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We derive a pair approximatiofPA) for the NO+ CO model with instantaneous reactions. For both the
triangular and square lattices, the PA, derived here using a simpler approach, yields a phase diagram with an
active state for CO-fractiongin the intervaly; <y<Yy,, with a continuougdiscontinuousphase transition to
a poisoned state 3t; (y,). This is in qualitative agreement with simulation for the triangular lattice, where
our theory gives a rather accurate predictionyfer To obtain the correct phase diagram for the square lattice,

i.e., no active stationary state, we reformulate the PA usnoflattices The (formerly) active regime is then
replaced by a poisoned state with broken symmétnequal sublattice coveragess observed recently by
Kortlike et al.[Chem. Phys. Lett275 85 (1997]. In contrast with their approach, in which the active state
persists, although reduced in extent, we report here the qualitatively correct theory of th€Q@odel on

the square lattice. Surface diffusion of nitrogen can lead to an active state in this case. In one dimension, the
PA predicts that diffusion is required for the existence of an active §t81€63-651X99)02406-X|

PACS numbsg(s): 05.70.Ln, 82.65.Jv, 82.20.Mj, 05.70.Fh

[. INTRODUCTION adsorption sites. This surface is exposed to a reservoir of CO
and NO at fixed concentrations. While CO needs but a single
Following the introduction by Ziff, Gulari, and Barshad vacant site, NO requires a nearest-neighbor pair of sites to
(ZGB) of a simple lattice model for the kinetics of the reac- adsorb[We note that a more realistic model, for example of
tion CO+1/2 O,—CO, on a catalytic surface, the study of the NO+ CO reaction on R100), would permit NO to ad-
surface reaction models has attracted increasing attention 8orb at a single site; a vacant neighbor is required for disso-
nonequilibrium statistical physid4]. Motivated by possible ciation [7]. For a realistic description based on differential
applications as well as intrinsic interest, the phase diagramequations for the coverages, see R8}.] The fundamental
of a wide variety of models have been investigated in simu<ontrol parameter of the model ys the probability that the
lations and approximate, mean-fieldlike analyses. A typicahext molecule arriving at the surface will be CO. One may
feature is the existence of one or more absorbing states, i.elso introduce nearest-neighbor hopping rates for the various
configurations from which the system cannot escfpe  adsorbed species. Nearest-neighbor CO-O and N-N pairs are
Continuous phase transitions to an absorbing state fall gdiighly reactive: if any forn{by adsorption or diffusion they
nerically in the class of directed percolatip—5]. While  are eliminated before anything else happens, and the prod-
this aspect is highly universal, other details of the phase diadcts (CQ and N, respectively desorb immediately.
gram depend on very specific model-dependent properties On the triangular latticéi.e., coordination number 9ix
such as steric or geometric effects, the possibility of nonrethe phase diagram of the NGCO model resembles that of
active desorption, diffusion of, and interactions among, adthe ZGB model: there is a reactive window fpr<y<y,,
sorbed species. Applied to surface reaction models, meanvith a continuous phase transitionygt=0.17, and a discon-
field theories, particularly at the two-site pair level, often  tinuous transition ay,~0.35[6,9—-11. Fory values outside
provide reasonable qualitative predictions for the phase diathe reactive window, the system eventually falls into an ab-
gram. sorbing or “poisoned” configuration, devoid of vacant sites
In the present paper we derive pair mean-field approxima¢the number of such configurations grows exponentially with
tions for one of the more complicated surface reaction modsystem sizg For y<y; the final configuration consists pre-
els, that of NGO CO[6]. We briefly review its main features, dominantly of O, with an appreciable fraction of M spe-
deferring a precise definition to Sec. Il. The catalytic surfacecial case isy=0, corresponding to a kind of random sequen-
(i.e., one of the platinum-group metalds modeled by a tial adsorption(RSA) [12] of dimers, with partial reaction.
regular lattice(typically square or triangularof equivalent  The final state consists of O and N atoms, with isolated va-
cancies interspersddFor y>y,, CO takes over the role
played by O in the smal- case. Diffusion of N, CO, and/or

*Electronic address: dri@fisica.ufmg.br O shifts the transition points to some extent, but does not
"Electronic address: bartirag@fisica.ufsc.br modify the phase diagram in any fundamental way.
*Electronic address: wagner@fisica.ufsc.br On the square lattice, the picture is radically different,

