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Theory of the NO1CO surface-reaction model

Adriana G. Dickman,* Bartira C. S. Grandi,† Wagner Figueiredo,‡ and Ronald Dickman§

Departamento de Fı´sica, Universidade Federal de Santa Catarina, Campus Universita´rio–Trindade, CEP 88040-900,
Florianópolis-SC, Brazil

~Received 25 November 1998!

We derive a pair approximation~PA! for the NO1CO model with instantaneous reactions. For both the
triangular and square lattices, the PA, derived here using a simpler approach, yields a phase diagram with an
active state for CO-fractionsy in the intervaly1,y,y2, with a continuous~discontinuous! phase transition to
a poisoned state aty1 (y2). This is in qualitative agreement with simulation for the triangular lattice, where
our theory gives a rather accurate prediction fory2. To obtain the correct phase diagram for the square lattice,
i.e., no active stationary state, we reformulate the PA usingsublattices. The ~formerly! active regime is then
replaced by a poisoned state with broken symmetry~unequal sublattice coverages!, as observed recently by
Kortlüke et al. @Chem. Phys. Lett.275, 85 ~1997!#. In contrast with their approach, in which the active state
persists, although reduced in extent, we report here the qualitatively correct theory of the NO1CO model on
the square lattice. Surface diffusion of nitrogen can lead to an active state in this case. In one dimension, the
PA predicts that diffusion is required for the existence of an active state.@S1063-651X~99!02406-X#

PACS number~s!: 05.70.Ln, 82.65.Jv, 82.20.Mj, 05.70.Fh
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I. INTRODUCTION

Following the introduction by Ziff, Gulari, and Barsha
~ZGB! of a simple lattice model for the kinetics of the rea
tion CO11/2 O2→CO2 on a catalytic surface, the study o
surface reaction models has attracted increasing attentio
nonequilibrium statistical physics@1#. Motivated by possible
applications as well as intrinsic interest, the phase diagr
of a wide variety of models have been investigated in sim
lations and approximate, mean-fieldlike analyses. A typ
feature is the existence of one or more absorbing states,
configurations from which the system cannot escape@2#.
Continuous phase transitions to an absorbing state fall
nerically in the class of directed percolation@3–5#. While
this aspect is highly universal, other details of the phase
gram depend on very specific model-dependent prope
such as steric or geometric effects, the possibility of non
active desorption, diffusion of, and interactions among,
sorbed species. Applied to surface reaction models, m
field theories, particularly at the two-site orpair level, often
provide reasonable qualitative predictions for the phase
gram.

In the present paper we derive pair mean-field approxim
tions for one of the more complicated surface reaction m
els, that of NO1CO @6#. We briefly review its main features
deferring a precise definition to Sec. II. The catalytic surfa
~i.e., one of the platinum-group metals!, is modeled by a
regular lattice~typically square or triangular! of equivalent
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adsorption sites. This surface is exposed to a reservoir of
and NO at fixed concentrations. While CO needs but a sin
vacant site, NO requires a nearest-neighbor pair of site
adsorb.@We note that a more realistic model, for example
the NO1CO reaction on Pt~100!, would permit NO to ad-
sorb at a single site; a vacant neighbor is required for dis
ciation @7#. For a realistic description based on different
equations for the coverages, see Ref.@8#.# The fundamental
control parameter of the model isy, the probability that the
next molecule arriving at the surface will be CO. One m
also introduce nearest-neighbor hopping rates for the var
adsorbed species. Nearest-neighbor CO-O and N-N pairs
highly reactive: if any form~by adsorption or diffusion!, they
are eliminated before anything else happens, and the p
ucts (CO2 and N2, respectively! desorb immediately.

On the triangular lattice~i.e., coordination number six!,
the phase diagram of the NO1CO model resembles that o
the ZGB model: there is a reactive window fory1,y,y2,
with a continuous phase transition aty1'0.17, and a discon-
tinuous transition aty2'0.35 @6,9–11#. For y values outside
the reactive window, the system eventually falls into an a
sorbing or ‘‘poisoned’’ configuration, devoid of vacant site
~the number of such configurations grows exponentially w
system size!. For y,y1 the final configuration consists pre
dominantly of O, with an appreciable fraction of N.@A spe-
cial case isy50, corresponding to a kind of random seque
tial adsorption~RSA! @12# of dimers, with partial reaction
The final state consists of O and N atoms, with isolated
cancies interspersed.# For y.y2, CO takes over the role
played by O in the small-y case. Diffusion of N, CO, and/o
O shifts the transition points to some extent, but does
modify the phase diagram in any fundamental way.

