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Macroscopic dynamics of multilane traffic

Vladimir Shvetsov and Dirk Helbing*
II. Institute of Theoretical Physics, University of Stuttgart, Pfaffenwaldring 57/III, 70550 Stuttgart, Germany

~Received 28 December 1998!

We present a macroscopic model of mixed multilane freeway traffic that can be easily calibrated to empirical
traffic data, as is shown for Dutch highway data. The model is derived from a gas-kinetic level of description,
including effects of vehicular space requirements and velocity correlations between successive vehicles. We
also give a derivation of the lane-changing rates. The resulting dynamic velocity equations contain nonlocal
and anisotropic interaction terms which allow a robust and efficient numerical simulation of multilane traffic.
As demonstrated by various examples, this facilitates the investigation of synchronization patterns among lanes
and effects of on ramps, off ramps, lane closures, or accidents.@S1063-651X~99!15505-3#

PACS number~s!: 51.10.1y, 89.40.1k, 47.90.1a, 34.90.1q
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I. INTRODUCTION

Simulating traffic flow is not only of practical importanc
for developing traffic optimization measures@1#. It is also
interesting because of the various self-organization phen
ena resulting from nonlinear vehicle interactions@2–4#. This
includes the formation of traffic jams or stop-and-go wav
@5–7#, and of synchronized congested traffic@8–10#. Many
of these phenomena can be simulated by one-dimensi
models such as cellular automata@11,12# and macroscopic
traffic models@5,13#. It is, however, questionable if traffic
dynamics at on and off ramps or intersections can be
rectly described without consideration of lane changes@14–
19#. The same holds close to changes in the number of la
accidents, or construction sites. It is, therefore, desireabl
have multilane models that explicitly take into account ov
taking maneuvers and lane changes. In contrast to exis
cellular automata models for multilane traffic@20–23#, we
will focus on macroscopic models, here, since they all
analytical investigations and a simple calibration to empiri
data.

Apart from lane-changing maneuvers, traffic dynamics
considerably influenced by the composition of traffic in
various types of vehicles with different desired velocities a
acceleration capabilities. This can even cause new kind
phase transitions in mixed traffic, e.g., to a coherent, so
like state of motion@23#. Thus, it is also favorable to have
macroscopic model that allows to distinguish several veh
types.

We will obtain such a model from a generalized versi
of a gas-kinetic traffic model, from which we managed
derive a one-dimensional model that is consistent with
presently known properties of traffic flow@13#, including
synchronized congested flow@10#. Although lane changes
and several vehicle types make the model quite complex,
still possible to evaluate the Boltzmann-like interacti
terms. Moreover, whereas previous approaches have
glected correlations between successive vehicles, we
also show how these can be taken into account.

Our calculations take care of the fact that vehicles do

*URL: http://www.theo2.physik.uni-stuttgart.de/helbing.html
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interact locally, but with the next vehicle in front, so that th
interaction point is advanced by about the safe vehicle
tance. Nevertheless, we were able to evaluate the interac
integral without the gradient expansion used in previous p
lications@24,25#. This resulted in characteristic nonlocal an
anisotropic interation terms, which have very favorable n
merical properties@26#. Similar to diffusion or viscosity
terms, they cause a smoothing of shock fronts. Howev
they do not change the character of the set of partial dif
ential equations from a hyperbolic to a parabolic one.
nally, the nonlocal terms allow us to write the macrosco
traffic equations in flux form with source/sink terms, so th
numerical standard procedures can be used for their ro
and efficient numerical integration@26#. As a consequence, i
is now possible to solve the multilane traffic equations wi
out elimination of the dynamic velocity equations, i.e., wit
out averaging over self-organized velocity variations such
stop-and-go traffic. This had to be done in previous a
proaches because of numerical stability@27#, with the conse-
quence that the investigation of unstable multilane tra
was not possible. Now, we are able to study how the veh
dynamics on one lane influences the others.

Our paper is organized as follows. In Sec. II we will in
troduce the kinetic model, which allows the derivation of t
macroscopic multilane model of heterogeneous traffic p
sented in Sec. III. The decisive steps of this derivation
given in the Appendix. Section IV will discuss the calibr
tion of the model to real traffic data for the case of o
effective vehicle type, and it will display various simulatio
results for difficult test scenarios like lane closures. A co
parison with results of an effective single-lane model will
the topic of Sec. V, while Sec. VI summarizes the results
this paper.

II. THE KINETIC MULTILANE MODEL

Prigogine and co-authors@28# were the first who proposed
a kinetic equation for the phase-space density of vehicles
a highway. Later, Paveri-Fontana@29# made important im-
provements, formulating an equation for the ‘‘extende
phase-space densityg(x,v,v0 ,t), wherex is the location,v
the actual velocity, andv0 the desiredvelocity of a vehicle
at timet. Nagatani and Helbing have suggested extension
6328 ©1999 The American Physical Society
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multilane traffic @27,30#. However, the validity of these
equations was mainly restricted to the regime of small d
sities.

Here, we present the general kinetic model for multila
traffic composed of different types of spatially extended
hicles, and derive the corresponding macroscopic mo
from it. The main features of the model are as follows.

~i! The correct description of dense traffic by taking in
account the finite space requirements of vehicles.

~ii ! The ‘‘nonlocality of the interactions,’’ which mean
that drivers look ahead and adopt their behavior to the tra
situation at some position in front of them.

~iii ! The replacement of the ‘‘vehicular chaos’’ assum
tion used by most previous kinetic traffic mode
@24,25,28,29,31# ~with a few exceptions@32,33#! by much
less restrictive assumptions, which account for possible
locity correlations of interacting vehicles.

