents. In order to explainspring numbef9], nonequilibrium roughening transitions in
universality, various theoretical approaches have been comprowth modelg10], specifically in the KPZ equatiofil1],
structed, for example scale invarian€2], field-theoretic and the critical points of directed percolatiph?], as de-
renormalization-group techniqugs], and the theory of con- scribed by Reggeon field theo[¥3], and of dynamid(iso-
formal invariancg4], which predicts a series of universality tropic) percolation14]. As a unifying theoretical framework
classes for two-dimensional critical systems. Thus in equilibis not yet available, we are still far from a systematic classi-
rium statistical mechanics, especially in two dimensions, thdication of nonequilibrium critical phenomena. Therefore one
concept of universality seems to be well understood. important direction of research is in fact to search for further
For systems far from equilibrium, however, the situationunknown universality classes.
near dynamic continuous phase transitions is less clear. Non- Another direction, which is actually the objective of the
equilibrium processes are much harder to solve or even tpresent paper, would be to investigate the known universality
characterize exactly since the probability distribution cannotlasses in more complicated contexts. The basic idea is to
be obtained from an energy functional, but has to be derivedse several nonequilibrium systems of a known universality
directly from the equations of motion. In addition, systemsclass as building blocks of a superior structure in which the
systems are linked to each other in a specific manner. The
question posed is whether these systems can be combined in
*Present address: Physics Department, Virginia Polytechnic Instisuch a way that novel critical behavior emerges. In other
tute and State University, Blacksburg, VA 24061-0435. words, is it possible to couple several nonequilibrium sys-
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tems of a given universality class in such a manner that théuctuating into an absorbing state, i.e., a configuration which

resulting critical behavior is characterized by independenbnce reached, cannot be escaped from.

critical exponents? The canonical example for a transition into an absorbing
Such a model witlquadratically coupled directed perco- state is the critical point of directed percolatitP). In DP,

lation (DP) processes was recently investigated by JansseRijtes of a lattice are either occupied by a partietive) or

who found that despite the apparent complexity of thisempty (inactive). The dynamic processes are that a particle

coupled multispecies system, the universality class of th@an self-destruct or produce an offspring at a neighboring

active/absorbing transition was that of DP it§dlb]. Inthe oty site. If the rate for offspring productigris very low,

present paper we show that novel critical behavior mayyhe system always reaches a state without particles which is

however, occur when several copies of the same nonequiligy,e absorbing state of the system. On the other hand, when

rium process ardinearly coupled in one direction without eyceeds a certain critical valge, another steady state with
feedback. More precisely, we consider a linear hierarchy of finjte particle density exists on the infinite lattice. In be-

unidirectionally coupled copiesA, B, C, ... of thesame tyeen, a continuous phase transition takes place which is
nonequilibrium system: characterized by long-range power-law correlations. Another
example considered in the present work is the annihilation

ASBoCose-. . (1.0 processA+A—0 [7,8] in which the particle density decays

ast™%? in dimensionsd<2. Here the absorbing statthe
empty lattice is approached without the tuning of any pa-

The systems are coupled in such a way that the dynamicahmeter, i.e., the process is “critical” by itself.
processes at a certain level in the hierarchy depend on the To construct a unidirectionally coupled hierarchy of such
state at the preceding level but not vice versa. For exampl@rocesses, we implement additional dynamical rules which
subsystenmA, the lowest level in the hierarchy, is not influ- allow each particle at a given level in the hierarchy to induce
enced by the dynamics & andC and thus it evolves inde- the creation of a new particle at the same lattice site of the
pendently as if the other hierarchy levels did not exist. Subnext level. This ensures that the composite system still has an
systemB in turn is affected byA but not byC, and hence this absorbing state, namely the empty state without particles.
is the first level in the hierarchy where novel critical behaviorMore precisely, a whole hierarchy of absorbing subspaces is
might occur. The hierarchy can be continued to infinitelygenerated. For example, if subsysténenters the inactive
many levels. However, because of the unidirectional strucstate, it will never become active again and therefore the
ture one can always truncate the hierarchy at some levelynamical processes are restricted to an absorbing subspace
without affecting the temporal evolution at lower levels. Forwhere onlyB,C, ... may fluctuate. This subspace in turn
example, we may consider a two-level hieraréky»B or a  contains another absorbing subspace in widds inactive,
three-level hierarchyh—B—C; in both cases the dynamics etc. As we will demonstrate, such a hierarchy of systems
of the subsystema andB would be exactly the same. with absorbing states coupled by induced particle creation is

The most interesting behavior of the composite system igharacterized by a subset of novel critical exponents. It
expected when the subsysterAs B, C, ... themselves should be emphasized that the emergence of novel critical
are close to criticality. This usually happens when the isobehavior is related to the fact that the processes are coupled
lated subsystems would undergo a continuous nonequilitin only one direction. Even a very small feedbagkg., B
rium phase transition. Let us assume that the stochastic pre~A,C—B) or cyclic closure(e.g.,A—B—C—A) would
cess under consideration is controlled by a single parametelestroy this new feature.
p with a phase transition taking place @t p.. A unidirec- In this paper we present a detailed analysis of unidirec-
tionally coupled hierarchy of such processes is thus contionally coupled DF16]. For the case of equal control pa-
trolled by a sequence of independent control parametenameters it is observed that the asymptotic particle densities
p®™ p® p© . which means that the composite systemnear the multicritical point are characterized by different
is described by a high-dimensional phase diagram. When atlritical exponentsBa,Bs.8¢, - - - . Since levelA evolves
levels are criticali.e., p®W=p®=p©=...=p.), a com- independently3, is just the usual density exponent of DP.
plex interplay of long-range correlations is expected. We willAt higher levels numerical estimates show that the density
refer to this special point in the phase diagram asmudti-  exponents are considerably reduced compared to their DP
critical point. In the vicinity of this point the properties of values. In Sec. Il we discuss the mean-field theory of coupled
the entire system depend crucially on the direction fromDP which already explains why the density exponents at
which it is approached, resulting in interestingulticritical higher levels are reduced. It also allows us to study crossover
behavior In particular we will consider the special case phenomena close to the multicritical point. Mean-field theory
pA=p®=p©=...=p, where the entire hierarchy is is expected to hold above the DP critical spatial dimension
controlled by a single parameter. d.=4. Ford<d., the numerically observed values for the

The outlined concept of unidirectionally coupled nonequi-density exponents are much smaller, which means that the
librium processes is quite general and may be applied tonean-field results are strongly modified by fluctuation ef-
various dynamical systems. But, as we shall also see, thigcts. In order to understand these reduced values, we re-
mechanism does not necessarily lead to new universalitgently derived the critical exponents to one-loop ordis]
classes in all cases, and we have already mentioned the quay means of a field-theoretical renormalization-group analy-
dratically coupled DP processEks] as one counterexample. sis, based on the “Hamiltonian” representation of the clas-
In the present work we will focus on nonequilibrium pro- sical master equatiof8,17,18. In Sec. Il we present these
cesses which display a continuous phase transition from ealculations in detail, including a discussion of the diagonal-
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ized and multicritical theories, respectively, the active phasegcome sufficiently small, the coagulation contribution can be
logarithmic corrections atl.=4, crossover studies, and the neglected. Furthermoren,=0 represents an absorbing
critical behavior at higher levels in the hierarchy. The field-phase, because once there are no particles left in the system,
theoretical results are supported by extensive numericalone of the processd2.1)—(2.3) can happen any longer—
simulations in Sec. IV, while in Sec. V various applications hence all fluctuations cease, and the system cannot escape
of coupled DP are demonstrated. The examples of couplefilom this state. For,<0, on the other hand, there is another
annihilation and other closely related topics are the subjectstationary state with nonzero particle density

of Sec. VI. Finally, a critical discussion of some technical as

well as conceptual problems arising in the field-theoretic ap- Na=DIral/\a, (2.6

proach are the subject of our conclusions in Sec. VII. ) ] ]
which can be viewed as the order parameter of the active

phase. In the active state, the asymptotic density is ap-
proached exponentially again, with the characteristic rate
D|r /. Precisely at the transition, only the term proportional
In the bulk of this paper, we shall study unidirectionally to n,ﬁ survives in Eq.(2.5), which therefore becomes identi-
coupled directed-percolation processes. It is convenient toal to the mean-field rate equation for diffusion-limited co-
represent these processes in the framework of reactioragulation or annihilatio6]. The solution to Eq(2.4) then
diffusion systems. The starting point of the hierarchy ofbecomes
coupled systems is therefore the following reaction scheme,

Il. COUPLED DP PROCESSES:
MEAN-FIELD APPROXIMATION

which can be viewed as the prototype for the active/ na(t)~1/t, 2.7
absorbing state transitions in the directed-percolation univer- ] ) B
sality clasg13]: i.e., the density decays according to a power law at the criti-
cal point.
A—A+A withrate o,, (2.1 Upon identifyingr o=p.— p, Wwherep, denotes the perco-
lation threshold, we can translate the above mean-field re-
A—0 withrate ua, (2.2 sults to the notation of directed percolation. Equati@rb)
implies that the characteristic length scale=|r |~ di-
A+A—A withrate \,. (2.3 verges in the vicinity of the transition,
We can immediately write down the corresponding rate E ~ral™", v, =1/2. (2.9

equations for the particle densiby(t); this description ne-
glects fluctuation and correlation effects, and therefore corAt the critical point, the exponential decay rates vanish, and
responds to a mean-field approximation. The average particke characteristic frequency becomes diffusivg,~Dg?;
number is increased via the branching reactigrl), and hence

reduced via both the dec#®.2) and coagulatiori2.3). How- ,

ever, while the first two processes occur spontaneously, with wc~q°,  z=2. 2.9
rateso, and wpa, respectively, and therefore the change in
particle number is proportional to the particle density itself,
the coagulation reaction requires that two partideaeet on
the same lattice sitén a discrete representatiprand hence

Equivalently, upon approaching the critical point, the char-
acteristic time scale diverges according to

the total particle loss due to the procé8s3) is proportional §Iral™" =z, =1. (2.10
to the density squared. This yields the balance equation Also, atp=p
[} [oR)
anA(t) —t—a —
at =(0a= ma)NA(t) = NaNa(t). (2.9 na(h)~t"%,  a=1. (211

Finally, in the active phase near the transition, the order pa-
As we are considering local reactions only, we may generaligmeter grows as
ize this mean-field equation slightly by considering a coarse-
grained local particle densitma(x,t), and supplementing na~|ral?, B=1. (2.12
Eq. (2.4 with a diffusion term,
Notice that the exponents and 38 are related, provided the
na(X,t) following scaling relation holds:

ot =D(VZ=rp)na(x,t) = Aana(x,t)%  (2.5)
_ s NA(T A X D) =1 Al PRAIEL H)). (213

Here we have introduced the diffusion const@ntand de-

finedra=(ua—0on)/D. . N For then atp=p., Na(0y)~y #"l in the limit y—oo, in

Obviously, the mean-field dynamic phase transition oCrder for the|r | dependence to cancel, and thus

curs at the point ,=0, where the balance of gain and loss

due to the processes linearrig changes sign. Far,>0, the B=vja=zv, a. (2.14

only stationary state of Eq2.5) is n,=0, and fort—~ the

particle density will simply decay to zero according to The above relations therefore defitteeeindependent criti-

na(t)—e P'A' because once the particle density has becal exponents. Alternatively, the third independent exponent
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may be swapped fon, , which characterizes how the equal- Iy

time pair correlation function decays at the critical paigt A active A inactive
-0 G(|x|)oc1/|x|d+z*2+77i_ B active B inactive
While the scaling relatioi2.14) remains valid also below A/<]_3_ .
the upper critical dimension, which for DP turns out to be ...~

d.=4 (see Sec. ll), the exponent values will become modi-

fied ford<d. as a consequence of strong fluctuation effects. . A
Directly at the critical dimension, one expects logarithmic @ :
corrections to the above mean-field results. By Ta
The idea is now to combine severaghy a humbek) of
such DP processes, i.e., to consider the additional reactions ..+ A
<-F >
B—B+B with rate og, (2.15 ) o
A active A inactive
B active B active
B—0 withrate ug, (2.19
FIG. 1. Mean-field phase diagram for the two-level coupled DP
B+B—B with rate \g, (2.17 process. The arrows mark DP active/absorbing transitions foAthe
andB particle species, respectively. The dotted parabola denotes the
for particle species,C, ..., which are coupledinidirec- boundary of the multicritical regime, which includess|=|rg|
tionally via the transformation reactions =[r|—o0.
A—B withrate uag, (2.18  tant, however, i.e., fod<d.=4, such a simple picture
breaks down, especially at the multicritical point to be dis-
A—C withrate uac, (219  cussed below, where the averages and correlatiorsothf
na(x,t) andng(x,t) are governed by power laws.
B—C withrate ugc, (2.20 We may now again search for a stationary solutignof

Eqg. (2.22, as a function of the mean-field density . The

etc., butwithout feedbacki.e., we do not allow processes of general solution of the ensuing quadratic equation is

the typeB— A. This prescription therefore defineshaerar-

chical structureof coupled DP processes. For simplicity, we Drg\2 uag ¥ Drg

choose identical diffusion constanf3 on each hierarchy ng= (T) A—m BT (2.29
level. B B B

~ Without the coupling reaction®.18), ..., foreach spe- 1,5 for ro>0, where ny=0, one finds ng=D(|rg|
cies of particles there is a continuous DP transitiorr;at —rg)/2\g, which is zero forrg>0, and becomes equal to
=0,i=A,B, ... . Butthe situation changes in an mterestmgnB:Derm\B for rs<0. When specied is in the inactive

way when the transformation processes are switche@on  haqe  theA and B hierarchy levels are effectively decou-
cept for specie#\, which is not influenced by what happens pled, and we therefore expect an ordinary DP active/

on the higher hierarchy IeveIsL_et us first consider the s_im— absorbing transition for specié® at rg=0, as in the case
plest case of two particle specids<2)—the generalization pag=0.