On the square lattice, the picture is radically differe
there being~without diffusion of N!, no active stationary
state, whatever the value ofy @6,13–15#. This observation,
based on Monte Carlo simulations, was explained
Brosilow and Ziff ~BZ!, who argued that the active state

-
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6362 PRE 59DICKMAN, GRANDI, FIGUEIREDO, AND DICKMAN
unstable to the filling of one sublattice with N atoms@9#.
Once this occurs, further adsorption of dimers is block
and the remaining vacancies are filled in with CO, yielding
poisoned configuration. While BZ cast their argument
terms of global sublattice filling, in practice the system p
sons through the growth of local ‘‘antiferromagnetic’’ do
mains, i.e., patches having one or another sublattice fi
with N. Since the dynamics stops once the domains fill
system, relaxation to a globally ordered state is not poss
For the same reason, no sharp transitions in coverages
observed asy is varied @6,13,14,9,10,16#. ~It may be over-
stating the case to say that currently available results rule
any phase transition in the square lattice. Simulations sh
the coverages changing rapidly over a narrow range ofy, but
without discontinuities in the coverages or their slopes.! That
the N-sublattice instability is responsible for destroying t
active state~despite the absence of global sublattice order! is
indicated by the observations that~i! an active state exists in
the triangular lattice~which does not admit a decompositio
into two sublattices!, and~ii ! that diffusion of N~but not of
O, or of CO! restores the possibility of an active sta
@16,17#.

Several theories of the NO1CO model have been pro
posed. Truncated at the 1-site level, the hierarchy of eq
tions governing the cluster probabilities yields a reasona
estimate fory2 on the triangular lattice@9,10#, but places the
continuous transition aty150. Cortés et al. derived a pair
approximation for the NO1CO model including CO desorp
tion, using finite reaction rates@18#. Kortlüke, Kuzovkov,
and von Niessen~KKN ! derived a very accurate predictio
for y1 on the triangular lattice using a two-site cluster a
proximation@19#.

None of the theories mentioned so far gives the ph
diagram correctly for the square lattice: all predict an act
state over some range ofy. KKN made the fundamental ob
servation that in this case, one must allow different conc
trations on the two sublattices to have any hope of captu
the instability identified by BZ@19#. They devised a two-site
cluster approximation incorporating sublattices, and obtai
an active state of reduced extent, and athird transition point
inside the~mainly! CO-poisoned phase. In other words, t
theory of KKN, while representing an improvement on the
ries ignoring sublattices, remains at variance with simulat
~and the BZ argument!, in allowing an active state, and pre
dicts a third, unobserved transition.

In this paper we formulate a pair approximation~PA! for
the NO1CO model on the square and triangular lattices,
well as in one dimension; we retain the instantaneous re
tions generally used in simulations.~While a theory employ-
ing a finite reaction ratek is simpler algebraically, itsk
→` limit is not equivalent to a theory with instantaneo
reactions@20#.! The standard PA predicts an active state
0,y1,y,y2; this is qualitatively correct for the triangula
lattice, wrong for the square lattice. We obtain the corr
phase diagram in the latter case from a pair approxima
incorporating sublattices~PAS!; the regime exhibiting activ-
ity in the PA now poisons via the sublattice instability. O
results for the coverages are in good accord with simulat
but due to the assumed homogeneitywithin each sublattice,
,
a

-

d
e
e.
are

ut
w

a-
le

-

e
e

-
g

d

-
n

s
c-

r

t
n

n,

phase transitions between different kinds of absorbing st
persist aty1 andy2, and the order parameter~the difference
in sublattice coverages!, takes a nonzero value fory1,y
,y2. We find that diffusion of N atoms lifts the instability
permitting an active state. But in our theory, the entire ran
y1,y,y2 becomes active once the diffusion rateDN ex-
ceeds a critical value. In simulations the ‘‘active window
opens gradually asDN is increased@16,17#.

We have devised a simplified approach to deriving clus
mean-field equations. The method, which we illustrate wit
simple example, proves particularly useful in the case of
NO1CO model, which allows 8 kinds of nearest-neighb
pairs, and up to 22 transitions among them. The remainde
this paper is organized as follows. Section II contains a d
nition of the model, including the reaction and diffusio
steps. The PA method is described in Sec. III, with examp
of its application to the contact process and the NO1CO
reaction given in Appendices A and B, respectively. O
results are presented in Sec. IV, and a brief discussion
lows in Sec. V.

