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Dynamical regimes in the dissipative particle dynamics model

Pep Espan˜ol and Mar Serrano
Departamento de Fı´sica Fundamental, Universidad Nacional de Educacio´n a Distancia, C/ Senda del Rey s/n, E-28040 Madrid, Spa

~Received 26 October 1998!

We discuss theoretically the behavior of the velocity autocorrelation function in the dissipative particle
dynamics~DPD! model. Two dynamical regimes are identified depending on the dimensionless model param-
eters. For low values of the dimensional friction, a mean field behavior is observed in which the kinetic theory
for the DPD model provides good predictions. For high values of the friction, collective hydrodynamic effects
are dominant. We have performed numerical simulations that validate the theory presented.
@S1063-651X~99!16005-7#

PACS number~s!: 05.40.2a, 02.70.Ns, 05.60.2k
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I. INTRODUCTION

The dissipative particle dynamics~DPD! model allows
one to simulate hydrodynamics at mesoscopic scales
which thermal fluctuations are important@1,2#. For this rea-
son, it appears as a good simulation technique for the s
of complex fluids like polymer or colloidal suspensio
where both hydrodynamic interactions and Brownian mot
are important@3–7#. Being an off lattice technique, it doe
not suffer from the restrictions imposed by the lattice as
lattice gas cellular automata or the lattice Boltzmann
proach, and it is much more flexible for modeling.

Even though the technique has a very sound theore
support and many applications have been undertaken, t
is at present no systematic study of the region of parame
suitable for a simulation of particular hydrodynamic pro
lems. In addition, recent simulations@8# have shown devia-
tions from the transport coefficients predicted by the kine
theory developed in Ref.@9#. The two approximations in-
volved in this kinetic theory are the small gradient expans
around local equilibrium, and the molecular chaos hypo
esis. However, it is difficult to investigate the origin of th
discrepancies between theory and simulations within the
netic theory context. The theory just produces explicit e
pressions for the transport coefficients with no hint about
range of validity. It has been suggested that it is precisel
the region of parameters where kinetic theory fails where
more sensible to conduct simulations that reproduce hy
dynamic behavior@8#.

We shed some light on the problem by presenting a the
that allows us to compute the velocity autocorrelation fu
tion ~VAF! of the dissipative particles. The theory is bas
on the physical picture in which the DPD particles are
garded as Brownian-like particles moving in an environm
created by the rest of the DPD particles. Strictly speaki
however they are not Brownian particles because the t
moment of the system is conserved. This approach was
troduced by Groot and Warren as a way of computing
diffusion coefficient@6#. We identify the basic dimensionles
parameters which allow us to classify and discuss the
namical regimes displayed by the model. By assuming
the environment of a DPD particle behaves hydrodyna
cally, it is possible to obtain an explicit analytical expressi
for the velocity autocorrelation function. Here we follow pio
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neering works on mode coupling theory@10,11# that allowed
one to derive the celebrated long time tails in the veloc
autocorrelation. Finally, we present numerical simulatio
that allow us to validate the hypothesis made in the theo

II. DPD MODEL

The stochastic differential equations that govern the po
tion r i and velocityvi of the i th particle of massm in the
DPD model are given by@2#

dr i5vidt,

mdvi52gm(
j

v~r i j !~ei j •vi j !ei j dt ~1!

1s(
j

v1/2~r i j !ei j dWi j ,

where the following quantities are defined:

ei j [
r i j

r i j
,

r i j [r i2r j ,
~2!

r i j [ur i2r j u,

vi j [vi2vj .

In order to compare with the kinetic theory in Ref.@9#, it is
assumed that the usual conservative force is not present.
noise amplitudes is given by the detailed balance conditio

s5~2kBTgm!1/2, ~3!

whereT is the temperature of the equilibrium state towa
which the system relaxes~if the boundary conditions allow
for it!, and kB is Boltzmann’s constant. Finally,dWi j
5dWji are independent increments of the Wiener proc
that obey the Itoˆ calculus rule

dWi j dWi 8 j 85~d i i 8d j j 81d i j 8d j i 8!dt, ~4!
6340 ©1999 The American Physical Society
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PRE 59 6341DYNAMICAL REGIMES IN THE DISSIPATIVE . . .
i.e., dWi j is an infinitesimal of order 1/2@12#. The dimen-
sionless weight functionv(r ) is normalized according to@1#