to further hierarchy levels will then be straightforward. The Forr,<0, on the other hand, we have to insert E2j6)
rr;1ean—f|eld lrat_e ‘?q#a“o'f'z-i). for speciesA remains un- o, Eq.(2.24. One may now distinguish two situations.
changed, albeit with a modified parameter (i) For (Drg/2\g)2>D|r al tas/ A akg, We Can approxi-

ra=(pat uag—oa)/D. (229 Mate
2
Note that for the first hierarchy level, the sole effect of the ~ Drg| 1 DI[ral as % _ % 29
. . . N r‘lB + 1 ( . 5)
transformation reactions is an increase of the total decay rate 2\g 2\ahg \Drg 2\g

tot__
A=At Zipa

The rate equation for speci® however, contains a new
gain term describing the feeding-in of particles via the reac
tion (2.18, proportional to the density ok particles present.
Thus one obtains

and consequently farg<<0, we find thatng>0, and theB
species is in its active state—the DP transition at the half line
(ra<0,g=0) present in the uncoupled system has disap-
pearedsee Fig. 1 Instead, forrz>0 the terms proportional

to rg cancel in Eq(2.29, and

dng(x,t) ’ ’

T:D(V —rg)Ng(X,t) = Agng(X,t)“+ magna(X,t), Ng=~[ralwas/Nals (2.26
(2.22 i.e., the density of specieB vanishes as the critical point

where r,=0 of speciesA is approached, and with the mean-field

DP exponentB=1. Effectively, the DP critical half line
rg=(ug—og)/D. (2.23 (ra<0rg=0) for speciesB has been rotated ta {=0yg
>0) in the coupled system. The location of the DP critical
Note that within themean-fieldapproximation,n, plainly  lines for both specie8 andB is shown in the phase diagram
acts as an external source term. Once fluctuations are impoof Fig. 1, where the dotted parabola represents the boundary
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curve separating the two different regimes fgr<0. Notice by the mean-field values. In the fluctuation-dominated re-
also that in this case the “mass” terngthe contributions gime d<d.=4, however, there will in general b®(e=4
linear inny,ng) in Eq. (2.22 vanish, and one expects both —d) corrections to both the critical exponerasd the scal-
spatial and temporal power-law correlations, obviously charing functions, which will in turn lead to a modification of the
acterized byv, =1/2 andz=2. We shall later see that indeed scaling relation(2.32).
the new critical half line {(,=0,5>0) for speciesB is in One may now readily generalize to higher hierarchy lev-
the DP university class. Summarizing this regime, we mayels. For example, fok=3, one finds the same rate equations
say that theB particles are “slaved” by the behavior of the  (2.5) and(2.22 for speciesA andB, respectively, but where
species. Now ra=(uatuagtuac—oa)/D and rg=(ug+ usc

(i) The other regime, inside the dotted parabola in—og)/D. The mean-field equation farc(x,t) reads
Fig. 1, is defined by the condition Dfg/2\g)?
<D|ralmag/Nalg, Which includes the special case when dnc(x,t)
the critical points of both hierarchy levels are approached™ 45
uniformly, |ra|=|rg|=|r|—0. Now we can neglect the

=D(V2=rc)ne(X,t) = Aene(X, 1) 2+ mpcna(X,t)

terms~rg in Eq. (2.24), which yields + pacha(x,t), (2.33
Dralpas| ™ [mas_ \*? which has the general stationary solution
Ng~|———| =|——na| . (2.27
Aakp A

Drc\?  mec mac  |¥? Dre

This implies that the density exponents on each hierarchy Ne=11 252 )\—naJr oAl TN (2.34

leveli aredifferentin this regime, c c ¢ ¢

ni=|r A%, (2.28 A detailed analysis then reveals that, in analogy with the

two-level hierarchy, there are regions in phase space where
where B;=8,=1 and B,=Bg=1/2 in the mean-field ap- the C species evolves independently of the lower hierarchy
proximation. It is to be expected, however, that the othef€vels. On the other hand, other regimes exist whesés
independent scaling exponents and z remain unaltered; Slaved by eithen, or ng. In addition, as before, a new DP
but of course the density decay exponent at the critical pointransition may arise for th€ particles under appropriate

«; will depend on the hierarchy levé| according to Eq. conditions, whem,—0 orrg—0. Furthermore, the previous
(2.19), k=2 multicritical regime occurs when either,>>0 and

[rgl=]|rc|—0 simultaneously, org>0 and|r | =|rc|—0.
n(t)~t %, a=6ilzv, . (2.29 As all these features are already contained in our above
investigation of the two-level coupled DP process, we re-
Considering the two-species phase diagt&ig. 1) again,  strict ourselves to the new behavior emergingier3, when
we see thathree critical half !i_nes converge at the spe_cial all three critical points coincide, i.e.|ra|=|rg|=|rc|=]r|
point ra=rg=0. The new critical behavior in this regime _,o. More generally, in mean-field theory this multicritical
can therefore be interpreted as the effect ahalticritical  regime(with altogethersevercritical quarter planes merging
point [16]. When this special point in the phase diagram isat r=0) is characterized by the conditions,<O0,
approached along a line crossing the dotted parabola in Figpr, /2\;)2<D|r|uas/Aakg (as for k=2), and
1, one expects @rossoverfrom ordinary DP to the new (pr./2x.)2<upc(D|ralwas/Make) Y& ¢
multicritical behavior described by the density expone®its 4 p|y .| uac/Nahc. At this special point in parameter space,

and a;. For |ra|=[rg|=|r|—-0, the crossover features are j andng vanish as in Eqs(2.6) and (2.27), respectively,
all encoded in the generalized scaling function while

Ne(r, ag X, =|r|Pa(|r| *uas/D X/&, yt/SH)(,Z 20 14
. e~

where&, ~|r|~"+ and £~|r| "I as in DP. This defines the
crossover exponenp, which constitutes a new scaling ex- Therefore Bs= 3
ponent associated with the couplipg,g. Comparing with
Eq. (2.24), we identify

D|r |MABM§C
Aahgh2

MBC

1/2
Z()\—CHB> . (233

c=1/4 in the mean-field approximation.
Notice also that the indiredh— C transformation rateuac
doesnot enter this expressiof2.35), which only depends on
b=1 (2.31) the coupling rategag and ugc bet\_/veeradjacenthierarchy
levels. As the latter are not at all influenced by the presence

within the mean-field approximation. Furthermore, we canof lower levels, this would suggest that there extstéy one
use the above mean-field results, which, at the multicriticaPrOSSOVe(rj EXP?]nefﬁ_(?eSCflbm? all tTe ml;”'r(]?”'ﬂca' points
int, imply thatn(y,0,0)~yY2f C tly, generated by the unidirectional coupling of the DP processes
ﬁgi?e imply thatn(y,0,0)~y " fory—c2. Consequently, we (with =1 in mean-field theory
For the density exponents, we conclude that within the
Bo=PB1— $l2, (2.32 mean-field approximation on hierarchy level using v
=zv, =1,
which relates the new density expongsy to the indepen- .
dent crossover exponegit Of course, Eq(2.32) is satisfied aj=B;=1/2""1, (2.36
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This result should describe the coupled DP multicritical=2(cjhp)*?,  u(=2(oghg)*?, as well as puq

point quantitatively correctly for spatial dimensiods>d. = uag(oalg/ogha)Y? (henceforth, the subscript “0” de-
=4. Furthermore, on the mean-field level the scaling relatiomotes unrenormalized quantitjedf we introduce a length
(2.32 generalizes to scale k! and correspondingly measure times in units of

- - k2 (i.e.,[Dg]=«Y), we find that the new fields have scal-
Bi=Bi-1—$l2" =B~ p(1-1/1277), (230  ing dimensionk? while [rx]=[rg]=[ xo] = x2, which are
thus relevant perturbations in the RG sense. On the other
hand,[uy]=[uj]= «2~ 92, and the corresponding DP nonlin-
Rarities become marginal ith,=4 dimensions, as expected
113]. It is important to note, however, thdt\,]=[\g]
=k?"9 and hence these couplings dreelevant as com-
pared tou, and ug, and may be omitted in the effective
action. Finally, we seti;= Uy, such that the theory remains
renormalizable with equal diffusion constants, and conse-
quently we arrive at

compare Eq(2.35. Here the observation that only the direct
transformation rates between neighboring hierarchy level
affect the leading contribution has entered crucially. Again
the mean-field result$2.36 and (2.31) satisfy Eq.(2.37)
trivially. However, as noted above, the scaling relati@2r87)
will be modified below the upper critical dimensiah=4,

as a consequence @f(e=4—d) corrections to the scaling
function for the equations of state,(r).

Ill. RENORMALIZATION-GROUP CALCULATIONS

A. Preliminaries Seff:f ddxf dt{ao[aﬁ' Do(ra—V?) 14
We now turn to a detailed presentation of our field-
theoretic calculations. As we have pointed out in the previ- ey Wl N
ous sections, the effects of fluctuations invalidate a simple 2 (Yoo~ Yioo) ~ Hogotlo

mean-field approach for dimensiods:d.=4. For that rea-

. ! . . . _ u _
son we will employ field-theoretic renormalization-group + _y2 _ %2, _ 2

. e ' @ol 1t Do(rg—V)le (PoPo— Po0) | -
methods, which allow for both a proper derivation of scaling, oot mouE 0 2 TOTo TOTO
as well as a systematie-expansion calculation of critical (3.2

exponents, below the upper critical dimensidy+ 4.

Our starting p_omt for a systematlc treatment of theWe remark that this action is equivalent to the following set
coupled-DP reaction scheme given by E(&1)—(2.3) and of coupled Langevin equations:
(2.15—(2.18 is an appropriate master equation. On a micro- '
scopic level this comprises an exact description of the dy-
namics. From this equation it is then a straightforward pro-
cess to derive an effective field theory: First the master
equation is mapped onto a second-quantized bosonic opera-
tor representation, which is in turn mapped onto a bosonic u
field theory. This proceQure is now standard, and we refgr to dpo=Do(V?—Tg)po— ?°¢(2)+M0(/,0+ 7, (3.9
Ref. [8] for further details. In our case, for the two-species
coupled DP system we end up with the following action:

_ 2 Uo »
to=Do(V =T a) tho— 7¢o+§y (3.3

which represent the obvious and expected generalizations of

S:f ddxf dt{g[ﬁtJrD(rA—Vz)]a—aAgza the. mean-fielc! equgtior(Q.S) and(2.22, with the multipli-
cative Langevin noise terms

AAa21 A242) Py Tl R v
Fha(aaTr Al ~ uagbat BlADre= VI (DL ) = Ugiho(X,) 8x— X ) 3t~ 1),

— ogb?b+\g(bb2+b2b?)}, (3.1 (3.5
where we have omitted terms related to the initial state. (p(x,1) (X" ,t"))=Ugeo(X,1) 8 x—x") S(t—1").
Aside from the taking of the continuum limit, the derivation (3.6)

of this action isexact and in particular no assumptions re-
garding the precise form of the noise are required. Note that Furthermore. for most of the analvsi ; _
h . . o , ysis we will sgt=rg
if we neglgct the terms in the actid8.1) qua.dr§t|c.|n th? =r,. There are several ways in which the effective action
response fields, b, then we recover a description identical (3 2) can be studied. We will begin by performing our analy-
to the mean-field equation@.5) and (2.29, provided we  sjs in theinactive phase, and postpone other methdits
associate the fielda(x,t), b(x,t) with the coarse-grained cjyding diagonalization and active phase computajiomsil
local densities of theA, B particles. In general, however, |ater on. Inspection of the above actit®12) reveals that, as
below the upper critical dimensiod, =4, the terms qua- oy pecteq, the terms involving only the and ¢ fields are
dratic ina, b (corresponding to noise in a Langevin descrip-exactly the same as in the well-known field theory for di-
tion) cannot be neglected. _ rected percolationReggeon field theoby[13], and their

It is now E)nvenient to rescale th_e fields accoLdingato renorm_alization is entirely unaffected by the presence of the
=(\alop) Y2y, a=(oalNa)Y2h, b=(\glog)Y?py, b ¢ ande fields. Hence we will begin by briefly reviewing the
=(0og/\g)Y%py, and also define new couplings, analysis of Reggeon field theofRFT) in the inactive phase.
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z9+ z9+ Dz9+ J 1
Ko éﬂ'z_ {p D ZU05 E&p

— +©+
X{r(k,7,D,v,X,1))=0. (3.19
Defining the dimensionless fielg as
El\W = 4>_< + H_A\\

(Yr(k,7,D,v,X,1))= KdlztAﬁ( 7,0,kX,k°Dt), (3.19

the solution of Eq(3.14), obtained by means of the method
of characteristics— «/, when the coupling has run to its
fixed point valuev™ is

vy

FIG. 2. Diagrams for the two- and three-point vertex functions (lﬂR(K +D.v.X t)>= Kd/z/(d—gj,)/z
to one-loop order for the pure DP field theory. AR
_ _ _ X (/5 0% kx/ k2Dt 2 D),
B. DP field theory: Inactive phase calculation
o L 3.1
The renormalization of the RFT action is very well known (3.16

(see Ref[19]). The renormalized parameters are defined a%y inserting the matching conditior’

*
=|7"Y:, we can
follows:

now derivethe scaling relatiori2.13 quoted in the previous
— — _ section. At the fixed point, we obtain
v=2y%0, ¥=Z% T=Z.70x 2,
12 —e2 (3.7 N kX k2Dt
D=ZpDy, u=ZyupAy«™ % <¢R(K,T,D,U,X,t)>=|7'|'8¢ U*,F,H—"
Iy
with e=4—d, Ag=T(3—d/2)/2 1792 and ro=ry— I, (3.17
\I’:Vrhoirqetrﬁé I(ji;he;afﬁgt?(?:l?hn;?vsg?iﬂjTm:g-thoeir?t”\t/lgﬁlegoflgrt{c-vvhere the exponents can be identified as combinations of the
. ag ; P ¢ functions evaluated at the nontrivial fixed point:
tions (see Fig. 2, we can determine the one-loop renormal-

ized Z factors. Using dimensional regularization and a mini-

€
mal subtraction scheme, the results are m=—{p—{=— 1—2+O(62), (3.18
2 _
UO AdK €
Z,=1- —> , 3.8 1 1 €
4 SDS € (3.8 VL:__?;:§+1_6+O(62)1 (3.19
2 _
UO AdK € 2+ *
=1+ i 4 €
Zp=1 IGDS e ' (3.9 V”:T*D:l‘f‘ 1—2+O(62), (3.20
SU(% AdKie
-1 - 14 €
=1z (3.10 z:%=2+§5=2—ﬁ+0(62), (3.2
5ué Agk € d—-2, v €
Z,=1— , 3.1 = v _ "L — =1— — 2
u 1602 « (3.11 B= o0 =2 (d+2-2+7,)=1- 5 +0(&).
, . . . (3.22
with ro. given by the recursive equation
Directly at the upper critical dimensiod,=4 (e=0),
u3 1 the power laws with these critical exponents are replaced
foc= "~ 4D07 pr oo+ p2’ (312 with logarithmic corrections to the mean-field resulys
0c =0, »,=1/2, y=1, z=2, and =1 (see also Ref[20]).
where we have used the abbreviation/,...  The flow equation fow (/) becomes/ dv(~)/d/=pB,(/)