80n leave of absence from Department of Physics and Asthere being(without diffusion of N, no active stationary
tronomy, Herbert H. Lehman College, City University of New state, whatever the value gf[6,13—15. This observation,
York, Bronx, NY 10468-1589. Electronic address: based on Monte Carlo simulations, was explained by
dickman@fisica.ufmg.br Brosilow and Ziff (BZ), who argued that the active state is
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unstable to the filling of one sublattice with N atorf. phase transitions between different kinds of absorbing states
Once this occurs, further adsorption of dimers is blockedpersist aty; andy,, and the order parametéhe difference
and the remaining vacancies are filled in with CO, yielding ain sublattice coveraggstakes a nonzero value for,<y
poisoned configuration. While BZ cast their argument in<y,. We find that diffusion of N atoms lifts the instability,
terms of global sublattice filling, in practice the system poi-permitting an active state. But in our theory, the entire range
sons through the growth of local “antiferromagnetic” do- Y1<<Y<Y. becomes active once the diffusion rddg ex-
mains, i.e., patches having one or another sublattice fille§e€ds a critical value. In simulations the “active window”
with N. Since the dynamics stops once the domains fill the?Pens gradually aBy is increased16,17). o

system, relaxation to a globally ordered state is not possible. W€ have devised a simplified approach to deriving cluster
For the same reason, no sharp transitions in coverages dfeean-field equations. The method, which we illustrate with a
observed ay is varied[6,13,14,9,10,1F (It may be over- simple example, proves particularly useful in the case of the

stating the case to say that currently available results rule ou'\ﬂc_)+ CO model, which gl_lows 8 kinds of nearest-ne|_ghbor
any phase transition in the square lattice. Simulations sho ars, and up to 22.tra35|t|ofn|s| amonsg thgm. The remamd;rfpf
the coverages changing rapidly over a narrow rangg bfit this paper Is organized as follows. Section I contains a defi-
without discontinuities in the coverages or their slop&bat nition of the model, |r_1clud|ng_ the_reactlon an_d diffusion
the N-sublattice instability is responsible for destroying theSte-pS' The. PA. method is described in Sec. Iil, with examples

. . ; ) of its application to the contact process and the NGO
_act!ve statddespite the ab_sence _ofgloba! sublattice p)rde_r reaction given in Appendices A and B, respectively. Our
indicated by the observations théx an active state exists in eqts are presented in Sec. IV, and a brief discussion fol-
the triangular latticéwhich does not admit a decomposition |5\s in Sec. V.
into two sublattices and(ii) that diffusion of N(but not of
O, or of CO restores the possibility of an active state
[16,17. Il. MODEL

Several theories of the N©CO model have been pro- The NO+CO surface reaction model follows the
posed. Truncated at the 1-site level, the hierarchy of equa-angmuir-Hinshelwood mechanism, in which both reacting
tions governing the cluster probabilities yields a reasonablgpecies must be adsorbed on the subsiiatg The steps
estimate fory, on the triangular latticg9,10], but places the below characterize the modgd]: (a) CO(g)+V—CQO,, (b)
continuous transition ay,;=0. Corfes et al. derived a pair NO(g)+2V—0,+N,, () 2N,—N,(g)+2V, (d) CO,+ 0,
approximation for the N@ CO model including CO desorp- —CO,(g)+2V, where A, indicates an adsorbed species,
tion, using finite reaction rategl8]. Kortlike, Kuzovkov, A(g) a molecule in the gas phase, avich vacant site. Steps
and von NiessertKKN) derived a very accurate prediction (& and(b) represent adsorption of carbon monoxide, and of
for y; on the triangular lattice using a two-site cluster ap-hitric oxide, respectively. In stefc), two nearest-neighbor
proximation[19]. nitrogen atoms combine to form,kg), and in step(d), an

None of the theories mentioned so far gives the phas@Xygen atom reacts with a carbon monoxide molecule to
diagram correctly for the square lattice: all predict an activdom CO>. N»(g) and CQ(g) desorb from the surface imme-
state over some range pf KKN made the fundamental ob- diately. In this paper we assume complete dissociation of
servation that in this case, one must allow different concenNo' (\_/arlous aspects of incomplete d|530C|at|qn are consid-
trations on the two sublattices to have any hope of capturin red in Refs[16-18.) As noted above, reactions are as-

the instability identified by BZ19]. They devised a two-site >UmMed 10 occur instantaneously: nearest-neighbor CO-O and
cluster approximation incorporating sublattices, and obtainedN'N pairs cann_ot reside on the lattice. . .
' We now define the Markov process associated with the

an .ZC“;? statg Ff rg(éuceq ext%nt,r?mlacli tratr;]snmn p(;)mtth above set of reactions. On a latti€ecomprisingN sites, the
inside the(mainly) “poISoned phase. In other words, the g0 space of the process is the set of configuratjor}s