II. MODEL

The NO1CO surface reaction model follows th
Langmuir-Hinshelwood mechanism, in which both reacti
species must be adsorbed on the substrate@21#. The steps
below characterize the model@6#: ~a! CO~g!1V→COa , ~b!
NO~g!12V→Oa1Na , ~c! 2Na→N2~g!12V, ~d! COa1Oa
→CO2~g!12V, where Aa indicates an adsorbed specie
A~g! a molecule in the gas phase, andV a vacant site. Steps
~a! and~b! represent adsorption of carbon monoxide, and
nitric oxide, respectively. In step~c!, two nearest-neighbo
nitrogen atoms combine to form N2~g!, and in step~d!, an
oxygen atom reacts with a carbon monoxide molecule
form CO2. N2~g! and CO2~g! desorb from the surface imme
diately. In this paper we assume complete dissociation
NO. ~Various aspects of incomplete dissociation are cons
ered in Refs.@16–18#.! As noted above, reactions are a
sumed to occur instantaneously: nearest-neighbor CO-O
N-N pairs cannot reside on the lattice.

We now define the Markov process associated with
above set of reactions. On a latticeL comprisingN sites, the
state space of the process is the set of configurations$s%
[$s i% i PL , where the site variables i takes values
V, N, C, or O in case sitei is vacant, or occupied by N
CO, or O, respectively. One trial~or sample path! of the
process consists of a sequence of configurati
$s%0 , . . . ,$s%N . A transition between configurations$s%n
and $s%n11 is generated via the following steps:~i! Choose
the identity of the next arriving molecule: CO with probab
ity y, NO with probability 12y. ~ii ! In case of CO, choose a
sitex; in case of NO, choose a nearest-neighbor pair (x, y).
If x ~and/ory, in the case of NO! is occupied in$s%n , then
$s%n115$s%n , i.e., the configuration does not change. O
erwise, let$s8% be the configuration obtained by placing C
at x, or in the NO case, N atx and O aty. ~iii ! If $s8%
contains no N-N or CO-O nearest-neighbor pairs, th
$s%n115$s8%. If $s8% does contain such pairs, they wi
react. Specifically, if the newly-arrived CO hasm neighbors
in state O, then one of these~chosen at random ifm.1), as
well as the CO, is removed from$s8% to give$s%n11 . In the



d
s

th
ns
en

m

O
e
a

w

e

ty

,

d
a

-
N

re

s
tie

o

the

in a
ons
e

ove

es

rly

l
ate
dix

the
si-
are
ing
n,

but
ing

PRE 59 6363THEORY OF THE NO1CO SURFACE-REACTION MODEL
case of NO deposition, the analogous procedure is applie
the newly arrived N atom~if it has one or more neighbor
N!, and to the O atom~should it have any CO neighbors!, to
generate$s%n11 .

We associate with configuration$s%n a ‘‘time’’ t5n/N.
~This adds nothing to the process; it is convenient, none
less, to define a time unit comprising one attempted tra
tion, on average, per lattice site. In simulations, it is oft
more efficient to choose thefirst sitex for the adsorption step
from a list of currently vacant sites. But in this case, the ti
increment associated with the transition from$s%n to $s%n11
is Dt51/Vn whereVn is the number of vacant sites in$s%n .)

To our knowledge, all of the simulations of the N
1CO model cited herein treat the Markov process defin
above.~The constant-coverage studies of BZ clearly follow
different procedure, but the stationary properties of the t
processes should converge in the large-size limit@9#.! In the
case of diffusion, however, various definitions have be
employed. Here, we implement diffusion of~for example, N
atoms! by modifying steps~i!–~iii ! as follows. Prior to~i!,
we impose~a! Choose the process: diffusion with probabili
D/(11D), adsorption with probability 1/(11D). In the lat-
ter case, proceed to steps~i!–~iii ! as above. In the former
perform instead:~b! Choose a sitex at random. Ifx is not
occupied by N, then$s%n115$s%n . Otherwise, choose a
neighbor y of x at random. If y is occupied, $s%n11
5$s%n . Otherwise, let$s8% be $s%n with x vacant andy
occupied by N.~c! If $s8% is free of N-N pairs,$s%n11
5$s8%. Otherwise, choose a reacting pair, as in step~iii !
above, to generate$s%n11. This procedure is not calculate
to optimize computational efficiency, but rather to provide
meaning for the parameterD that is independent of the con
figuration. The rate of hopping attempts of an adsorbed
atom isD/(11D). Diffusion processes for other species a
defined analogously.