For simplicity, we assume that all vehicles of the sa
type aP$1, . . . ,A% have the same desired velocityV0i

a that
may depend on the lanei P$1, . . . ,N%. Then, we can repre
sent the ‘‘extended’’ phase-space densitygi(x,v,v0 ,t) of all
vehicles in each lane through a sum of phase-space den
f i

a(x,v,t) of vehicles of different typesa:

gi~x,v,v0 ,t !5(
a

f i
a~x,v,t !d~v02V0i

a !. ~1!

The phase-space densities obey the following contin
equation@4,27#:

] f i
a

]t
1

]

]x
~ f i

av !1
]

]v S f i
a

V0i
a 2v

t i
a D 5S ] f i

a

]t D
int

1S ] f i
a

]t D
lc

.

~2!

The terms on the left-hand side represent the continu
change of the phase-space density due to the movemen
point in phase space. The third term represents the tend
of drivers to accelerate to their desired velocityV0i

a with a
relaxation timet i

a . The terms on the right-hand side repr
sent~quasi!discontinuous changes of the phase-space de
ties due to lane-changing maneuvers and braking interact
between vehicles.

We consider three different types of lane-changing beh
ior:

~i! Lane-changing maneuvers due to interactions betw
vehicles, which correspond to overtaking maneuvers or l
changes in order to avoid intensive interactions with slow
vehicles in a lane.

~ii ! ‘‘Spontaneous’’ lane-changing maneuvers, which
flect effects of traffic regulations and the internal tendency
drivers to use a particular lane.

~iii ! ‘‘Mandatory’’ lane changes due to lane mergings, o
or off-ramps, accidents, etc.

Accordingly, we have

S ] f i
a

]t D
lc

5S ] f i
a

]t D
lc

int

1S ] f i
a

]t D
lc

spont

1S ] f i
a

]t D
lc

mand

. ~3!

Following Prigogine, we speak of ‘‘interaction,’’ when
faster vehicle approaches a slower one, which forces
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faster vehicle to change lane or brake. For simplicity, we w
assume that vehicles do not change their velocities du
lane-changing maneuvers and that braking vehicles dec
ate exactly to the velocity of the vehicle in front.

The key quantities, which determine the right-hand s
~RHS! of the kinetic equations, are the ‘‘interaction rates’’
the effective number of interactions between vehicles
unit of time. Let us denote byI i

ab(x,v,t) the interaction rate
of vehicles of typea and velocityv at placex in lane i with
slower vehicles of typeb and velocityw,v in front; by
J i

ab(x,v,t) the number of interactions in lanei between ve-
hicles of typea with velocity w.v and vehicles of typeb in
front with velocity v. The interaction ratesI i

ab(x,v,t) with
bP$1, . . . ,A% contribute to the decrease of the phase-sp
density f i

a(x,v,t) due to lane changing or braking, where
J i

ab(x,v,t) contribute to the increase of the phase-space d
sity due to braking of vehicles of typea to velocity v. They
are given by the following formulas:

I i
ab5x iE

v.w
dw~v2w! f i

ab~x,v,x1si
a ,w,t !, ~4!

J i
ab5x iE

w.v
dw~w2v ! f i

ab~x,w,x1si
a ,v,t !. ~5!

That is, the interaction rates are proportional to the ‘‘effe
tive cross section’’x i5x i(r i), reflecting the increased num
ber of interactions in dense traffic due to the vehicular sp
requirements~see below!, to the relative velocitiesuv2wu of
interacting vehicles, and to the pair distribution functio
f i

ab(x,v,x1si
a ,w,t), describing the phase space density

having in lanei two vehicles of typesa andb at placesx and

xi
a85(x1si

a) with velocitiesv andw, respectively. Note tha
the classical ‘‘vehicular chaos’’ assumption would corr
spond to the factorization f i

ab(x,v,x1si
a ,w,t)

5 f i
a(x,v,t) f i

b(x1si
a ,w,t) of the pair distribution function

into the phase space densities of single vehicles.
With si

a.0 we assume an anticipative driver behavio
i.e., a reaction to the traffic situation at the advanced ‘‘int

action point’’ xi
a85(x1si

a). A reasonable formula issi
a

5g i
a(1/r i

max1Ti
aVi), where r i

max is the maximum vehicle
density in lanei, Ti

a is the safe time headway of vehicles
typea, andTi

aVi is the safety distance at an average veloc
of Vi in lane i. For g i

a51, the vehicles react to the traffi
situation at the safe vehicle distance, forg i

a.1, they look
further ahead. The anticipation factorg i

a is typically between
1.0 and 3.0@13#.

Now, let us denote bypi
a the probability that a vehicle o

type a in lane i can change lane without any delay. Ev
dently, this probability equals the sum of probabilities
changing to the right lane (i 21) or to the left lane (i 11):
pi

a5pi ,i 21
a 1pi ,i 11

a . We assume these probabilities to b
functions of the macroscopic variables such as vehicle d
sities.

In terms of the interaction rates, we can now specify
rate of braking interactions by

S ] f i
a

]t D
int

5~12pi
a!(

b
@J i

ab~x,v,t !2I i
ab~x,v,t !# ~6!
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and the lane-changing term due to interactions by

S ] f i
a

]t D
lc

int

5(
b

@pi 21,i
a Ii 21

ab ~x,v,t !2pi ,i 21
a I i

ab~x,v,t !

1pi 11,i
a Ii 11

ab ~x,v,t !2pi ,i 11
a I i

ab~x,v,t !#. ~7!