theory of 'KKN, Whilg represen.ting an improvement on the'o-E{Ui}i _;, where the site variables, takes values
ries ignoring sublattices, remains at variance with S|mulat|or\/, N, C, or O in case sitd is vacant, or occupied by N,
(gnd the BZ argumeptin aIIowing an active state, and pre- CO, or O, respectively. One trigbr sample pathof the
dicts a third, unobserved transition. o process consists of a sequence of configurations
In this paper we formulate a pair approximatig®A) for {o}o, ... o}ty A transition between configuratiodsr},
the NO+ CO model on the square and triangular lattices, asand{q},, , is generated via the following step$) Choose
well as in one dimension; we retain the instantaneous reaghe identity of the next arriving molecule: CO with probabil-
tions generally used in simulatiori&¥hile a theory employ- ity y, NO with probability 1-y. (ii) In case of CO, choose a
ing a finite reaction rate&k is simpler algebraically, itk site x; in case of NO, choose a nearest-neighbor pairy).
—o limit is not equivalent to a theory with instantaneous If x (and/ory, in the case of NQis occupied in{c},, then
reactiong 20].) The standard PA predicts an active state for{c},,,={c},, i.e., the configuration does not change. Oth-
0<y,<y<ys,; this is qualitatively correct for the triangular erwise, let{¢'} be the configuration obtained by placing CO
lattice, wrong for the square lattice. We obtain the correctt x, or in the NO case, N at and O aty. (iii) If {o'}
phase diagram in the latter case from a pair approximatiogontains no N-N or CO-O nearest-neighbor pairs, then
incorporating sublattice€PAS); the regime exhibiting activ- {o},+1={c’}. If {¢’} does contain such pairs, they will
ity in the PA now poisons via the sublattice instability. Our react. Specifically, if the newly-arrived CO hasneighbors
results for the coverages are in good accord with simulationin state O, then one of thegehosen at random ih>1), as
but due to the assumed homogeneitghin each sublattice, well as the CO, is removed frofw'} to give{o},. 1. In the
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case of NO deposition, the analogous procedure is applied tites, x andx’, say, are in statesandj. In most previous
the newly arrived N atontif it has one or more neighbors treatments(see, for example Ref22]), the rates of change
N), and to the O atonishould it have any CO neighbdréo  of the P(ij) are derived by enumerating the changes in the
generatga}p. . number of nearest-neighbor pairs imeighborhoodof sites
We associate with configuratidiw}, a “time” t=n/N.  centered on, and including, a central pair. For example, in a
(This adds nothing to the process; it is convenient, nonetheone-dimensional system with nearest-neighbor interactions
less, to define a time unit comprising one attempted transiand two states, “0” and “1,” per site, a transition of the
tion, on average, per lattice site. In simulations, it is oftenform (0011)— (0111) occurs at rat®(0011)w(001—011).
more efficient to choose tHest site x for the adsorption step Counting the changes in the central paird the periphery,
from a list of currently vacant sites. But in this case, the timewe see that in this process, ofil) pair is created and one
increment associated with the transition fréot,, to {o},4 1 (00) pair destroyed. The simplification comes fragmoring
is At=1/V,, where), is the number of vacant sitesfor},.)  changes outside the central pair, and regarding the above
To our knowledge, all of the simulations of the NO process as one in which (08)(11). SinceP(ij) is the prob-
+CO model cited herein treat the Markov process definedbility for any nearest-neighbor pair, following the changes
above (The constant-coverage studies of BZ clearly follow aat a particular paife.g., the central ongis sufficient. This
different procedure, but the stationary properties of the twaesults in a significant reduction in bookkeeping, particularly
processes should converge in the large-size [i8li) In the  in two or more dimensions, and for procesgssch as the
case of diffusion, however, various definitions have beerNO+CO mode) in which a fairly large number of peripheral
employed. Here, we implement diffusion @br example, N sites can influence the transition probabilities. We illustrate
atomg by modifying steps(i)—(iii) as follows. Prior to(i),  the method by applying it to the contact process in Appendix
we imposeg@) Choose the process: diffusion with probability A.
D/(1+ D), adsorption with probability 1/(% D). In the lat- In the table below we list the allowegk) and forbidden
ter case, proceed to stefig—(iii) as above. In the former, (©) nearest-neighbor pairs in the NGCO model.(Entries
perform instead(b) Choose a sitex at random. Ifx is not  below the main diagonal are redundant.
occupied by N, theo},.1={c},. Otherwise, choose a
neighbory of x at random. Ify is occupied,{o},:1
={o},. Otherwise, lef{o’'} be {o}, with x vacant andy

occupied by N.(c) If {o'} is free of N-N pairs,{c},i1 M N c o
={o'}. Otherwise, choose a reacting pair, as in sp v X X X
above, to generatfo}, . ;. This procedure is not calculated

to optimize computational efficiency, but rather to provide a N Z X X
meaning for the parameté that isindependent of the con- c ©
figuration The rate of hopping attempts of an adsorbed N O X

atom isD/(1+ D). Diffusion processes for other species are

defined analogously.
Next we require the set of transitions between pairs. In the

table below, we assign arbitrary labels to the allowed transi-
tions, and leave the remaining fields blank. For the square
lattice only processes 1-20 are pertinent, 21 and 22 being

