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Macroscopic dynamics of multilane traffic
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We present a macroscopic model of mixed multilane freeway traffic that can be easily calibrated to empirical
traffic data, as is shown for Dutch highway data. The model is derived from a gas-kinetic level of description,
including effects of vehicular space requirements and velocity correlations between successive vehicles. We
also give a derivation of the lane-changing rates. The resulting dynamic velocity equations contain nonlocal
and anisotropic interaction terms which allow a robust and efficient numerical simulation of multilane traffic.
As demonstrated by various examples, this facilitates the investigation of synchronization patterns among lanes
and effects of on ramps, off ramps, lane closures, or accidgsit963-651X99)15505-3

PACS numbdis): 51.10:+y, 89.40+k, 47.90+a, 34.90+q

[. INTRODUCTION interact locally, but with the next vehicle in front, so that the
interaction point is advanced by about the safe vehicle dis-
Simulating traffic flow is not only of practical importance tance. Nevertheless, we were able to evaluate the interaction
for developing traffic optimization measurg$]. It is also  integral without the gradient expansion used in previous pub-
interesting because of the various self-organization phenondications[24,25. This resulted in characteristic nonlocal and
ena resulting from nonlinear vehicle interactijfs-4]. This ~ anisotropic interation terms, which have very favorable nu-
includes the formation of traffic jams or stop-and-go wavegnerical properties26]. Similar to diffusion or viscosity
[5—7], and of synchronized congested traffg-10. Many  terms, they cause a smoothing of shock fronts. However,
of these phenomena can be simulated by one-dimension#i€y do not change the character of the set of partial differ-
models such as cellular automdthkl,12] and macroscopic €ntial equations from a hyperbolic to a parabolic one. Fi-
traffic models[5,13. It is, however, questionable if traffic nally, the nonlocal terms allow us to write the macroscopic
dynamics at on and off ramps or intersections can be cortraffic equations in flux form with source/sink terms, so that
rectly described without consideration of lane charlges-  numerical standard procedures can be used for their robust
19]. The same holds close to changes in the number of lanegnd efficient numerical integratid26]. As a consequence, it
accidents, or construction sites. It is, therefore, desireable t§ NOw possible to solve the multilane traffic equations with-
have multilane models that explicitly take into account over-out elimination of the dynamic velocity equations, i.e., with-
taking maneuvers and lane changes. In contrast to existin@ut averaging over self-organized velocity variations such as
cellular automata models for multilane traffi20—23, we  stop-and-go traffic. This had to be done in previous ap-
will focus on macroscopic models, here, since they allowProaches because of numerical stabil2y], with the conse-
analytical investigations and a simple calibration to empiricalduence that the investigation of unstable multilane traffic
data. was not possible. Now, we are able to study how the vehicle
Apart from lane-changing maneuvers, traffic dynamics isdynamics on one lane influences the others.
considerably influenced by the composition of traffic into Our paper is organized as follows. In Sec. Il we will in-
various types of vehicles with different desired velocities androduce the kinetic model, which allows the derivation of the
acceleration capabilities. This can even cause new kinds dpacroscopic multilane model of heterogeneous traffic pre-
phase transitions in mixed traffic, e.g., to a coherent, solidsented in Sec. Ill. The decisive steps of this derivation are
like state of motior{23]. Thus, it is also favorable to have a given in the Appendix. Section IV will discuss the calibra-

macroscopic model that allows to distinguish several vehicldion of the model to real traffic data for the case of one
types. effective vehicle type, and it will display various simulation

We will obtain such a model from a genera”zed VersionreSU“:S for difficult test scenarios like lane closures. A com-
of a gas-kinetic traffic model, from which we managed toparison with results of an effective single-lane model will be
derive a one-dimensional model that is consistent with althe topic of Sec. V, while Sec. VI summarizes the results of
presently known properties of traffic flofd3], including  this paper.
synchronized congested flofil0]. Although lane changes
ar_ld sever_al vehicle types make the model qu_ite cpmplex,_ itis Il. THE KINETIC MULTILANE MODEL
still possible to evaluate the Boltzmann-like interaction
terms. Moreover, whereas previous approaches have ne- Prigogine and co-autho[&8] were the first who proposed
glected correlations between successive vehicles, we wil kinetic equation for the phase-space density of vehicles on
also show how these can be taken into account. a highway. Later, Paveri-Fontarfd9] made important im-

Our calculations take care of the fact that vehicles do noprovements, formulating an equation for the “extended”

phase-space densit(X,v,vg,t), wherex is the locationp
the actual velocity, andv the desiredvelocity of a vehicle
*URL: http://www.theo2.physik.uni-stuttgart.de/helbing.html at timet. Nagatani and Helbing have suggested extensions to
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multilane traffic [27,3(0. However, the validity of these faster vehicle to change lane or brake. For simplicity, we will

equations was mainly restricted to the regime of small denassume that vehicles do not change their velocities during

sities. lane-changing maneuvers and that braking vehicles deceler-
Here, we present the general kinetic model for multilaneate exactly to the velocity of the vehicle in front.

traffic composed of different types of spatially extended ve- The key quantities, which determine the right-hand side

hicles, and derive the corresponding macroscopic modglRHS) of the kinetic equations, are the “interaction rates” or

from it. The main features of the model are as follows. the effective number of interactions between vehicles per
(i) The correct description of dense traffic by taking into unit of time. Let us denote byiab(x,v,t) the interaction rate
account the finite space requirements of vehicles. of vehicles of typea and velocityv at placex in lanei with