=f...d%/(2m)%. Defining the flow functions ¢, = 312(/)? which is solved byv(/)=v[1-12vIn/]"",
=k, In(Uuy), etc, and with an effective coupling  Wherev=v(/=1). Similarly, 7dD(/)/d/'={p(/)D(~)
=u?/16D?, the RG} function has the form =-vD(/)[1-12In/]"* has the solutionD(/)=D[1
-1 In/1Y%  and  /Zdr(N)Id/ =) 1()=(-2
B,=kdv=20({y—{p)=v(—e+12), (313 +3uv[1-12In/1H7(/) is solved by r(/)=7/"71
—12v In/]~ Y4 We now integrate the flow equations until
giving a stable, nontrivial fixed point* = e/12+ O(€?). |7(/)|=1, or /~| 7|¥4(—In|#) 28, This yields immediately
The appropriate renormalization-group equation for thethe divergence of both the correlation lengthand the char-

renormalized field(yr), where the angular brackets denote acteristic time scalé; upon approaching the phase transi-
averaging with respect to the RFT action, is tion,
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&~/ t=la (= In| 7)) Y8, (3.23 U2 : U2 o S

§~7/"?D(/) " =77 (= In|7)"". (3.29

In order to obtain the corresponding logarithmic correction

for the density exponerg, we employ the solutiof3.16) of : G2 S -1572 3072 -

the RG equation and the mean-field re<al6), and find S > - - +:4
/7| ~
(Yr(k,7,D,0))~ kW2 42C( /)12 |T(,‘ L'Z (3.29 B N
v(/) U, S Sy/2
where C(/)=exp(f1{,(#")d/"1/"), or equivalently, S //*> N >> N
/dC(NId/ =L (/)C(/)=2vC(/)[1-120 In /], with _ _
the solution C(#)=[1—12v In/]~ 8. Combining every- FIG. 3. The vertices of the full actioByc .
thing, and settingi=4 in Eq.(3.25 finally yields
a.2: Uol//(), (333
13
()~ 7l(=In[ 7)™ (3.26 ,
Notice that we had to take care and keep track of the dan- b%=ugpo+| Sp— —0) Yo, (3.33
gerous irrelevant variable here. Yo
2
, . S
C. Coupled DP field theory: Inactive phase 220
= Wo- (3.34

We now return to the renormalization of the coupled DP

field theory. Right from the outset we must take into accquntrhe complete vertices of the full actid,c are depicted in
one key feature of the full theory—namely that, on physmal,:ig_ 3. The propagators for the and fields are denoted by
grounds, one expects the generatioradditional mixed cu-  sojid and dashed lines, respectively. The next task is to com-
bic vertl_c'es. Physically, these novel vertices correspond t%ute the renormalized couplings and RG fixed points of the
the additionally generated processkes-A+B, A—B+B,  fy|l theory. To begin with, we notice that the DP couplings in
A+A—B, andA+B—A, with ratesoag, oag, Mg, and  the action(3.2) are renormalized in the same way as in RFT,
Aag. Say. These vertices must be introduced from the verye., the factorZ,=7,, Z,, Zp, andZ, areidentical with
beginning, and hence we have to replace the above actidhose in Eqs(3.8)—(3.11). Hence we can conclude that the

(3.2 with Syc=S+AS, where stable fixed points for the dimensionless renormalized cou-
, - pling u=Z,uoAY?«~? reads as in DP:
as= [ dix [ dt| - seporoto— oo+ ool
X Sopotbotbo 5 ¢otot S Potho v* =[(ul4D)* 2= €/12+ O( €?). (3.39
- For this reason, the critical exponenjs, v, , andz remain
+SoeoPotbol- (3.27)  those of the DP universality class for the second hierarchy

level (i.e., for theB specieg and in fact for higher hierarchy

Note that in the shifted theory used above, the new reactiol¢Vvels as well. .

processes also modify the bare parametgrsuo, andu, However, the same wilhot be true for the exponents;
and furthermore lead to the identificatiog~oag=0, s,  (for i>1). For example, the exponepy, is affected by the
~0hs=0, So~ — A as=0, andS,~\xs=0. In the effective renormalization ofug, and hence only the exponet will

. - remain the same as in DP. In order to compute the renormal-
Langevin-type description, Eq&3.3—(3.6) are then replaced ization of ug, we must consider the diagrams renormalizing

by the “mixed” two-point vertex functionl';,,, as depicted in

) o , Fig. 4. At the normalization poinffNP) q=w=0, 7=1, we

dho=Do(V —Ta) o= 5o+ ¢, (3.28  find

b . 5 T uo(so+§5)f 1

(9t<P0:D0(V2—rB)<Po_7¢g_5¢3_56¢0¢0+ﬂol//o+ 7, gy Mo aD2 p(K*+p%)?
(3.29 UKo 1
where the noise terms satisfy - 8D3 fp(,{2+ p?)3
{(x,t)y=agi(xt), (3.30 25054+ uo(s()+~so)f 1 (3.38
- 2 21" .
7061 =bE(X,1) +CEx(X, 1), (331 4Doro pr“tP

Here ¢; and &, are uncorrelated white noise variables of Notice that the integral in the last term of E§.36) diverges
variance 1, and the coefficieras b, andc satisfy in d=2. In the same way as in the shift of the percolation
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(a) =7 \:r"
. = ——+ ~ =
(34 i, = —>—<;\ + . + »-..>.-.\“\
m T o
+ Yoo+ —— e>-- .

\\__}_,' Seyo-” + H_z_',_é__:‘g\ + ﬁ—%—\

R “
+ %—\_}:—- + H—C\ e N . +H—4;‘x
AN

FIG. 4. "Mixed” two-point vertex functionI',, to one-loop
order for the coupled DP field theory. J
+ (ERE STEEN +

threshold in DP, see E@3.12), we may take care of this UV _ _ _
divergence by means of an additive renormalization, and FIG. 5. The “mixed” three-point vertex function®) I';,, and
then multiplicatively renormalize the UV poles id=4.  (b) I'zyy to one-loop order.

Thus, defining the dimensionless renormalized coupling i . o
Note also that the final diagram in Fig.[dee the second

MZZM(MO_MOC)K721 (3.37) lines of Eqs.(3.36) and(3.39] is UV-finite in d=4, and so
for the moment we shall neglect it inrainimal subtraction
with the associated flow functiody, = xd,In(u/ue), we have ~ scheme(this is, however, a somewhat subtle point in the
active phase, which will be discussed in more detail in Sec.
25056+Uo(56+~50)f 1 [l F). Certainly, foru<1, i.e., in an additional expansion in
P

(3.389  the transmutation rate, this diagram is suppressed as com-

Moc= 242
4Do KoEp pared to the other contributions. We then find
and U2 Ug(So+Sh) | Agk €
ZM:1+(8DOZ_ 0(020 de , (3.41
Uo(So+Sp) 1 0 4Dy
(Z,2,)Y%2,=1- > J 71 p?)2 o - o~
4Dg p(K“+p and after definingg=s/D andg’=s'/D, we have
2
Upio 1 - e 1 |[e ~
B 8D8fp(:<2+p2)3' (3-39 §ﬂ=—2—20+\/5(g+g’)=—2—5+§ §(g*+g’*),
(3.42

We will see later that the prefactor multiplying the shifg. i . . ) )
in Eq. (3.38, which involves the various mixed three-point where in the second line we have inserted the DP fixed point

couplings, actually vanishes in an appropriate parameter su 3-35)-_ ) i
space containindoth emerging fixed lines, see below. In  An inspection of Eq(3.36 now shows that, in order to

principle, additional additive renormalizations would be re-compute the renormalization gfo, we must first consider
quired to rendeﬂqzl“ﬁ; and f%FE; UV-finite. These coun- he renormalization of the various mixed three-point cou-

3 .
terterms, to be added to the acti@®.2), would be of the plings,
form S=ZSoAY2 2 g1 =7 5 V22

f ddx f dte(Ad,—BV2) . (3.40 S=Z55Ad K S =Zy AR (343
Evaluating first the renormalization sf, which can be cal-

However, as botthA andB are again proportional to the pref- cyjated from the diagrams shown in Figah we find
actor of the integral in Eq.3.38), they all vanish at the fixed

lines to be discussed later. A subtle point which can be raised — g/ AT Y2 el2 UnSHS,

: . - - NP d 0500 2 ~,
concerning these counterterms is the stability of the scaling I' '~ =—7 1- — +UgSp+ U+ UgS
behavior of the theoryin other words the stability of the R4y 2y So

fixed lines to be derived later pragainst the introduction of ~ =,
a term like Eq(3.40 into the original action(3.2). Since this UoSoSp  SoSo
paper was submitted for publication, Jansg&H has shown S S

that indeed the scaling behavior is unaffected by the intro-

duction of such terms, and thys, is the only mixed cou- Inserting the appropriate expressionsZgrandZ, from Eq.
pling constant that needs to be introduced. (3.8 and usingf (k*+p?) “?=A4x" /€, we end up with

1
2D} fp(K2+ p?)?

. (349
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FIG. 6. The “mixed” three-point vertex function®) I';,,, and
(b) I' 5, to one-loop order.

7 1+ SUS UpSp Uosogo UOE(,) Uosog(,)
¢ 1607 2D3 2s,D2 2D2 2s,D2
Sgg(l) )A\dK_E 34
- oo (3.49
SoDo

Similarly, with the aid of the diagrams shown in Figbb
and Fig. 6, we can compute t&efactors for the other mixed
three-point couplings,

S _1s U3 UpSy U5Se  UgSp| Agk €
s 16D 4D§ 4s,D2 2D2| € '
(3.46
. U5 UpSo UgSp UoSgSo UoSpSo
® 16D5 2D§ 2D2 25,02 25,D2
B gézso /AdK76 (3 47)
2sD3| € ' '
Ui U3Sy  UgSp UoSh|Agk €
< =14 — 02_ ~00_ Og 0~0 d
s 16D; 4s;D2 4D 4D32| €
(3.48
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- (03 \f g+ 3.4
Bg——g(g—gH 39(59+9 |, (3.49
_\/; r L~ \/;~/ 2 1 o
By=\39(9'+9)+\/39'(g+9")+ 59",
(3.50
.._\f =~ = \/;~/ r L= 1~12
Bg=\39(9+9)+\30'(9'+9)+ 5979,
(3.51)

_E 1 \f"'/
By=3(9"=9")+\/39

where we have already inserted the one-loop fixed point
value forv* =[(u/4D)* ]2. Note the symmetry of the above
RG B functions with respect to exchanging—g’ and

g’ g. We now search for fixed-point solutions of the above
equations whergg = B3, = B; = 85,=0. Using Eqs.(3.49
and(3.52 to eliminateg andg’ from the remaining twq3
functions, the above system of equations can be solved ex-

actly. After some tedious algebra, we find tfiked-lineso-
lutions, the first one being

1
g+ Eg’), (3.52

g*:_ar*’ "g'*_gr*zzg*’

*2__ E * 1%
9" =2/3(g" +g"").

Computing the eigenvalues of the stability matrix

(3.53

é’ﬁY . SR

5 With {v}.{6}={9.9".0.9} (3.54
yields the eigenvalues 0, O; €/3, — €/3. Hence, this first
fixed line, which includes the Gaussian fixed points for the
mixed three-point couplings, isnstable The second fixed
line is given by

g/*:'é*, g*+§/*:2\/§,
*2 € * %
gre=2 §(9 +9'"),

with stability matrix eigenvalues Ce/3, €/3, 4e/3. Hence
this second fixed line istable Notice also thaboth of the

(3.59

We note in passing that, in principle, a product of the quarticabove fixed lines satisfy the condition

vertices [which we previously discarded from the action
(3.1] and uo might also enter the renormalizations of the
three-point functions. However, we have checked that these

(3.56

€ ~ ~
\[g(g’*+g*)=—g*g’*,

additional couplings all have negative RG eigenvalues and

are therefore irrelevant.

With the definitionsy=s/D, g'=s'/D, g=s/D, andg’
=5'/D, itis now straightforward to compute the R&func-
tions for these new variables. Since we hafg=«d, g

=0(¢{s—¢p), etc., wherel;=kd, In(dsy), etc., we find to
one-loop order

which ensures the cancellation of the strongly singUlay-
divergent ind=2) diagrams for the renormalization gf, in
Eq. (3.36.

We can now insert the values gf +g’* at the two fixed
lines(3.53 and(3.55), respectively, into Eq(3.42, and thus
obtain
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— 2+ €l6+0(€?)
—2—€l6+0(€?)

(stable ling,
(unstable ling .

= (3.57)

We are now in a position tderive the scaling form(2.30
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course also implies that there are no logarithmic corrections
to the crossover exponeit in d.=4 dimensions.

