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Dynamical regimes in the dissipative particle dynamics model
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We discuss theoretically the behavior of the velocity autocorrelation function in the dissipative particle
dynamics(DPD) model. Two dynamical regimes are identified depending on the dimensionless model param-
eters. For low values of the dimensional friction, a mean field behavior is observed in which the kinetic theory
for the DPD model provides good predictions. For high values of the friction, collective hydrodynamic effects
are dominant. We have performed numerical simulations that validate the theory presented.
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I. INTRODUCTION neering works on mode coupling thed40,11 that allowed
one to derive the celebrated long time tails in the velocity
The dissipative particle dynamig®PD) model allows autocorrelation. Finally, we present numerical simulations
one to simulate hydrodynamics at mesoscopic scales ithat allow us to validate the hypothesis made in the theory.
which thermal fluctuations are importafit,2]. For this rea-
son, it appears as a good simulation technique for the study Il. DPD MODEL
of complex fluids like polymer or colloidal suspensions o ) ) ]
where both hydrodynamic interactions and Brownian motion  1he stochastic differential equations that govern the posi-
are importan{3—7]. Being an off lattice technique, it does tion ri and velocityv; of theith particle of massn in the
not suffer from the restrictions imposed by the lattice as inPPD model are given bj2]
lattice gas cellular automata or the lattice Boltzmann ap-
proach, and it is much more flexible for modeling. dri=vdt,
Even though the technique has a very sound theoretical
support and many applications have been undertaken, there

is at present no systematic study of the region of parameters mav;=— ym; (1) (8- Vi) &;dt (1)
suitable for a simulation of particular hydrodynamic prob-
lems. In addition, recent simulatiofi8] have shown devia- +02 wM(r;)e;dW,

i

tions from the transport coefficients predicted by the kinetic
theory developed in Ref9]. The two approximations in-
volved in this kinetic theory are the small gradient expansiorwhere the following quantities are defined:
around local equilibrium, and the molecular chaos hypoth-
esis. However, it is difficult to investigate the origin of the ri
discrepancies between theory and simulations within the ki- 8j ro’
netic theory context. The theory just produces explicit ex-
pressions for the transport coefficients with no hint about its
range of validity. It has been suggested that it is precisely in
the region of parameters where kinetic theory fails where it is
more sensible to conduct simulations that reproduce hydro-
dynamic behaviof8].

We shed some light on the problem by presenting a theory Vij=ViT V.
that allows us to compute the velocity autocorrelation func- ] o _ .
tion (VAF) of the dissipative particles. The theory is based!n order to compare with the kinetic theory in RE8J, it is
on the physical picture in which the DPD particles are re-assumed that the usual conservative force is not present. The
garded as Brownian-like particles moving in an environmenfioise amplituder is given by the detailed balance condition
created by the rest of the DPD particles. Strictly speaking,
however they are not Brownian particles because the total o=(2kgTym)*?, ()
moment of the system is conserved. This approach was in-
troduced by Groot and Warren as a way of computing thevhereT is the temperature of the equilibrium state toward
diffusion coefficien{6]. We identify the basic dimensionless Which the system relaxesf the boundary conditions allow
parameters which allow us to classify and discuss the dyfor it), and kg is Boltzmann's constant. FinallydW;;
namical regimes displayed by the model. By assuming thatdW,; are independent increments of the Wiener process
the environment of a DPD particle behaves hydrodynamithat obey the ftecalculus rule
cally, it is possible to obtain an explicit analytical expression
for the velocity autocorrelation function. Here we follow pio- dW;;dW,.j: = (6 8j5: + 6 6;)dt, 4