III. PAIR APPROXIMATION

Before considering the NO1CO model in detail, we ex-
plain a simplified method for deriving the PA equation
These equations govern the evolution of the probabili
P( i j ,t), that a randomly chosen nearest-neighbor pair
to
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sites,x and x8, say, are in statesi and j. In most previous
treatments,~see, for example Ref.@22#!, the rates of change
of the P( i j ) are derived by enumerating the changes in
number of nearest-neighbor pairs in aneighborhoodof sites
centered on, and including, a central pair. For example,
one-dimensional system with nearest-neighbor interacti
and two states, ‘‘0’’ and ‘‘1,’’ per site, a transition of th
form (0011)→(0111) occurs at rateP(0011)w(001→011).
Counting the changes in the central pairand the periphery,
we see that in this process, one~11! pair is created and one
~00! pair destroyed. The simplification comes fromignoring
changes outside the central pair, and regarding the ab
process as one in which (01)→(11). SinceP( i j ) is the prob-
ability for any nearest-neighbor pair, following the chang
at a particular pair~e.g., the central one!, is sufficient. This
results in a significant reduction in bookkeeping, particula
in two or more dimensions, and for processes~such as the
NO1CO model! in which a fairly large number of periphera
sites can influence the transition probabilities. We illustr
the method by applying it to the contact process in Appen
A.

In the table below we list the allowed~x! and forbidden
(�) nearest-neighbor pairs in the NO1CO model.~Entries
below the main diagonal are redundant.!

V N C O

V x x x x

N � x x

C x �
O x

Next we require the set of transitions between pairs. In
table below, we assign arbitrary labels to the allowed tran
tions, and leave the remaining fields blank. For the squ
lattice only processes 1–20 are pertinent, 21 and 22 be
possible only on the triangular lattice. In one dimensio
transition 4 is also excluded. Diffusion alters the rates,
not the set of possible transitions, the only exception be
when we consider sublattices.
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The heart of the calculation lies in deriving expressio
for the transition ratesR1 , . . . ,R22. Once these are in hand
we can write the equations for the pair probabilities by n
ing that each transition acts as a source for one pair~i.e., in
the first column of the table!, and a loss term for anothe
~listed in the top row!. Denoting the pair probabilities by
( i j ), where i and j can beV, N, C, or O, we have, for
example, that

d~VN!

dt
5R51R61R71R212R12R142R172R22, ~1!

and

d~VV!

dt
52@R11R21R31R42R52R82R112R16#,

~2!

the overall factor of two arising, in the last expression, due
contributions in which the molecules~always of different
species, in this case! occur in the opposite order. Here it
important to emphasize that foriÞ j , (i j ) represents the
probability to find a sitex in statei, and its neighbory in
state j ; ( j i ), which represents the reversed situation, is
course equal to (i j ) by symmetry. Thus the normalizatio
condition reads

~VV!1~CC!1~OO!12@~VN!1~VC!1~VO!1~NC!

1~NO!#51. ~3!

We introduce a similar notation for site probabilities:

~V!5~VV!1~VN!1~VC!1~VO!, ~4!

~N!5~NV!1~NC!1~NO!, ~5!

~C!5~CV!1~CN!1~CC!, ~6!

and

~O!5~OV!1~ON!1~OO!. ~7!

Another useful piece of notation represents the probability
having sitex in statei and its neighbornot in statej by (i j”).
For example,

~VN” !5~VV!1~VO!1~VC!, ~8!

and

~CC” !5~CV!1~CN!. ~9!

Finally, when employing sublatticesA andB, we use (i )A
to denote the site probability ofi in sublatticeA @similarly for
( i )B], and (i j )A to denote the probability of finding a site i
statei in the A sublattice, and its neighbor~in B), in statej.
( i j”)A is defined analogously. In a sublattice calculation
have thirteen different pair probabilities, since foriÞ j we
must distinguish (i j )A and (i j )B . @By definition, (i j )A
5( j i )B .# Diffusion introduces one further transition beyon
those enumerated above: if speciesi can perform nearest
neighbor hopping, the transition (iV)A→( iV)B becomes pos-
sible.
s

-

o

f

f

e

Each ~nondiffusive! event involves the arrival of a mol
ecule, either CO or NO, at the surface. Since the next ar
ing molecule is CO with probabilityy, rates for processe
involving the arrival of CO carry a factor ofy. In processes
involving the arrival of NO, we require the probability tha
the next event involves N arriving at a certain sitex, and, of
course, O arriving at a neighbory. In a lattice with coordi-
nation numberz, this probability isỹ[(12y)/z.

The expressions for the various rates are, in general, q
complicated, and we shall not list all of them here. Examp
of their derivation are given in Appendix B@23#. The PA
equations are integrated numerically, using a fourth-or
Runge-Kutta scheme@24#, starting from an empty lattice.