The final step in this calculation is now to compute the
exponeniB,. Unfortunately, in order to do this, we must first

for the B species density, postulated in the preceding sectiorinderstand the behavior of the scaling functigr62) in the
We begin by writing down the renormalization-group equa-active phase. As we shall see, it contributes nontrivial cor-

tion for the renormalized field ¢r), where the angular

rections to the exponeit, at O(e). Hence it isnot sufficient

brackets denote averaging with respect to the full actioimply to match the scaling function to that calculated in

Swvic
J 4 J 42D J 4 J N J N , J
Ko é’ﬂ'z {p D §v05 é“gg% {99 a_g’
g =08
5995 {39 aTg’ é’,uuﬁ 246
X{¢r(k,7,D,0.,{g},u,X,1))=0, (3.58

and where we have used the notat{on={g,g’,9,9’}. De-
fining the dimensionless fielg as

<¢R(K17—1D1U!{g}uu“!xit)>
=k92p(7,0 19}, u/D,kx,k?Dt), (3.59

the solution of Eq(3.58 when the couplings,{g} have run
to their fixed-point/line values is

(er(x,7,D,v,{0}, m,X,1))
= k42 (d=Ep)02

*

X @(7/% v* {g*}.(uID) /45,

KX/ k2Dt /2T D). (3.60

Inserting the matching conditioff=|7-|‘1/5t, and dropping
thev,{g} couplings, we obtain

(er(x,7,D,1,%,1))
«|7| —(d=gp)ie; o(u/D)]7] (& Ik x| 7] g
K2Dt|T|_(2+§B)/§t). (361)

Identifying B,=pB=—(d-{})/205, vi=-1, v=
—(2+¢F)/¢E and defining the crossover exponent @s
= (% —5)I , we have

wlD  kx  k°Dt

LT L

(3.62

in agreement with the scaling hypothe&s30 postulated in
the preceding section. Using our earlier results for ghe
functions, we find

{or(k,7,D,m,X,t))oc| 7P

1+0(€?)
1+ €/6+ O(€)

(stable ling,
(unstable ling.

(3.63

Notice the absence d@(e) contributions tog at the stable

mean-field theory22]—such a procedure would miss these
O(e) corrections. However, before dealing further with this
active phase calculation for tigespecies, we first discuss the
simpler problem of pure DP in the active phase, which also
applies to the first levelthe A particles of the coupled DP
problem.

D. DP field theory: Active phase calculation

In this section, we will review the one-loop calculation of
the expectation value of the field in the active phase for the
case of a single field, i.e., the case (decoupledl directed
percolation. In this way we can obtain an expression for the
critical exponents; =3 [23].

We start with the action for a single fieldee Sec. Il A,

SDp:f ddxf dt[ao[é'ﬁ'Do(ro_Vz)]%

-2 (Bo—toh) | (3.64

In the active phaser{<0) the expectation value of the field
o is nonzero, and we define a shifted field, by
‘//0:UO+‘//c01 (363

to obtain the new action

SISsz ddxf dt{ho(1%hco— DoV 2o+ Dol o¥co)

+ o( Dol o+ 3Ug3) — SUguothg+ Ugv o tbotieo
+ 3 Uo(e0— o) Yotlco}- (3.66

We now fix vy by equating the coefficient o@o to zero.
Thus

2Dgrg  2Dg|ro
0o~ Uo - Ug '

(3.67

whereuv is the classicalmean-field value of the expecta-
tion value of the field. Substituting these values into Eq.
(3.66), we obtain

SI,DPZJ ddxf dt[ao(&tl/fco_Dovzl/fco+Do|ro|l/fco)

1 -\ -
+ E“o(%o“/’o) oo~ Dol Fol |- (3.68

In the following we will definery=—r,. From Eq.(3.65 it

fixed line, which is due to remarkable cancellations. This offollows that



6392 GOLDSCHMIDT, HINRICHSEN, HOWARD, AND TAJBER PRE 59

1/2 Ug Vo 1/2 ug vag 1/2ug’veo 1/2 50’ Vag
—aR>- —a« R - —«R> -

- S~O VAO B SO’ VBO So VA0
- > R -
_u0/2 FIG. 8. New two-point vertices in the active phase coupled DP
calculation.
Yo=vpot Peo, (3.74
FIG. 7. One-loop diagram fdf/.) in the pure DP active phase o= co, (3.79
calculation.
®0=Upot ¢co, (3.79
(o) =vo+{¥co)- (3.69 -
Po= Pco- (3.77

There is only one diagram contributing to the expectation . . . ) )
value (i) to one-loop order, and it is depicted in Fig. 7. The new action expressed in terms of the shifted fields will

We thus find, using dimensional regularization, now involve terms linear iny., and ¢,. Equating the coef-
ficients of these terms to zero fixes the constantsandv g
2Dg19 1 ug 1 to be the classicdimean-field values. These are determined
(o)==~ "2D, 0Pt 0 by the equations

1
D0r0UA0+ —uoviOZO,

_ ZDOTO Ug F(l_dIZ) >

Up Do (8m)9?

(279)%?71. (3.70

. . . 1 1 ~
Using the relations between the bare and renormalized quan- Dryvgo+ = Ugv 30— ol a0+ =50V a0+ SoU AoV so=0-

tities given in Eqs(3.7)—(3.11), the last expression yields 2 2 (3.79
2Dt u2 7_e/2 . ]
_ 12, dI27125 5—-15-1 The solutions of these equations are
<l//‘R> u Ad K Zl// ZUZT ZD (1+46D2 1—e2)" | |
2Dy|rg
(3.71 Vao= T (3.79

We see that all the poles in cancel out as they should. At

the fixed point (i/D)* = 2(e/3)Y2, we finally find to leading 420Do]rol
order ine, Ugo= "\ /%nL O([ro))- (3.80

0

D\* €
- /
<‘/’R>_2(U) Ac11 2921+ €l6) 7'( 1- g'” 7)- (372 The fields now have new masses given by

Upon exponentiating the logarithm, assuming that this can be Dor ao=Dol 0+ Uov o= Do ol (3.81)
done unambiguously, we see that ~,
DorBOZ D0r0+ UoUBo+ SOUAO' (382
(pry=np~7""" (3.73
=\4uoDo|rol+O(|rl). (3.83

which implies ;= B=1—€/6+O(€?), as already cited in
Eq. (3.22, where the scaling relationrB=v,(d+z—2  There are also various new two-point vertices as depicted in

+7,)/2 was employed. Fig. 8, whose corresponding terms in the action are given by
E. Coupled DP field theory: Active phase J ddxf dt[ — %UoUAoZEo— %(UOUBO+S(’)UAO)$<2;0
We now proceed to discuss the active phase calculatio
for two coupled fields, as represented by the aciBp — (o—SoU a0 — ShU o) Pcotlco— Sol ao®cotbcol.  (3.84

=S+ AS given in Egs.(3.2 and (3.27. We will again

restrict our discussion to the case whepe=rg=r,. Based We can now proceed with the calculation of the expectation
on the mean-field analysis of Sec. Il, we anticipate that thevalue of the second fielghy, by using Eq.(3.76) and com-
expectation values of the fields are different from zero wherputing(¢.q) to one-loop order. The full calculation is unnec-
ro<0. Hence we define the shifted fields essarily complicated, and universality dictates that we can
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calculate the critical behavior foany point on the stable 1/2 u'g Vg 12ug vao 1/2 ug vag S VAQ

fixed line. However, we note that the unstable and stable B

fixed lines do not necessarily have to give the same critical ( | \

behavior, and indeed in our case we will find that they do \ /' "o < ) Ko " Moo

hot. “ro, g2 g
For the stable fixed line, we have actually performed the Y Vo2 wg ¢ o2 0 0

calculation in two different ways. Both methods yield iden- % y
tical results, and this provides us with an important extra
check on our methods. In the first approach we have chosen

a subspace of initial parameters @) (b) © (d)

So=5p, S6=S0 3.8

0 S0 B0 (383 12 upvag 11289 vag S0 VAQ 12 ug vag
with the stable fixed point W/D)*=2e/3,g*=9'* A N
=—2g'*=—2g* = Je/3. In the second approach we have "o ( ‘, ‘,
chosen < \o /

\+ -5, T g | %o ! -50/2
S6=S0=5,=0, 3.8
0 =00 (380 X ) Y

and with the stable fixed point u(D)*=2€/3,
g*:(S/D)*:2\/6/3,9’*29*29’*20. (e " (@) n)

Note that both the parameter subspaces given by Eqgs.
(3.85 and(3.86 are closed under renormalization flows, as  FIG. 9. One-loop diagrams for the computation(gf) in the
is evident from a close inspection of the R& functions  coupled DP active phase calculation.
given by Egs.(3.49, (3.50, (3.51), and (3.52. The first

choice is the more natural one for investigating the multi- 1 1
critical point, since when Eq3.85) is satisfied the original I>(a,b)= 3f 2D
action Syc=Se+ AS is invariant under a generalization of 4Ds P(p?+a)(p?+Db)| p2+ —)
the usual DP “rapidity reversal,” namely 2
(% — Ad 1 _ -
bo(x,D) > — go(x, ~ 1), (389 __ [al 2 pi-e2
Die(2—€) (a—h)?
lpO(X!t)H_ QDO(Xa_t)! (388) a+b 1—e€/2
and under renormalization this symmetry is preserved. How- 2 ' (3.93
ever, the calculation using the conditi¢®.86) is somewhat
simpler. In both approaches the unstabilentrivial) fixed 1 1
H H B * — * — Nk — N — (TR - =
point is given by (/D)*=2\e/3 andg* =g'*=g* =9 13(b;a,b) 2D? Jp ) . a+b
=0. (p + b) P + T
The diagrams contributing to the expectation value of
(o) to one-loop order are depicted in Fig. 9. We will out- A at+b/a+b\~? 2p
line first the calculation using the second approach described = d +—bf’2}.
above. In that case diagrart® through(h) vanish and one 2Dge(2—¢)la—bl 2 b—a
has to consider only the first four diagrams. We thus find to (3.9

one-loop order, after implementing E(.86),

We are interested in obtaining tleeexpansions of the above

2 2 . . . .
UgUBo Uol oMo expressions in the regime wheb>a (sincergy>r,g as

{¢o)=veo~ 2D0rBOI1(rB°)_ ZDSrAOrBoll(rAO) ro—0). In that case we find
_ugvAO/-L(%I (Facl )_UOSOUAOMOI (o T a0.Fa0) | Agr™ € 1+e 1 el a N
—ZDofBo 2{l'aof BO —DOrBO 3(I'eosl A0 BO (a)=— 2Dge > a 3 np
o (3.89
AdK_e In2
With the use of dimensional regularization, the various inte- la(a,b)~ —— - :
grals appearing in Eq3.89 are given by the following ex- 4Dg
pressions:
la(biab)~ % C[ 1, 8 2)1 SRLAN
;a, ~ —_— n —_— n— o ..
(@)= o f LM e (399 B e | T2 2 2
2Dg Jpp?+a Doe(2—¢) (3.93
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Let us postpone for the time being a full discussion of thewhere ¢ is the crossover exponent, a result consistent with
term containind ,, i.e., the contribution from diagrarit) in  that derived previously in the inactive phase. We also see
Fig. 9. Note that this term is ultraviolet finite, i.e., it does notthat in the definition

involve a pole ine. However, after using expressi¢®.93) it

appears to contribute (@egative constant to the expectation (er)=TP10(7~%ulD), (3.10)
value of ¢. This seems problematic and a full discussion of
this point will be given in the next section. the scaling function behaves for large argument as

We now define again

- __yli2—el24
70=— (o= Toc), (3.94) ¢(x)~X : (3.102

, ; . a result that differs from the mean-field behavioOg) . At
where to first order in standard perturbation theory we have, upper critical dimensiod =4, a comparisonOfNi?[h Eq
Cc 1 .

(3.26 for the first hierarchy level suggests the logarithmic

2
Ug 1 correction
foe=— 25 | —- (3.95
Do e (@r)~ A —In 7)1 (3.103

This integral vanishes in dimensional regularization, and ) ) ) )
hence in the following calculation we will ignorg., as was Let us also discuss briefly the calculation using the ap-
done in the pure DP active phase computation. When usin§0ach given by Eq(3.89 above. In that case we have four

the relations between the bare and renormalized quantities fdditional diagramse)—(h) to consider. However, we will
Egs.(3.7) and(3.37), we find to leading order in an expan- S€€ that diagram@)—(h) contribute to higher-order terms in
an expansion inr, beyond the leading behavior described

sion in 7, ) ) P :
T above. Diagranmie) gives an equal contribution to diagram
2 uDr (d), but since the value of at the corresponding fixed point
(er)~ K Aé’zxd’zzi’ZZuZ;1/22;1/2251/2 is half of what it was in the previous calculation, the final
u result is exactly the same. To verify these claims we observe
2 4 that diagrams(e)—(h) contribute the following additional
| 1+ —— (14 e/2)| 1- Sin ZET terms to the right-hand side of E(B.89:
D2e 4 D
UoSqV
3\ A0 B0 AO 1L BO
+8D26(1+6/2)(1_§|n T)_8D26 2D0I‘BO 2DOI‘BO
2 !
Sov A0 UoSoU Ao
e 4 ———14(rpa0,feo) —5=—11(rpo)- 3.10
x(1+e/2—e|n2/2)(1—z|n%7 - Dorgo "#0"80) " 5p r 11(T o) (3109
(3.96 The only new integral, is given by
A check reveals that all the poles éncancel, as they should. l4(a,b)=14[(a+b)/2]. (3.109
At the fixed point given by (/D)* =(s/D)* =2€/3, we ) ) )
find It is now easy to verify that the last three terms give a con-
tribution of O(7) and higher, which can be neglected in
D\ * e\ [ur c comparison with th©(+/7,) terms that we have kept. The
(@R)wZ(U> (1+ 3 F( 1- 1—2In(,u7-/D) contribution in the first term is given by
€ € Ay b+a/a+b\ 2 2a
——In7+ =In(ur/D)+---|. 3.9 : = ——a
Assuming that only one such scaling term becomes gener- Aq € € €
ated, we may now exponentiate the logarithms, and see that ~ o |1t o T §|n 21— §|n bj+---,
4Dge
<(PR>~ 7_1/2— 6/8(M/D)1/2_ el24__ Tl—e/G( . 1M/D)1/2_ €el24 (3 106
(3.98
_ _ and thus diagranfe) yields essentially the same contribution
from which we infer as diagram(d). Since the value ofg/D)* is now one-half of
its value in the previous approach, our final result follows.
B _1 f+o( 2) (3.99 Finally, let us discuss the behavior at the unstable, non-
272 8 e ' trivial fixed point given by (/D)*=2e/3 andg*=g’*

=g*=g'*=0. Returning to Eq(3.96), with the last term
d=1+0(€?), (3.100 set equal to zero, we have
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(o) \/ (l——ln(,m-/D) BT

to leading order. Exponentiating the logarithi@gain with
the assumption mentioned abgowee find

(3.107)

<§DR>~ ,7_1/2— e/G(M/D)1/2— €l12 (3108

— 7_l— 6/6( _— 1- e/GM/D)1/2— 6/12,
(3.109

and thus in this caseB,=1/2—e/6+0(e?),p=1+ €l6
+0(€?), and the scaling functiog(x) ~x2~€12+0(e?) for
large values of the argument.

