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Nature of transitions in augmented discrete nonlinear Schro¨dinger equations

R. E. Amritkar* and V. M. Kenkre
Center for Advanced Studies and Department of Physics, University of New Mexico, Albuquerque, New Mexico 87131

~Received 15 December 1998!

We investigate the nature of the transitions between free and self-trapping states occurring in systems
described by augmented forms of the discrete nonlinear Schro¨dinger equation. These arise from an interaction
between a moving quasiparticle~such as an electron or an exciton! and lattice vibrations, when the effects of
nonlinearities in interaction potential and restoring force are included. We derive analytic conditions for the
stability of the free state and the crossover between first- and second-order transitions. We demonstrate our
results for different types of nonlinearities in the interaction potential and restoring force. We find that,
depending on the type of nonlinearity, it is possible to have both first- and second-order transitions. We discuss
possible hysteresis effects.@S1063-651X~99!13305-1#

PACS number~s!: 64.60.2i, 05.70.Fh, 71.38.1i, 05.45.2a
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I. INTRODUCTION

The discrete nonlinear Schro¨dinger equation,

i\
dcm

dt
5(

n
Vmncn2xucmu2cm , ~1.1!

has appeared in many contexts in recent years@1–3# in the
description of the motion of quasiparticles. Typically,cm is
the amplitude of the system to be in stateum&, Vmn are
intersite transfer-matrix elements describing the linear e
lution among statesum&, andx is the nonlinearity parameter
The microscopic origin and the precise extent of validity
Eq. ~1.1! have come under close scrutiny recently@4–6#.
However, Eq.~1.1! continues to be considered as a use
starting point for transport investigations. It is generally a
sumed that Eq.~1.1! may be written down as arising from th
following coupled equations of motion:

i\
dcm

dt
5(

n
Vmncn1E0xmcm , ~1.2!

d2xm

dt2
1v2xm1Sucmu250. ~1.3!

Here,xm is a vibrational displacement andv is the frequency
of the vibration, and the last terms in the right-hand side
Eq. ~1.2! and the left-hand side of Eq.~1.3! describe the
interaction of the vibrations with the quasiparticle,E0 andS
being appropriate constants. Time-scale disparity argum
lead to Eq.~1.1!, the nonlinearity parameterx being equal to
E0S/v2.

Generalizations of these results have been shown to a
@3,7,8# when account is taken of the fact that molecular
cillators are not generally governed by linear~Hooke’s type!
restoring forces, and that the interaction energy is gener

*Permanent address: Physical Research Laboratory, Navrang
Ahmedabad 380009, India.
PRE 591063-651X/99/59~6!/6306~6!/$15.00
-

f

l
-

f

ts

ise
-

lly

nonlinear in the oscillator displacement. The generalizati
of Eqs.~1.2! and ~1.3! lead to@3,7,8#

i\
dcm

dt
5(

n
Vmncn1E~xm!cm , ~1.4!

d2xm

dt2
1v2f ~xm!1RE8~xm!ucmu250. ~1.5!

The nonlinearities in Eqs.~1.4! and ~1.5! can give rise to
exotic behavior as shown earlier@3,7,8# including the de-
struction of self-trapping on increasing nonlinearity. In the
cases, as the nonlinearity parameter is increased, we firs
a transition to a self-trapping state. But, as the nonlinea
parameter is further increased, the self-trapping state is
stroyed with a resulting extended or free quasiparticle.

In the present paper we investigate thenatureof the free
to self-trapping transition for the case of a dimer when g
eralized forms of the discrete nonlinear Schro¨dinger equation
such as Eqs.~1.4! and ~1.5! are operative. We show that,
the transition is of first-order, hysteresis effects will be o
served as the nonlinearity parameter is increased and
decreased through the transition point. We derive a gen
analytic condition for the point in parameter space where
second-order transition turns into a first-order transition
the parameters are varied. We demonstrate this effect by
sidering several forms of nonlinearities inf (xm) andE(xm).

II. TRANSITION BETWEEN EXTENDED
AND SELF-TRAPPING STATES

Following the steps described in Ref.@7#, one may write,
under the assumption of time-scale disparity in Eqs.~1.4!
and ~1.5!, a closed equation for the quasiparticle amplitu
cm ,

i\
dcm

dt
5(

n
Vmncn2h~ ucmu2!cm , ~2.1!

where h(ucmu2) is simply 2E(xm), the quantityxm being
expressed as a function ofucmu2 obtained as a solution of
ra,
6306 ©1999 The American Physical Society



o
th

n

e

a
g

f a

ic

ing

n

n

in-
elf-
d
f
he
ing

o be

on-

int
-

lf-
ble
ble.

free

PRE 59 6307NATURE OF TRANSITIONS IN AUGMENTED DISCRETE . . .
f ~xm!52~R/v2!E8~xm!ucmu2. ~2.2!