IV. RESULTS

A. One dimension

Applied to the NO1CO model on a line, the PA predict
no active steady state in the absence of diffusion~see Fig. 1!.
The dependence of the coverages ony is qualitatively similar
to that found in simulations of the square lattice@10,16#. The
vacancy fraction is nonzero only fory50, where we find
(V)50.1623, (O)50.5013, and (N)50.3364 in the station-
ary state. In fact, the final vacancy concentration should
the same as in one-dimensional dimer RSA~without reac-
tion!, i.e., (V)5e2250.13534 . . . @25#. This is because a
N-N reaction always yields the configurationOVVO. The
vacancy pair is subsequently filled in, so the sum of the fi
coverages, (N)1(O), is identical to the final O coverage i
RSA of O2 @26#. While the PA is exact for dimer RSA in
one-dimension~due to a shielding property@12#!, in the
present case the approximation cannot deal adequately
the reactions. The configuration VNV, for example, is im
possible in the pure-NO process~each N has at least one O
neighbor!, but is assigned a nonzero probability in the P
We obtain better results for the final coverages from a thr
site approximation: (V)50.1486, (O)50.5001, and (N)
50.3505.„The KKN method yields a further slight improve
ment: (V)50.1453, (O)50.5095, (N)50.3452; simula-
tions yield (V)50.1353, (O)50.5066, and (N)50.3581
@27#.…

Next we consider the effect of a nonzero diffusion ra
DN , of Na atoms. ForDN.DN

c 54.38, we find a reactive
window for y1,y,y2, with a continuous~discontinuous!

FIG. 1. Coverages versusy in one dimension in the absence o
diffusion. Solid line, (C); dotted line, (O); dashed line, (N).
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transition aty1 (y2). Figure 2 shows the coverages forDN

510.0. In Fig. 3 we plotD[y22y1 as a function ofDN .
With increasingDN , y1 tends to zero andy2 to 0.2. Close to
DN

c , D is described, approximately, byD;(DN2DN
c )0.67.

For diffusion of CO~but none of the other species!, we find
an active state forDCO>DCO

c 57.19. The width, which is
very small, grows linearly withDCO in the neighborhood of
the critical value. Bothy1 andy2 shift to higher values with
increasingDCO. Finally, for diffusion of O atoms~exclu-
sively!, we find DO

c 50.75. The window width followsD
'(DO2DO

c )0.24 in the vicinity of DO
c . The continuous tran-

sition (y5y1) always occurs neary50; for large values of
DO, y2 approaches a limiting value of 0.27. We note th
for y50, even very small values ofDO cause a drastic re
duction in the fraction of vacant sites: whenDO50.05, for
example, (V),1024; for DO516.0, (V),1026. Similar
behavior is observed in simulations on the triangular latt
@17#.

B. Triangular lattice

The coverages predicted by our method for the N
1CO model~without diffusion! on the triangular lattice are
compared against simulation results@10# in Fig. 4. There is
an active steady state between the continuous transitio
y150.040(1), andy250.363(1), which marks a discontinu
ous transition.~We note that the latter is the result for a
initially empty lattice. Commencing with a finite CO cove
age will, in general, yield a smaller value fory2.! The table

FIG. 2. Coverages versusy in one dimension, forDN510.0.
Symbols as in Fig. 1.

FIG. 3. Width of the reactive window in one dimension, as
function of the diffusion rateDN . The critical valueDN

c 54.38.
t

e

at

below compares our PA results for the transition points w
those predicted by the site approximation~SA! @9,10#, and
the KKN method@19#, and found in simulations@9#.

SA KKN PA Simulation

y1 0.0 0.152~1! 0.040 0.1725~25!
y2 0.3877 0.393~1! 0.363 0.3514~1!

While our result fory2 is in good agreement with simulation
we obtain a poor estimate fory1. The latter is a consequenc
of neglecting explicit correlations beyond nearest neighb
in the pair approximation, and, perhaps, of ignoring cert
nearest-neighbor pair factors in reckoning cluster probab
ties ~see Appendix B!. For y50 we find a final poisoned
state characterized by (O)50.8538, (N)50.1462, and (V)
.231026. Simulations yield (O)50.7443, (N)50.1656,
and (V)50.0901@28#. Clearly the PA does not give an ac
curate description of this RSA process with partial reacti
for either the triangular or square lattices~see below!. ~This
is in contrast to pure dimer deposition, for which the P
does reasonably well@22#.! Despite these discrepancies, th
PA coverages are generally in good agreement with sim
tion.

C. Square lattice

The PA prediction for the phase diagram is qualitative
similar to that found for the triangular lattice. The continuo
transition from a predominantly O-poisoned state to an
tive state occurs aty150.111, and the discontinuous trans
tion falls at y250.2981. ~The latter, again, is determine
using an initially empty lattice.! Cortés et al. obtainedy1
'0.09 andy2'0.35 in this case, showing that the larg
reaction-rate limit of a calculation using finite rates yiel
results comparable, but not identical to, one employing
stantaneous reactions.~While the comparison is academic i
the present instance, there being no active state on the sq
lattice, it is of interest to gauge the agreement between
two methods.! For y50 we obtain (O)50.6551
and (N)50.0198, while simulations yield (O)50.6495 and
(N)50.2416@28#.