The rates of spontaneous lane-changes are simply pro
tional to the phase-space densities of vehicles. The pro
tionality factors are determined by the transition ra
1/Ti 21,i

a of this process, whereTi 21,i
a are the characteristic

times between lane changes. We will assume that they
functions of the macroscopic variables like the densiti
Thus, the spontaneous lane-changing terms have the fo

S ] f i
a

]t D
lc

spont

5
f i 21

a ~x,v,t !

Ti 21,i
a

2
f i

a~x,v,t !

Ti ,i 21
a

1
f i 11

a ~x,v,t !

Ti 11,i
a

2
f i

a~x,v,t !

Ti ,i 11
a

. ~8!

An appropriate specification of the transition rates is the
lowing:

1

Ti , j
a

5gi , j
a S r i

r i
maxD b1S 12

r j

r j
maxD b2

. ~9!

This form is rather simple and, at the same time, it is
accordance with empirical data@34#. The results displayed in
this paper are forb150 andb258.

The form of the mandatory lane-changing term depe
on many different factors including visibility or the locatio
of traffic signs indicating the end of a lane. An explicit e
ample will be given in Sec. IV.

III. THE MACROSCOPIC MULTILANE MODEL

One advantage of the kinetic equation is that it allows
systematic derivation of equations formacroscopicvariables.
The macroscopic variables of interest are the dens
r i

a(x,t), average velocitiesVi
a(x,t), and velocity variances

u i
a(x,t) of vehicles of typea in lane i at placex and timet.

They can be defined as moments of the phase-space den

r i
a~x,t !5E dv f i

a~x,v,t !, ~10!

Vi
a~x,t !5r i

a~x,t !21E dvv f i
a~x,v,t !, ~11!

u i
a~x,t !5r i

a~x,t !21E dv~v2Vi
a!2f i

a~x,v,t !. ~12!

One can obtain the macroscopic equations from the
netic equation, using an iterative procedure, called Chapm
Enskog expansion@4,35#. The first step of this procedur
gives the so-called Euler-like traffic equations, which are
good agreement with empirical findings@10,13#. To obtain
these, one assumes the velocity distribution in every poix
to be in a local equilibrium. Although the exact equilibriu
or-
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solution of the kinetic traffic equations is not known, th
Gaussian distribution of velocities is a good approximat
@36#. Next, recall that we need to specify the form of the p
distribution function of interacting vehicles. Previous mode
@24,25,28,29,31# assumed the pair distribution function to b
a product of Gaussian one-vehicle distribution functio
which corresponds to the ‘‘vehicular chaos’’ assumption t
interacting vehicles are uncorrelated. Here, we only pres
pose that the pair distribution function can be approxima
by a general bivariate Gaussian distribution function

f i
ab~x,v,x1si

a ,w,t !

5r i
a~x,t !r i

b~x1si
a ,t !

AdetB
2p

e2(1/2)B(v,w),

~13!

whereB(v,w) is a general positive definite quadratic for
and detB the determinant of the corresponding symmetri
matrix. Thus, we take into account possible correlations
tween the velocities of interacting vehicles. One can expr
the coefficients ofB(v,w) in terms of the moments of the
distribution, namely, the variancesu i

a and the correlation co-
efficient ki

ab :

B~v,w!5
1

12~ki
ab!2 S ~v2Vi

a!2

u i
a

22ki
ab

3
~v2Vi

a!~w2Vi
b8!

Au i
au i

b8
1

~w2Vi
b8!2

u i
b8 D . ~14!

The associated determinant equals

detB5$u i
au i

b8@12~ki
ab!2#%21. ~15!

A prime indicates that the respective quantity is evaluated

the advanced interaction pointxi
a85(x1si

a) rather than the
actual positionx.

In order to evaluate the macroscopic equations, one ne
to multiply the kinetic equation byvk, integrate over the
velocity v, and close the system of equations by a suita
approximation for the moments of higher order@4,25,35#.
We will derive the Euler-like equations for the vehicle de
sities and average velocities, and close the system by
proximations for the variances and correlation coefficien
The details of the calculation are given in the Appendix, h
we present only the final results.

The density equations are

]

]t
r i

a1
]

]x
~r i

aVi
a!

5 (
j P$ i 21,i 11%

(
b51

A

@pj ,i
a Aj

ab~dVj
ab!2pi , j

a Ai
ab~dVi

ab!#

1 (
j P$ i 21,i 11%

S r j
a

Tj ,i
a

2
r i

a

Ti , j
a D , ~16!
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and the equations for the traffic flows read

]

]t
~r i

aVi
a!1

]

]x
@r i

a~Vi
a21u i

a!#

5
r i

a

t i
a

~V0i
a 2Vi

a!2~12pi
a! (

b51

A

Bi
ab~dVi

ab!

1 (
j P$ i 21,i 11%

(
b51

A

@pj ,i
a Cj

ab~dVj
ab!2pi , j

a Ci
ab~dVi

ab!#

1 (
j P$ i 21,i 11%

S r j
aVj

a

Tj ,i
a

2
r i

aVi
a

Ti , j
a D . ~17!

One can obtain the corresponding velocity equations by
serting Eq.~16! into Eq. ~17!. However, we will use the flux
equations~17! instead, because they are more suitable
numerical integration methods.