Further, for the case of a dimer (m51,2), a closed evolution
equation for the probability differencep5uc1u22uc2u2 re-
sults @7#:

d2p

dt2
52

dU~p!

dp
, ~2.3!

U~p!52V2p21g~p!@ 1
2 g~p!2g~p0!12Vr0#. ~2.4!

The functionU(p) can be viewed as the potential energy
a fictitious classical oscillator whose displacement is
probability differencep. In Eq. ~2.4!, the functiong(p) is
given, up to an arbitrary constant, by

dg~p!

dp
5hS 11p

2 D2hS 12p

2 D , ~2.5!

and p0 , q0, and r 0 are the initial values ofp, and of q
5 i (c1* c22c2* c1) and r 5c1* c21c2* c1, respectively, and we
have put\51.

The stationary states can be analyzed@8# in a simpler
manner. Thus,ps , the value of the probability difference i
the stationary states obeys

2Vps56A12ps
2Fdg~p!

dp G
p5ps

. ~2.6!

We would now like to point out that the stability of th
stationary solutions of Eq.~2.6! with q50 can be decided
simply by considering the eigenvalues of the matrix,

S 0 2V 0

22V2g9r 0 g8

0 g8 0
D , ~2.7!

where the primes refer to derivatives with respect to the
gument. This stability matrix is obtained using the followin
equations forp, q, andr @7#:

dp

dt
52Vq,

dq

dt
522Vq2r

dg

dp
,

dr

dt
5q

dg

dp
.

The stationary solution is stable provided the real parts o
the eigenvalues of the matrix~2.7! are negative or zero.

Consider the extended or free polaron solution, wh
corresponds tops50, and is always a solution of Eq.~2.6!.
The stability of this solution can be studied by consider
the eigenvalues of the matrix~2.7!. An equivalent procedure
is to equate the slopes of the two sides of Eq.~2.6! at ps
50. The condition for the transition between the stable a
unstable free polaron states is given by
f
e

r-

ll

h

d

g9~0!5h8~ 1
2 !52V. ~2.8!

The functionh and its derivatives will, in general, depend o
the nature of nonlinearities. Ash8(1/2) increases with the
nonlinearity parameter, and crosses the value 2V, we get a
transition from a free to a self-trapping state. As the nonl
earity parameter further increases, it is possible that the s
trapping state is destroyed ifh8(1/2) decreases again an
falls below the value 2V. An interesting situation arises i
h8(1/2),2V for all values of the parameters. In this case t
free state is always stable and, in general, the self-trapp
state will not be obtained except in some special cases t
discussed afterwards.

An alternative way of expressing Eq.~2.8!, although per-
haps not particularly transparent, is

R„E8~x!…2

v2f 8~x!1
R

2
E9~x!

52V, ~2.9!

wherex is given by the solution ofv2f (x)52(R/2)E8(x).
What is the nature of the transition when condition~2.8!

is satisfied? To answer this question it is necessary to c
sider the nature of the plot of the right-hand side of Eq.~2.6!,
sayG(ps), as a function ofps .

G~ps!5A12ps
2Fdg~p!

dp G
p5ps

. ~2.10!

Schematic plots ofG and 2Vps versusps near the first-order
and second-order transitions in the vicinity of the po
where condition~2.8! is satisfied, are shown in Fig. 1. Ex
panding the functionG in Taylor series for smallps , we get

FIG. 1. Schematic plots of the graphical solution to Eq.~2.6!.
The plots~a!, ~b!, and~c! show the graphs ofG(ps) and 2Vps as a
function of ps near a second-order transition from a free to a se
trapping state.~a! shows the situation when the free state is sta
while ~c! shows the situation when the self-trapping state is sta
~b! shows the plot at the transition. The plots~d!, ~e!, and ~f! cor-
respond to the situation near a first-order transition when the
state changes from a stable to an unstable state.~d! shows the plot
when the free state is stable while~f! shows the plot when it is
unstable.~e! represents the transition. Note that the condition~2.8!
is satisfied in both~b! and~e!. The crossover between~b! and~e! is
given by the condition~2.12!.
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G;g9~0!ps1S g99~0!

6
2

g9~0!