Before considering the NOCO model in detail, we ex- possible only on the triangular lattice. In one dimension,
plain a simplified method for deriving the PA equations.transition 4 is also excluded. Diffusion alters the rates, but
These equations govern the evolution of the probabilitiesiot the set of possible transitions, the only exception being
P(ij,t), that a randomly chosen nearest-neighbor pair ofvhen we consider sublattices.

Ill. PAIR APPROXIMATION

From
To Vv VN vC Vo NC NO ccC 00
vv 1 2 3 4
VN 5 21 6 7
vC 8 9 10
VO 11 22 12 13
NC 14 15
NO 16 17 18
cc 19

(o]0 20
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The heart of the calculation lies in deriving expressions 1.0 - . - —
for the transition rateR, . .. ,Ry,. Once these are in hand,
we can write the equations for the pair probabilities by not- 08 b
ing that each transition acts as a source for one (air, in @
the first column of the tab)e and a loss term for another 06 T
(listed in the top row. Denoting the pair probabilities by S N
(ij), wherei andj can beV, N, C, or O, we have, for S04l 1
example, that 5ozl 1
N~ T RSN
d(VN) R + R + R + R R R R R 1 0 0 | 1 ; """"""""""""" l\"\'::-\-\\‘~
gt et Ret Ry RaRi~Rim R Ry, (1) 00 02 04 06 08 10

and

FIG. 1. Coverages versysin one dimension in the absence of

d(;/tV) — 9[Ry+ Ry Ry Re— Re— Ry Rus— Rucl, diffusion. Solid line, C); dotted line, O); dashed line, ).

2 Each (nondiffusive event involves the arrival of a mol-

the overall factor of two arising, in the last expression, due tdaCUIe' either C_O or NO_’ at the sqr_face. Since the next arriv-
contributions in which the molecule@lways of different "9 molecule is CO with probability, rates for processes

species, in this caseccur in the opposite order. Here it is Nvolving the arrival of CO carry a factor of In processes
important to emphasize that forj, (ij) represents the involving the arrival of NO, we require the probability that

probability to find a sitex in statei, and its neighboy in the next event involves N ?rﬂging at alce_rtain ;i;;]eand, gf
statej; (ji), which represents the reversed situation, is of°°UrS®: o arrlvmg.at aneign ngIn a lattice with coord-
course equal toi{) by symmetry. Thus the normalization Nnation numbee, this probability isy=(1-y)/z.

condition reads The expressions for the various rates are, in general, quite
complicated, and we shall not list all of them here. Examples
(VV)+(CC)+(00)+2[(VN)+(VC)+(VO)+(NC) of their derivation are given in Appendix B3]. The PA
_ equations are integrated numerically, using a fourth-order
+(NO)]=1. 3) Runge-Kutta schemi4], starting from an empty lattice.
We introduce a similar notation for site probabilities:
(V)=(VV)+ (VN)+(VC) + (VO), @) V. RESULTS
A. One dimension