(il) The “nonlocality of the interactions,” which means slower vehicles of typé and velocityw<uv in front; by
that drivers look ahead and adopt their behavior to the traffigyiab(x,v,t) the number of interactions in lafneetween ve-
situation at some position in front of them. hicles of typea with velocityw>v and vehicles of typ® in

_ (iii) The replacement of the “vehicular chaos” assump-front with velocity v. The interaction rateZ2°(x,v,t) with
tion used by most previous kinetic traffic models .11 . Al contribute to the decrease of the phase-space
[24'25'28.’2.9’311 (with a _few exc_eptlon{32,3?g) by mu_ch density f(x,v,t) due to lane changing or braking, whereas
Ies_s restrictive assumptions, which account for possible Ve:T'j‘b(x,v,t) contribute to the increase of the phase-space den-
locity correlations of interacting vehicles. ) : : :

L . sity due to braking of vehicles of typeto velocityv. They

For simplicity, we assume that all vehicles of the Same, - ven by the following formulas:
typeae{l,... A} have the same desired velocks; that g y g '
may depend on the laries {1, ... N}. Then, we can repre- ab ab a
sent the “extended” phase-space densjt{x,v,vo,t) of all I :XiwadW(v_W)fi (Xv.x+tst,wt), (4
vehicles in each lane through a sum of phase-space densities

f2(x,v,t) of vehicles of different types:
jiab=)(if dw(w—v)fiab(x,w,x+s?,v,t). (5)
W>v

(X, 0,v0,1)=2, fA(x,0,1)8(vo—VE). 1 , , , _
9i(xv.00.) g (Xv.)6(vo= Vo)) @ That is, the interaction rates are proportional to the “effec-

tive cross section’;= xi(pi), reflecting the increased num-
The phase-space densities obey the following continuitiber of interactions in dense traffic due to the vehicular space
equation[4,27]: requirementgsee below, to the relative velocitiehy —w| of
interacting vehicles, and to the pair distribution function
Voi—v afd ofd 23P(x,v,x+s2,w,t), describing the phase space density of
fi 2 | ot im+ | ha,vmg in lane two vehicles of types andb at places< and
' (2) X =(x+sf) with velocitiesv andw, respectively. Note that
the classical “vehicular chaos” assumption would corre-
The terms on the left-hand side represent the continuouspond to the  factorization ff‘b(x,v,x+sia,w,t)
change of the phase-space density due to the movement of:afia(x,v,t)f:D(xJr s?,w,t) of the pair distribution function
point in phase space. The third term represents the tendeng@yo the phase space densities of single vehicles.
of drivers to accelerate to their desired veloc‘itgi with a With sia>0 we assume an anticipative driver behavior,
relaxation timer{. The terms on the right-hand side repre-i.e., a reaction to the traffic situation at the advanced “inter-
s_ent(quas)discontinuo_us changes of the phas_e-space de_”sé'ction point” X?’:(XJrSia)_ A reasonable formula is?
ties due to Iane-changmg maneuvers and braking interactions Y3(1p™™+T2,), where p™ is the maximum vehicle
between vehicles. o VUL . .
) . ; density in land, T; is the safe time headway of vehicles of
We consider three different types of lane-changing behav: ay . .
ior: typea, andT;V; is the safety distance at an average velocity
(i) Lane-changing maneuvers due to interactions betweef{ Vi in lanei. For y7=1, the vehicles react to the traffic
vehicles, which correspond to overtaking maneuvers or langituation at the safe vehicle distance, fgt>1, they look
changes in order to avoid intensive interactions with slowefurther ahead. The anticipation factgf is typically between
vehicles in a lane. 1.0 and 3.013].
(i) “Spontaneous” lane-changing maneuvers, which re- Now, let us denote by the probability that a vehicle of
flect effects of traffic regulations and the internal tendency otype a in lanei can change lane without any delay. Evi-

aff‘+a a +a
ax T +ay

drivers to use a particular lane. dently, this probability equals the sum of probabilities of
(iii) “Mandatory” lane changes due to lane mergings, on-changing to the right lanei 1) or to the left lane i(+1):
or off-ramps, accidents, etc. pi=p{i_1tP%+1. We assume these probabilities to be
Accordingly, we have functions of the macroscopic variables such as vehicle den-
) sities.
off\ [afR\™ [ gfR| P [ off) mand In terms of the interaction rates, we can now specify the
gt | ot | gt | ot | 3 rate of braking interactions by
[ C C [
a
Following Prigogine, we speak of “interaction,” when a (&_tl =(1—p$‘)2b [728(x,0,t)—Z2%(x,v,t)]  (6)

faster vehicle approaches a slower one, which forces the int
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and the lane-changing term due to interactions by solution of the kinetic traffic equations is not known, the
it Gaussian distribution of velocities is a good approximation
of; [36]. Next, recall that we need to specify the form of the pair
— a b a ab '
(E) = % [P i 21060, = P 1 77 (X0 1) distribution function of interacting vehicles. Previous models
te [24,25,28,29,3]lassumed the pair distribution function to be

+pf‘HYiIf"fl(x,v,t)—pﬁi+lziab(x,v,t)]_ (7)  a product of Gaussian one-vehicle distribution functions,
which corresponds to the “vehicular chaos” assumption that
The rates of spontaneous lane-changes are simply propanteracting vehicles are uncorrelated. Here, we only presup-
tional to the phase-space densities of vehicles. The propopose that the pair distribution function can be approximated
tionality factors are determined by the transition ratesby a general bivariate Gaussian distribution function
/T2 ; of this process, wher@? ,; are the characteristic
times between lane changes. We will assume that they are
functions of the macroscopic variables like the densities.
Thus, the spontaneous lane-changing terms have the form