@
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i.e., dWj; is an infinitesimal of order 1/212]. The dimen-  This velocity is a weighted average of the velocities of the
sionless weight functiom(r) is normalized according td ] neighboring particles of particle Next, we observe that the
L factor ofy; in the right hand side of Ed8) can be written as
[ drom==, ® ey
n ; w(rij)qjeljzj drw(ri—r)mmn(r,t),
wheren is the number density of the system. In this paper we 2 ' ' (10)
will work in two spatial dimensions, and we select the fol-
lowing weight function with range. : where we have introduced the microscopic density field
n(r,t)==;.;6(r;—r). If we assume that the density field is
1— _) ©) constant with value (which will be confirmed by the results
ro)’ obtained laterthen we may approximate

w(r)=

2
wren

if r<r., and zero ifr>r.. f dr o(ri—1) ri—r
We discuss now which are the fundamental parameters : [ri—r|

for the DPD model. By an appropriate choice of units of

mass, time, and space, it is always possible to reduce the rr

number of relevant parameters of the model. It is obvious “”f dr “’(r)mm: FE (12)

that the dynamical regimes are independent of the units used,

and will depend omlimensionlesparameters only. There are The |ast equality is obtained by noting that the integral is an

six parameters in the modeh, y,r ,kgT,\, andL, wherek  isotropic second order tensor, which must be proportional to

is the average distance between particles, related to the nurhe identity[the constant of proportionality can be obtained

ber densityn of particles by, =n"", d is the space dimen- py taking the trace of the integral and using the normaliza-

sion, andL is the box size(or any other boundary length tion equation(5)].

scalg. From these six parameters we can form three dimen- The assumption of constant density is, in fact, an assump-

sionless parameters. By defining the thermal veloeity tion that neglects density fluctuations and correlations. One

ri—r
I

= (kgT/m)*, we select expects that, for large overlapping, when there are many par-
ticles within an action sphere, the importance of density fluc-
_Ye T tuations will be very small. It is convenient to compute the
Q_Vr_T i ill b I It [ h
dvy dr,’ fluctuations of the environment velocity from the definition
of V; in Eq. (9):
I’C
= (7) 1
a(Vi'Vi>=d 2 ;i &j&j - Vj 2 wikEkEk* Vk
J#i k#i
L

re

2
mv f dr w=(r)
The physical meaning of these parameters is as followss
the time taken by a particle moving at the thermal velocity to _dkgT 3 (12)

move a distance., whereasr,= y~1is the time associated m 2452’

with the friction. Therefore, thelimensionless frictiol) is

the ratio of these two time scales. On the other hanslithe  for large numbeiN of DPD particles in the system. We ob-
overlappingbetween particles which is related to the numberserve that the magnitude of this correlation decreases with
of particles that are within the range of interactithe ac-  the overlapping coefficiers. This is physically meaningful
tion spherg of a given one. Finallyu is the dimensionless because the environment velocity is a weighted average of
box length. These dimensionless paramefeyrs, andu fix  the velocities of the particles that are within an action sphere.

the dynamical regimes of the model. These velocities are distributed at random and, therefore, if
there are many particles within an action sphere, the average
Ill. VELOCITY AUTOCORRELATION FUNCTION will be proportionally smaller.

. o ] ] After using Eqs.(10) and(11) in Eqg. (8), one obtains
The velocity equation in Eq1) can be written in the form

,_'E dri:Vidt,
Yyt (13
Vi ®) -

\-/i:—’)/ 'Vi+
4 Fi
dVi: - a[Vl_Vl]dt+ Edt

> o(r;)€;8;
j#i

where the random force iB;dt=o03;0(r;;)g;dW;. In
Eqg. (8) we have introduced thenvironmenvelocity through e observe that DPD particles behave similarly to Brownian
particles, but in a systematic velocity field determined by the
Vit)=d> w(r)(e-v)e, . (9) rest of its neighboring particles. The stochastic properties of
' TR the random force are not exactly those of a Brownian particle
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because the total momentum of the system is conserved batost conveniently done by taking dimensionless variables.
for the rest of the development they are irrelevant. Let t be the dimensionless time/r., that is, the time