2 D ps
31 . . . , ~2.11!

where we have usedg8(0)5g-(0)50 @see Eq.~2.5!#. The
crossover between the second-order and first-order tra
tions is obtained when the second term on the right-hand
of the above Taylor expansion is zero. Using Eqs.~2.8! and
~2.11!, the condition for the crossover is given by

g99~0!5
h-~1/2!

4
56V, ~2.12!

where the relation between the derivatives ofg andh is ob-
tained using Eq.~2.5!. Note that the condition~2.12! ob-
tained above corresponds to the crossover between Figs.~b!
and 1~e!. When both the conditions~2.8! and ~2.12! are sat-
isfied, we get a crossover from a second-order transition
tween the free and self-trapping states to a first-order tra
tion between these states. The second-order transitio
obtained whenh-(1/2),24V andh8(1/2)52V.

For the case of a first-order transition, experimental m
nipulation of hysteresis effects is possible in principle if t
nonlinearity parameter can be controlled experimenta
One end of the hysteresis loop is given by Eq.~2.8! while the
other end is obtained as the simultaneous solution of
~2.6! and of

2V5
1

2 Fh8S 11ps

2 D1h8S 12ps

2 D G~12ps!
3/2. ~2.13!

Within these two extremes both the free and self-trapp
states will be stable. The point at which the actual first-or
phase transition occurs can be calculated by equating
potential energies of the free and self-trapping states u
Eq. ~2.4! for the fictitious oscillator with displacementps .

III. EXAMPLES

We now consider several examples that illustrate how
nonlinearities affect the transition between free and s
trapping states and how interesting crossover aspects o
between the first- and second-order transitions.

A. Harmonic linear case

For the case of harmonic potential and linear interact
@see Eq.~1.1!#,

h~ ucu2!5xucu2. ~3.1!

Condition ~2.8! gives x52V. Thus the free state become
unstable giving a self-trapping state asx is increased beyond
2V and remains in the self-trapping state for larger values
x. Condition~2.12! is never satisfied~except forV50) and
hence the transition to self-trapping state is always seco
order.

B. Rotational polaron

Consider the system termed a rotational polaron by K
kre et al. @7# whereinx is a rotation rather than a vibratio
and, therefore, denoted by an angle variableu. The system
could be an electron/exciton moving among the sitesm of a
si-
de

e-
i-
is

-

.

q.

g
r

he
g

e
f-
cur

n

f

d-

-

chain, there being a rotator~for example, a dipole! at each
sitem whose angle from a fixed direction isu. The choice of
an identical sinusoidal dependence onu for both the restor-
ing force and the interaction energy,

f ~u!5
sin~Lu!

L
,

E~u!5
E0

L
sin~Lu!, ~3.2!

are known@7# to lead to

h~ ucu2!5
xucu2

A11~x/D!2ucu4
. ~3.3!

whereD5E0 /L andx5E0
2R/v2. The limit L→0 gives the

standard linear harmonic case. Here the oscillator potenti
@12cos(Lu)#/L2.

We apply our condition~2.8! for the transition to self-
trapping state and obtain

h8S 1

2D5
x

F11S x

2D D 2G3/252V. ~3.4!

First we note that the maximum ofh8(1/2) occurs at
(x/D)252. If the maximum value ofh8(1/2) is less than
2V, the self-trapping state isneverobtained. This gives the
condition for the existence of self-trapping state as (D/V)2

.27/4. This is the same condition as obtained by Wu a
Kenkre @8# through a more elaborate procedure of solving
cubic equation. We also note that, for (D/V)2.27/4, Eq.
~3.4! has two solutions as the nonlinearity parameterx is
varied. To determine the order of the transition, we use
second condition~2.12! to obtain

h-S 1

2D53x~x/D!2
~x/D!221

@11~x/2D!2#7/2
524V. ~3.5!

Using Eqs.~3.4! and ~3.5!, we find that the crossover be
tween first-order and second-order transitions is obtai
when

~x/V!254~11a!2, ~D/V!25~11a!3/a,

a5~31A21!/6 . ~3.6!

Figure 2 shows the phase-space plot of the system~3.2! in
the D/V versusx/V plane. The solid lines represent th
second-order transition while the dashed line correspond
the first-order transition. We notice that the free to se
trapping transition asx is increased, is always second ord
while the self-trapping to free transition~reentrant transition!
can be first-orderor second-order. The two dash-dot lines o
either side of the first-order transition show the parame
range where both the free and self-trapping states are s
and thus hysteresis effects may be observed as the nonlin
ity parameterx is varied.