£3(x,v,x+s2,w,t)

Jdet e (1/2)B(v,w)

=Pl (X DpP(x+87 1) —

(13

(aff‘)sp"m f21(xv,t)  fA(Xv,t)
I\ Ty Thio1 ) » . i
where B(v,w) is a general positive definite quadratic form
f2 .(xv,t)  fA(xv,1) and det5 the determinant of the corresponding symmetrical
+ Y : (8  matrix. Thus, we take into account possible correlations be-
H+ 1 i+l tween the velocities of interacting vehicles. One can express
|the coefficients of3(v,w) in terms of the moments of the

An appropriate specification of the transition rates is the fo

lowing: distribution, namely, the variancé and the correlation co-
efficientk2°:
B1 B2
1 Pi Pj
F:gﬁj( max) ( 1- max : (9) 1 (U—Via 2 b
b : Pi B(v,w)= 1— (ka2 62 -2k
i i

This form is rather simple and, at the same time, it is in

ac_cordance with em_plrlcal dalia_4]. The results displayed in (0 =V (W—V')  (w—VP')2
this paper are foB,;=0 andB,=8. % : S : (14)
The form of the mandatory lane-changing term depends [ pa b’ o'
. . . T . 0i 0i I
on many different factors including visibility or the location
of trafflc.5|gns |.nd|ca.1t|ng the end of a lane. An explicit ex- The associated determinant equals
ample will be given in Sec. IV.
det B={6767 [1-(K)*T} ™. (15

Ill. THE MACROSCOPIC MULTILANE MODEL

One advantage of the kinetic equation is that it allows theA prime indicates that the respective quantity is evaluated at

systematic derivgtion of equation; ﬁuxacroscopio/ariables._ _ the advanced interaction poinf':(x+s?) rather than the

The macroscopic variables of interest are the densitiegct,al pOSitionk.

pr(%.1), average Ve|00ities/i_a(X,t), and velocity variances |n order to evaluate the macroscopic equations, one needs

07 (x.t) of vehicles of typea in lanei at placex and timet.  to multiply the kinetic equation by¥, integrate over the

They can be defined as moments of the phase-space densitigsiocity v, and close the system of equations by a suitable
approximation for the moments of higher order,25,35.

Pia(x,t)=f dufa(x,0,1), (10) We will derive the Euler-ll_k_e equations for the vehicle den-

sities and average velocities, and close the system by ap-
proximations for the variances and correlation coefficients.

a _a 1 a The details of the calculation are given in the Appendix, here
Vit =pi(x.0) fdvvfi(x‘v’t)’ 1D e present only the final results.
The density equations are
6?(X,t)=pf‘(x,t)_1j dv(v—V32f3(x,v,1). (12 J

J
2Pt o (pPVD)
One can obtain the macroscopic equations from the ki-
netic equation, using an iterative procedure, called Chapman- A a rabs e ab a4 ~ab «sab
Enskog expansiof4,35]. The first step of this procedure = 2> Z [P}iAC(8V) = pi AT (VD) ]
gives the so-called Euler-like traffic equations, which are in feli=Li+1) b=t

good agreement with empirical finding$0,13. To obtain pd  p?
these, one assumes the velocity distribution in every point + 2 —;— —; , (16
to be in a local equilibrium. Although the exact equilibrium jeli=Li+1p \ Ty Ty
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and the equations for the traffic flows read

d

IV TRV )]
P? a a a . ab ab
:T—ia(VOi_Vi)_(l_pi)bZl B (6Vi™)
A
+ > [0} CRP(8VaP) —p? C(sVi®)]

je{iTTi+1} b=1
VI _

piVi
T

+
je{i—-1i+1}

17

One can obtain the corresponding velocity equations by in-

serting Eq.(16) into Eq.(17). However, we will use the flux

OF MULTILANE TRAFFIC 6331

Boltzmann Factor B
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Velocity Difference (km/h)
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FIG. 1. Boltzmann factoB as a function of the absolute veloc-
ity difference for different values of the variance fac®r

equations(17) instead, because they are more suitable for

numerical integration methods.

The functionsA?®, B2, andC?” in the above equations
are denoted aBoltzmann factorssince they originate from
the Boltzmann-like interaction integralg) and (5). Thus

The Boltzmann factors are negligible for negative velocity
differences, and they grow rapidly with increasing positive
differences. The reason for this is rather intuitive: Faster ve-
hicles in front do not influence vehicles at the given place

they describe the influence of interactions on traffic dynamWwhile slower vehicles force them to brake or change lane.

ics. The Boltzmann factor,laiab determine the lane-changing
flows due to interactions in the density equatioBéf’ the
braking term, andC2® the lane-changing terms due to inter-
actions in the flow equations. The exact form of these term
is as follows(for brevity we omit indices of lanes and ve-
hicle types:

A(V)=x(p)pp' VSIN(8V)+ SVE(8V)],  (18)
B(8V)=x(p)pp' SLEVN(SV)+(1+ SVAE(8V)], 19
C(sV)=x(p)pp'S TSN(W)
0—k\06' V
+(T+TSSV E(8V)|. (20

Here,N(2) is the standard Gaussian distribution, dk)
denotes the error function:

-2
N(z)= NrE (21
E(Z):E ;dye*yz’z. (22)