(N)=(NV)+(NC)+(NO), (5

Applied to the NO- CO model on a line, the PA predicts
©6) no active steady state in the absence of diffusgee Fig. 1
The dependence of the coveragesyas qualitatively similar
to that found in simulations of the square lattjd®,16. The
vacancy fraction is nonzero only for=0, where we find
(0)=(0V)+(ON)+(00). 7 (V)=0.1623, ©)=0.5013, and ) =0.3364 in the station-
ary state. In fact, the final vacancy concentration should be
Another useful piece of notation represents the probability othe same as in one-dimensional dimer R&#ithout reac-
having sitex in statei and its neighbonotin statej by (if).  tion), i.e., (V)=e 2=0.1353}... [25]. This is because a
For example, N-N reaction always yields the configuratiabVVO. The
vacancy pair is subsequently filled in, so the sum of the final
coverages, ) +(0), is identical to the final O coverage in
RSA of G, [26]. While the PA is exact for dimer RSA in
one-dimension(due to a shielding property12]), in the
(CC)=(CV)+(CN). (99  present case the approximation cannot deal adequately with
the reactions. The configuration VNV, for example, is im-
Finally, when employing sublatticesandB, we use {),  Possible in the pure-NO procegsach N has at least one O
to denote the site probability in sublatticeA [similarly for ~ neighboj, but is assigned a nonzero probability in the PA.
()gl], and (ij) A to denote the probability of finding a site in We obtain better results for the final coverages from a three-
statei in the A sublattice, and its neighbdin B), in statej.  site approximation: {)=0.1486, ©)=0.5001, and K)
(i) a is defined analogously. In a sublattice calculation we=0.3505.(The KKN method yields a further slight improve-
have thirteen different pair probabilities, since fatj we  ment: (V)=0.1453, ©)=0.5095, (N)=0.3452; simula-
must distinguish i), and (j)g. [By definition, (j),  tions yield (V)=0.1353, ©)=0.5066, and N)=0.3581
=(ji)g.] Diffusion introduces one further transition beyond [27].)
those enumerated above: if speciesan perform nearest- Next we consider the effect of a nonzero diffusion rate,
neighbor hopping, the transition) ,— (iV) g becomes pos- Dy, of N, atoms. ForD\>Dy=4.38, we find a reactive
sible. window for y;<y<y,, with a continuous(discontinuous

(C)=(CV)+(CN)+(COC),

and

(VN)=(VV)+(VO)+(VC), (8)

and
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below compares our PA results for the transition points with
those predicted by the site approximati(®A) [9,10], and
] the KKN method[19], and found in simulationf9].

] SA KKN PA Simulation

] a 0.0 0.1521) 0.040 0.172825)
Vo 0.3877 0.398L) 0.363 0.35141)

While our result foty, is in good agreement with simulation,
we obtain a poor estimate fgy. The latter is a consequence
of neglecting explicit correlations beyond nearest neighbors
y in the pair approximation, and, perhaps, of ignoring certain
nearest-neighbor pair factors in reckoning cluster probabili-
ties (see Appendix B For y=0 we find a final poisoned
state cha6racterized byO() =0.8538, (N)=0.1462, and Y)
transition aty,; (y,). Figure 2 shows the coverages 1§ an2d><(\})0 _ Ooségllu[lggf néley;'l;j tgez Pg'zéglei’ n(glt) gi8é12i6éc-
=10.0. In Fig. 3 we plotd=y,—y, as a function oDy.  cyrate description of this RSA process with partial reaction,
Wc'th increasingDy, y; tends to zero ang, to 0.2. CLOSO%}O for either the triangular or square latticesee below (This

n» A is described, approximately, b~(Dny—Dg)™™. s in contrast to pure dimer deposition, for which the PA
For diffusion of CO(but none of the other speciesve find  does reasonably welR2].) Despite these discrepancies, the
an active state foDco=D¢o=7.19. The width, which is PA coverages are generally in good agreement with simula-
very small, grows linearly witlD g in the neighborhood of tjon.

the critical value. Botly; andy, shift to higher values with
increasingD¢o. Finally, for diffusion of O atomsexclu- C. Square lattice
sively), we find D§=0.75. The window width followsA
~(Do—Dg)%?*in the vicinity of D&. The continuous tran-
sition (y=y,) always occurs neay=0; for large values of
Do, Y, approaches a limiting value of 0.27. We note that
for y=0, even very small values @, cause a drastic re-

duction in the fraction of vacant sites: wh&y=0.05, for using an initially empty lattica. Cortes et al. obtainedy,

—4. - -6  Qimi
example, (V)<10%; for Do=16.0, (V)=10 °. Similar ~0.09 andy,~0.35 in this case, showing that the large-

behavior is observed in simulations on the triangular lattice . e ' X . .
[17]. reaction-rate limit of a calculation using finite rates yields

results comparable, but not identical to, one employing in-
stantaneous reactiond@Vhile the comparison is academic in
the present instance, there being no active state on the square
The coverages predicted by our method for the NOlattice, it is of interest to gauge the agreement between the
+ CO model(without diffusion on the triangular lattice are two methods. For y=0 we obtain ()=0.6551
compared against simulation resuli®] in Fig. 4. There is and (N)=0.0198, while simulations yieldd)=0.6495 and
an active steady state between the continuous transition &N)=0.2416[28].
y1=0.04Q1), andy,=0.363 1), which marks a discontinu- Since the PA predicts no active state in one dimen§ion
ous transition.(We note that the latter is the result for an the absence of diffusignit is interesting to check whether
initially empty lattice. Commencing with a finite CO cover- removing reaction 4, which is impossible in one dimension,
age will, in general, yield a smaller value fgy.) The table

0.16

FIG. 2. Coverages versusin one dimension, foiDy=10.0.
Symbols as in Fig. 1.