The formal solution of Eq(13) is expressed in units in which,=1 andv=1, andv=V/v is
a dimensionless velocity. In these units, E(fb) take the

v;(t)=expg{ — yt/d}v;(0)+ ftdt’exp{—y(t—t’)/d} forms
0
1 — T — _
V(t )+ f:] )} (14 a(vi(t)-vi(0)>=exp{—Qt}+QJOdt exp(—Q(t—t")}
By multiplying this equation by;(t) and averaging, one can x%(\Ti(?) .Vi(o»,

show that the averagév;(t)-vi(t)) tends toward the equi-
partition value on a time scale of orddfy. On the other
hand, by multiplying Eq(14) by v;(0) andV;(0) and aver-
aging, one obtains a set of equations for the velocity auto-
correlation function at equilibrium:

1 —— — T — —
a(vi(t)~vi(0)>=QJ dt’exp{—Q(t—t")}
0

1 ke T ><§<\7i<?>~\7i<0>>, (17)
g{vi(D)-vi(0))=exp{ - yt/dj——
t and Eq.(16) takes the form
+§f0dt'exp{—y(t—t')/d} - ~
d(v,(t) vi(0))=exp[— Qt}+Q f dt’(t—t")
1
Xa<Vi(t')'Vi(0)>v R T
(15) xexp{ — Q(t—t) 5 (Vi(t")-Vi(0))
GOV =7 [ dexpl— yt—t 19

1 For later notational convenience we introduce
X 3(Vi(t)-Vi(0)),

1 __ _
. c(t)=—(vi(t)-vi(0)),
where use has been made of the fact that the random force is d
not correlated with the velocity at present and past times and (19
the property(V;(0)-v;(0))=0 [which can be checked from —
definition (9)]. Substitution of the second equation in Eq. C(tH)=
(15) into the first one leads to an expression that relates the

particle VAF with the environment VAF, this is Now several qualitative predictions concerning the differ-
ent dynamical regimes can be made from expressibrsor
1 . L
—(vi(t)-v;(0))=exp{— yt/d}—+( ) j dt’(t—t") (18). For f|>_<ed_Q, the large overla_pplng limit produces a
d small contribution from the collective part, and the velocity
1 correlation function decays in an exponential way. Note that
X exp{ — y(t—t)/d}=(V;(t")- V;(0)). the overall magnitude of the correlation of the environment
d velocity is determined by the value at the origieq. (12)].
(16) For a fixed overlapping, when() is small(in the limit of
small friction or high temperatuyghe behavior of the VAF
The second term on the right hand side represeollective  is again exponential. In the opposite regime of lafyethe
effects When this term is negligible we say thatreean field exponential contribution decays in a very short time and the
approximation is valid, in which the velocity autocorrelation main contribution for times larger than ! is given by the
function decays exponentially. The reason for the nameollective term. Actually, in the limif)—co the exponential
“mean field” comes from the observation that Ed.3), in memory function acts as & function, and for times larger
which the average valugV;)=0 is used instead of the in- thanQ~! one obtains
stantaneous valu¥;, produces an exponential decay of the

(Vi(1)-Vi(0)).

ok

velocity autocorrelation function. In the Appendix of Ref. (Vi(1)-v;(0))~(V;(1)-v;(0))
[6], the velocity autocorrelation function and the diffusion o
coefficient of the DPD particles were computed by using this ~(Vi(1)-V;(0)). (20

mean field approximation.

Solution (16) is still formal because we do not explicity The physical meaning of expressiolfg0) is also clear.
know the form of the correlation of the environment velocity When the friction is high, in a very short time the velocity of
(which will be given in Sec. IY. Nevertheless, it is possible a given particle is slaved by the average velocity of its envi-
to extract useful information from this expression. This isronment.
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IV. HYDRODYNAMIC HYPOTHESIS vary slowly on the scale;, we could substitute the environ-
ment velocity with the hydrodynamic velocity field evaluated
at the particle position, i.eV;(t)=v(r;(t),t), by convenient
'use of Eq.(10). This leads to a correct long time behavior
but an inaccurate short time behavior.