Figure 3 shows the plot of the stationary solutionsps as a
function of the nonlinearity parameterx/V for two different
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values of D/V showing both first-order and second-ord
transitions. Note that, for the first-order transition, we w
observe a hysteresis loop as the nonlinearity paramete
varied.

It is interesting to note that the form of the functio
h(ucu2) in Eq. ~3.3! is very general and can be obtained f
other types of nonlinearities also. Consider the case wh
the oscillator potential is@12sech(Lx)#/L2, and

f ~x!5
1

L
sech~Lx!tanh~Lx!,

FIG. 2. Plot of the phase diagram for the rotational polaron w
sinusoidal nonlinearities in the parameter space,V/D versusx/D,
showing the regions of free and self-trapping states denoted
and II, respectively. The solid line corresponds to a second-o
transition while the dashed line corresponds to a first-order tra
tion. The dash-dot lines on either side of the first-order transi
enclose the region of hysteresis effects~denated by III! where both
free and self-trapping states are stable.

FIG. 3. Plot of the stationary-state probability differenceps ver-
sus the parameterx/V showing the onset of self-trapping followe
by its disappearance on increasing nonlinearity for the rotatio
polaron. Curves~a! and~b! correspond toD/V52.8 and 6, respec
tively. In ~a! the transition corresponding to the disappearance
self-trapping is of second order while in~b! it is of first order. The
stable states are shown by solid line while the unstable states
shown by dashed lines. The region of stability of the free st
(ps50) is shown only forD/V56 ~curve b!.
is

re

E~x!5
E0

L
tanh~Lx!. ~3.7!

It is easy to verify that the form of the functionh(ucu2) is the
same as Eq.~3.3!. More general nonlinear functions may b
written with the oscillator potential@12cn(Lxuk)#L2, and

f ~x!5
1

L
sn~Lxuk!dn~Lxuk!,

E~x!5
E0

L
sn~Lxuk!, ~3.8!

where cn and sn are Jacobian elliptic functions with the
liptic modulusk. If k50, the functions cn and sn are, respe
tively, cos and sin@Eqs.~3.2#. If k51, they are, respectively
sech and tanh. Again, using the properties of Jacobian e
tic function, it is possible to show thath(ucu2) has the same
form as in Eq.~3.3!. Thus the phase diagram is similar to th
of Fig. 2.

C. Logarithmically hard oscillator

Consider an oscillator, which behaves normally for sm
displacementsx ~simple harmonic!, while it has a hard spring
force for large displacements. Such an oscillator has b
modeled by the following oscillator potentialU(x) @9,10#:

U~x!5ka~a2uxu!F lnS 12
uxu
a D1uxuG . ~3.9!

Note that this potential is defined only foruxu,a and it re-
duces to the harmonic potential1

2 kx2 for small x. As uxu
→a, the potential diverges. The nonlinear functionf (x) is
given by

f ~x!5H 2ka lnS 12
x

aD for x.0

ka lnS 11
x

aD for x,0 ,

~3.10!

and the interaction will be taken to be linear, i.e.,E(x)
5E0x. The functionh has then an exponential form@9,10#:

h~ ucu2!5x0~12e2(x/x0)ucu2!, ~3.11!

where the nonlinearity parameterx and the saturation param
eterx0 are given by

x5
GE0

k
, x05E0a. ~3.12!

Condition ~2.8! for the transition to self-trapping state give

h8~ 1
2 !5xe2x/2x052V. ~3.13!

The results are very similar to the sinusoidal nonlinearit
considered in the previous subsection. By considering
maxima ofh8(1/2) we find that the self-trapping state do
not exist if (x0 /V),e. For (x0 /V).e, Eq. ~3.13! has two
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n
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f
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solutions as the nonlinearity parameterx is varied. The sec-
ond condition~2.12! which determines the order of the tra
sition, gives

h-~ 1
2 !5

x3

x0
2 e2 x / 2x0524V. ~3.14!

Equations~3.13! and ~3.14! give us the following condition
for the crossover between first-order and second-order t
sition:

V

x0
5A3e2A3,

x

x0
52A3. ~3.15!

Figure 4 shows the phase-space plot in thex0 /V versusx/V
plane. The behavior is very similar to the one observed
the sinusoidal potential case treated in the previous sub
tion ~Fig. 2!.

D. Logarithmically soft oscillator

Consider an oscillator, which behaves normally for sm
displacementsx ~simple harmonic!, while it has asoftspring
force for large displacements. We model this by the follo
ing oscillator potentialU(x):

U~x!5ka~a1uxu!F lnS 11
uxu
a D2uxuG . ~3.16!