The PA prediction for the phase diagram is qualitatively
similar to that found for the triangular lattice. The continuous
transition from a predominantly O-poisoned state to an ac-
tive state occurs at;=0.111, and the discontinuous transi-
tion falls aty,=0.2981.(The latter, again, is determined

B. Triangular lattice

__10
0.20 T T T T 9-
0.8
0.15 | ~
Q os
<010} 04
i = 02
0.05 3
0.0
0.00 ' - ' ' 0.0
O 20 40 60 8 100

Dy

FIG. 3. Width of the reactive window in one dimension, as a FIG. 4. Coverages in the triangular lattice. Solid lines, simula-
function of the diffusion raté . The critical valueD{=4.38. tion (Ref.[10]); dashed lines: PA.
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changes the phase diagram. We find that deleting this pro- 1.0 - - - -
cess has a minimal effect on the PA prediction for the square
lattice. The cause for the dramatic difference between the
linear and square lattice results must be sought elsewtiere. 06 [ ]

08} @

is worth remarking that the PA similarly yields only absorb- g
ing states for the one-dimensional ZGB mogel. 04

Introducing sublattices in the PA calculatiggielding 0.2
what we call the PAS theoyychanges the result drastically.
We find that the active state predicted by the PAinstable 0'000
to the formation of N-rich and N-poor sublattices; in the )
process, the vacancy density falls to zero, and the active state y
vanishes. As detailed in Appendix B, we employ an extended 107 . , . =
set of variables, i.e., for#j, (i,j=V,N,C, or O), prob- /
abilities (ij), and (j)g, representing specigsin the A or 08 Fo ® 7
the B sublattice.[Naturally, the site coveragesNj, and 06 L X/ 1
(N)g, etc., may also diffet. We begin the calculation, as o f/
before, with an empty lattice; the pair equations reach the o4l / .
same steady solutions as in the simple PA. fFpry<y,,
we then probe the stability of the active state by transferring 021 / ]
a small amountA(N)=(N),— (N)g=10"3, of N from one 0.0 = . ! !
sublattice to the other, and study the response to this small 00 02 04 06 08 1.0
perturbation. We find, in all cases, th&N) grows, and that y
(V) decreases, finally becoming zero, that is, the PAS equa-
tions reach an absorbing state. Essentially identical results 1.0 ' ' : '
are obtained if we start from a slightly asymmetric initial o8l ©
condition, i.e., with a small N coverage on one of the sub- SN
lattices, as was done in RdfL9]. (We note in passing that 06 .
introducing sublattices in thsite approximation has no ef- S) N \
fect on the results. 041t %\ 1

The PAS, then, represents the simplest theoretical ap- 02 | \ ]
proach giving a phase diagram in accord with simulation, for \

0.0 L

the NO+ CO model on the square lattice. But it retains some
of the undesirable features of the PA. Figure 5 shows that for
y<0.1, and again foy>0.5, the PAS coverages are in good y
agreement with simulation. In these regimes, of course, the
PA and PAS are identicgthey only differ on the interval , . .

where the PA predicts an active statéor 0.1<y<0.5 there E'ac;? ((g eof. Et(g;r:gggfgyms&lzg??;)_CO coverage, symbols as in
are substantial differences between theory and simulation,

associated with the continued appearance of phase transitiops - . .
aty, andy, in the PAS. Fory,<y<vy, the PAS equations ut a surprisingly low value for the continuous transition

exhibit spontaneous symmetry breakii] associated with point, ;. Th.e pair approximation W'Fh sublattica®AS)
global “antiferromagnetic”’ order,A(N)#0 (see Fig. 6 gives a qualitatively correct phase diagram for the square
which. as we have remarked. is |’10t seen in simulation’s lattice, but certain anomalous features of the simple PA per-

A final point concerns the effect of N diffusion on the sist, notably, singular behavior of the coverages at the tran-
phase diagram. Since this process tends to equalize the S@tlgn pom(tjsyl r?ndy?h he PA can furnish reliabl i
lattice coverages, it is reasonable to expect an active state for ~1" study shows that the can furnish reliable qualita-
sufficiently large values oby. This is indeed observed in

00 02 04 06 08 1.0

FIG. 5. (a) N coverage in the square lattice. Solid line, simula-

simulations[ 16,29, where the rangé of y values support- 1.0 ' '
ing an active state grows steadily with. (The PA, as we
have noted, yields a similar result in one dimensidihen 08 ]
we include N diffusion in the PAS calculation, we observe
no active state foDy<D§=0.023, but for larger diffusion > 06 1
rates the entire interval betwegp andy, becomes active at ; 04l 1
once.
02 .
V. DISCUSSION L
We have formulated a pair approximatidRA) for the 0'%_03 0.16 024 0.32