E dr v~r !5
1

n
, ~5!

wheren is the number density of the system. In this paper
will work in two spatial dimensions, and we select the fo
lowing weight function with ranger c :

v~r !5
3

pr c
2n

S 12
r

r c
D , ~6!

if r ,r c , and zero ifr .r c .
We discuss now which are the fundamental parame

for the DPD model. By an appropriate choice of units
mass, time, and space, it is always possible to reduce
number of relevant parameters of the model. It is obvio
that the dynamical regimes are independent of the units u
and will depend ondimensionlessparameters only. There ar
six parameters in the model:m,g,r c ,kBT,l, andL, wherel
is the average distance between particles, related to the n
ber densityn of particles byl5n21/d, d is the space dimen
sion, andL is the box size~or any other boundary lengt
scale!. From these six parameters we can form three dim
sionless parameters. By defining the thermal velocityvT
5(kBT/m)1/2, we select

V[
gr c

dvT
5

tT

dtg
,

s[
r c

l
, ~7!

m[
L

r c
.

The physical meaning of these parameters is as follows:tT is
the time taken by a particle moving at the thermal velocity
move a distancer c , whereastg5g21 is the time associated
with the friction. Therefore, thedimensionless frictionV is
the ratio of these two time scales. On the other hand,s is the
overlappingbetween particles which is related to the numb
of particles that are within the range of interaction~the ac-
tion sphere! of a given one. Finally,m is the dimensionless
box length. These dimensionless parametersV,s, andm fix
the dynamical regimes of the model.

III. VELOCITY AUTOCORRELATION FUNCTION

The velocity equation in Eq.~1! can be written in the form

v̇i52gF(
j Þ i

v~r i j !ei j ei j G•vi1
g

d
V i~ t !1

F̃i

m
, ~8!

where the random force isF̃idt5s( jv
1/2(r i j )ei j dWi j . In

Eq. ~8! we have introduced theenvironmentvelocity through

V i~ t !5d(
j Þ i

v~r i j !~ei j •vj !ei j . ~9!
e

rs
f
he
s
d,

m-

n-

r

This velocity is a weighted average of the velocities of t
neighboring particles of particlei. Next, we observe that the
factor ofvi in the right hand side of Eq.~8! can be written as

(
j Þ i

v~r i j !ei j ei j 5E dr v~r i2r !
r i2r

ur i2r u
r i2r

ur i2r u
n~r ,t !,

~10!

where we have introduced the microscopic density fi
n(r ,t)5( j Þ id(r j2r ). If we assume that the density field
constant with valuen ~which will be confirmed by the results
obtained later! then we may approximate

E dr v~r i2r !
r i2r

ur i2r u
r i2r

ur i2r u
n~r ,t !

'nE dr v~r !
r

ur u
r

ur u
5

1

d
. ~11!

The last equality is obtained by noting that the integral is
isotropic second order tensor, which must be proportiona
the identity@the constant of proportionality can be obtain
by taking the trace of the integral and using the normali
tion equation~5!#.

The assumption of constant density is, in fact, an assu
tion that neglects density fluctuations and correlations. O
expects that, for large overlapping, when there are many
ticles within an action sphere, the importance of density fl
tuations will be very small. It is convenient to compute t
fluctuations of the environment velocity from the definitio
of V i in Eq. ~9!:

1

d
^V i•V i&5dK S (

j Þ i
v i j ei j ei j •vj D S (

kÞ i
v ikeikeik•vkD L

.
dkBTN

mV E dr v2~r !

5
dkBT

m

3

2ps2
, ~12!

for large numberN of DPD particles in the system. We ob
serve that the magnitude of this correlation decreases
the overlapping coefficients. This is physically meaningful
because the environment velocity is a weighted averag
the velocities of the particles that are within an action sphe
These velocities are distributed at random and, therefore
there are many particles within an action sphere, the ave
will be proportionally smaller.

After using Eqs.~10! and ~11! in Eq. ~8!, one obtains

dr i5vidt,
~13!

dvi52
g

d
@vi2V i #dt1

F̃i

m
dt.