Since the PA predicts no active state in one dimension~in
the absence of diffusion!, it is interesting to check whethe
removing reaction 4, which is impossible in one dimensio

FIG. 4. Coverages in the triangular lattice. Solid lines, simu
tion ~Ref. @10#!; dashed lines: PA.



pr
a
th

e.
b-

y.

e
sta
de

s
th

in

m

u
u
al
b

t
-

a
fo
m
t f
d
th

io
itio

e
s

e

ve

t

ac
a

ic

n

are
er-
an-

ta-

la-
n
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changes the phase diagram. We find that deleting this
cess has a minimal effect on the PA prediction for the squ
lattice. The cause for the dramatic difference between
linear and square lattice results must be sought elsewher~It
is worth remarking that the PA similarly yields only absor
ing states for the one-dimensional ZGB model.!

Introducing sublattices in the PA calculation~yielding
what we call the PAS theory!, changes the result drasticall
We find that the active state predicted by the PA isunstable
to the formation of N-rich and N-poor sublattices; in th
process, the vacancy density falls to zero, and the active
vanishes. As detailed in Appendix B, we employ an exten
set of variables, i.e., foriÞ j , (i , j 5V,N,C, or O), prob-
abilities (i j )A and (i j )B , representing speciesi in the A or
the B sublattice. @Naturally, the site coverages (N)A and
(N)B , etc., may also differ.# We begin the calculation, a
before, with an empty lattice; the pair equations reach
same steady solutions as in the simple PA. Fory1,y,y2,
we then probe the stability of the active state by transferr
a small amount,D(N)[(N)A2(N)B51023, of N from one
sublattice to the other, and study the response to this s
perturbation. We find, in all cases, thatD(N) grows, and that
~V! decreases, finally becoming zero, that is, the PAS eq
tions reach an absorbing state. Essentially identical res
are obtained if we start from a slightly asymmetric initi
condition, i.e., with a small N coverage on one of the su
lattices, as was done in Ref.@19#. ~We note in passing tha
introducing sublattices in thesite approximation has no ef
fect on the results.!

The PAS, then, represents the simplest theoretical
proach giving a phase diagram in accord with simulation,
the NO1CO model on the square lattice. But it retains so
of the undesirable features of the PA. Figure 5 shows tha
y,0.1, and again fory.0.5, the PAS coverages are in goo
agreement with simulation. In these regimes, of course,
PA and PAS are identical~they only differ on the interval
where the PA predicts an active state!. For 0.1,y,0.5 there
are substantial differences between theory and simulat
associated with the continued appearance of phase trans
at y1 andy2 in the PAS. Fory1,y,y2 the PAS equations
exhibit spontaneous symmetry breaking@19# associated with
global ‘‘antiferromagnetic’’ order,D(N)Þ0 ~see Fig. 6!,
which, as we have remarked, is not seen in simulations.

A final point concerns the effect of N diffusion on th
phase diagram. Since this process tends to equalize the
lattice coverages, it is reasonable to expect an active stat
sufficiently large values ofDN . This is indeed observed in
simulations@16,29#, where the rangeD of y values support-
ing an active state grows steadily withDN . ~The PA, as we
have noted, yields a similar result in one dimension.! When
we include N diffusion in the PAS calculation, we obser
no active state forDN,DN

c .0.023, but for larger diffusion
rates the entire interval betweeny1 andy2 becomes active a
once.

V. DISCUSSION

We have formulated a pair approximation~PA! for the
NO1CO surface reaction model with instantaneous re
tions, using a simplified derivation. The PA gives quite re
sonable predictions for coverages on the triangular latt
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but a surprisingly low value for the continuous transitio
point, y1. The pair approximation with sublattices~PAS!
gives a qualitatively correct phase diagram for the squ
lattice, but certain anomalous features of the simple PA p
sist, notably, singular behavior of the coverages at the tr
sition pointsy1 andy2.

Our study shows that the PA can furnish reliable quali

FIG. 5. ~a! N coverage in the square lattice. Solid line, simu
tion ~Ref. @10#!; dashed line, PAS.~b! CO coverage, symbols as i
~a!; ~c! O coverages, symbols as in~a!.

FIG. 6. PAS sublattice order parameterD(N).
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tive, and in some instances quantitative predictions for re
tion models,provided it includes a mechanism for realizin
any symmetry-breaking tendency inherent in the model. The
same condition applies, of course, to mean-field or clu
approximations for equilibrium models. In general, it is as
ing too much of such theories to provide quantitatively re
able phase boundaries; the PA may nonetheless yield s
insight into the overall shape of the phase diagram. M
accurate theories are typically based on the hierarchy
n-point functions.