NO+ CO surface reaction model with instantaneous reac-
tions, using a simplified derivation. The PA gives quite rea-
sonable predictions for coverages on the triangular lattice, FIG. 6. PAS sublattice order parametgfN).

y,
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tive, and in some instances quantitative predictions for reac-
tion models,provided it includes a mechanism for realizing \
any symmetry-breaking tendency inherent in the motted
same condition applies, of course, to mean-field or cluster
approximations for equilibrium models. In general, it is ask-
ing too much of such theories to provide quantitatively reli- P( V C
able phase boundaries; the PA may nonetheless yield some
insight into the overall shape of the phase diagram. More
accurate theories are typically based on the hierarchy of
n-point functions. M

The theory of KKN vyields a remarkably accurate predic-
tion for y; on the triangular lattice. This indicates that the ) ] ) ]
effect of long-range correlations is reasonably well repre- FI_G_. 7. One of t_hree equivalent (_:onflguratlons required for the
sented in their theory. Surprisingly, the PA yields a bettefransitionVC—NC in the square lattice.
prediction fory,. It remains to develop a method that com-
bines the advantages of the two approaches. d(11) N (1)—(11)

dt (0)

[1—-(11)]-2(11).  (A2)
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APPENDIX A: SIMPLIFIED DERIVATION OF PAIR
EQUATIONS

Here we illustrate our method by applying it to the contact -
process(CP) [30]. The CP is a Markov process defined on aTransition Rate
d-dimensional cubic lattice. Each site is either vac@ntor

occupied(1). The transition rates at any site ang1—0) 101 R;=(11)

=1 (independent of the neighbgrand w(0— 1)=\n/2d, 01-11 Rp=N(01)[1+(2d—-1)(01)/(0))/2d
where 0<n=2d is the number of neighboring sites in state 10—00 R3=(10)

1. (Note that all sites 0 is an absorbing configuratiothus 00— 10 R,=(2d—1)\(00)(01)/21(0)

in one dimension we havew(101—111)=\, w(100

—110)=w(001—011)=\/2, and w(000—010)=0. We We find d(11)/dt=2[R,—R;], which reduces to EqA2)
enumerate below the transitions, associated rétas, the for d=1, when we note that (05(1)—(11). Noting that
transition rate times the probability of the initial configura- (1)=(11)+(10), we immediately recover E¢A1) for any
tion), and overall changes in the number of 1's and 11d. (Analysis of the stationary solutions shows that
nearest-neighbor pairs, in the one-dimensional CP. We use 2d/(2d—1) in d dimensions.

(1) to denote the density of 1'§10) for the probability of a

nearest-neighbor 0—1 pair, et¢By normalization, (00) APPENDIX B: RATES FOR THE NO +CO MODEL
+2(01)+(11)=1. Note that the second and fourth entries
carry a factor of 2 to account for mirror-image events. In this appendix we present several examples of the pair
approximation(PA) transition rates for the N®CO model,
Process Rate AN, AN,, first on the square, and then on the triangular lattice. We
begin with transition 15VC—NC, on the square lattice.
101111 \(01)%/(0) +1 +2 Figure 7 shows one of three equivalent configurations
100—-110 2 (01)(00)/(0) +1 +1 needed to realize this process. The rgter bond of the
111—-101 (11¥/(1) -1 -2 lattice) carries the factors\(C) (probability of the initial
110-100 2(11)(01)/(2) -1 -1 staté andy (probability of NO arriving with N falling at the
010— 000 (01Y¥/(1) -1 0 central vacant sije There are three possible locations
(neighbors of  at which O might adsorb; each is vacant, in
Collecting results, one finds the PA, with probability ¥V)/(V). (Whether the O atom

reacts or not is unimportant in this instanck.either of the
d(1) remaining neighbors of V harbors an N atom, the newly
——=\[(1)—(1D]— (1), (A1)  arrived N will react.(Recall that we are consideringfinite
dt reaction rates in this papgtlence, these two sites must be
free of N for the desired transition to occur, implying a factor
and of [(VN)/(V)]?. Thus,
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nu N/
] /N

FIG. 8. One of two equivalent configurations required for the

o . . FIG. 9. Lines indicate the pair factors included in reckoning the
transitionNC— VYV in the square lattice. P 9

probability of a set of ten sites in the triangle lattice.
2
Ris= 3§,w (B1) ability of reaction of the central-pair CO, depending upon the
(V)3 presence of CO atand/ord. Combining these observations,