We observe that DPD particles behave similarly to Brown
particles, but in a systematic velocity field determined by
rest of its neighboring particles. The stochastic properties
the random force are not exactly those of a Brownian part
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6342 PRE 59PEP ESPAN˜OL AND MAR SERRANO
because the total momentum of the system is conserved
for the rest of the development they are irrelevant.

The formal solution of Eq.~13! is

vi~ t !5exp$2gt/d%vi~0!1E
0

t

dt8exp$2g~ t2t8!/d%

3Fg

d
V i~ t8!1

F̃i~ t8!

m
G . ~14!

By multiplying this equation byvi(t) and averaging, one ca
show that the averagêvi(t)•vi(t)& tends toward the equi
partition value on a time scale of orderd/g. On the other
hand, by multiplying Eq.~14! by vi(0) andV i(0) and aver-
aging, one obtains a set of equations for the velocity au
correlation function at equilibrium:

1

d
^vi~ t !•vi~0!&5exp$2gt/d%

kBT

m

1
g

dE0

t

dt8exp$2g~ t2t8!/d%

3
1

d
^V i~ t8!•vi~0!&,

~15!
1

d
^vi~ t !•V i~0!&5

g

dE0

t

dt8exp$2g~ t2t8!/d%

3
1

d
^V i~ t8!•V i~0!&,

where use has been made of the fact that the random for
not correlated with the velocity at present and past times
the propertŷ V i(0)•vi(0)&50 @which can be checked from
definition ~9!#. Substitution of the second equation in E
~15! into the first one leads to an expression that relates
particle VAF with the environment VAF, this is

1

d
^vi~ t !•vi~0!&5exp$2gt/d%

kBT

m
1S g

dD 2E
0

t

dt8~ t2t8!

3exp$2g~ t2t8!/d%
1

d
^V i~ t8!•V i~0!&.

~16!

The second term on the right hand side representscollective
effects. When this term is negligible we say that amean field
approximation is valid, in which the velocity autocorrelatio
function decays exponentially. The reason for the na
‘‘mean field’’ comes from the observation that Eq.~13!, in
which the average valuêV i&50 is used instead of the in
stantaneous valueV i , produces an exponential decay of t
velocity autocorrelation function. In the Appendix of Re
@6#, the velocity autocorrelation function and the diffusio
coefficient of the DPD particles were computed by using t
mean field approximation.

Solution ~16! is still formal because we do not explicitl
know the form of the correlation of the environment veloc
~which will be given in Sec. IV!. Nevertheless, it is possibl
to extract useful information from this expression. This
ut

-

is
d

e

e

s

most conveniently done by taking dimensionless variab
Let t̄ be the dimensionless timetvT /r c , that is, the time
expressed in units in whichr c51 andvT51, andv̄5v/vT is
a dimensionless velocity. In these units, Eqs.~15! take the
forms

1

d
^v̄i~ t̄ !• v̄i~0!&5exp$2V t̄ %1VE

0

t̄
d t̄8exp$2V~ t̄ 2 t̄ 8!%

3
1

d
^V̄ i~ t̄ 8!• v̄i~0!&,

1

d
^v̄i~ t̄ !•V̄ i~0!&5VE

0

t̄
d t̄8exp$2V~ t̄ 2 t̄ 8!%

3
1

d
^V̄ i~ t̄ 8!•V̄ i~0!&, ~17!

and Eq.~16! takes the form

1

d
^vi~ t̄ !• v̄i~0!&5exp$2V t̄ %1V2E

0

t̄
d t̄8~ t̄ 2 t̄ 8!

3exp$2V~ t̄ 2 t̄ 8!%
1

d
^V̄ i~ t̄ 8!•V̄ i~0!&

~18!

For later notational convenience we introduce

c~ t̄ ![
1

d
^v̄i~ t̄ !• v̄i~0!&,

~19!

C~ t̄ ![
1

d
^V̄ i~ t̄ !•V̄ i~0!&.

Now several qualitative predictions concerning the diffe
ent dynamical regimes can be made from expressions~17! or
~18!. For fixedV, the large overlappings limit produces a
small contribution from the collective part, and the veloc
correlation function decays in an exponential way. Note t
the overall magnitude of the correlation of the environme
velocity is determined by the value at the origin@Eq. ~12!#.
For a fixed overlappings, whenV is small ~in the limit of
small friction or high temperature! the behavior of the VAF
is again exponential. In the opposite regime of largeV, the
exponential contribution decays in a very short time and
main contribution for times larger thanV21 is given by the
collective term. Actually, in the limitV→` the exponential
memory function acts as ad function, and for times larger
thanV21 one obtains

^vi~ t̄ !•vi~0!&'^V i~ t̄ !• v̄i~0!&

'^V̄ i~ t̄ !•V̄ i~0!&. ~20!