The valuessV®® are dimensionless velocity differences be-
tween interacting vehicles, which are defined by

va— VP

Svdh=—___ 23
i /S0 (23

where
SP= 92— 2k3P/626°" + 6P | (24)

The dimensionless valu€23) have the meaning of “ef-
fective” velocity differences. According to their definition,
they increase with the increase of the absolute velocity dif-

éerence, the decrease of the variance, and the increase of the

correlation coefficient. The last two properties require some
explanation. The increase of the variance as well as the de-
crease of the correlation coefficient both lead to an increase
of the factorS. This results in the decrease of the effective
velocity difference and, consequently, of the dimensionless
parts of the Boltzmann termstanding in square brackets
Nevertheless, the Boltzmann factors themselves incrsase
Fig. 1, which shows the dependence of Boltzmann faBtor
on the absolute velocity difference for different valuesSpf

This effect has a clear interpretation: The dimensionless parts
of the Boltzmann factors describe the influence ofdiféer-
ence in the average velocities locationx and the advanced
interaction pointx’ on the number of interactions. An in-
crease ofSreduces the effect of this difference in compari-
son with the highvariation of individual velocitiesn the
vehicle flow. Thus, the increase 8fdiminishes the value of
the effective velocity differencéV, although it enlarges the
interaction rates. One could also say that an increasg of
causes higher interaction rates, but also a wider transition

region between the limiting caseS/f(—VF/)<0 and V¢
-VPso0.

For the variance#?, we use constitutive relations of the
form

67=af(pi) Vi, (25
according to which the variance of vehicle velocities is a

certain proportion? of the squared average velocity, which
depends on the total vehicle density

A
(26)
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in the respective laneé This is well justified by empirical Structure Factor

0.08

findings. The appropriate expression of the functiefiép;) Right Lane .
is given below. 0.07 1 Left Lane ----- T
The correlation coefficients could be approximated as _ (g | ]
’ o
functions of the densities at the poirtandx? =(x+s?), as E 005 1
well as the distance?: k*°=k2%(p2 pP’,s?). However, an & 004 |
empirical determination of this function is very difficult, asit &
requires a thorough analysis of a huge amount of single-~§ 0.03 r
vehicle data. Therefore, we will apply the common approxi- > ¢2
mationk?°~0 for the time being. oo |
Another important function to be estimated is the “effec- ‘
tive cross section”y;= x;(p;). This value reflects the in- 0 ; ; ; y y y y
crease of the effective number of interactions in dense traffic. o 1020 Defgity (V“e%idesﬁ?m) 60 70 %0
In a previous publication on the single-lane variant of the
above mode[13], it was shown that the following expres- FIG. 2. Fit of the density-depenent variance prefactor or “struc-

sion for the effective cross section is consistent with the limure factor” a;(p;) specified in Eq(321) (---) to the empirical data
iting cases at high and low vehicle densities and well justi-of the relative velocity variance, /V{ (+,X). The corresponding

fied by the resulting properties of the model: parameter values are listed in Table |. Note that the deviation of the
fit curve for the right lane from the empirical data at small densities

V0T2 p is probably a consequence of assuming one vehicle type only in-

[1-p(p)]x(p)= . (27) stead of heterogeneous traffic. However, this deviation is of minor
7a(Pmax) (1— plpman? importance for the dynamic properties of the model, since it is

] ) ) ) limited to the stable density regime of free traffic flow.
Note that, without further assumptiong(p) is determined

in the single-lane model only together with the overtakingThjs steplike form plays an important role, as it determines
probability p(p). In our multilane model, we suggest the he specific shape of the equilibrium velocity-density relation

following decomposition of the above expression: V&(p) (see Fig. 3 and the fundamental diagra®®(p;)
VT2 =p;V{(p;). Other parameters that influence the fundamental
Yi(p)=1+ O i Pi , (28) diagram are the safe time headwgy, the desired velocity
miai(p"™) (1—pi/p"®9? Vyi, and the maximum density"™. The desired velocity

fits the maximum velocity in free traffic, whereas the safe
time headway and the maximum density determine the slope
(29) of the fundamental diagram at high densities and its intersec-
tion point with the density axis. The acceleration relaxation
Here, variables without an index for the specific vehicle typetimes 7; and the anticipation factorg; do not influence the
a represent weighted averages of the variables belonging twndamental diagram. Instead, they allow us to fit the stabil-

the different vehicle types in lanie for example, ity behavior and dynamics of traffic flojd.3].
The parameters that affect lane-changing processes are

m ax)

exp(— pgipi ! pj
Xi(pi)

pi(pi)=

A pi a the coefficientsg; ;, 81, and B, for the spontaneous lane-
Ti:azl ETi ' (30) changing rates, and the coefficiemg for the overtaking
Velocity-Density Relations
IV. CALIBRATION OF THE MULTILANE MODEL 140 T T . T .
AND SIMULATION RESULTS Right Lane *
. 120 Left Lane ----- x
Next, we present the results of calibration and simulation ’§ 100 I
for a special case of the general model discussed above. Wed
consider the two-lane variant of the model for a single ve- § 20 |
hicle type, wherei=1 represents the right'slow” ) lane =
andi =2 the left(“fast” ) lane. The calibration was done on % 60
the basis of empirical data for the Dutch two-lane highway %" 40 b
A9. >
The variance prefactor or ‘“structure factord;(p;) < 0}
=6, /Vi2 can be estimated on the basis of direct observation. , , ) ) ; ’
The empirical data show a “steplike” but smooth depen- 0 20 40 60 80 100 120 140
dence of this prefactor on density, with an increase at about Density (vehicles/km)

40 vehicles per kilometer. It can be well fitted by the follow-

ing function (see Fig. 2 FIG. 3. Equilibrium velocity-density relations of the multilane

model(---) for the parameter values specified in Table | in compari-
-1 son with empirical data from the Dutch highway A9-(X). The
” (3D symbols represent thesertical) averages of one-minute data that
were evaluated for 14 successive days.