_ . ~ we arrive at
Now suppose that N atoms can hop to neighboring sites at

rateDy . If one of the neighbors o harbors an N atom, it
can hop to the vacant site, and will remain there if the other
neighbors are free of N. We must then add to the above ~(NO(VN)(VC)

1
= VN)(V)+ (VN 2}
expression the diffusive contribution * (N)(C)(V)* [( V) 3( )

1
_ 3Dy (VO)(VN)(VN)? x| (VO + §<VC>2} (B4)

15— 4 (V)S

: (B2)

where we used\(N) + (VN)=(V) and VC)+(VC)=(V).
the factor of 1/4 reflecting the four possible directions of theFor the sublattice calculation,
attempted hopping movéNote that we absorb a factor of
1+ Dy into a rescaled time variab)e.
If we consider sublattices, each process splits in two. For

process 15, the raténcluding diffusion for the case in R4A_2~(NC)A(VN)B(VC)A (VN)g(V)g+ E(VN)E
which V lies in theA sublattice is readily seen to be ' (N)A(C)s(V)AV)E 3
1
X| (VE)a(V)a+ = (VC)2 (BS)
_(VO)A(VV)(VI)Z 3Dy (VC)A(VN)A(VI)Z RUATETTA
RlS/—\: y 3 + 4 3 '
(Ma (VM)A

(B3)  There is no diffusive contribution to this process.
While several rates have more complicated expressions,

(For anyi, R;g is found by interchanging\'s andB’s in all of the calculations in the square lattice follow the lines of
Ria-) those illustrated above. A new question of principle does

A somewhat more complicated transition is number 4,arise in the triangular lattice, where it is not possible to in-
NC—VV. It is contingent upon amNO landing parallel to clude all the pair factors between the central pair of sites and
the centralNC pair, with the twoN’s adjacent. One of two their nearest neighbors in the simple PA. In the triangular
equivalent initial configurations is shown in Fig. 8. The solid lattice, if x andy are nearest neighbors, they have two neigh-
lines indicate the pairs included in reckoning the probabilitybors (sitesd and h in Fig. 9), in common In the PA, the
of the configuration. Notice that when a pair of neighboringprobability of findingx, y, andd in statesi, j, andk, re-
sites,x andy, are both neighbors of sites in the central pair,spectively, may be written asj((ik)/(i), (ij)(jk)/(j), or
we use the pair factor associated with the central paifik)(kj)/(k), butnotas (j)(ik)(jk)/(i)(j)(k). (The latter
[(VN)(VC) in this examplé in preference to the factor be- family of expressions is not, in general, even normalized!
tweenx andy [either VN)(VV) or (VC)(VV)]. We apply  Our choice of which pair factors to include is shown in Fig.
this rule in all our calculations, to eliminate possible ambi-9. Note that as we sum over all the possible states of the
guities. Consider the neighboesand b of the vacant site peripheral sites, symmetry under the interchangg ahdy
above N. If neither of these bear N, the newly arrived N will is restored.
surely react with the N in the central pair. If eitteeor b (but As an example, consider process MC—CC (site x
not both carry an N, the probability of the desired reaction isvacant andy occupied by CO in Fig. ® A CO molecule
1/2; itis 1/3 in case both andb bear N. The probabilities of must land atx and remain there, which implies that sites
these events—no N, one N, or two—given the vacant neigha, b, andc must be free of O(Sitesd andh have no pos-
bor, are ¥N)?/(V)2, 2(VN)(VN)/(V)?, and (YN)?/(V)?,  sibility of bearing O, as they are neighbors of a site occupied
respectively. An analogous consideration applies to the prolby CO. The states of sites f, andg are unimportant in this
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process. Multiplying the independent factors associated with

the events enumerated above, we find that the rate for this  R,,=y(VO){ 3

(VV) ((VC))2 (VV) ((VC))3

process is given by V) LV veo | V)
3 L Vo) ((ve) )3 .
Rio=Yy(VC) (:/V?i . (B6) (0) 1 (V)

The first term in brackets represents N fallingaatb, or c.

A more complicated process is number 280  The next is for N falling atd. The probability ofd being
—0O0 (x vacanty occupied by O in Fig. B An NO must  vacant, given one vacant neighbor and one occupied by O, is
fall with O atx, and N at one of the sites ia,b,c,d,h}. In  (VV)/[(VV)+(VN)+(VO)]=(VV)/(VC). The final term
no case may any of the sites {&,b,c} hold CO. (Being represents N falling di. These examples illustrate the prin-
neighbors of an Og andh are surely free of CQ.The rate  ciples used in the calculation, the resulting expressions,
is given by the expression: needless to say, become quite involved in certain cases.
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