The physical meaning of expressions~20! is also clear.
When the friction is high, in a very short time the velocity
a given particle is slaved by the average velocity of its en
ronment.
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IV. HYDRODYNAMIC HYPOTHESIS

In this section we present a hydrodynamic hypothe
similar to the mode coupling approximation introduced
for example, Ref.@10# ~see Ref.@11# for a review on mode
coupling theories!. The environment velocityV i defined in
Eq. ~9! can be rewritten as an average over the action sp
of the microscopic velocity field, that is,

V i~ t !5dE dr v~r i2r !
r i2r

ur i2r u
r i2r

ur i2r u
n~r ,t !v~r ,t !,

~21!

where

n~r ,t !v~r ,t !5(
j Þ i

vjd~r j2r !. ~22!

The velocity fieldv(r ,t) obeys the equations of hydrody
namics when its characteristic length scale is much lar
than the interparticle distance. We expect that the aver
involved in V i will be dominated by the hydrodynami
modes whenever the range of interactionr c is much larger
than the interparticle distancel ~i.e., large overlappings).
Actually, under the assumption that the hydrodynamic fie
e

rin

in

s.
n
s.
is
,

re

er
ge

s

vary slowly on the scaler c , we could substitute the environ
ment velocity with the hydrodynamic velocity field evaluate
at the particle position, i.e.,V i(t)5v(r i(t),t), by convenient
use of Eq.~10!. This leads to a correct long time behavi
but an inaccurate short time behavior.

In what follows we still neglect density fluctuations
n(r ,t);n, but keep the hydrodynamic velocity inside th
integral, weighted withv(ur2r i u). From Eq.~21!, the envi-
ronment velocity is conveniently expressed in terms of
Fourier components of the velocity fieldv(k,t), that is

V i~ t !5dnE dk

~2p!2
v~k!•v~k,t !ns~k,t !, ~23!

where we have introduced the tagged particle den
ns(k,t)5exp$ik•r i(t)% and the second order tensor

v~k!5E dr v~r ! r̂ r̂ exp$2 ik•r %. ~24!

The explicit form of this tensor when the weight function
given by Eq.~6! is given in the Appendix. The environmen
velocity correlation function is given by
^V i~0!•V i~ t !&5~dn!2E dk

~2p!2

dk8

~2p!2
v~k!v~k8!^ns~k,0!ns~k8,t !v~k,0!v~k8,t !&. ~25!

We will assume that the position of particlei is weakly correlated with the velocity fieldv(k,t) in such a way that we can
approximate

^ns~k,0!ns~k8,t !v~k,0!v~k8,t !&'^ns~k,0!ns~k8,t !&^v~k,0!v~k8,t !&. ~26!

We further assume that the correlation of the velocity field is given by the linear hydrodynamics result@13#

^v~k8,0!vT~k,t !&5
kBT

nm
~2p!2d~k1k8!@exp$2nk2t%~12 k̂k̂!1exp$2Gk2t%coskctk̂k̂#. ~27!
n
s,
ic-
ort
ese
ty,
Heren is the kinematic viscosity,G is the sound absorption
coefficient, andc is the sound speed of the DPD fluid. Th
correlation function~27! is different from zero only when
k52k8. The first average in the right hand side of Eq.~26!
is, therefore, given by the incoherent intermediate scatte
function Fs(k,t)5^ns(k,0)ns(2k,t)& @13#. By further as-
suming a hydrodynamic behavior for this function, we obta
@13#

Fs~k,t !5exp$2Dk2t%, ~28!

whereD is the self-diffusion coefficient of the DPD particle
The final hydrodynamic expression for the environme

velocity correlation function is found by substitution of Eq
~26!, ~27!, ~28!, into Eq. ~25!,

1

d
^V i~0!•V i~ t !&5

3dkBT

4pr c
2nm

FFS ~n1D !t

r c
2 D

1CS ~G1D !t

r c
2

,
ct

r c
D G , ~29!
g

t

where the following functions are defined:

F~x!5

E dka2~k!exp$2xk2%

E dka2~k!