F. Technical difficulties

We now return to diagranfc) of Fig. 9. Substituting the
expression foil ,(a,b) from Eq.(3.93 into the correspond-
ing expression in Eq.3.89), we find that the contribution of
diagram(c) to the expectation value dfpy) is

*InN2

16 D'
(3.110

UOAdK UAO 5

u
/2]
12102 — k2L ( _)
8DO BO D

to leading order ine and in an expansion in powers gfr.
This is in contrast to our expectatiafibacked up by our
simulation results in Sec. IMhat{¢) should vanish at the

transition asT— 0. Notice that this diagram is ultraviolet-

finite and hence there are no poleseinOn the other hand,
the loop integral ,(a,b) is infrareddivergentfor anyd<®6,
which leads to the behavidp(a,b)x1/b for d=4 whena
—0. One can argue that fat>4 the prefactor of this dia-
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FIG. 10. (a) An IR-divergent diagram at higher loop order, con-
tributing to the expectation value af. (b) IR-divergent diagram
contributing to the three-point vertex function with one insertion of
EZ. (c) IR-divergent diagram contributing to the three-point vertex
function with two insertions oﬂz.

sionality shift. However, we have not been able to construct
a sensible field theory for this problem by choosihg 6 as

the upper critical dimension. Actually other infrared-
divergent diagrams can be found at higher loop orders,
which are even more divergent than the diagram just men-
tioned, as in, e.g., Fig. 18. IR-divergent diagrams also
appear in the expansion of other vertex functions, like the
@’ vertex to one-loop order, where one can easily construct
diagrams with one or two insertions of thefield into the
e-triangular diagram, see Figs. @ and 1Qc). Another
place where a similar diagram appears is in the “mixed”
vertex functionl';,, see the last diagram of Fig. 4 and Eq.
(3.36). If we evaluate this vertex function at a general “tem-
perature” 7, rather than at=1 as in Eq(3.36), we find that

its contribution ind=4 diverges like 1# as7—0. From the

gram will vanish due to the fact thatflows to the Gaussian active phase side, the same diagram diverges likgu%/
fixed pointu* =0. But ford<4 we seem to have a problem, This prevents one from defining the renormalizegaram-
the origin of which is obviously the appearance of theeter at criticality as the value of this function fer=0, at
stronglyrelevantparamete. as an effective couplingwo-  least not afj=w=0. One can attempt to absorb this diver-
point vertey in the perturbation expansion. gence by a finitgnonultraviolet divergentrenormalization
This difficulty is somewhat reminiscent of the random- addition toZ,,, which will then become temperature depen-
field problem, where infrared-divergent diagrams in pertur-dent. Thus one would defing, such that the renormalized
batlon theory lead to a shift in the upper critical dimension in["— +v €valuated atj=w=0 wouId be finite ag— 0. If this is
a ¢ theory from 4 to §24]. This is due to the extra propa- done in the active phase, we have verified that it cancels the
gators in a given loop as compared to the pure case. Ongontribution of the problematic contribution te,) against
might perhaps argue that because of the unidirectionality ofhe corresponding term i, . However, this procedure ap-
the interaction between the two fielgsand ¢, the ¢ field  pears somewhat artificial and not entirely satisfactory since it
acts as a spatially and temporally correlated random fieldequires a temperature-dependent renormalization constant.
from the point of view of thep field, since there is no back- Also, to establish such a renormalization scheme, one would
wards feedback, meaning that thdield has no influence on have to check that this procedure works properly to higher
the ¢ field. However, in contrast to the random field case,loop orders as well, where even more IR-divergent contribu-
where the random field is taken to be of constant variance agons are present.
one approaches the transition temperature, the expectation In the absence of a truly satisfactory resolution of the
value of they field vanishes as one approaches the multiinfrared difficulty, one might argue that its effect is to render
critical point, and this seems to soften the effect of the infrathe e expansion derived in the previous sections invalid. Yet,
red problem. Another marked difference is thiatis not a  this conclusion is too far reaching, since even if a well-
guenched random variable in the traditional sense, since it iefined field theory that describes the asymptotic critical be-
displaying strong temporal fluctuations in the multicritical havior of all hierarchy levels is problemati@and may not
regime. Since the above infrared-divergent integral becomesven exis), our results are still likely to be valid for a range
tamed atd=6, one might think that, similar to the random- of the parameter close to the transition point, as will be-
field problem, one might control its divergence by a dimen-come clear from the following reasoning.
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We notice that the problematic IR-divergent diagrams are o
proportional to higher powers of the interspecies coupfing Stiag= J dde dt[ Vo[ 3+ Do(ra— V) th
For example, the IR-problematic diagram mentioned at the
beginning of this section gives an overall contribution pro- Uy — _ _
portional to u, whereas the other diagrams contributing to —?[\I’Sl//o—\lfolllg]-‘r(po[o?t-i- Do(rg—V?)]®,
(@) to one-loop ordefwhich were mentioned at the end of

the preceding sectigrare proportional toyu or u In u. Uo — — . - g
For small values of. these problematic diagrams are there- — 5 [#0Po~ @00l = SopoVothot SopoPoto
fore suppressed. Now is a relevant coupling in the RG
sense and thus the effectipinning coupling increases as ~so_ Sh
. . X : . 2_ 20—
one goes deeper into the critical region. But by starting with + 5Pt 5 eotol - (3.112

an initially small value ofw, one can increase the size of the
region in whichu remains small. In this intermediate region Here we have defined

the IR-divergent diagrams can still be neglected and the scal-

ing results obtained in the previous sections are valid. Thus, Uoito
our theory predicts that for small, as 7 is decreased, one

. . " . Do(ra—re)’
can observe a scaling regime where the critical behavior is
characterized by the universal exponents calculated in the ~ Uoko
previous sections. In particular, the expongitshould be S=—=——,
observable. Ultimately, as becomes very small the field Do(ra=re)
theory may break down. However, we cannot exclude the ~ (3.113
emergence of another nontrivial asymptotic scaling regime &_ Mo / n UoMo
deep in the critical region. The ensuing scaling behavior 2 2Do(rA—rB)\uO Do(ra—rg)/’

might possibly be extracted by isolating the structure of the

leading IR divergences to all orders and then by a resumma- S — 1o Uoio

tion of the ill-defined perturbative expansion in However, 5= ZD—(UO_ —)
. o . . . ra—r Do(ra—r

although this possibility exists, it cannot be substantiated at o(ra=rs) o(ra=rs)

this point by more rigorqus arguments. What is_more likelynote that this new actioi3.112 has precisely the form of

to happen is that aonuniversalcrossover behavior ensues original full actionS,,c, except that the quadratic cross
(nonuniversal as a consequence of the breakdown OE the g which linked they, and ¢, fields has been eliminated.
expansion and hence the RG construgtiovhich eventually  1his renders the diagonalized model a special case of the
terminates in asymptotically decoupled DP behavior. INery general quadratically coupled DP processes studied by
other words, theB species are no longer slaved to the  j5n55ei15]. In addition, we remark that this diagonalizing
partlgles, byt rathgr behave mdep.en.dently such that thejr,\oformation breaks down when=rg, consistent with
density vanishes with a powgh;. This is supported by the , earjier identification of novel multicritical behavior for
simulation results, as will be discussed in a later section A=Tg=F—0.

Probably, at sufficiently large times, the discrete and finite Since the actior(3.112 is very similar toSyc, we can

number quI plartlclej alre_ady vanishes |r: tg]e mt_erllor of quickly determine its ensuing scaling behavior. The mixed
comparatively large domains. Consequently Biparticles, a0 noint vertices have exactly the same fixed-line struc-

which were actually generated previously through the reacg, e 45 derived in Sec. Il C. Thus the diagrams which would

tion A—B, interact and annihilate as if they were indepen-p e generated a quadratic cross term under renormalization
dent and decoupled from thk species. Further discussions (i.e., thed=2 UV-divergent diagrams in Fig)&ancel out at

of this issue in light of the simulation results will follow at both of the fixed lineg(at least to one-loop orderHence, to

the end of the paper. this order, the DP parts of the action for tileand @ fields
are entirely unaffected by the presence of the mixed three-
G. Diagonalized theory point vertices, generated by the transformati@ml1]). In

We now return to another of the approaches to thethat case we expect pure DP behavior on the transition lines

coupled DP problem mentioned in Sec. Ill A, namely that ofWay from the multicritical point, as we had earlier antici-
diagonalizing the actioi3.2) to remove the quadratic cross pated, and as shown on very general grounds in Ré}.
term linking theyy and ¢, fields. If we apply the transfor-
mations H. Crossover theory
Outside the multicritical regime, the mean-field approxi-
Do= o+ Mo Yo, mation suggested that we should expect ordinary DP critical
Do(ra—rg) behavior for theB species, if eitherr,>0 and rg—0 or
75>0 and7,—0, see Fig. 1. If one starts near the multicriti-
o po  — cal point where bothra,—0 and rg—0, then at first the
Vo=t~ %o (3.11)  multicritical density exponeng, should be observed, even-
Do(ra=rs) tually crossing over to the ordinary DP exponedit, and
similarly for the exponentsy;, etc. In the first crossover
then the action(3.2) is transformed to regionT,>0 andrz— 0, indicated by the dashed arrdin
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Fig. 1, this scenario is rather obvious on the mean-field levelspace, only graplib) survives. After inserting th@. shift,
valid for d>d;: Here, the density,=0, and therefore the and multiplying by the appropriate renormalization constants
coupling between the different hierarchy levels vanishes(in the generalized minimal subtraction schenptbe equa-
Our study of the diagonalized theory in the preceding Section of state in terms of the renormalized quantities assumes
Il G established the DP character of the ensuing activethe form

absorbing transition atg=0 even belowd;, when fluctua-

tions become dominant. 4v € € M )
The more interesting case is the situation fge>0 and (or) 8| Tal| 1= | 1+ 5= §|n|TA|> ~2\v D (¥R
7ao— 0, where there exists a DP phase transition for Ahe (3.12)

particles. Foruag>0, we argued above that th# species

becomes “slaved” to the criticah species, and is driven to At the DP fixed pointy* = €/12, we exponentiate the loga-
a nonequilibrium phase transition itself as theontrol pa-  rithm on the left-hand side thry| 1~ </6= fﬁl, and use(¢Rr)
rameterr,—0. In order to describe the ensuing crossover~ /41 which leads us to

scenario, we apply the generalized minimal subtraction A

scheme of Ref25], where we retain the parametsy in the “ #
RG flow equations, and use,=1 as the normalization (pr)~2v* L (3.122
point. TheZ factors then become functions of the nonlinear D 7

couplingsand 7g. In order to simplify the calculatlon,~we which obviously generalizes the mean-field re<aIe6).

once again use the reduced parameter space vwjierq

=g’=0. However, now we must distinguish between the

. . . I. Higher hierarchy levels
nonlinear DP coupling for the A species and the one for the

B particles, which we denote with' . The remaining impor- We end this section on applications of the renormalization
tant Wilson RG functions then become group to coupled DP with some remarks on the behavior of
higher hierarchy levels>2. As pointed out already in Sec.
{;,=—2+3v, (3.1149 II, while generically the transitions from the active to the
absorbing inactive phase of particle spediese of the DP
3’ universality class, with the critical density exponght one
(=~ 2+ T (3.115 finds the two-level hierarchy expone@l whenever the first
(1+7g)"" " two critical points coincider ,=rg. However, further spe-
cial multicritical behavior appears at higher levels if addi-
\/Fg tional r, become equal. In mean-field theory, one t&s
{u—ép=—2-v+ m' (3.116 =1/2"1 for ry=---=r;. In the two-level hierarchy i(

=2) multicritical regime, one finds a strondownward

and the RG@ functions for the couplings, v’, andg read  fenormalization of8; and 8, due to fluctuations, see Egs.
(3.22 and (3.99.

By=v(—€e+12), (3.119 In order to see what happens at higher hierarchy levels, let
us briefly consider the three-species coupled DP process in
( 120" ) the vicinity of the multicritical regime, and for small trans-
B, =v'| —et+ ——|, (3.118 mutation rates. Notice that in this situation fluctuations will
(1+7g)tFe? not only generate the vertices corresponding to(B®7) on

each adjacent level, but also the indirect transmutafion
€ \/Fg —C, as well as all possible three-point vertieggsdirection-
" 2v+ (1+ 7)1+ 2) (3.119 ally coupling the levelgand in principle additional higher
B order nonlinearities, which, however, turn out to be irrel-
Of course, theA species DP fixed point remaing =e/12 ~ €vanj. In order to simplify the analysis, we merely use the
with ¢* =—2+e/4. However, theeffective B coupling reduced parameter space analogous to keeping only the new
TA - 1 . _ . .
0 (N[ 1+ 75(/)]* 920 asymptotically as’—0 [since vertex_ Sp in thg two Igvel process_. This leaves us Wlt-h the
v'()~/"<] and hencers(/)~~/ "2 according to Egs. followmg eﬁectlve ac.t|or(W|th the fields¢y and ¢ describ-
(3.118 and (3.119. Thus B,— —(€/3)g andg(/)—0 as M9 the particle specie§):
well. Consequently/; — {5 =—2—€/12, and we recover

Bg:g

Seff:f ddxf dt|$o[f9t+Do(rA—V2)]¢o
¢=(L5— B =1+€l6+0(e?),  (3.120

u J— -
i.e., the result given in Eq3.63 at the unstable fixed line. - 70(%%—%'/’%%%00[5& Do(rg—V?)]eo
Notice that here the critical exponents for tBespecies are
given by v, = —1/§’;A, etc., and thus take on the usual DP Up — — _ N
values(3.19 to (3.22. - 7(@0%_ ®0%0) — Ho®oo— SoPototo
In the active phase, we may confirm this by direct calcu-
lation, as in Secs. Il D and Il E. From the diagrams in Fig.