The theory of KKN yields a remarkably accurate pred
tion for y1 on the triangular lattice. This indicates that th
effect of long-range correlations is reasonably well rep
sented in their theory. Surprisingly, the PA yields a bet
prediction fory2. It remains to develop a method that com
bines the advantages of the two approaches.
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APPENDIX A: SIMPLIFIED DERIVATION OF PAIR
EQUATIONS

Here we illustrate our method by applying it to the conta
process~CP! @30#. The CP is a Markov process defined on
d-dimensional cubic lattice. Each site is either vacant~0! or
occupied~1!. The transition rates at any site arew(1→0)
51 ~independent of the neighbors! and w(0→1)5ln/2d,
where 0<n<2d is the number of neighboring sites in sta
1. ~Note that all sites 0 is an absorbing configuration.! Thus
in one dimension we havew(101→111)5l, w(100
→110)5w(001→011)5l/2, and w(000→010)50. We
enumerate below the transitions, associated rates~e.g., the
transition rate times the probability of the initial configur
tion!, and overall changes in the number of 1’s and
nearest-neighbor pairs, in the one-dimensional CP. We
~1! to denote the density of 1’s,~10! for the probability of a
nearest-neighbor 0–1 pair, etc.~By normalization, (00)
12(01)1(11)51. Note that the second and fourth entri
carry a factor of 2 to account for mirror-image events.!

Process Rate DN1 DN11

101→111 l(01)2/(0) 11 12
100→110 2l(01)(00)/(0) 11 11
111→101 (11)2/(1) 21 22
110→100 2 ~11!~01!/~1! 21 21
010→000 (01)2/(1) 21 0

Collecting results, one finds

d~1!

dt
5l@~1!2~11!#2~1!, ~A1!

and
c-

r
-
-
me
e
of

-

-
r

-
r
by

t

1
se

d~11!

dt
5l

~1!2~11!

~0!
@12~11!#22~11!. ~A2!

In this approximation, an active stationary solution@one
with (1).0], exists only forl.lc52. The above calcula-
tion is simple enough in one dimension, but becomes m
complicated for higherd. We illustrate our simpler alterna
tive method below on thed-dimensional CP. Only transition
at the central pair are enumerated. The rates involving
ation receive independent contributions from within the p
~if it is of type 01! and from the 2d21 neighbors outside
~This independence is, of course, an approximation intrin
to the PA.!

Transition Rate

11→01 R15(11)
01→11 R25l(01)@11(2d21)(01)/(0)#/2d
10→00 R35(10)
00→10 R45(2d21)l(00)(01)/2d(0)

We find d(11)/dt52@R22R1#, which reduces to Eq.~A2!
for d51, when we note that (01)5(1)2(11). Noting that
(1)5(11)1(10), we immediately recover Eq.~A1! for any
d. ~Analysis of the stationary solutions shows thatlc
52d/(2d21) in d dimensions.!

APPENDIX B: RATES FOR THE NO 1CO MODEL

In this appendix we present several examples of the
approximation~PA! transition rates for the NO1CO model,
first on the square, and then on the triangular lattice.
begin with transition 15,VC→NC, on the square lattice
Figure 7 shows one of three equivalent configuratio
needed to realize this process. The rate~per bond of the
lattice! carries the factors (VC) ~probability of the initial
state! and ỹ ~probability of NO arriving with N falling at the
central vacant site!. There are three possible location
~neighbors of V! at which O might adsorb; each is vacant,
the PA, with probability (VV)/(V). ~Whether the O atom
reacts or not is unimportant in this instance.! If either of the
remaining neighbors of V harbors an N atom, the new
arrived N will react.~Recall that we are consideringinfinite
reaction rates in this paper.! Hence, these two sites must b
free of N for the desired transition to occur, implying a fact
of @(VN” )/(V)#2. Thus,

FIG. 7. One of three equivalent configurations required for
transitionVC→NC in the square lattice.
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R1553ỹ
~VC!~VV!~VN” !2

~V!3
. ~B1!

Now suppose that N atoms can hop to neighboring site
rateDN . If one of the neighbors ofV harbors an N atom, it
can hop to the vacant site, and will remain there if the ot
neighbors are free of N. We must then add to the ab
expression the diffusive contribution

D155
3DN

4

~VC!~VN!~VN” !2

~V!3
, ~B2!

the factor of 1/4 reflecting the four possible directions of t
attempted hopping move.~Note that we absorb a factor o
11DN into a rescaled time variable.!