1+ex;<—pi_ ci

ai(pi) = agi+Ae; S,
|
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Density Difference between Neighboring Lanes Lane-Changing Rates
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5 . . . . o b
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; : 80 100
Average Density (vehicles/km) Average Density (vehicles/km)

FI_G‘ 4'_ Theoreticall—) a”‘? empirical () differ_ence of the FIG. 6. Equilibrium lane-changing rates according to our multi-
densities in the left and the right lane as a function of the laneéy,ne model as a function of the average density. Note that, at small
averaged density. densities, we have more interactive lane changes from the right to

the left lane(*“‘overtaking maneuvers)’and more spontaneous lane
probabilities. The main sources for estimating these paramehanges from the left to the right lane, as expected, for Europe.
eters are empirical data on lane occupancies and lane-
changing rates as a function of density. One can easily obtain th ¢ ficient
the data on lane occupancies from the usual measuremerfts the spontaneous  coefficientsy;—g19eup1), 921
made by induction loops. In contrast, the direct measurement 921/9ep1), Where 0<gg(po)<1 is a smooth steplike
of lane-changing events is much more difficult, which resultdunction similar to Eq(31).
in a lack of reliable data in the literatuf87]. Luckily, this The calibration results show that the spontaneous lane-
kind of data is only necessary for the estimation of the ordefanging terms influence mainly the low-density regime,
of magnitude of the model coefficients, while the ratios ofWhile the lane changes due to interactions, which are negli-
the coefficients for different lanes, which essentially definedible at small densities, determine the difference in lane oc-
the multilane dynamics, can be well estimated by the availSupancy at high densities. For the typical fit of the lane oc-
able lane occupancy data. cupancy curvegsee Fig. 5 it turned out that the overall

Figures 4 through 6 show the corresponding fits. Follow-contributions of spontaneous and interactive lane-changing
ing Ref.[34], we assume that the maximum lane changingterms tq the total Iane-chan_g_ing rate were approximately the
rate of about 500 to 550 events per hour, kilometer and lang2Me (Fig. 6. At low densities, lane changes correspond
is achieved at densities of about 20 to 25 vehicles per kiloMainly to interactive lane changes from the right to the left
meter. The higher occupancy of the left lane at middle and@n€ and to spontaneous lane changes from the left to the
high densities yields higher estimated values of the coeffifight lane, which is plausible for European traffic. The results
cientsg; | , Po; for the left lane relative to those for the right of the pgrameter estimation are summarized m_TabIe . N
lane. The primary use of the right lane at small densites One important property of the above model is the ability
Fig. 4 reflects the European traffic regulations. One can tak&? describe the development of different congested traffic

this into account by a “European rules” correction prefactorStates[38,39. Figure 7 shows the development of stop-
and-go traffic, which arises from a small density perturbation

in the right lane. Due to lane changes, the perturbation

Lane Occupancies spreads to the other lane, and the traffic dynamics on the

S 10 Right Lane . neighboring lanes becomes synchronig@®,4d. In particu-

z %0 B Left Lane ----- " lar, this holds for the propaggtion of large density clusters.

E ! Nevertheless, the traffic flow in the left lane behaves more

3 ol unstable in the range of moderate densities. This fact is in

S Mo st ena g agreement with observations and can be theoretically ex-

g ; W vttt i plained by the different velocity-density relatiofdecreas-

g 0r r o T ing more rapidly for the left lane, see Fig). 3

© { Next, we present multi-lane simulations of the interesting

% 20 -:7 1 case of a bottleneck, corresponding to an on-ramp, a lane

c " closure, or an accident. Assume, for example, that the right
ol lane ends at a certain plagg,q. We expect that the resulting

0 20 Average4]())ensity (ve?l(i)cles k) 80 100 E{(?VT.C situation will depend on the volume of the incoming
FIG. 5. Fit of the lane occupancy, i.e., of the percentage of the [N order to model the behavior of traffic close to a bottle-
vehicle density in a lane compared to the total density in all lanesneck, we must specify the mandatory lane changes. In the
Symbols correspond to empirical data, lines to the results of ouframework of the above multilane model, this can be done by
multilane model. The preference for the right lane at small densitiesntroduction of additional lane-changing terms describing a
comes from the European traffic regulations. sufficient increase of lane changes to the left lane, whereas
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TABLE I. The estimated parameter values for the two-lane, single vehicle-class model, calibrated to
traffic data from the Dutch motorway A9.