In what follows we still neglect density fluctuations,
n(r,t)~n, but keep the hydrodynamic velocity inside the
integral, weighted withw(|r —r;|). From Eq.(21), the envi-
ronment velocity is conveniently expressed in terms of the

In this section we present a hydrodynamic hypothesis
similar to the mode coupling approximation introduced in,
for example, Ref[10] (see Ref[11] for a review on mode
coupling theories The environment velocity; defined in
Eqg. (9) can be rewritten as an average over the action spher
of the microscopic velocity field, that is,

Vi(t)= dfdrw(r, r)|r

n(r tyv(r,t),

r| |r rl Fourier components of the velocity fieldk,t), that is
(21
where Vi(t)=dn 4, 23
n(r,tyv(r,t)= Vio(r—r). 22
(rovr.y JE#:l o) @) where we have introduced the tagged particle density

o ] ng(k,t) =explik-r;(t)} and the second order tensor
The velocity fieldv(r,t) obeys the equations of hydrody-

namics when its characteristic length scale is much larger
than the interparticle distance. We expect that the average
involved in V; will be dominated by the hydrodynamic
modes whenever the range of interactignis much larger The explicit form of this tensor when the weight function is
than the interparticle distance (i.e., large overlapping). given by Eq.(6) is given in the Appendix. The environment
Actually, under the assumption that the hydrodynamic fieldsvelocity correlation function is given by

w(k)zf dr w(r)rr exp{—ik-r}. (24)

!

(2m)? (2m)?

We will assume that the position of partidlés weakly correlated with the velocity field k,t) in such a way that we can
approximate

(Vi(0)-Vi(t))=(dn)? o(K) w(k")(ng(k,0)ng(k", H)v(k,0)v(K',1)). (29

(ng(k,0)ng(k’,t)v(k,0)v(k’,t))~({ny(k,00ng(k’,t)){v(k,0)v(k’,1)). (26)
We further assume that the correlation of the velocity field is given by the linear hydrodynamicq 18$ult

(v(k",0)v'( kt))— keT 277)26(k+k)[exp[ vk?t}(1—kk) + exp{ — Tk?t}coskctkk]. (27

Herev is the kinematic viscosityl" is the sound absorption where the following functions are defined:
coefficient, andc is the sound speed of the DPD fluid. The

correlation function(27) is different from zero only when
k= —k’. The first average in the right hand side of E2p) f dka®(k)exp{ —xk?}
is, therefore, given by the incoherent intermediate scattering d(x)=
function Fy(k,t)=(ng(k,0)ns(—k,t)) [13]. By further as- Jdkaz(k)
suming a hydrodynamic behavior for this function, we obtain
[13]
Fo(k,t)=exp— DK2t}, (28) fdk[a(k)+b(k)]zexp{—ykz}coskz
. e . _ V(y,2)= , (30)

whereD is the self-diffusion coefficient of the DPD particles. f dk[a(k)+b(k)]?

The final hydrodynamic expression for the environment

velocity correlation function is found by substitution of Egs.
(26), (27), (29), into Eq.(25), which satisfy®(0)=1,¥(0,0)=1, with the definitions for
a(k),b(k) given in the Appendix.

In this way, the environment velocity correlation function
is explicitly given in terms of hydrodynamic fluid properties,
i.e., the transport coefficients of the DPD fluid. The predic-
(T+D)t ct) l tion is not complete until particular values for these transport