The functionsAi
ab , Bi

ab , andCi
ab in the above equation

are denoted asBoltzmann factors, since they originate from
the Boltzmann-like interaction integrals~4! and ~5!. Thus
they describe the influence of interactions on traffic dyna
ics. The Boltzmann factorsAi

ab determine the lane-changin
flows due to interactions in the density equations,Bi

ab the
braking term, andCi

ab the lane-changing terms due to inte
actions in the flow equations. The exact form of these te
is as follows~for brevity we omit indices of lanes and ve
hicle types!:

A~dV!5x~r!rr8AS@N~dV!1dVE~dV!#, ~18!

B~dV!5x~r!rr8S@dVN~dV!1~11dV2!E~dV!#,
~19!

C~dV!5x~r!rr8SF V

AS
N~dV!

1S u2kAuu8

S
1

V

AS
dVD E~dV!G . ~20!

Here,N(z) is the standard Gaussian distribution, andE(z)
denotes the error function:

N~z!5
e2z2/2

A2p
, ~21!

E~z!5
1

A2p
E

2`

z

dye2y2/2. ~22!

The valuesdVi
ab are dimensionless velocity differences b

tween interacting vehicles, which are defined by

dVi
ab5

Vi
a2Vi

b8

ASi
ab

, ~23!

where

Si
ab5u i

a22ki
abAu i

au i
b81u i

b8 . ~24!
-

r

-

s

The Boltzmann factors are negligible for negative veloc
differences, and they grow rapidly with increasing positi
differences. The reason for this is rather intuitive: Faster
hicles in front do not influence vehicles at the given placex,
while slower vehicles force them to brake or change lane

The dimensionless values~23! have the meaning of ‘‘ef-
fective’’ velocity differences. According to their definition
they increase with the increase of the absolute velocity
ference, the decrease of the variance, and the increase o
correlation coefficient. The last two properties require so
explanation. The increase of the variance as well as the
crease of the correlation coefficient both lead to an incre
of the factorS. This results in the decrease of the effecti
velocity difference and, consequently, of the dimensionl
parts of the Boltzmann terms~standing in square brackets!.
Nevertheless, the Boltzmann factors themselves increase~see
Fig. 1, which shows the dependence of Boltzmann factoB
on the absolute velocity difference for different values ofS).
This effect has a clear interpretation: The dimensionless p
of the Boltzmann factors describe the influence of thediffer-
ence in the average velocitiesat locationx and the advanced
interaction pointx8 on the number of interactions. An in
crease ofS reduces the effect of this difference in compa
son with the highvariation of individual velocitiesin the
vehicle flow. Thus, the increase ofSdiminishes the value of
the effective velocity differencedV, although it enlarges the
interaction rates. One could also say that an increaseS
causes higher interaction rates, but also a wider transi

region between the limiting cases (Vi
a2Vi

b8)!0 and (Vi
a

2Vi
b8)@0.

For the variancesu i
a , we use constitutive relations of th

form

u i
a5a i

a~r i !Vi
a2 , ~25!

according to which the variance of vehicle velocities is
certain proportiona i

a of the squared average velocity, whic
depends on the total vehicle density

r i5 (
a51

A

r i
a ~26!

FIG. 1. Boltzmann factorB as a function of the absolute veloc
ity difference for different values of the variance factorS.
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in the respective lanei. This is well justified by empirical
findings. The appropriate expression of the functionsa i

a(r i)
is given below.

The correlation coefficients could be approximated

functions of the densities at the pointsx andxi
a85(x1si

a), as

well as the distancesi
a : ki

ab5ki
ab(r i

a ,r i
b8,si

a). However, an
empirical determination of this function is very difficult, as
requires a thorough analysis of a huge amount of sin
vehicle data. Therefore, we will apply the common appro
mationki

ab'0 for the time being.
Another important function to be estimated is the ‘‘effe

tive cross section’’x i5x i(r i). This value reflects the in
crease of the effective number of interactions in dense tra
In a previous publication on the single-lane variant of t
above model@13#, it was shown that the following expres
sion for the effective cross section is consistent with the l
iting cases at high and low vehicle densities and well ju
fied by the resulting properties of the model:

@12p~r!#x~r!5
V0T2

ta~rmax!

r

~12r/rmax!
2

. ~27!

Note that, without further assumptions,x(r) is determined
in the single-lane model only together with the overtaki
probability p(r). In our multilane model, we suggest th
following decomposition of the above expression:

x i~r i !511
V0iTi

2

t ia i~r i
max!

r i

~12r i /r i
max!2

, ~28!

pi
a~r i !5

exp~2p0i
a r i /r i

max!

x i~r i !
. ~29!

Here, variables without an index for the specific vehicle ty
a represent weighted averages of the variables belongin
the different vehicle types in lanei, for example,

Ti5 (
a51

A r i
a

r i
Ti

a . ~30!

IV. CALIBRATION OF THE MULTILANE MODEL
AND SIMULATION RESULTS

Next, we present the results of calibration and simulat
for a special case of the general model discussed above
consider the two-lane variant of the model for a single
hicle type, wherei 51 represents the right~‘‘slow’’ ! lane
and i 52 the left~‘‘fast’’ ! lane. The calibration was done o
the basis of empirical data for the Dutch two-lane highw
A9.

The variance prefactor or ‘‘structure factor’’a i(r i)
5u i /Vi

2 can be estimated on the basis of direct observat
The empirical data show a ‘‘steplike’’ but smooth depe
dence of this prefactor on density, with an increase at ab
40 vehicles per kilometer. It can be well fitted by the follow
ing function ~see Fig. 2!:

a i~r i !5a0i1Da iF11expS 2
r i2rci

dr i
D G21

. ~31!
s

-
-

c.