Parameter Notation Right lane Left lane
Desired velocity Voi 105 m/h 123 km/h
Maximum density " 150 vehicles/km 150 vehicles/km
Relaxation time i 35s 35s
Safe time headway T 1.7s 12s
Anticipation factor Vi 1.2 1.2
Coefficients for variance approximation g 0.007 0.0065
Ag; 0.03 0.036
[ 0.275p™ 0.305p™
8p; 0.03 pmax 0.025pMma
Coefficient for overtaking probability Poi 17.0 125
Coefficient for spontaneous lane changing i 3-i 75 28
lane changes to the right lane will be surpressed by setting dpr d(pV)  piVy

the corresponding coefficients close to the bottleneck to zero. (32
However, the following difficulty arises: While the density
on the right lane decreases to zero at the bottleneck, the _

velocity (which depends on the density and velocity on the Vi) =Va(x.b). 33
neighboring lanecan stay large up to the very end of the For the left lane, we have

lane. This causes numerical problems in keeping the density

and flow positive everywhere. To avoid this, we apply the dp,  d(paVa)  p1Vy

following calculation procedure to the last section of the ot §—X=m- (34

right lane in front of the bottleneck, where we have assumed

that this section is of length,=500 m throughout this pa- |n order to describe a smooth transition from the “normal”
per. to this “adaptive” behavior in the merging zone, we evalu-

Close to the bottleneck, all drivers in the right lafpeo-  ate the right-hand sided(R"S) of the equation according to
ducing a traffic flow of volumey,V;) must merge into the

adjacent lane. This implies that the drivers in the right lane DRHS=[1—k(x) P 5m T K(X) PR, (35

will adopt their velocityV,(x,t) to the velocityV,(x,t) in

the left lane. In addition, we will assume that the lane-wherek(x) is a smooth steplike function similar to E(@1)
changing rate grows inversely proportional to the remainingwith K(Xeng—Lo)~0 andk(Xend=~1.

distancel (X) = (Xeng—X), in order to guarantee that all ve-  The results of our simulations are presented in Figs. 8
hicles have changed lane at the plagg, where the right through 10. The traffic dynamics is essentially characterized
lane ends. Hence, fote [Xeng— Lo, Xend, OUr model for the by the volume of approaching traffic and the capacity of the
right lane reads bottleneck(which is given by the outflow from traffic jams

ot x LX)

(a) Density in the Left Lane (vehicles/km)

(b) Density in the Right Lane (vehicles/km)

FIG. 7. (a), (b): Simulation of
stop-and-go traffic in the regime
of unstable traffic on a circular
road flow, arising from an initial
density perturbation in the right
lane, which eventually spreads to
the left lane.(c), (d) The lane-
changing rates have temporary
peaks at the locations, where the
traffic situation in the neighboring
(d) Lane Changes from Right to Left (events/h/km) lanes  evolves differently. This
tends to reduce the differences
among lanes, so that similar spa-
tiotemporal traffic patterns form in
both lanes. Consequently, we have
a synchronization of lanes at me-
dium and high vehicle densities.

1500
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(a) Density in the Left Lane (vehicles/km) (b) Density in the Right Lane (vehicles/km)
120 120
100 100
80 80
60 60
40 40

14 20

TR RIS
':2;’:2;;:5;;:'

X (km) 10 0

FIG. 8. Simulation of a closure of the right lane o x¢,;=6 km at timet=0 min. At a density ofp;,;=12.8 vehicles per kilometer
and lane or lowethere,p;,;=12.6 vehicles/km), the capacity of the left lane is large enough to transport the vehicle flow from both lanes,
resulting in a higher vehicle density in the left lane downstream of the bottleneck, whereas the right lane is empty behind the lane closure.

in the left lang. At low upstream densitiesee Fig. 8 the  small perturbation can trigger the breakdown of traffic flow,

capacity of the left lane is sufficient to transport the vehiclealthough the left lane could carry the total vehicle flow in

flow from both lanes. In contrast, we have an immediateboth lanes(see Fig. 10 This can happen, when the traffic

formation of congested traffic upstream of the bottleneck, iflow downstream of the bottleneck is unstable. As long as the
the total traffic volume in both lanes exceeds the capacity operturbation is small, it moves downstream. However, when
the left lane(see Fig. 9. Surprisingly, for a certain range of its amplitude becomes larger, it eventually changes its propa-
moderate densities, the resulting traffic situation turns out t@ation speed and finally travels upstream, until it reaches the
depend on the initial condition. While a perfectly homog- bottleneck. Then, traffic breaks down, and a steadily growing
enous flow will lead to an increased but free traffic flow region of congested traffic develops upstream of the bottle-
downstream of the bottleneck, as for small traffic volumes, aneck, whereas traffic downstream of the bottleneck flows

(a) Density in the Left Lane (vehicles/km) (b) Density in the Right Lane (vehicles/km)

6 8 t (min)

xkmy ¢ 8 502

(c) Average and Lane-Specitic Flows

(d) Dynamic Flow-Density Relation

Average Right Lane -----
2500 fe--e- f Right Lane ----- 2500 Left Lane ------
Left Lane ------

Fundamental Diagram o

8
2

Flow (vehicles/h)
=
=

Flow (vehicles/h)
@
f=3
(=

8 10 0 20 40 60 80 100 120 140 160
Density (vehicles/km)

x (km)

FIG. 9. (a), (b) Closure of the right lane as in Fig. 8, but for an average initial densipy,p# 25 vehicles per kilometer and lane. Behind
the bottleneck, a growing region of congested traffic forms immediately, since the capacity of the left lane is exceeded by the traffic volume
in both lanes(c) Note that the effective capacity of the left laie., of the bottleneckis considerably less than the maximum flow and the
flow in the left lane upstream of the jam. This is, because the outflow from congested traffic is a self-organized[d@ntitjich is of the
order of 2000 vehicles per hour, here. The flow per lane in the jammed region is half of this characteristic ¢ditfldwe. steplike structure
of congested traffic corresponding to regions of two different densitiés iand(b) is related to a deceleration in two stejpsugh braking
and fine braking when approaching a traffic jam from free traffic. This behavior has been also observed in a microscopic traffi@d&hodel
According to an explanation by Ansgar Hennecke, it relates to the pronounced hump of the fundamental diagram in the density region
between 20 and 50 vehicles per kilometer. Where the traffic flow is stabldensities around 60 vehicles per kilometer and higltee
flow-density relation tends to stay close to the fundamental diagram theequilibrium flow-density relation In contrast, the dynamic
flow-density relation is a self-organized relation in the density regime of unstable traffi¢dtalensities between about 25 and 55 vehicles
per kilomete), connecting the stable flow with the self-organized outflow from traffic jams. Hence, we will usually have different slopes in
the resulting dynamic flow-density relation, corresponding to the propagation of congested regimes of different densities with different
speeds. This behavior disappears for smoother fundamental diagrams, in which the congested part decreases more or less linearly.
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(c) Density in the Left Lane (vehicles/km) (d) Density in the Right Lane (vehicles/km)