J— UO J—
B Py SRt
9, for finite 75, and in essentially the reduced parameter T boldt Dolre= V)¢~ 5 (odo= dodo)
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_ - - i —1/0—1_ ;
— b doeo—todooPo— rodolo— Lol sent, we would arrive g8;=1/2 €/6 to one-loop order,

with the O(e) correctionindependenof the level indexi.
—_ This would predict that near four dimensions, i.e., for any
~pobopoto - 8123 p<e<1, B; should become negative for sufficiently large
The correct resul3.99 for the second hierarchy level, how-
Clearly, if we just consider thB/C reactions, then a fully ever, shows that th®(e) correction is actually smaller than

analogous calculation as in Sec. Il C yields for the first level. Presumably, on each successive level the
O(e) corrections are further reduced, such that all the den-
{u—{p=—2—v+vh, (38.124  sity exponents remain positive. A detailed computation of

. B3, which requires an explicit study of the active phase, al-
whereh=t/D. Hence withv* =e€/12, the crossover expo- ready becomes a rather tedious affair, and we leave our dis-
nent at the associated two-level multicritical point is cussion of higher hierarchy levels with this speculation.

¢'=(L— ) =1+0(€), (3.125

computed at the stable fixed point =2+/e/3 (which is the , .

remnant of the stable fixed line in the reduced parameter .In. ordgr to support ourﬁgld-theoreﬂcal results, we stut_jya
space. We may wonder now if the unidirectional, sequential Unidirectionally coupled hierarchy of DP models using
coupling of three hierarchy levels leads to a further nove|Monte-CarIo simulations. There is a large variety of DP lat-

crossover exponent associated with the transmutafion tice models that can_b_e used _for .th's purpose. One of the
simplest and most efficient realizationsdisected bond per-

—C. Thus, we compute the renormalization of the vertex . . ; s )
functionT=.  which leads to colationon a tilted square lattice26]. In this model, neigh-
¢ boring sites are connected by directed bonds which are open
Y S S f47), 312 with probability p and closed o_therW|_se. Actlvny_ pe_rcolates
Eubo v+ ) ( 9 through open bonds along a given direction which is usually
where f=t/D and f=pu'/D . We now merelv need the Nterpreted as the direction of time. Labeling different rows
lizati b pt’: d'LfL— In iust th y of sites by a discrete time variabledirected bond percola-
renormalizations or bothandt. In Just tn€ Same manner as i,y may pe equivalently defined as a stochastic cellular au-
in the two;level calculation, one finds from the renormahza—tomaton with parallel update rules mapping the system’s
tion of ', configuration at timet probabilistically onto a set of new
e e —5 configurations at time+1. In one spatial dimension, di-
Pi=t(—el2+2v+ Vuf)=f(-el3+ E/lZf)’(s 127 rected bond percolation is just a special case of the Domany-
' Kinzel cellular automatof27] which is known to be one of

which obviously has the IR-stable fixed poifit =2./e/3.  the most efficient realizations of DP on a computer. Another

The only really novel renormalization concerns the vertex@dvantage of using directed bond percolation is the availabil-
functionT 5, yielding ity of very precise estimates for the critical percolation
(P L}

thresholdp.(d) in d=<2 spatial dimensions. Currently the
{,—{p=—€l2—2v+ \/;(g+ h-+f). (3.129 best estimates ag.(1)=0.644 700 15(5]28] for d=1 and
p.(2)=0.287338(6)[29] for d=2, respectively. To our

IV. NUMERICAL RESULTS

After using{,,, — {,= Ju(h—f—1), this leads to knowledge, the percolation threshold for
. o (3+1)-dimensional directed bond percolation has not been
Br="f[— e/2—2v+ v (g+2h—1f)]=f(e/3— Vel12f). estimated before. Using standard methods we find the value

(3.129  p(3)=0.13235(20).
Coupled DP may be realized on a computer by simulta-
Comparing with Eq(3.127, we see that the nontrivial fixed neously evolving several directed bond percolation models
point f* =2./e/3 is unstable whereasf* =0 is stable ford  which are coupled without feedback according to the prin-
<4. Consequently, the three-species vergy,, vanishes ciples outlined in the Introductiosee Fig. 11 For simplic-

asymptotically, i.e., becomes irrelevant, which implies ity, we work in the limit of infinite coupling strengtjy = oo,
. i.e., active sites in one of the subsystems instantaneously turn
d):(g:‘;— {5 =1+0(€?), (3.130 the corresponding sites of the next subsystem into the active

state. Alternatively, we could also apply a finite coupling
identical with the one-loop values of the crossover exponentstrength (probabilistic transfer of activity to the next sub-
¢ and ¢'. Coupling to an additional hierarchy level there- system), or explicit particle transmutationA—B,B
fore doesnot introduce a novel crossover exponent in the—C, ... . Although these variants are expected to have the
multicritical regime, at least t®(€). We suspect that this is same critical properties, their initial crossover times into the
actually true to higher orders ie=4—d and for higher lev-  scaling regime are typically longer. Therefore we restrict the
elsi>3 as well. numerical analysis to the case of infinite coupling strength.
On the other hand, below the critical dimensity* 4 the In principle, it would be possible to simulate arbitrarily
density exponent®; are affected by the fluctuation correc- many hierarchy levels. However, in order to reach the scal-
tions to the scaling functions, and are not simply determinedng regime, the particle densities have to be low enough. It
by a scaling relation like Eq2.37) [22]. In fact, were such a turns out that already at the fourth level the particle density is
renormalization contribution from the scaling function ab-rather high, which makes it extremely difficult to determine
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hierarchy level 1

space

107

FIG. 11. Schematical illustration of a coupled hierarchy of three
directed bond percolation processes i1l dimensions. Activity
percolates along the direction of time through borisisnple ar-
rows) which are open with probabilitp. The three subsystems are
coupled by instantaneous transfer of acti\itypuble arrowsto the
corresponding site of the next subsystem.

critical exponents. For this reason our numerical simulations FIG. 12. Monte Carlo simulations of coupled DP in-1 di-

are restricted to three hierarchy levels. mensions(a) Steady-state simulations in the active phabg-(d)
Dynamical simulations at criticality. Time is measured in Monte

A. Numerical estimation of the critical exponents Carlo steps.

In order to estimate the critical exponents of coupled DPaineq by dynamical simulatioi80]. Starting from an initial
we employ two standard numerical methods for systems withiate with a single particléactive seelj the system evolves
phase transitions into absorbing states. On the one hand, Wg the critical point and generates a spatio-temporal cluster of
use steady-state simulations in the active phase in order to.;ye sites whose size and lifetime are finite. Survival prob-
directly determine the exponeng . On the other hand, dy- 4pility, mass, and mean-square spreading of the cluster vary
namical simulationg30] at the multicritical point render a algebraically with certain dynamical exponents, which in
set of dynamic exponents which in turn determine the expog, - are related to the exponer@s v, , andv;. In order to
nentsv,  andw . i i ) ) apply this technigue to coupled DP, we prepare an initial

a. Steady-state simulations in the active phaSe.the  giate with a singleA particle at the origin and perform the
multicritical line the stationary particle densitieg are ex-  gimylation at the multicritical point. The properties of the
pected to scale as~(p—pc)’k. By measuringy, in a suf-  resuiting cluster are analyzed separately for each particle
ficiently large system, it is therefore possible to directly €S-species, i.e., we measure the survival probabMigt), the
timate the exponents,. The accuracy of the results n,mper ofk particles(cluster massN(t), and the mean-
depends on the accessible rangeA@i=p—p; in the simu- 4,316 spreading from the origiR2(t) averaged over all
lation. In d=1 spatial dimension the minimal value @f  ng that survived at levéd up to timet. At the multicritical

— P is predominantly limited by the equilibration tintg,, oint, these quantities are expected to scale as
which has to be larger than the temporal correlation Iengti?

&1k~ (P—pc) "Ik, whereas ind=2 dimensions the main Po(t)~t%,  N(t)~t%, Rt)~t?%, 4.2
limitation is the system siz&l,,,, Which has to be larger

d —~ _ —dv k
than &) ~(p—pc) "+ (see Table )l The measurements where 8= By /v and z=v /v, . Here, , is the so-

for d=1 are shown in Fig. 1@. From the slopes of the called critical initial slip exponenit31,2Q which will be dis-

lines averaged over one depade we estimate the exponergﬁssed belownot to be confused with the static correlation
Bi, whose values are listed in Table I. function Fisher exponen)

b. Dynamical simulations at the multicritical pointhe The temporal variation of the quantitié4.1) measured in

most precise estimates for the critical exponents of systems three-level coupled directed bond percolation model in 1

with phase transitions into absorbing states are usually Ob;l dimensions is shown in Figs. @—12d). Similar simu-

lations were performed in two and three spatial dimensions.

TABLE |. Steady-state simulation results. .
y From the slopes of the lines averaged over two decades we

d=1 d=2 d=3 d=d—e estimate the critical exponent,, 7., andz., which are
summarized in Table Il. Notice that, z,, andzz; assume

APmin 0.0004 0.0008 0.0016 the same values within the numerical error. Inserting the pre-
N max 4000 108 35° vious estimates foB,, we can compute the scaling expo-
Tequ 10° 10* 10° nents v =B/ 8 and v, =) /z separately for each
B1 0.2805) 0.572) 0.80(4) 1—€/6+0(€?) level k In the hierarchy(see Table Il). Within numerical
B2 0.13215) 0.323) 0.403) 1/2— €/8+ O(€?) error they coincide with the DP exponents, v, andz, as
Ba 0.04510) 0.153) 0.172) 1/4—0O(e) predicted by the field-theoretical RG calculation.
Bop 0.2765 0.584 0.81 c. General problemsThe extensive simulations reveal an

unexpected deviation from ideal scaling at higher levels. As
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TABLE Il. Dynamical simulation results. 0 . T 0.6 T T

-0.05 F 4 05 -
d=1 d=2 d=3 d=4-¢ ;\S\E\B\E‘E\Ekslfgzﬂ k=2 ]
0.4 M

i 10" 10° 300 & 01T 12047 et ]

5 0.1574) 0.462) 0.735) 1— el4+0O(€?) —0.15 wel‘éle 03 po-0-0--0-0-0-6-0 |

8, 0.07510) 0.263) 0355  1/2—el6+0O(e?) ; 1 - 1

55 0.031) 0133 0153 1/4-0(e) PR 0 e Yo T o

m 0.3146) 0.202) 0.103) €/12+0(€d) t t

7, 0.392) 0.393) 0.435) 1/2+0(€%) FIG. 13. Local slopes of the lines in Figs.(b2and 1Zc). The

73 0.472) 0.564) 0.7510) 3/4—0(e) slow drift of the slopes at higher levels indicates that the scaling
2/z, 1.261) 1.102) 1.032) regime is not yet reached in the present simulati¢hisne is mea-

2/z, 1.253) 1.123) 1.0412) 1+ e/24+ O(€?) sured in Monte Carlo steps.
2/z4 1.233) 1.103) 1.032)

mutation rate becomes ultimately insufficient, and some ap-
propriate resummation of the expansiongnwould in fact

can be seen in Fig. 12, the lines far-1 are in fact not be required. _ _ _
perfectly straight but slightly bent. In order to illustrate these ~Furthermore, we remark that in a simulation based of

deviations, we determined the local slope of the survivacourse on a finite number of particles, ultimately one would
probabilities, expect a crossover to ttecoupledsituation, namely when

the A species, whose density decdgsterat the multicritical
point, has already died out. It might well be possible that in
l0g;0 Pi(2t) —log;o Pi(t) a fluctuation-dominated regime this effect sets in much ear-
109102 (4.2 lier, provided there emerge large regions which have already
become depleted of th& particles. Thus, one explanation of
o ) ) _ the drifts visible in Fig. 13 could be that this crossover re-
and similarly 7,(t) in a (1+1)-dimensional system. After gion to the asymptotic decoupled regime has already been
sufficiently long times, these quantities should become conreached. The universal exponents predicted by the field
stant and equal to the expone@jsand 7, respectively. As  theory would then apply only to an intermediate scaling re-
expected, the lowest level reaches the scaling regime afterg@me. We note that the field theory calculation, being based
short time(see Fig. 1® At higher levels, however, there is a on a continuum description of coarse-grained particle densi-
considerable drift of the local slope that extends over thejes, cannot easily account for this finiteness of the particle
entire temporal evolution. Similar drifts can be observed inqymber.
all other quantities which involve the denSity eXponentS In the case of Coup|ed annihilation proces$see Sec.
B2.Bs., - .. . The deviations indicate that the scaling regime,/|) where similar deviations occur, the intermediate scaling
especially at the third level, has not yet been reached. Byegime can be clearly identified in numerical simulations. In
estimating the critical exponents at higher levels, we thereparticular, it is observed that the size of the scaling regime
fore encounter considerable SyStematical errors which m rows as the Coup”ng Strength decreases. We have also per-
even exceed the statistical error margins. A careful numericgbrmed simulations of coupled DP with reduced coupling
analysis shows that the drift in the local slopes is neithektrength(probabilistic transfer of activity to the next leyel
related to finite-size effects nor to deviations from Crltlcallty Unfortunate|y, the initial crossover into the intermediate
At present the Origin of these deviations from ideal Scaling i%ca"ng regime grows rap|d|y as the Coup”ng Strength is re-
not yet entirely clear. It might perhaps be a signature of thejuced, which makes it impossible to identify the boundaries
IR-divergent diagrantc) of Fig. 9 (see Sec. Il . As men-  of the intermediate scaling regime.
tioned above, these graphs are connected with the appear-
ance of additional powers of threlevantcouplingw, and we
suspect that this drift in the scaling exponents signals that o -
our first-order perturbation theory with respect to the trans- When a DP process starts from random initial conditions
at very low density, the particles are initially separated by

empty intervals of a certain typical size. During the temporal
evolution these particles generate individual clusters which

o(t)=

B. Critical initial slip

TABLE IIl. Derived critical exponents.

d=1 d=2 d=3 d=d—e are initially separated. Therefore, the average particle density
firstincreasesasn(t) ~t”—a phenomenon which is referred