-
i-

e
to

n
e

-

y

n.
-
ut

This steplike form plays an important role, as it determin
the specific shape of the equilibrium velocity-density relati
Vi

e(r i) ~see Fig. 3! and the fundamental diagramQi
e(r i)

5r iVi
e(r i). Other parameters that influence the fundamen

diagram are the safe time headwayTi , the desired velocity
V0i , and the maximum densityr i

max. The desired velocity
fits the maximum velocity in free traffic, whereas the sa
time headway and the maximum density determine the sl
of the fundamental diagram at high densities and its inters
tion point with the density axis. The acceleration relaxati
timest i and the anticipation factorsg i do not influence the
fundamental diagram. Instead, they allow us to fit the sta
ity behavior and dynamics of traffic flow@13#.

The parameters that affect lane-changing processes
the coefficientsgi , j , b1, and b2 for the spontaneous lane
changing rates, and the coefficientsp0i for the overtaking

FIG. 2. Fit of the density-depenent variance prefactor or ‘‘stru
ture factor’’ a i(r i) specified in Eq.~31! ~---! to the empirical data
of the relative velocity varianceu i /Vi

2 ~1,3!. The corresponding
parameter values are listed in Table I. Note that the deviation of
fit curve for the right lane from the empirical data at small densit
is probably a consequence of assuming one vehicle type only
stead of heterogeneous traffic. However, this deviation is of mi
importance for the dynamic properties of the model, since it
limited to the stable density regime of free traffic flow.

FIG. 3. Equilibrium velocity-density relations of the multilan
model~---! for the parameter values specified in Table I in compa
son with empirical data from the Dutch highway A9 (1,3). The
symbols represent the~vertical! averages of one-minute data th
were evaluated for 14 successive days.
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probabilities. The main sources for estimating these par
eters are empirical data on lane occupancies and l
changing rates as a function of density. One can easily ob
the data on lane occupancies from the usual measurem
made by induction loops. In contrast, the direct measurem
of lane-changing events is much more difficult, which resu
in a lack of reliable data in the literature@37#. Luckily, this
kind of data is only necessary for the estimation of the or
of magnitude of the model coefficients, while the ratios
the coefficients for different lanes, which essentially defi
the multilane dynamics, can be well estimated by the av
able lane occupancy data.

Figures 4 through 6 show the corresponding fits. Follo
ing Ref. @34#, we assume that the maximum lane chang
rate of about 500 to 550 events per hour, kilometer and l
is achieved at densities of about 20 to 25 vehicles per k
meter. The higher occupancy of the left lane at middle a
high densities yields higher estimated values of the coe
cientsgi , j , p0i for the left lane relative to those for the righ
lane. The primary use of the right lane at small densities~see
Fig. 4! reflects the European traffic regulations. One can t
this into account by a ‘‘European rules’’ correction prefac

FIG. 4. Theoretical~—! and empirical (1) difference of the
densities in the left and the right lane as a function of the la
averaged density.

FIG. 5. Fit of the lane occupancy, i.e., of the percentage of
vehicle density in a lane compared to the total density in all lan
Symbols correspond to empirical data, lines to the results of
multilane model. The preference for the right lane at small dens
comes from the European traffic regulations.
-
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in
nts
nt
s
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e
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e
r

of the spontaneous coefficientsg12→g12gEu(r1), g21

→g21/gEu(r1), where 0,gEu(r0),1 is a smooth steplike
function similar to Eq.~31!.

The calibration results show that the spontaneous la
changing terms influence mainly the low-density regim
while the lane changes due to interactions, which are ne
gible at small densities, determine the difference in lane
cupancy at high densities. For the typical fit of the lane o
cupancy curves~see Fig. 5! it turned out that the overal
contributions of spontaneous and interactive lane-chang
terms to the total lane-changing rate were approximately
same ~Fig. 6!. At low densities, lane changes correspo
mainly to interactive lane changes from the right to the l
lane and to spontaneous lane changes from the left to
right lane, which is plausible for European traffic. The resu
of the parameter estimation are summarized in Table I.

One important property of the above model is the abil
to describe the development of different congested tra
states @38,39#. Figure 7 shows the development of sto
and-go traffic, which arises from a small density perturbat
in the right lane. Due to lane changes, the perturbat
spreads to the other lane, and the traffic dynamics on
neighboring lanes becomes synchronized@8,9,40#. In particu-
lar, this holds for the propagation of large density cluste
Nevertheless, the traffic flow in the left lane behaves m
unstable in the range of moderate densities. This fact is
agreement with observations and can be theoretically
plained by the different velocity-density relations~decreas-
ing more rapidly for the left lane, see Fig. 3!.

Next, we present multi-lane simulations of the interesti
case of a bottleneck, corresponding to an on-ramp, a
closure, or an accident. Assume, for example, that the r
lane ends at a certain placexend. We expect that the resulting
traffic situation will depend on the volume of the incomin
flow.

In order to model the behavior of traffic close to a bott
neck, we must specify the mandatory lane changes. In
framework of the above multilane model, this can be done
introduction of additional lane-changing terms describing
sufficient increase of lane changes to the left lane, wher

-

e
s.
r
s

FIG. 6. Equilibrium lane-changing rates according to our mu
lane model as a function of the average density. Note that, at s
densities, we have more interactive lane changes from the righ
the left lane~‘‘overtaking maneuvers’’! and more spontaneous lan
changes from the left to the right lane, as expected, for Europe
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TABLE I. The estimated parameter values for the two-lane, single vehicle-class model, calibra
traffic data from the Dutch motorway A9.