120

FIG. 10. Simulation of a closure of the right lane as in Fig. 8, with the same initial density,ef 12.6 vehicles per kilometer and lane,
but with a small perturbation of the traffic flow in the left lane. Altough the total flow of 2590 vehicles per hour in both lanes is below the
maximum possible flow in the left lane of 2630 vehicles per hour, traffic flow eventually breaks down. In other words: If all vehicles would
use only the left lane, there would be no traffic congestion upstreaq)@fThe breakdown of traffic is initialized by a perturbation of traffic
flow that eventually gives rise to a growing region of congested traff®§, from which the self-organized outflow is only about 2000
vehicles per houf13].

freely (Fig. 10. A similar phase transition from free to con- linear relationl (x)=[1+L(x)/Ly]. The conservation of the

gested traffic is known to occur close to on ranip8,9]. number of vehicles implies the virtual ramp flow=
—(pVIN)allox, which gives the following continuity equa-
V. COMPARISON WITH THE EFFECTIVE tion for the effective vehicle density per available lane:

SINGLE-LANE MODEL
dp d(pV) pV 4l

The traffic situations discussed above can be also simu- ot X I(X) ox (36)
lated with an “effective” single-lane model that implicitly
averages over the dynamics of all lanes. The corresponding The result of the corresponding simulation is presented in
model was proposed in Reff10,13 and basically corre- Fig. 12 in comparison with the plot of the average density
sponds to our multilane model, applied to one lane only, Sger lane obtained with the multilane model. The pictures
that the lane changing terms drop out. For our simulationsshow a good correspondence between the multilane and the
we use the following “effective” model parameters/,  effective single-lane models. However, there are slight dif-
=110 km/h, ppa=150 vehicles/km,7=35s, T=1.6's,y  ferences in the form and propagation velocity of the up-
=12, @(=0.007, Aa=0.031, p,=0.28%"™ and dp  stream front of the congested traffic region. These originate
=0.025™ from the fact that the average dynamics of two nonlinearly

In Fig. 11, we compare the average of the densities in th@ehaving systems with different parameters cannot simply be
left and the right lane according to the multilane mo@&le  represented by one system of the same type with suitably

Fig. 7) with the effective single-lane model. It turns out that, averaged parameters, as it can be done for linear systems.
despite the sensitive dynamics in the unstable traffic regime,

both models produce similar spatiotemporal traffic patterns,
but there are some differences in detail. This shows that the
effective single-lane model gives already a reasonable repre- We have proposed a gas-kinetic traffic model for hetero-
sentation of the traffic dynamics, although it produces smalgeneous multilane traffic and systematically derived the cor-
deviations from the dynamics predicted by the multilaneresponding macroscopic traffic model. Thus, effects of dif-
model. ferent vehicle types and lane changes are explicitly taken
Let us make a similar investigation for the example of ainto account. Whereas previous multilane models have usu-
bottleneck. In this case, we can treat the merging lanes in thally assumed spontaneous lane changes only, we managed to
effective single-lane model by a reduction of the effectivecalculate the lane-changing rates due to vehicle interactions
lane number (x) from 2 to 1 within the merging section, and found that these are of the same order of magnitude.
i.e., for xe[Xeng— Lo, Xendl- FOr example, we may use the Note that both, spontaneous and interactive lane changes are

VI. SUMMARY AND CONCLUSIONS

(a) Average Density per Lane (vehicles/km) (b) Effective Single-Lane Density (vehicles/km/lane)

120
100
80
60
40 L
20

FIG. 11. Comparison ofa) the average density according to the multi-lane model ddhe density resulting from an effective
single-lane model for the formation of stop-and-go traffic presented in Fig. 7.
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(a) Average Density per Lane (vehicles/km) (b) Effective Single-Lane Density (vehicles/km/lane)

120 FIG. 12. Comparison dfa) the

100 average density according to the
80 multilane model andb) the den-
28 sity resulting from an effective

single-lane model for the case of a
lane closure displayed in Fig. 9.

x (km) 6

necessary to describe the empirically observed density de- b b
pendence of the total lane changing rates, the lane occupan- Al :f dvZ(x,v,1), (A1)
cies, and the density difference among lanes correctly.

Moreover, the multilane traffic model formulated above
treats vehicular space requirements and high vehicle densi-
ties in the right way, and we have even discussed possible Biab=f dvaiab(X,v,t)—f dov J2%(x,v,t), (A2)
effects of velocity correlations of interacting cars, which ba-
sically reduce the interaction rates. The corresponding com-
puter simulations are robust also in the unstable traffic re-
gime, so that we did not need to eliminate the dynamic C?b:f dva?b(x,v,t). (A3)
velocity equation, as was done in a previous study.