E V-(0) . Vi(t)y = 3dkgT
d< i( ) i( )>_47Tr2

C

(v+D)t

2
Cc

nm r

(29 coefficients are provided. One possibility is to measure these
transport coefficients in a simulation. Another possibility,
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FIG. 1. Theoretical hydrodynamic prediction for the environ-
ment velocity correlation functio(t) for a value ofs=2.82 and
three different values fof). The lowest curve is fof)=0.5, the
middle curve is for) =25, and the upper curve is fé6t=8.3. The
algebraic long time tail behavior appears for very long times, typi-

cally when the correlation has decayed three orders of magnitud

from its initial value. Straight lines are the asymptotic result in
Eq. (33).
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FIG. 2. Comparison between the simulation result égt)
(solid line) and the value given by Eq18) (dotted ling using the
simulation result for the environment velocity correlation function
C(t). Parameterss=2.82,Q)=25, andu=10.0

ﬁ’ig from the diffusive character of the shear and tagged par-
ticle modes. Actually, it is straightforward to obtain the

asymptotic behavior o€(t) for long times, which is given

which is the one we follow here, is to use the values forby

v,D,I", andc provided by the kinetic theory in R€9]. This
has the advantage that one knows the explicit dependence

the transport coefficients in terms of the dimensionless pa-

rameterd), ands. Even though for some dynamical regimes

the kinetic theory predictions are not in exact quantitative

agreement with the measured transport coeffici¢ds4],

the discrepancies between theoretical and simulation trans-

port coefficients are small.
The kinetic theory results aif®,15|

d kgT
p=2Xl
Yy m
_1 1 f 2 dr+ 2
V—z ’yﬂm r‘w(r)dr+c ,
yn | o(r)dr
(31
— _ 2 2
vb—ynZdz rem(r)dr+c ,
yn | w(r)dr

kgT
c=\—
m

The sound absorption coefficient is given by=2v+ 3,

of c(t) s 1 (33
872 302+120t
In dimensional terms, this result reads
L vio-vioy~ <8t ! 34
a( i(1)-Vi(0)) ™R Br(r D)t (34)

which coincides with the result given in RdfL0] for the
particle velocity autocorrelation functidmote that, for long
times, Eq.(20) applies.

V. SIMULATION RESULTS

We have simulated Egél) in two spatial dimensions in a
system with periodic boundary conditions. The velocity au-
tocorrelation function of the DPD particles and also the en-
vironment velocity autocorrelation function have been com-
puted at equilibrium.

In order to derive Eq(18), we made the approximation
that the density field is approximately constant. We check
now that this assumption is reasonable by computing in a

simulation the environment velocity correlati@{t), evalu-
ating numerically the integral term in E¢L8), and adding

for the case that the equation of state is that of the ideal gagp the first exponential term in Eq18). The result is the

[13].

We are now in position to write the hydrodynamic predic-
tion (29) in terms of dimensionless variables. Substitution of
Eq. (31) with expression6) into Eq. (29) leads to

3d () 3Q+3t+‘1’(90+11tt
a2 2% 20 g0t aa|bt) )
(32

C(t)=

80 Q

dotted line in Fig. 2. Also shown is the result for the velocity

correlation functionc(t) obtained directly from the simula-
tion (solid line). We see that both results are in quite good
agreement, giving confidence in E4.8) as a sounded start-
ing point for theoretical analysis. Similarly good agreement
is obtained for all the values &d studied (2=0.5,8.3, and
25).

For a given value of) =25, in Fig. 3 we plot the value of

We observe that the time scale of the environment velocity2C(t) for different values of. According to the hydrody-

correlation function is determined Ky, while its amplitude
is determined by. In Fig. 1 we show the theoretical predic-

namic prediction(32), this curve should be independent of
the overlapping coefficiens (dotted curve in Fig. 8 We

tion (32) for a particular value of and three different values observe that the simulation results converge toward the the-
of . An algebraic dependence like! is observed for very oretical prediction only when the overlapping coefficient is
long times, which is the celebrated long time taif’”? aris-  sufficiently large. This is expected from the fact that hydro-
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FIG. 3. Simulation results for the velocity correlation function ~ FIG. 5. Simulation results for the velocity correlation function
s?C(t) for a fixed value of(Q)=25, and different values of the c(t) for fixed values ofs=2.82, andu=10.0, and different values
overlapping coefficiens=1.5, 2.18, and 3.2the upper curve cor- of Q=0.5(circles, 8.3 (triangles, and 25(diamonds. Solid lines
responds to lowes). The dotted line is the hydrodynamic predic- are the term ex{;}m_} in Eq. (18).
tion (32). As the overlapping increases, the simulation results con-

verge toward the theoretical prediction. for large ), at large times the environment and particle ve-
locities coincide according to E@20).