Parameter Notation Right lane Left lane

Desired velocity V0i 105 m/h 123 km/h
Maximum density r i

max 150 vehicles/km 150 vehicles/km
Relaxation time t i 35 s 35 s
Safe time headway Ti 1.7 s 1.2 s
Anticipation factor g i 1.2 1.2
Coefficients for variance approximation a0i 0.007 0.0065

Da i 0.03 0.036
rci 0.275rmax 0.305rmax

dr i 0.03rmax 0.025rmax

Coefficient for overtaking probability p0i 17.0 12.5
Coefficient for spontaneous lane changing gi ,32 i 75 28
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the
lane changes to the right lane will be surpressed by set
the corresponding coefficients close to the bottleneck to z
However, the following difficulty arises: While the densi
on the right lane decreases to zero at the bottleneck,
velocity ~which depends on the density and velocity on t
neighboring lane! can stay large up to the very end of th
lane. This causes numerical problems in keeping the den
and flow positive everywhere. To avoid this, we apply t
following calculation procedure to the last section of t
right lane in front of the bottleneck, where we have assum
that this section is of lengthL05500 m throughout this pa
per.

Close to the bottleneck, all drivers in the right lane~pro-
ducing a traffic flow of volumer1V1) must merge into the
adjacent lane. This implies that the drivers in the right la
will adopt their velocityV1(x,t) to the velocityV2(x,t) in
the left lane. In addition, we will assume that the lan
changing rate grows inversely proportional to the remain
distanceL(x)5(xend2x), in order to guarantee that all ve
hicles have changed lane at the placexend where the right
lane ends. Hence, forxP@xend2L0 ,xend#, our model for the
right lane reads
g
o.

he

ity

d

e

-
g

]r1

]t
1

]~r1V1!

]x
52

r1V1

L~x!
, ~32!

V1~x,t !5V2~x,t !. ~33!

For the left lane, we have

]r2

]t
1

]~r2V2!

]x
5

r1V1

L~x!
. ~34!

In order to describe a smooth transition from the ‘‘norma
to this ‘‘adaptive’’ behavior in the merging zone, we eval
ate the right-hand side (FRHS) of the equation according to

FRHS5@12k~x!#Fnorm
RHS 1k~x!Fadapt

RHS , ~35!

wherek(x) is a smooth steplike function similar to Eq.~31!
with k(xend2L0)'0 andk(xend)'1.

The results of our simulations are presented in Figs
through 10. The traffic dynamics is essentially characteri
by the volume of approaching traffic and the capacity of
bottleneck~which is given by the outflow from traffic jams
t
o

y
e

s
-

e
-

FIG. 7. ~a!, ~b!: Simulation of
stop-and-go traffic in the regime
of unstable traffic on a circular
road flow, arising from an initial
density perturbation in the righ
lane, which eventually spreads t
the left lane. ~c!, ~d! The lane-
changing rates have temporar
peaks at the locations, where th
traffic situation in the neighboring
lanes evolves differently. This
tends to reduce the difference
among lanes, so that similar spa
tiotemporal traffic patterns form in
both lanes. Consequently, we hav
a synchronization of lanes at me
dium and high vehicle densities.
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FIG. 8. Simulation of a closure of the right lane forx>xend56 km at timet50 min. At a density ofr init512.8 vehicles per kilometer
and lane or lower~here,r init512.6 vehicles/km), the capacity of the left lane is large enough to transport the vehicle flow from both
resulting in a higher vehicle density in the left lane downstream of the bottleneck, whereas the right lane is empty behind the lane
cle
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t
g-
w
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w,
in
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ws
in the left lane!. At low upstream densities~see Fig. 8!, the
capacity of the left lane is sufficient to transport the vehi
flow from both lanes. In contrast, we have an immedi
formation of congested traffic upstream of the bottleneck
the total traffic volume in both lanes exceeds the capacity
the left lane~see Fig. 9!. Surprisingly, for a certain range o
moderate densities, the resulting traffic situation turns ou
depend on the initial condition. While a perfectly homo
enous flow will lead to an increased but free traffic flo
downstream of the bottleneck, as for small traffic volumes
e
if
f

to

a

small perturbation can trigger the breakdown of traffic flo
although the left lane could carry the total vehicle flow
both lanes~see Fig. 10!. This can happen, when the traffi
flow downstream of the bottleneck is unstable. As long as
perturbation is small, it moves downstream. However, wh
its amplitude becomes larger, it eventually changes its pro
gation speed and finally travels upstream, until it reaches
bottleneck. Then, traffic breaks down, and a steadily grow
region of congested traffic develops upstream of the bot
neck, whereas traffic downstream of the bottleneck flo
d
c volume
he