We have successfully calibrated our model to empirical
traffic data. The Tesu'“”g mpdel is _in good agreement Wit.h Here, we present the evaluation of the integralSZﬁ'?
the observed variance density relations, the velocity-densit \v. but the int tion of7®® | | For brevit
relations, and the occupancies of the different lanes, as we ny, but the integration alfy 1S analogous. For brevity, we

as with the density dependence of the lane-changing raté’gi” omit the indices of lane and vehicle types in the follow-

and the density difference among lanes. We were able @g. Trtns m(:anlf thdat thte pa}['r: dlstn.buggrj[ TS”E“‘DO;‘U’X,[.
show the synchronization effect among lanes due to Ian?ag'w’ ) acaua y denotes e pair distribufion ‘Tunction
i (X,u,x+si,w,t) for particular types of vehiclea at

changes and could describe the traffic dynamics at bottle-i - ‘ )
necks. A comparison of the average dynamics in the differen0intx andb at (x-+s7) in a particular lane. Consequently,
lanes with corresponding simulation results of an effectiveV, ¢ stand forVi(x), 6?(x), andV’, ¢’ stand forV{(x
single-lane model showed a qualitative, but not fully quanti-+s%), 6P(x+s%). Also, we drop the multipliersy(p)pp’.
tative agreement. According to the definition of interaction raté$), one must
Our present investigations focus on the empirical evaluaevaluate the integrals
tion of velocity correlations between interacting vehicles and
on the calibration of the model to a mixture of vehicle types
such as cars and trucks, both of which are difficult tasks. We _ K
expect that this will allow us to describe the effects of het- Bk_f dv fpwdw vv= WX xtsw.t)  (Ad)
erogeneous traffic which were found in microscopic models
[23,41] and other approach¢42].
for ke {0,1}.
From the mathematical perspective, the task is to integrate
ACKNOWLEDGMENTS a bivariate Gaussian distribution, multiplied by polynomials
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data. separate variables. Then, the integration over one of the axes

becomes trivial, and the integration over the other axis gives
combinations of terms which contain Gaussian and error
APPENDIX functions.
The bivariate Gaussian distributidnis defined by Egs.

In order to evaluate the macroscopic equations, one negq§3) and(14). One can transform the quadratic functid)

to calculate the first two moments of the kinetic equation in . . Wt w2 .
velocity space. This procedure was described in detail irf© the simplest symmetric formy, +w; by linear transforma-

Refs. [4,24,39. The contribution of this paper consists in tion
evaluating the general Boltzmann factdfis8)—(20) includ-

ing vehicular space requirements and possible velocity cor- v v v
relations of successive vehicles. The Boltzmann factors are ( ):( ) Cl( 1) ,
defined by the following integrals of interaction rates: \A
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1 1 Finally, we consider the composition of two linear transfor-

—=C0S¢ ———=Sine mations: C=C,°C,=(c;;). This transformation brings the

Co— VA ¢ VA (A5) integral (A4) into the form with separating variables
1_ .

1 . 1 —x2/2 —y2/2

——sing ——=cosg _f e te e

NI N By= dx dy
Ay A_ k e 8V \/Z 703 y \/Z

Here, A are (positive eigenvalues of the quadratic form

(14) XJS(V=X)(V+cpx+ey)*.  (AL3)

The integration ovely becomes trivial, now, as it corre-
sponds to evaluating the moments of a normal distribution.
The evaluation fok € {0,1} involves only the first two mo-
(AB) ments, which equal to 1 and 0, hence the integration gver
in those cases results just in the elimination of the integral
and the anglep is defined by overy andy-containing terms from the expression above.
The coefficientc,, reads

Ne=———[60+0 =J0?—2(1-2k? 00"+ 6'?],
+ 200,(1_k2)[ N ( ) ]

1
= r_p_ 2 __ _ 2 ' 12
tane= 2 /—Gefk[a 6—6°=2(1-2k%) 06"+ 6'%]. cospcosy singsing  ky66'—6 (ALd)
Cy= - = .
(A7) N N NS
After this transformation, we obtain Hence, fork € {0,1} we obtain
1 —x2/2 [ r_ k
f(x,v,x+s,w,t)dv dw= —e‘(v%wi)’zdvl dw; - e’ " |V ke
o By dx S(6V—x) + X| .
(A8) x<éV 27 \/é S
(A15)

for the pair distribution function, and the boundary of the

) ! Note that the integration a7, which is necessary to obtain
integration area becomes

the Boltzmann factoB, leads to the same expression with
the last factor under the integral being replaced by

V' 0 —kyJae |\
—+ ——X] .

JS S

he remaining task is to evaluate the “incomplete mo-
‘ments” of the normal distribution, which can be expressed

through the normal distributionBl(x) and error functions
E(x) [see notation$21) and(22)]. Applying the formulas

COSp—Ssing cosg+sing

N ol -

v—W w;+V-V'=0.

(A9)

Next, we apply additional rotation, which does not changeT
the symmetric form of the distribution, and make the bound
ary of the integration area parallel to one of the axes,ysay
This is done by

v X cosy —siny

W, =C, vl Co= sing  cosy |’ (A10) J'X<ade(x):E(a), (A16)
where
f dxxN(x)=—N(a), (A17)
sing—cos COoSe+sin x<a
cosy= u, sing= u, (A11)

Sh . VSN _

J dxx*N(x)=—aN(a)+E(a) (A18)
(sing—cosg)? (cose+sing)? — x=a
B N * N =0=2kV00"+ 0" to the integral above, one obtains the desired expressions

(A12) (18)—(20) for the Boltzmann factors.
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