C~y,z!5

E dk@a~k!1b~k!#2exp$2yk2%coskz

E dk@a~k!1b~k!#2

, ~30!

which satisfyF(0)51,C(0,0)51, with the definitions for
a(k),b(k) given in the Appendix.

In this way, the environment velocity correlation functio
is explicitly given in terms of hydrodynamic fluid propertie
i.e., the transport coefficients of the DPD fluid. The pred
tion is not complete until particular values for these transp
coefficients are provided. One possibility is to measure th
transport coefficients in a simulation. Another possibili
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6344 PRE 59PEP ESPAN˜OL AND MAR SERRANO
which is the one we follow here, is to use the values
n,D,G, andc provided by the kinetic theory in Ref.@9#. This
has the advantage that one knows the explicit dependen
the transport coefficients in terms of the dimensionless
rametersV, ands. Even though for some dynamical regim
the kinetic theory predictions are not in exact quantitat
agreement with the measured transport coefficients@8,14#,
the discrepancies between theoretical and simulation tr
port coefficients are small.

The kinetic theory results are@9,15#

D5
d

g

kBT

m
,

n5
1

2 F gn
1

d~d12!
E r 2v~r !dr1c2

d

gnE v~r !drG ,

~31!

nb5gn
1

2d2E r 2v~r !dr1c2
1

gnE v~r !dr
,

c5AkBT

m
.

The sound absorption coefficient is given byG52n1 1
2 nb

for the case that the equation of state is that of the ideal
@13#.

We are now in position to write the hydrodynamic pred
tion ~29! in terms of dimensionless variables. Substitution
Eq. ~31! with expression~6! into Eq. ~29! leads to

C~ t̄ !5
3d

4ps2 FFS F 3

80
V1

3

2V G t̄ D1CS F 9

80
V1

11

4V G t̄ , t̄ D G .
~32!

We observe that the time scale of the environment velo
correlation function is determined byV, while its amplitude
is determined bys. In Fig. 1 we show the theoretical predic
tion ~32! for a particular value ofs and three different value
of V. An algebraic dependence liket21 is observed for very
long times, which is the celebrated long time tailt2d/2 aris-

FIG. 1. Theoretical hydrodynamic prediction for the enviro

ment velocity correlation functionC( t̄ ) for a value ofs52.82 and
three different values forV. The lowest curve is forV50.5, the
middle curve is forV525, and the upper curve is forV58.3. The
algebraic long time tail behavior appears for very long times, ty
cally when the correlation has decayed three orders of magni
from its initial value. Straight lines are the asymptotic result
Eq. ~33!.
r

of
a-

e

s-

as

f

y

ing from the diffusive character of the shear and tagged p
ticle modes. Actually, it is straightforward to obtain th
asymptotic behavior ofC( t̄ ) for long times, which is given
by

C~ t̄ !;
1

8ps2

80V

3V21120

1

t̄
. ~33!

In dimensional terms, this result reads

1

d
^V i~ t !•V i~0!&;

kBT

mn

1

8p~n1D !t
, ~34!

which coincides with the result given in Ref.@10# for the
particle velocity autocorrelation function@note that, for long
times, Eq.~20! applies#.

V. SIMULATION RESULTS

We have simulated Eqs.~1! in two spatial dimensions in a
system with periodic boundary conditions. The velocity a
tocorrelation function of the DPD particles and also the e
vironment velocity autocorrelation function have been co
puted at equilibrium.

In order to derive Eq.~18!, we made the approximation
that the density field is approximately constant. We che
now that this assumption is reasonable by computing i
simulation the environment velocity correlationC( t̄ ), evalu-
ating numerically the integral term in Eq.~18!, and adding
up the first exponential term in Eq.~18!. The result is the
dotted line in Fig. 2. Also shown is the result for the veloc
correlation functionc( t̄ ) obtained directly from the simula
tion ~solid line!. We see that both results are in quite go
agreement, giving confidence in Eq.~18! as a sounded start
ing point for theoretical analysis. Similarly good agreeme
is obtained for all the values ofV studied (V50.5,8.3, and
25!.