If we consider sublattices, each process splits in two.
process 15, the rate~including diffusion! for the case in
which V lies in theA sublattice is readily seen to be

R15,A53ỹ
~VC!A~VV!~VN” !A

2

~V!A
3

1
3DN

4

~VC!A~VN!A~VN” !A
2

~V!A
3

.

~B3!

~For any i , Ri ,B is found by interchangingA’s and B’s in
Ri ,A .)

A somewhat more complicated transition is number
NC→VV. It is contingent upon anNO landing parallel to
the centralNC pair, with the twoN’s adjacent. One of two
equivalent initial configurations is shown in Fig. 8. The so
lines indicate the pairs included in reckoning the probabi
of the configuration. Notice that when a pair of neighbori
sites,x andy, are both neighbors of sites in the central pa
we use the pair factor associated with the central p
@(VN)(VC) in this example#, in preference to the factor be
tweenx andy @either (VN)(VV) or (VC)(VV)]. We apply
this rule in all our calculations, to eliminate possible am
guities. Consider the neighborsa and b of the vacant site
above N. If neither of these bear N, the newly arrived N w
surely react with the N in the central pair. If eithera or b ~but
not both! carry an N, the probability of the desired reaction
1/2; it is 1/3 in case botha andb bear N. The probabilities o
these events—no N, one N, or two—given the vacant ne
bor, are (VN” )2/(V)2, 2(VN” )(VN)/(V)2, and (VN)2/(V)2,
respectively. An analogous consideration applies to the p

FIG. 8. One of two equivalent configurations required for t
transitionNC→VV in the square lattice.
at
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ability of reaction of the central-pair CO, depending upon t
presence of CO atc and/ord. Combining these observation
we arrive at

R452ỹ
~NC!~VN!~VC!

~N!~C!~V!4 F ~VN” !~V!1
1

3
~VN!2G

3F ~VC” !~V!1
1

3
~VC!2G , ~B4!

where we used (VN” )1(VN)5(V) and (VC” )1(VC)5(V).
For the sublattice calculation,

R4,A52ỹ
~NC!A~VN!B~VC!A

~N!A~C!B~V!A
2~V!B

2 F ~VN” !B~V!B1
1

3
~VN!B

2 G
3F ~VC” !A~V!A1

1

3
~VC!A

2 G . ~B5!

There is no diffusive contribution to this process.
While several rates have more complicated expressio

all of the calculations in the square lattice follow the lines
those illustrated above. A new question of principle do
arise in the triangular lattice, where it is not possible to
clude all the pair factors between the central pair of sites
their nearest neighbors in the simple PA. In the triangu
lattice, if x andy are nearest neighbors, they have two neig
bors ~sites d and h in Fig. 9!, in common. In the PA, the
probability of findingx, y, andd in statesi , j , andk, re-
spectively, may be written as (i j )( ik)/( i ), (i j )( jk)/( j ), or
( ik)(k j)/(k), but not as (i j )( ik)( jk)/( i )( j )(k). ~The latter
family of expressions is not, in general, even normalize!
Our choice of which pair factors to include is shown in Fi
9. Note that as we sum over all the possible states of
peripheral sites, symmetry under the interchange ofx andy
is restored.

As an example, consider process 19,VC→CC ~site x
vacant andy occupied by CO in Fig. 9!. A CO molecule
must land atx and remain there, which implies that site
a, b, andc must be free of O.~Sitesd andh have no pos-
sibility of bearing O, as they are neighbors of a site occup
by CO. The states of sitese, f, andg are unimportant in this

FIG. 9. Lines indicate the pair factors included in reckoning t
probability of a set of ten sites in the triangle lattice.
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process.! Multiplying the independent factors associated w
the events enumerated above, we find that the rate for
process is given by

R195y~VC!
~VO” !3

~V!3
. ~B6!

A more complicated process is number 20,VO
→OO (x vacant,y occupied by O in Fig. 9!. An NO must
fall with O at x, and N at one of the sites in$a,b,c,d,h%. In
no case may any of the sites in$a,b,c% hold CO. ~Being
neighbors of an O,d andh are surely free of CO.! The rate
is given by the expression:
e

ys
is R205 ỹ~VO!H 3
~VV!

~V! S ~VC” !

~V! D 2

1
~VV!

~VC” !
S ~VC” !

~V! D 3

1
~VO!

~O! S ~VC” !

~V! D 3J . ~B7!

The first term in brackets represents N falling ata, b, or c.
The next is for N falling atd. The probability ofd being
vacant, given one vacant neighbor and one occupied by O
(VV)/@(VV)1(VN)1(VO)#5(VV)/(VC” ). The final term
represents N falling ath. These examples illustrate the prin
ciples used in the calculation, the resulting expressio
needless to say, become quite involved in certain cases.
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