Vi 1.124) 0.704) 0.574) to as thecritical initial slip of nonequilibrium systemg31].
v, o 1.11(15  0.6915) 0.598) 1/2+ €/16+ O(€?) Later, when the growing clusters begin to interact with each
v, 3 0.9525  0.6515 0.629) other, the DP process crosses over to the usual de@dy
V) pp 1.0968 0.734 0.57 ~t~P"I, Dynamical simulations starting from a single par-
Vi1 1.796) 1.246) 1.108) ticle represent the extreme case where the critical initial slip
V|2 1.7625  1.2317)  1.1415 1+ €/12+0(€?) extends over the entire temporal evolution.
Vi3 150400 1.1530) 1.21(15) In ordinary DP, the critical initial slip exponenj is re-
V).op 1.7338 1.295 1.09 lated to the other bulk exponents through the hyperscaling

relation 25+ »=d/z [30,20. In the case of coupled DP we
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would therefore naively expect that the critical initial slip 1

exponentsy, are related to the other exponents by, 2 f n, i
+ n,=d/z. However, the numerical estimates in Tables II M
and Ill do not satisfy this scaling relation at higher levéds i n,

>1. Instead they seem to fulfill trgeeneralized hyperscaling
relation introduced in Ref[32] in the context of systems
with many absorbing states, o

5DP+ 6k+ 77k=d/Zk. (43)

Here épp denotes the exponend/v| of ordinary directed
percolation. In fact, inserting the estimates&fandz, for
d=1, Eq. (4.3 predicts the valuesn;=0.3144), 7, e e NN
=0.398(10), andy;=0.443(20), which are in fair agree- 10 10° 10”
ment with the estimations in Table IlI. h

In fact, the above scaling relatioi@.3) may be derived
fairly simply, starting from an appropriate scaling form for
the two-point correlation function. If we initiate the cluster
starting from a single localized seed, then the densit{ of
particles at a later time will have the following form:

FIG. 14. Susceptibility of multicritical coupled DP to an exter-
nal field. The figure shows the stationary particle densitiggersus
the rateh for spontaneous particle creation.

where the DP exponet can be shown to equal=dv,
+v— B1. In the limit|7]—0, we thus have
ulD X Dt

na(x,t) ~| 7{%A1f, 7%

. 4.9

ulD
h(/)/A

A el

n2"’ h'Bl/Aé

. 4.7

Note that, even though this is a scaling form for thensity
it has the structure of a two-point correlation function. Hence, using the results of Sec. Il E and generalizing to the
Roughly speaking, the prefactors in Hg.4) may be inter-  kth level of the hierarchy, we have
preted as follows: one factor ¢##1 comes from the prob-

ability that the cluster is still alive at time while the second Bk

> . ) nge~h%, py=0——"7——. 4.8
factor comes from the probability that the poing,t) is a dv, +v— B
member of that cluster. At criticality we find, by integrating
Eq. (4.4) over space, In order to verify this scaling relation, we repeat the steady-
state simulation at the multicritical point in the presence of
ulD spontaneous creation éf particles. The results in#+1 di-
t72~t(dv. =260/ f —) (4.5 mension are shown in Fig. 14. From the slopes of the lines
(D)™ we estimate the susceptibility exponents

where we have also used one of the definitions from Eq. v1=0.1092), y,=0.0454), vy3=0.0142).

(4.1). Assuming that the scaling functidnin the multicriti- 4.9
cal regime behaves in the same way as in Sec. Il E, we then . . .
end up with the scaling relatiof#.3) for the second hierar- On the other hand, the above scaling relation yields the val-

chy level. The extension to higher levels works in an exactly€S ¥1=0.1012), y,=0.0516), andy;=0.01§5), which
similar manner. are in fair agreement with the simulation results.

C. Susceptibility to an external field D. Crossover phenomena near the multicritical point

Coupled DP may be subjected to an external fiekd by Numerical S|mulat|pns near the critical point reproduce.
i p — , : the crossover scenario predicted by the mean-field approxi-
adding a termh/d°x[dta to the action(3.1). In the particle  mation. As an example, we consider the two crossovers

inFerpretation, .the field corresponds to & spontaneous Crejong the dashed arrowsandA/B in the mean-field phase
ation of A particles at ratén during the temporal evolution. diagram of Fig. 1. To this end, we simulate a two-level sys-

This means thqt all subsystems approach a fluptuating_steagé(m in one spatial dimension. The percolation probabjlity
state, irrespective of the value pf We are particularly in- ¢ |0yl A is always at the critical point, whereas leils
terested in the response of to the external field at the g 1ated slightly below and above criticalityp{=p.

multicritical point. For ordinary DP it is known that, 1 o5y The numerical results are shown in Fig. 15. As ex-
~h?, wherey=p/(dv, + v —p) is the susceptibility exp0- pacted, fom,<p, the density oB particles first decays like
nent. For coupled DP we can derive a similar relation, starthz(t)Ntfﬁz/uH and then crosses over to a dynamical state

ing from the scaling form for thesteady-statedensity where theB particles become “slaved” to thé particles,

D |7 such thatn,(t)~n,(t)~t~#1/”I. On the other hand, fop,
Ny~ r|B1g,| 2= 10|, (4.6  >Pc the B subsystem crosses over into a state with a con-
|7]¢  hYA stant density where thB particles become independent of
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or desorbed from the edge of an islafudateay,
h;—min(h; ,h;; 1) with probability (1-q)/2, (5.2
h;—min(h; ,h;_4) with probability (1-q)/2. (5.3

When the growth ratq is low, the desorption processgs?2)
and (5.3) dominate. If all the heights are initially set to the

*—* n, (p>p,) same valuén,, this layer will remain the bottom layer of the
&—© n, (p=p,) interface. Small islands will grow on top of the bottom layer,
G—8 n, (p<p,) but will quickly be eliminated by desorption at the island
GO n edges. Thus, the interface is effectively anchored to its bot-
e RN tom layer, and the growth velocity, defined as the rate of
10 100 1000 increase of the minimum height of the interface, is zero in

t the thermodynamic limit. Ag is increased, the size of the
FIG. 15. Crossover effects near the multicritical point. The fig- islands created on top of the lowest layer increases. Above

ure shows the particle densitieg vs time in a two-level system dc. the critical value ofg, the islands merge and new layers
starting from a fully occupied lattice, normalizedtat 10. Levela  are formed at a finite rate, giving rise to a nonzero interface
(k=1) is always critical, while leveB (k=2) is either evolving in  Velocity in the thermodynamic limit.

the active, critical, or inactive regime. Initially the decay®par- The key feature of this model is that atoms may desorb
ticles is the same in all cases. Later the system crosses over toGly at theedgesof plateaus, i.e., at sites which have at least
different behavior where th®& particles become independent or one neighbor at a lower height. In experiments this would
slaved to theA particles, respectively(Time is measured in Monte correspond to a system where the binding energy in com-
Carlo steps. pleted layers is much larger than at the edges of plateaus.

i i ... Furthermore, the dynamical processes at a given layer are
the A particles. Thus the crossover effects are in qua"tat'veindependent of the processes at higher layers. In particular,

agreement with the mean-field and RG predictions of Secs. ke temporal evolution at the bottom layer is decoupled from

and Il H. all other processes at higher layers. In fact, one can show that
the dynamics of the bottom layer can be mapped onto a
V. APPLICATIONS one-dimensional contact process which is known to belong

to the DP universality clasg34]. Identifying blank sites at

The most natural applications of coupled DP are to

. . . : the bottom layer a#\ particles, the adsorption proceésl)
rowth processes in which the layers at different heights rep- g L . X
growth p i wh Y ! 'd b ay be interpreted as the annihilation Afparticles, while

resent different subsystems in the hierarchy. The dynamic :

rules for adsorption and desorption in these models have t9'€ desorpthn proc_:ej!(§2) and(5.3 cor_responds t@ par-

be implemented in such a way that neighboring layers ar?Cle p_roduct|on. Similarly, the_ dynam_wal processes at t_he
effectively coupled in one direction without feedback. The ollowing layers may be associated with the particle species
phase transition then emerges as a roughening transitiory >~ - - o

from a smooth phase to a rough phase. The known examples Itis important to note that the state of a site in coupled DP
include so-called polynuclear growth modé¢RNG) [33], a IS charact_enzed py the presence or absence of various par-
special class of solid-on-soli&0S models[34], and certain t|c_Ie species, whllg sites of a growth model are associated
models for fungal growti35]. Another interesting realiza- with a S'”Q'e_ quantity, namely the height. To connect the

tion of coupled DP is the spreading of activity next to the two descriptions, we have to assume that the coupling con-

“light cone” in stochastic cellular automaton models with stant u is infinite such that particles at levéd instanta-

parallel update rules. neously create particles at levet 1. In this case the state of
a site in coupled DP is fully characterized by the index of the
A. Roughening transitions in SOS models lowest active level in the hierarchy, which then corresponds
o o ) to the height of the interface in the growth model. Therefore,
Coupled DP was first identified in a particular SOS modekne order parameters, ,ng,Nc, ... =Ny,Ny,N3 . .. are de-

[34] which exhibits a roughening transition even in one spafiyeq by
tial dimension. The active phase of coupled DP corresponds

to a smooth phase where the interface is pinned to a sponta- 1 hotk-1
neously selected layer. On the other hand, the inactive phase == X Shons (5.4)
of coupled DP corresponds to a roughening interface which NT n=he

propagates at finite velocity. ) ) . ) .

The unrestricted version of the SOS model is defined on &1at IS, Ny is the density of sites whose heights &esthan
one-dimensional lattice ol sites,i=1 ...N, with associ- Do™K, whereh, denotes the height of the bottom layer. By
ated height variabless; , which may take values 0,1, . ..  definition, the densities obey the inequaliy<n ;. _
The dynamical rules are defined through the following algo- 1€ above growth model is invariant under global shifts

rithm: At each update a siteis chosen at random. Then an Of the heightsh;—h;+a. This symmetry is spontaneously
atom is adsorbed, broken in the(coupled DR active phase where the system

selects a particular reference height as the bottom layer. In
h;—h;+1 with probability g, (5.1)  the(coupled DP inactive phase, however, the interface be-
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comes rough and propagates at finite velocity, i.e., active DP 1 k-1

processes subsequently enter the absorbing state. The growth nge=— E E Sh. t—h- (5.7

velocity v is inversely proportional to the average survival N =0 ™

time of the lowest-lying DP process, hence-(q—q.)"ll.

Numerical simulations confirm that the critical behavior of Thus PNG models may be interpreted as a realization of

the first few layers in the growth model is indeed the same asoupled DP in aomovingframe. An exact mapping relating

in coupled DP. In particular, the exponegisfor the density PNG models and the previously discussed SOS models

of sites at the first few layers are in agreement with the(where coupled DP resides in a fixed frame next to the bot-

numerical estimates in the present work. tom layed was proposed in Ref34]. It should be empha-
Alternatively, one may study the same model with thesized that the existence of a roughening transition in PNG

additional restrictionh;—h;.;|<1. In that case the layers models requires the use of parallel updates. If random-

are no longer coupled without feedback. For example, if sequential updates are used, the transition is lost, and the

site with heighth;=1 has neighbors at heighits_;=0 and interface is always rough since then there is no maximum

hi.;=2, the atom at sité cannot desorb from the surface. velocity.

Using the language of coupled DP, this means that the pres-

ence _ofC partic!e_s prevents tha p_articles_ from producing C. Models for fungal growth

offspring. Surprisingly, the numerical estimates of the expo- , .

nents 3, indicate that the critical behavior of the system is  Recently, Lpez and JensefB5] introduced a class of

still that of coupled DP. Thus it seems that certain realiza/models for the growth of colonial organisms, such as fungi

tions of “inhibiting” feedback from higher levels to lower and bacteria. The models are motivated by recent experi-

ones do not destroy the universal properties of coupled DPN€Nts[36] with the yeastPichia membranaefaciensn so-

Rather, the essential precondition for coupled DP seems tiflified agarose film. Depending on the concentration of pol-

be the existence of a hierarchy of absorbing subspaces, i.d/ting metabolites, different front morphologies were
inactive levels must not be activated by higher levels. observed. The aim of the models is to explain these morpho-

logical transitions on a qualitative level.
The model for fungal growth is defined on a triangular
B. Polynuclear growth (PNG) models (1+1)-dimensional lattice whose sites are either occupied or
In PNG modelg33] a similar scenario arises, but in this vacant. Growth of the colony occurs because of the division

case the coupled DP behavior occurs at the highest levels &f individual cells, i.e., only nearest neighbors of occupied
the interface. As in the previous case, the PNG models ma§iteS can become occupied. The model evolveparallel -
be defined on a square lattice with associated height variPdates. To mimic realistic cells, it is assumed that cell di-
ablesh; . The key feature of these models is the uspaf-  ViSion is less likely in young cells. To '_[hls e;nd, the simula-
allel updateswhich gives rise to a maximum velocity of the tion keeps track of the agg(t) of occupied sites. The prob-
interface. One of the most popular PNG models is define@Pility Pi(t) for a vacant sité to become occupied in the
through the following dynamical rules. In the first half time Next time step depends on the total @gét) =2 ;a(t) of
step atoms “nucleate” stochastically at the surface by the occupied nearest neighbors of $it&sing the functional
dependenc®;(t) =tanH 6A(t)], a roughening transition was
h( N 1) [hi(t)+1 with probability p 55 observed at6.=0.1833). Investigating clusters of sites
[ 515 ; dea . growing at maximal velocity, some of the critical properties
2 hi(t) with probability 1= p. at the transition could be related to B85]. It was argued
that this roughening transition could be the essential mecha-
In the second half time step the islands grow deterministinism behind the morphological transitions observed in ex-
cally until they coalesce, periments.
Clearly the above fungal model and the PNG models are
very similar in character. They both work with parallel up-
hi(t+1)= ma){hi , (5.6)  dates and exhibit a roughening transition which is related to
i
wherej runs over the nearest neighbors of siteStarting
from a flat interfaceh;(0)=0, the sites at maximal height

DP. Here we will present numerical evidence to show that
h;(t)=t may be considered as active sites of a DP proces

the fungal growth model is actually a realization of coupled
DP, in spite of complicated details such as the age-dependent
rates for cell division and interface overhangs. The order
Jparameters), may be defined as
Obviously Eq.(5.5) turns active into inactive sites with prob- 1
ability 1—p, while offsprmg production is reallged by th_e nkzﬁ E Ni(t)éyi t—k+1s (5.8
procesg5.6). Therefore, ifp is large enough, the interface is :
smooth and propagates with velocity 1. Below a critical
threshold, however, the density of active sites at the maximalihere N;(t)=0,1 denotes the occupation number of sjte
heighth;(t) =t vanishes, and the growth velocity is smaller andy; is the height coordinate of thigh site. We have nu-
than 1. Identifying the sites with;=t asA particles, those merically measured the densitieg,n,, andnz near critical-
with h;=t—1 asB particles, etc., the dynamical processesity in the smooth phasésee Fig. 16 Our estimatess,
resemble the rules of coupled DP. The corresponding order0.282), 8,=0.132), B3=0.04(2) are in agreement with
parameters are defined by the numerical results of Sec. IV.