For a given value ofV525, in Fig. 3 we plot the value o
s2C( t̄ ) for different values ofs. According to the hydrody-
namic prediction~32!, this curve should be independent
the overlapping coefficients ~dotted curve in Fig. 3!. We
observe that the simulation results converge toward the
oretical prediction only when the overlapping coefficient
sufficiently large. This is expected from the fact that hydr

-
de

FIG. 2. Comparison between the simulation result forc( t̄ )
~solid line! and the value given by Eq.~18! ~dotted line! using the
simulation result for the environment velocity correlation functi

C( t̄ ). Parameters:s52.82,V525, andm510.0
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dynamic behavior appears only on length scales that invo
a relatively large number of particles.

We have also investigated the effect of the finite syst
size. In Fig. 4 we plot the environment velocity correlati
function for different system sizes, while keeping the rest
the parameters constant (s52.82, andV525). We observe a
large discrepancy between the hydrodynamic prediction
the simulation results when the box is small. This discr
ancy appears at large times, and is reduced when the sy
size increases. This is a standard finite size effect, whic
related to the discreteness of thek spectrum in small systems
where the slowest mode decays as exp@2akmin

2 t# with kmin

52p/L.
Next, we study the effect ofV on the velocity autocorre

lation function of the DPD particles. In Fig. 5 we show th
velocity correlation function for givens52.82, and m
510.0, and three different values ofV50.5,8.3, and 25. We
also plot the corresponding exponential terms in Eq.~18!.
For smallV ~small friction or high temperature! the decay of
the VAF is very accurately given by the exponential term.
long asV increases, discrepancies from the exponential
havior are observed. This discrepancies are due to the e
of the collective term in Eq.~18!. In Fig. 6 it is shown that,

FIG. 3. Simulation results for the velocity correlation functio

s2C( t̄ ) for a fixed value ofV525, and different values of the
overlapping coefficients51.5, 2.18, and 3.2~the upper curve cor-
responds to lowers). The dotted line is the hydrodynamic predi
tion ~32!. As the overlapping increases, the simulation results c
verge toward the theoretical prediction.

FIG. 4. Simulation results for the velocity correlation functio

C( t̄ ) for fixed values ofs52.82, andV525 and different values o
the box sizem57.9, 11.2, 15.8, and 35.5~the lower curve corre-
spond to lowerm). The thicker line is the hydrodynamic predictio
~32!.
e

f

d
-
em
is

s
e-
ct

for largeV, at large times the environment and particle v
locities coincide according to Eq.~20!.

VI. SUMMARY AND DISCUSSION

We have presented a theory for dissipative particle
namics that allows one to understand the different dynam
regimes displayed by the model. The theory is based on
physical picture that DPD particles behave like Browni
particles in a nonequilibrium environment due to the rest
the DPD particles. An explicit expression for the veloci
autocorrelation function is derived in which the Brownia
exponential behavior is corrected by the presence of col
tive effects. By using dimensionless variables it is possible
assess the range of parameters for which the collective
fects are important. Three dimensionless parameters ap
in the model, —s,V, andm, — and they characterize th
different dynamical regimes in the system. The relevance
precisely these dimensionless groups is motivated by
theory presented.

Two dynamical regimes are identified: the mean field
gime and the collective behavior regime. The transition
tween both is governed essentially by the dimensionless
tion V with important effects ofs and m. A mean field
behavior appears for small frictionV or large overlappings.
This is physically reasonable: For small friction, the dyna
ics of the environment of a given particle hardly affects t

-

FIG. 5. Simulation results for the velocity correlation functio

c( t̄ ) for fixed values ofs52.82, andm510.0, and different values
of V50.5 ~circles!, 8.3 ~triangles!, and 25~diamonds!. Solid lines

are the term exp$2V t̄% in Eq. ~18!.

FIG. 6. Simulation results for the velocity correlation functio

c( t̄ ) ~thin line! and the environment velocity correlation functio

C( t̄ ) ~thick line!. Also shown is the term exp$2V t̄% in Eq. ~18!
~dotted line!. Heres52.82,m510.0, andV525.
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behavior of this particle. For a large overlapping the colle
tive effects are smeared out over large regions. The m
field approximation is closely related to the molecular cha
assumption made in kinetic theory. Actually, it is possible
compute the diffusion coefficient of the DPD particles
using the mean field approximation for the VAF into th
usual Green-Kubo formula for the diffusion coefficient@6#.
The result is precisely the prediction for the diffusion co
ficient given by kinetic theory@9# @with due account of the
normalization given in Eq.~5!#, i.e.,

D5E
0

`1

d
^vi~ t !•vi~0!&5

d

g

kBT

m
. ~35!