el
ity region

les
pes in
different
rly.
FIG. 9. ~a!, ~b! Closure of the right lane as in Fig. 8, but for an average initial density ofr init525 vehicles per kilometer and lane. Behin
the bottleneck, a growing region of congested traffic forms immediately, since the capacity of the left lane is exceeded by the traffi
in both lanes.~c! Note that the effective capacity of the left lane~i.e., of the bottleneck! is considerably less than the maximum flow and t
flow in the left lane upstream of the jam. This is, because the outflow from congested traffic is a self-organized quantity@13#, which is of the
order of 2000 vehicles per hour, here. The flow per lane in the jammed region is half of this characteristic outflow.~d! The steplike structure
of congested traffic corresponding to regions of two different densities in~a! and~b! is related to a deceleration in two steps~rough braking
and fine braking!, when approaching a traffic jam from free traffic. This behavior has been also observed in a microscopic traffic mod@43#.
According to an explanation by Ansgar Hennecke, it relates to the pronounced hump of the fundamental diagram in the dens
between 20 and 50 vehicles per kilometer. Where the traffic flow is stable~at densities around 60 vehicles per kilometer and higher!, the
flow-density relation tends to stay close to the fundamental diagram~i.e., theequilibrium flow-density relation!. In contrast, the dynamic
flow-density relation is a self-organized relation in the density regime of unstable traffic flow~at densities between about 25 and 55 vehic
per kilometer!, connecting the stable flow with the self-organized outflow from traffic jams. Hence, we will usually have different slo
the resulting dynamic flow-density relation, corresponding to the propagation of congested regimes of different densities with
speeds. This behavior disappears for smoother fundamental diagrams, in which the congested part decreases more or less linea
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FIG. 10. Simulation of a closure of the right lane as in Fig. 8, with the same initial density ofr init512.6 vehicles per kilometer and lane
but with a small perturbation of the traffic flow in the left lane. Altough the total flow of 2590 vehicles per hour in both lanes is bel
maximum possible flow in the left lane of 2630 vehicles per hour, traffic flow eventually breaks down. In other words: If all vehicles
use only the left lane, there would be no traffic congestion upstream ofxend. The breakdown of traffic is initialized by a perturbation of traffi
flow that eventually gives rise to a growing region of congested traffic@10#, from which the self-organized outflow is only about 200
vehicles per hour@13#.
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freely ~Fig. 10!. A similar phase transition from free to con
gested traffic is known to occur close to on ramps@10,9#.

V. COMPARISON WITH THE EFFECTIVE
SINGLE-LANE MODEL

The traffic situations discussed above can be also si
lated with an ‘‘effective’’ single-lane model that implicitly
averages over the dynamics of all lanes. The correspon
model was proposed in Refs.@10,13# and basically corre-
sponds to our multilane model, applied to one lane only,
that the lane changing terms drop out. For our simulatio
we use the following ‘‘effective’’ model parameters:V0
5110 km/h, rmax5150 vehicles/km,t535 s, T51.6 s, g
51.2, a050.007, Da50.031, rc50.28rmax, and dr
50.025rmax.

In Fig. 11, we compare the average of the densities in
left and the right lane according to the multilane model~see
Fig. 7! with the effective single-lane model. It turns out tha
despite the sensitive dynamics in the unstable traffic regi
both models produce similar spatiotemporal traffic patter
but there are some differences in detail. This shows that
effective single-lane model gives already a reasonable re
sentation of the traffic dynamics, although it produces sm
deviations from the dynamics predicted by the multila
model.

Let us make a similar investigation for the example o
bottleneck. In this case, we can treat the merging lanes in
effective single-lane model by a reduction of the effect
lane numberI (x) from 2 to 1 within the merging section
i.e., for xP@xend2L0 ,xend#. For example, we may use th
u-

ng

o
s,

e

e,
s,
e
e-
ll

he

linear relationI (x)5@11L(x)/L0#. The conservation of the
number of vehicles implies the virtual ramp flown5
2(rV/I )]I /]x, which gives the following continuity equa
tion for the effective vehicle density per available lane:

]r

]t
1

]~rV!

]x
52

rV

I ~x!

]I

]x
. ~36!

The result of the corresponding simulation is presented
Fig. 12 in comparison with the plot of the average dens
per lane obtained with the multilane model. The pictur
show a good correspondence between the multilane and
effective single-lane models. However, there are slight d
ferences in the form and propagation velocity of the u
stream front of the congested traffic region. These origin
from the fact that the average dynamics of two nonlinea
behaving systems with different parameters cannot simply
represented by one system of the same type with suita
averaged parameters, as it can be done for linear system

VI. SUMMARY AND CONCLUSIONS

We have proposed a gas-kinetic traffic model for hete
geneous multilane traffic and systematically derived the c
responding macroscopic traffic model. Thus, effects of d
ferent vehicle types and lane changes are explicitly ta
into account. Whereas previous multilane models have u
ally assumed spontaneous lane changes only, we manag
calculate the lane-changing rates due to vehicle interact
and found that these are of the same order of magnitu
Note that both, spontaneous and interactive lane change
e
FIG. 11. Comparison of~a! the average density according to the multi-lane model and~b! the density resulting from an effectiv
single-lane model for the formation of stop-and-go traffic presented in Fig. 7.
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FIG. 12. Comparison of~a! the
average density according to th
multilane model and~b! the den-
sity resulting from an effective
single-lane model for the case of
lane closure displayed in Fig. 9.
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necessary to describe the empirically observed density
pendence of the total lane changing rates, the lane occu
cies, and the density difference among lanes correctly.

Moreover, the multilane traffic model formulated abo
treats vehicular space requirements and high vehicle de
ties in the right way, and we have even discussed poss
effects of velocity correlations of interacting cars, which b
sically reduce the interaction rates. The corresponding c
puter simulations are robust also in the unstable traffic
gime, so that we did not need to eliminate the dynam
velocity equation, as was done in a previous study.

We have successfully calibrated our model to empiri
traffic data. The resulting model is in good agreement w
the observed variance density relations, the velocity-den
relations, and the occupancies of the different lanes, as
as with the density dependence of the lane-changing r
and the density difference among lanes. We were able
show the synchronization effect among lanes due to l
changes and could describe the traffic dynamics at bo
necks. A comparison of the average dynamics in the differ
lanes with corresponding simulation results of an effect
single-lane model showed a qualitative, but not fully quan
tative agreement.