dynamic behavior appears only on length scales that involve
a relatively large number of particles. VI. SUMMARY AND DISCUSSION

We have also investigated the effect of the finite system o )
size. In Fig. 4 we plot the environment velocity correlation ~We have presented a theory for dissipative particle dy-
function for different system sizes, while keeping the rest of?@Mmics that allows one to understand the different dynamical
the parameters constarst 2.82, and) = 25). We observe a regimes displayed by the model. The theory is based on the

large discrepancy between the hydrodynamic prediction athys'Cal picture that_DP_D parthles behave like Brownian
particles in a nonequilibrium environment due to the rest of

the simulation results when the box is small. This d|screp(;:[he DPD particles. An explicit expression for the velocity
7 L S >YS:lltocorrelation function is derived in which the Brownian
size increases. This is a standard finite size effect, which 'gxponential behavior is corrected by the presence of collec-
related to the discreteness of thepectrum in small Systems, ;e effects. By using dimensionless variables it is possible to
where the slowest mode decays as[exgic,.{] With kiin  assess the range of parameters for which the collective ef-
=2mlL. fects are important. Three dimensionless parameters appear
Next, we study the effect df} on the velocity autocorre- in the model, —s,Q), and ., — and they characterize the
lation function of the DPD particles. In Fig. 5 we show the different dynamical regimes in the system. The relevance of
velocity correlation function for givens=2.82, andu  precisely these dimensionless groups is motivated by the
=10.0, and three different values 9f=0.5,8.3, and 25. We theory presented.
also plot the corresponding exponential terms in E). Two dynamical regimes are identified: the mean field re-
For smallQ) (small friction or high temperatuy¢he decay of gime and the collective behavior regime. The transition be-
the VAF is very accurately given by the exponential term. Astween both is governed essentially by the dimensionless fric-
long as(} increases, discrepancies from the exponential betion () with important effects ofs and u. A mean field
havior are observed. This discrepancies are due to the effegkhavior appears for small frictidd or large overlapping.
of the collective term in Eq(18). In Fig. 6 it is shown that, This is physically reasonable: For small friction, the dynam-
ics of the environment of a given particle hardly affects the

0.01 |

40
0.001 |

0.0001
0.1

10

=

FIG. 4. Simulation results for the velocity correlation function
C(T) for fixed values o= 2.82, and) =25 and different values of _FIG. 6. Simulation results for the velocity correlation function
the box sizeu=7.9, 11.2, 15.8, and 35.8he lower curve corre- c(t) (thin line) and the environment velocity correlation function
spond to lower). The thicker line is the hydrodynamic prediction C(t) (thick line). Also shown is the term expQt} in Eq. (18
(32). (dotted ling. Heres=2.82, u=10.0, andQ = 25.
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behavior of this particle. For a large overlapping the collec- In regimes for which collective effects are important, we
tive effects are smeared out over large regions. The meaexpect that deviations from the predictions of kinetic theory
field approximation is closely related to the molecular chaosccur not only for the diffusion coefficient, but also for the
assumption made in kinetic theory. Actually, it is possible torest of the transport coefficients of the DPD fly#l. It is
compute the diffusion coefficient of the DPD particles by actually possible to use the theory presented in this paper in
using the mean field approximation for the VAF into the order to compute the transport coefficients for the DPD fluid
usual Green-Kubo formula for the diffusion coefficid. expressed in the form of Green-Kubo formulds]. One
The result is precisely the prediction for the diffusion coef-then obtains a set of recursive equations in which the trans-
ficient given by kinetic theory9] [with due account of the port coefficients are expressed in terms of the transport co-
normalization given in Eq(5)], i.e., efficients used in the hydrodynamic assumption. This pro-

w1 d kgT vides a self-consistent set of mode coupling equations for
D= fo a(Vi(t)'Vi(0)>= S (35  D,v, andI'. This is a celebrated method used by Kawasaki