1
t+ =

t+1
2

2

!hJ
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& A-plane
B-plane
C-plane
2
-% A 5 )
° ) . .
o
-
Q g FIG. 17. Realization of a unidirectionally coupled hierarchy of
(1+1)-dimensional DP processes in(2+1)-dimensional directed
bond percolation process with parallel updates. The figure shows
0.1 10'_3 10'_2 10™ the “light cone” starting from a single site. The subsystems

0-6 A,B,C, ... correspond to tilted planes as indicated by the arrows.
FIG. 16. Coupled DP in a model for fungal growth. The graph dimensions. Therefore, the numerical valuepgin d spatial

shows the density of the first three levels propagating at maxima§imensions coincides with the usual transition pgiptin d

velocity as a function of— 6 in the smooth phase. Power-law fits — 1 dimensions. This explains the numerical valpe
are used to estimate the exponefits(see text The inset shows a =0.6447.
typical configuration of the growing front near criticality.

. . . VI. COUPLED ANNIHILATION REACTIONS
As in the PNG models, the existence of a roughening

transition in the model for fungal growth requires the use of We finally return to the question of whether new dynamic

parallel updates. For random sequential updates there is naiversality classes can be constructed by the unidirectional

such transition and the interfaces are always rough. Howeoupling of known nonequilibrium processes. We have seen

ever, random sequential updates seem to be a more appropifiat in the case diinearly coupled directed percolation, the

ate description of the experiments in RgF6], since realistic ~ ensuing hierarchical structure leads to the emergence of mul-

cells do not divide synchronously. Therefore it is still unclearticritical behavior at a special point in control parameter

to what extent the roughening transition of the model in Refspace, described by the novel density exponghtand «; .

[35] is related to morphological transitions in realistic fungal Similarly, we expect identical qualitative features for the

growth. closely related problem of linearly coupled dynarfisotro-

pic) percolation processedalbeit there one of the nonlinear

vertices is nonlocal in tim¢14]). This is to be contrasted

with the very generatjuadratically coupled multicolor DP

processes studied recently by Janssen, where ordinary DP
Let us finally consider a directed bond percolation processritical behavior is found15].

on a tilted square lattice id+ 1 dimensions, which may be The simplest nontrivial case, however, would be to con-

understood as a stochastic cellular automaton evolving bgider a stochastic process which is generically scale-

parallel updatef27]. Starting from a single active seed, suchinvariant, i.e., where no tuning to a special critical point is

a cellular automaton generates a cluster of active sites. Foequired. An example of such a system is provided by the

maximal percolation probabilitp=1 this cluster is compact simple diffusion-limited two-particle annihilation reaction

and has the shape of a pyramid. This means that all sitds,8]

within the light cone (the surface of the pyramicare acti-

vated. A+A—0 withrate \,. (6.1)
Apart from the usual phase transition, DP models with

parallel updates i=2 spatial dimensions exhibitgecond  the corresponding mean-field rate equation for the particle

transition, where the clusters detach from their light cone. "HensityA reads

the case of (2 1)-dimensional directed bond percolation

this transition takes place @t=ps=0.6447>p.. As illus-

trated in Fig. 17, the dynamical processes near the light cone

constitute a unidirectionally coupled hierarchy of DP pro- ot

cesses ind—1 spatial dimensions. The lowest hierarchy

level A corresponds to the sites in the light cone. Clearlywhich is solved at long times—o by n(t)~t~ 1. Power

these sites are decoupled from the interior of the pyramidcounting shows that this result is expected to be correct for

The following hierarchy level8,C, ... correspond to par- dimensionsd>d.=2.

allel planes as indicated in Fig. 17. Since activity can only In low-dimensional systems, however, fluctuations and

percolate forward in time, these planes are coupled in onlghe emerging particle-anticorrelations become important, and

one direction without feedback. The dynamical processethe density decay exponent is reduced. In order to include

within each subsystem are precisely those of a directed boritiese fluctuations consistently, one may derive the following

percolation process on a tilted square latticelinl spatial field theory from the classical master equat|8i

D. Critical behavior near the light cone in spreading processes
with parallel dynamics

IAXD  Dvzn,x - 20amaxt? (6.2
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. . In order to include fluctuation effects, we write down the

S=J ddXJ dtfa(d;—DV?)a—\a(1-a%a’], (6.3  action corresponding to the coupled reactidfsl), (6.5),
and(6.6), settingAa=Ag=\ andopg=0:

where we have omitted boundary terms stemming from the

initial configuration, as well as terms related to the projection S= J ddXJ difa(d,—DV3)a—\(1—a2)a2

state(see Ref[8]). When the actior{6.3) is expanded about

the stationary solutiom=1, the classical field equation for B9 _PYDh_ _B2\p2 —_fa

a(x,t) yields precisely the mean-field rate equati@?2). Th(d=DVID=A(1 DT+ o(1-b)aal.

The entire field theory6.3) can also be recast in the form of (6.9

a Langevin equation for the fiel(x,t), although this field is . :
related to the true density fielth(x,t) in a rather nontrivial Notice that theA propagator has_ now acqwrgd a form_al mass
way [17,8,37. term o, as opposed to thB particles, for which we still the

have the massless diffusion propagat@gain, we have as-

The structure of the field theo$.3) is very simple, as no . X . .
diagrams can be constructed that would renormalize the frea-Med identical diffusion constanis for both species Of

diffusion propagator €iw+Dg?) L. Furthermore, the en- course, once the shifes=1+a andb=1+b are performed,
tire perturbation series for the annihilation vertices is readilythis mass term disappea(as it should, and on the classical
summed via a geometric series, or through solving the ensievel the mean-field rate equatid6.7) is recovered. It is,
ing Bethe-Salpeter equation. Hence the scaling behavior dfowever, convenient to work with the unshifted field theory

the density is known exactly. The final result[& (6.9), as it again has the simple property that there are no
(UV-divergen} Feynman diagrams that could lead to a
t792  ford<2, renormalization of either of the propagators. This immedi-
na()~{ tlnt for d=d.=2, 6.4 ately implies that the “mass’c is not renormalized. Thus,

as opposed to the case of coupled DP, there is no new non-
tt for d>2. trivial scaling field here. If we further assume that there is no
) ) o nontrivial contribution from the scaling functidine., unlike
Let us now consider a hierarchy of such annihilation pro-the case of coupled DPthen we may thus just insert the true
cesses, density decay result®.4) into the mean-field relatiof6.8),
. in order to obtain the asymptotic decay for tBeparticles.
B+B—0 withrate A, (6.5 The result is that the dg:/cali/ exponen¥s are ﬁzilved on the
second hierarchy level. The obvious generalization to level

etc., unidirectionally coupled via the branching reaction ;
is therefore

A—A+B withrate oag. (6.6) (a2 for d<2,
The choice of this specific coupling can be motivated as ni(t)~ (tfllnt)llzi_l ford=d.=2, (6.10
follows. If the A species were not to appear on the right-hand ! - '
side of the reactiori6.6), then this would constitute a spon- -2 for d>2,

taneous death process for tAgparticles, immediately lead-

ing to an exponential density decay. However, on the loweshich, with the above assumption, is eractresult at suf-
hierarchy level, we want to retain all the features of the undficiently long times.

coupled reaction§especially the power-law decay of Eq.  However, in a simulation witffinite particle numbers,
(6.4)]. Also, we want to keep the coupling reaction linear in@gain one would asymptotically expect a crossover to the
the particle densityi,, as in our earlier analysis of coupled decoupled scaling regime, namely when there emerge large
DP. Thus, the reactior6.6) feeds additional particles into regions depleted of tha species. Correspondingly, perhaps,

level B, which in mean-field theory is described by the rateone should notice that the COUp|ed annihilation pI’Oblem is
equation plagued by IR-divergent diagrams which are very similar in

nature to the coupled DP case. For example, to one-loop

o2 2 order, the newly generatedaab vertex for the massless
=DV ng(X,1) = 2NgNg(X,1) "+ TaBNA(X,1). shifted fields includes a diagram with two masslesand
(6.7)  two masslesb propagators, as depicted in Fig. 18. This loop
integral is infrared-singular wheneveé& 6. One possible in-
Obviously for long timesand consequently for low densi- terpretation of these additional, apparently nonrenormaliz-
ties), the B particles are now slaved by th& species, and able IR singularities could be that they reflect an eventual
their density “adiabatically” followsna(t), nonuniversalcrossover to the decoupled regime. Neither,
though, can we exclude the possibility that ultimately a very
different scaling regime ensues, which would have to be ad-
dressed by means of an effective resummation of the expan-
sion with respect to theelevantcoupling o
As is to be expected, the branching procé&s$) consider- Numerical simulations of coupled annihilation processes
ably slows down the decay on levBl Within mean-field can be performed on the same lattice as in Fig. 11. The
theory, a straightforward generalization to higher hierarchystochastic rules have to be chosen in such a way that a par-
levels leads ton;(t)~t~ %, with a;=1/2"1 on leveli. ticle at sitei jumps to one of the neighboring sites with equal

dng(x,t)
ot

o

B 1/2
nB(t)~(2—)\BnA(t)> ~t712 (6.9
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A+A—B+B with rateA zg. (6.11

> 7> The ensuing coupled diffusion-limited reaction processes are
N\ // a special case of the more general system where the backre-
\ » actionB+B—A+A is present as well. The full system was
\ / studied by field-theoretic means in R¢87]. Through an
\ 7/ analysis of the coupled Bethe-Salpeter equations for the four
nonlinear vertices, it was shown {137] that theA and B
| reactions asymptotically decouple, and each particle species
\ 4 decays according to E¢6.4). The physical reason for this is
| of course that two particles are required to meet in order for
o ) ) the coupling reactio6.11) to take place. Thus, this reaction
FIG. 18. Coupled annihilation: An IR-divergent diagram con- ¢ompetes with the annihilation process itself, and, in addi-
tributing to theaaab vertex at one-loop order. tion, as the daughteB particles appear on the same sites,
they have a high probability to annihilate again immediately.
probability. When two particles meet at the same place, theyhis is somewhat related to the robustness of the DP univer-
annihilate instantaneously. Surprisingly, in the limit of infi- sality class forquadratically coupled DP process¢4&5].
nite coupling(instantaneous transfer of activity to the next
subsystem the resulting curves in a log-log plot are not
straight and do not reproduce the result of E310. A more
detailed analysis reveals that the magnitude of these devia-
tions depends strongly on the coupling strength between the The simulations presented in the last few sections show
subsystems. To this end we replace the instantaneous transfggod agreement with the predictions of the underlying field
of activity by a probabilistic rule, i.e., active particles createtheory for a certain range of the parametdor coupled DP.
particles in the next subsystem at the same location witlSimilarly, good agreement is also found for a range of times
probability g. Clearly,q plays the role of the parameterin  t for coupled annihilatiorfor coupled DP at criticality Nev-
the field theory. By varying| we observe that the prediction ertheless, deep into the critical region the simulations show a
of Eq. (6.10 is only valid in alimited scaling regime. Agy  drift in the critical scaling exponents of the second and
decreases, the size of the scaling regime grows, as illustratétgher hierarchy levels, perhaps towards their decoupled val-
in Fig. 19. On the other hand, the initial crossover into theues. It is not clear, however, if this drift will go all the way
scaling regime also grows with). Similar simulations in 3  towards attaining the decoupled values of these exponents.
+1 dimensions for maximaj suggest that these deviations Furthermore, the drift is more pronounced in the coupled
still persist above the critical dimension although they areannihilation model where, by decreasing the strength of the
much less pronounced in that case. This supports the conjetiterspecies coupling, one can extend the range of the inter-
ture that the breakdown of the scaling regime is caused bynediate power-law behavior and delay the onset of the drift.

VIl. SUMMARY AND DISCUSSION

IR-singular diagrams related to additional powers «f From the field-theoretical point of view we believe the
which would even invalidate the simple mean-field ap-drift might be due to the increasing effect of the IR-
proach. problematic diagrams which were identified both for the

Concluding this section, we note that novel critical behav-coupled DP problem as well as for the coupled annihilation
ior does not necessarily arise in the unidirectional couplingoroblem. These diagrams contain higher powers ofrédte
of stochastic processes. A counterexample is given by thevantinterspecies coupling and thus are suppressed for small
following variant of coupled annihilation, where we replacevalues of this coupling. On the other hand, they become
the reaction(6.6) with more dominant for larger values of the transmutation rate,
which, being a relevant operator, increases as one goes
. 1 - deeper into the critical region. This might perhaps render the
asymptotic field theory, for large interspecies coupling, non-
renormalizable. Note that the simulations for coupled anni-
hilation show that the drift in the value of the exponents for
the second and higher hierarchy levels persists ever for
=3, which is above the upper critical dimensidg=2 for
the first hierarchy level. This shows that even mean-field
theory may not be valid at= 3, consistent with the fact that
J ] there exist IR-singular diagrams diverging for ady=6.
100 100 100 100 100 10 Technically, a resummation of the power expansion with re-
t spect tou or o would be desirable; unfortunately, a more
FIG. 19. The coupled annihilation process ir 1 dimensions: ~ satisfactory approach to this problem is not yet known.
the graphs show the densitiegt)t“? of the first three levels as a We propose the following interpretation of this scenario:
function of time for different values of the coupling strengtiThe ~ eventually we expect aonuniversalcrossover into decou-
scaling regime is marked by the two dashed lite=e text Timeis  pled behavior. This is because in a real system, due to the
measured in Monte Carlo steps. discreteness of the number of particles, which is always an

g=0.1

q=0.01

5

0.1 :
10° 10" 10" 10° 10° 10
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