Our present investigations focus on the empirical eval
tion of velocity correlations between interacting vehicles a
on the calibration of the model to a mixture of vehicle typ
such as cars and trucks, both of which are difficult tasks.
expect that this will allow us to describe the effects of h
erogeneous traffic which were found in microscopic mod
@23,41# and other approaches@42#.
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APPENDIX

In order to evaluate the macroscopic equations, one ne
to calculate the first two moments of the kinetic equation
velocity space. This procedure was described in detai
Refs. @4,24,35#. The contribution of this paper consists
evaluating the general Boltzmann factors~18!–~20! includ-
ing vehicular space requirements and possible velocity
relations of successive vehicles. The Boltzmann factors
defined by the following integrals of interaction rates:
e-
n-

si-
le
-
-
-

c

l
h
ty
ell
es
to
e

e-
nt
e
-

-
d

e
-
s

t

y

ds

in

r-
re

Ai
ab5E dvI i

ab~x,v,t !, ~A1!

Bi
ab5E dvvI i

ab~x,v,t !2E dvvJ i
ab~x,v,t !, ~A2!

Ci
ab5E dvvI i

ab~x,v,t !. ~A3!

Here, we present the evaluation of the integrals ofI i
ab

only, but the integration ofJ i
ab is analogous. For brevity, we

will omit the indices of lane and vehicle types in the follow
ing. This means that the pair distribution functionf (x,v,x
1s,w,t) actually denotes the pair distribution functio
f i

ab(x,v,x1si
a ,w,t) for particular types of vehiclesa at

point x andb at (x1si
a) in a particular lanei. Consequently,

V, u stand for Vi
a(x), u i

a(x), and V8, u8 stand for Vi
b(x

1si
a), u i

b(x1si
a). Also, we drop the multipliersx(r)rr8.

According to the definition of interaction rates~4!, one must
evaluate the integrals

Bk5E dvE
v.w

dw vk~v2w! f ~x,v,x1s,w,t ! ~A4!

for kP$0,1%.
From the mathematical perspective, the task is to integ

a bivariate Gaussian distribution, multiplied by polynomia
in v andw, over the half-planev.w. This can be done by
linear transformations in the (v,w) plane in three steps
Transform the bivariate distribution to the canonical rotatio
symmetric form, rotate the plane to make the boundary of
integration area parallel to one of the coordinate axes,
separate variables. Then, the integration over one of the
becomes trivial, and the integration over the other axis gi
combinations of terms which contain Gaussian and e
functions.

The bivariate Gaussian distributionf is defined by Eqs.
~13! and~14!. One can transform the quadratic function~14!

to the simplest symmetric formv1
21w1

2 by linear transforma-
tion

S v

wD 5S V

V8
D 1C1S v1

w1
D ,
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C15S 1

Al1

cosw 2
1

Al2

sinw

1

Al1

sinw
1

Al2

cosw
D . ~A5!

Here, l6 are ~positive! eigenvalues of the quadratic form
~14!:

l65
1

2uu8~12k2!
@u1u86Au222~122k2!uu81u82#,

~A6!

and the anglew is defined by

tanw5
1

2Auu8k
@u82u2Au222~122k2!uu81u82#.

~A7!

After this transformation, we obtain

f ~x,v,x1s,w,t !dv dw5
1

2p
e2(v1

2
1w1

2)/2dv1 dw1

~A8!

for the pair distribution function, and the boundary of t
integration area becomes

v2w5
cosw2sinw

Al1

v12
cosw1sinw

Al2

w11V2V850.

~A9!

Next, we apply additional rotation, which does not chan
the symmetric form of the distribution, and make the boun
ary of the integration area parallel to one of the axes, say.
This is done by

S v1

w1
D 5C2S x

yD , C25S cosc 2sinc

sinc cosc D , ~A10!

where

cosc5
sinw2cosw

ASl1

, sinc5
cosw1sinw

ASl2

, ~A11!

S5
~sinw2cosw!2

l1
1

~cosw1sinw!2

l2
5u22kAuu81u8.

~A12!
e

g

e
-

Finally, we consider the composition of two linear transfo
mations: C5C2+C15(ci j ). This transformation brings the
integral ~A4! into the form with separating variables

Bk5E
x,dV

dx
e2x2/2

A2p
E

2`

1`

dy
e2y2/2

A2p

3AS~dV2x!~V1c11x1c12y!k. ~A13!

The integration overy becomes trivial, now, as it corre
sponds to evaluating the moments of a normal distributi
The evaluation forkP$0,1% involves only the first two mo-
ments, which equal to 1 and 0, hence the integration ovy
in those cases results just in the elimination of the integ
over y andy-containing terms from the expression above.

The coefficientc11 reads

c115
coswcosc

Al1

2
sinw sinc

Al2

5
kAuu82u

AS
. ~A14!

Hence, forkP$0,1% we obtain

Bk5E
x,dV

dx
e2x2/2

A2p
S~dV2x!S V

AS
1

kAuu82u

S
xD k

.

~A15!

Note that the integration ofJ, which is necessary to obtai
the Boltzmann factorB, leads to the same expression wi
the last factor under the integral being replaced by

S V8

AS
1

u82kAuu8

S
xD k

.

The remaining task is to evaluate the ‘‘incomplete m
ments’’ of the normal distribution, which can be express
through the normal distributionsN(x) and error functions
E(x) @see notations~21! and ~22!#. Applying the formulas

E
x,a

dxN~x!5E~a!, ~A16!

E
x,a

dxxN~x!52N~a!, ~A17!

E
x,a

dxx2N~x!52aN~a!1E~a! ~A18!

to the integral above, one obtains the desired express
~18!–~20! for the Boltzmann factors.
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