When the dimensionless frictionV is high, the VAF does not
decay in an exponential way because it is dominated by
collective dynamics. We have presented a theoretical pre
tion for the collective part of the VAF by assuming that t
correlation function of the environment velocity reflects
underlying hydrodynamic behavior. Such a behavior is
pected~and observed in the simulations! when the overlap-
ping coefficients is large enough. In this case, the collecti
effect is small but well described by hydrodynamics.

The fact that hydrodynamics governs the dynamics of
velocity of the particles implies the appearance of the c
ebrated long time tails in the VAF. These algebraic ta
occur at very long times~for which the VAF has decayed t
a factor 1023 from its original value! and are difficult to
observe in our simulations due to both the statistical no
and finite size effects. Nevertheless, we have provided s
cient numerical evidence for the hydrodynamic behavior
smaller times, and we expect the presence of long time
at large times for sufficiently large system sizes. Thet21

dependence of the VAF, when introduced into the Gre
Kubo formula~35!, leads to a logarithmically divergent dif
fusion coefficient. It is apparent that this ‘‘small’’ divergenc
will be hardly observable in any simulation with a finite bo
size.

Dissipative particle dynamics is designed to simulate
drodynamic problems. Actually, one would like to have t
DPD particles moving in such a way that they accurat
follow the flow field intended to be modeled. We see th
this will happen whenever the friction is sufficiently large~in
this case, the velocity of a DPD particle is slaved by
environment! and the overlapping is sufficiently large~in
such a way that the environment velocity moves hydro
namically!. In this regime, the dynamics of the particles
mainly collective, and kinetic theory gives inaccurate valu
for the transport coefficients@8#.
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In regimes for which collective effects are important, w
expect that deviations from the predictions of kinetic theo
occur not only for the diffusion coefficient, but also for th
rest of the transport coefficients of the DPD fluid@8#. It is
actually possible to use the theory presented in this pape
order to compute the transport coefficients for the DPD fl
expressed in the form of Green-Kubo formulas@16#. One
then obtains a set of recursive equations in which the tra
port coefficients are expressed in terms of the transport
efficients used in the hydrodynamic assumption. This p
vides a self-consistent set of mode coupling equations
D,n, andG. This is a celebrated method used by Kawas
@17# and Kadanoff and Swift@18# to calculate transport prop
erties near critical points@11#. It should provide further in-
sight into interesting regimes where collective effects are
portant.
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APPENDIX

On simple symmetry grounds, the tensorv(k) has the
form

v~k!5E dr v~r ! r̂ r̂ exp$2 ikr %5a~krc!11b~krc!k̂k̂.

~A1!

In order to calculate the functionsa(krc) and b(krc), we
double contractv(k) with the dyadick̂k̂ and also take its
trace. This leads to

k̂Tv~k!k̂5a~krc!1b~krc!52pE
0

`

drv~r !

3S J1~kr !

k
2rJ2~kr ! D , ~A2!

tr@v~k!#52a~krc!1b~krc!52pE
0

`

rv~r !Jo~kr !.

The integrals are given in terms of generalized hypergeom
ric functions pFq$a,b,z% @19#, and Bessel functions

pFq$a,b,z%5 (
k50

`
~a1!k . . . ~ap!k

~b1!k . . . ~bq!k

zk

k!
, ~A3!

where (m)k5m(m11)•••(m1k21). More precisely,
a~krc!1b~krc!52
1

n1F2H S 3

2D ,S 2,
5

2D ,2
~krc!

2

4 J 2
6

n~krc!
2

1
6

n~krc!
2

J0~krc!1
6

nkrc
J1~krc!

1
6~krc!

2

n 1F2H S 5

2D ,S 3,
7

2D ,2
~krc!

2

4 J , ~A4!

2a~krc!1b~krc!5
6J1~krc!

krcn
2

2

n1F2H S 3

2D ,S 1,
5

2D ,2
~krc!

2

4 J .

The solution of this system of two equations provides the values fora(krc) andb(krc).
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