[17] and Kadanoff and Swift18] to calculate transport prop-

When the dimensionless frictidd is high, the VAF does not ~ €"ti€s near critical pointgl1]. It should provide further in-
decay in an exponential way because it is dominated by thglght into interesting regimes where collective effects are im-
collective dynamics. We have presented a theoretical predicportant'

tion for the collective part of the VAF by assuming that the

correlation function of the environment velocity reflects an ACKNOWLEDGMENTS

underlying hydrodynamic behavior. Such a behavior is ex- \ye are grateful to M.H. Ernst, P. Warren, M. Ripoll, I.
pected(and observed in the simulationehen the overlap- Z(ifiga, and M. Revenga for stimulating discussions.
ping coefficients is large enough. In this case, the collective

effect is small but well described by hydrodynamics.

The fact that hydrodynamics governs the dynamics of the
velocity of the particles implies the appearance of the cel- On simple symmetry grounds, the tenso(k) has the
ebrated long time tails in the VAF. These algebraic tailsform
occur at very long timegfor which the VAF has decayed to " .

a factor 103 from its original valug¢ and are difficult to “’(k):f dr w(r)rr exp{—ikr}=a(kr.)1+b(kr)kk.
observe in our simulations due to both the statistical noise (A1)
and finite size effects. Nevertheless, we have provided suffi-

cient numerical evidence for the hydrodynamic behavior ain order to calculate the functiors(kr.) and b(kr.), we
smaller times, and we expect the presence of long time tailg,,ple contracke(k) with the dyadickk and also take its
at large times for sufficiently large system sizes. Thé trace. This leads to

dependence of the VAF, when introduced into the Green-

APPENDIX

Kubo formula(35), leads to a logarithmically divergent dif- RTw(k)R=a(krc)+b(krc)=27-rfwdrw(r)

fusion coefficient. It is apparent that this “small” divergence 0

will be hardly observable in any simulation with a finite box

size. S . (Jl(kr) —rJ2<kr>), (A2)
Dissipative particle dynamics is designed to simulate hy- k

drodynamic problems. Actually, one would like to have the %
DPD particles moving in such a way that they accurately tr[w(k)]=2a(er)+b(er)=2wJ ro(r)Jo(kr).
follow the flow field intended to be modeled. We see that 0

this will happen whenever the friction is sufficiently lar@®  Thg jntegrals are given in terms of generalized hypergeomet-
this case, the velocity of a DPD particle is slaved by itSyi- functions .F {ab,7} [19], and Bessel functions
environmenk and the overlapping is sufficiently largén pratmmel )

such a way that the environment velocity moves hydrody- D (Ay)k - - -(Ap)k Z

namically). In this regime, the dynamics of the particles is qu{a,b,z}=k=O (by)k ... (bgk k! (A3)
mainly collective, and kinetic theory gives inaccurate values
for the transport coefficien{s]. where (m),=m(m+1)---(m+k—1). More precisely,

1 3 5\ (kro)? 6 6 6
a(krc)+b(krc)=—ﬁlF2 5 2,5 T2 - n(krc)2+n(krc)2J0(er)+ m\]l(krc)

2 2
+6(krc) 1Fz{(§),(31),—(kr°) ] (Ad)

n 2 2 4
3 5 (kre)?
26322

The solution of this system of two equations provides the valuesa(for;) andb(kr.).

6Jy(kr.) 2

nir2

2a(krc)+b(krc)= W_ n
C
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