The nonlinear functionf (x) is given by

f ~x!5H ka lnS 11
x

aD for x.0

2ka lnS 12
x

aD for x,0.

~3.17!

FIG. 4. Plot of the phase diagram for the logarithmically ha
potential in the parameter space,x0 /V versusx/V, showing the
regions of free and self-trapping states shown by I and II, resp
tively. The solid line corresponds to a second-order transition w
the dashed line corresponds to a first-order transition. The dash
lines on either side of the first-order transition enclose the regio
hysteresis effects~region III!.
n-

r
c-

ll

-

We take the interaction to be linear, i.e.,E(x)5E0x. The
function h has the form,

h~ ucu2!5x0~e(x/x0)ucu221!, ~3.18!

where we have introduced the nonlinearity parameterx
5GE0 /k and the saturation parameterx05ka. Condition
~2.8! for the transition to self-trapping state gives

h8~ 1
2 !5xex/2x052V. ~3.19!

We note thath8(1/2) is a monotonically increasing functio
of x and has a solution for all values ofV. This is similar to
the case of simple harmonic oscillator. However, unlike
simple harmonic oscillator, the transition in this case can
both first- and second-order. The second condition~2.12!,
which determines the order of the transition, gives

h-~ 1
2 !5

x3

x0
2
ex/2x0524V. ~3.20!

Equations~3.19! and ~3.20! give us the following condition
for the crossover between first-order and second-order t
sition:

V

x0
5A3eA3,

x

x0
52A3, ~3.21!

Figure 5 shows the phase-space plot in theV/x0 versusx/x0
plane. Figure 6 shows the plot of the stationary statesps as a
function of x/x0 for two different values ofV/x0 showing
both the second- and the first-order transitions.

Before we conclude this section, we note that in the ca
when the free state never loses its stability as the nonlinea
parameter is varied, it is still possible that the self-trapp
state is stable in some parameter range. As an example,
sider the following form of the functionh:

c-
e
ot

of

FIG. 5. Plot of the phase diagram for the logarithmically s
potential in the parameter space,V/x0 versusx/x0, showing the
regions of free and self-trapping states shown by I and II, resp
tively. The solid line corresponds to a second-order transition w
the dashed line corresponds to a first-order transition. The dash
lines on either side of the first-order transition enclose the regio
hysteresis effects~region III!.
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h~ ucu2!5x0~e(x/x0)[ ucu220.05(x/x0)]21!. ~3.22!

Let V/x059. In this case, the free state is always stable si
condition~2.8! is not satisfied for any value of the nonlinea
ity parameterx. The self-trapping state is stable betwe
x/x057.238 . . . to 11.520 . . . . Theplot of the stationary
statesps as a function ofx/x0 will show two closed loops on
either sides ofps50 axes. However, we expect that the typ
of function h as in Eq.~3.22! correspond to exotic forms o

FIG. 6. Plot of the stationary-state probability differenceps ver-
sus the parameterx/x0 showing the onset of self-trapping for th
logarithmically hard potential. Curves~a! and ~b! correspond to
V/x051 and 25, respectively. In~a! the transition corresponding t
the free to self-trapping state is of second-order while in~b! it is of
first-order. The stable states are shown by solid lines while
unstable states are shown by dashed lines. The region of stabili
the free state (ps50) is shown only forV/x0525 ~curve b!.
d
d
er

in

s
ko
e

nonlinearities in the interaction potential and anharmonicit
of vibrations and are unlikely to be physically relevant. F
example, the unharmonic potential, which gives the funct
h in Eq. ~3.22!, is a sum of a linear term proportional touxu
and a logarithmically soft potential.

IV. CONCLUDING REMARKS

We have investigated the nature of the free to se
trapping transition relevant to the effect of nonlinearities
the interaction potential and anharmonicities in the restor
force in a system consisting of quasiparticles interacting w
vibrations. We have given explicit calculations for the tw
site system. We have determined the phase diagram of
system in parameter space. The regions of free and s
trapping states have been clearly identified. We have sh
how the nature of the transition between these states ca
determined. The first-order transition shows hysteresis
fects as the parameter is varied. We have illustrated our
sults using several examples. For the rotational polaron w
sinusoidal interaction we have found that the transition
volving the onset of the self-trapping state is second-or
but that the one corresponding to the destruction of the s
trapping state could be first-order or second-order. The s
conclusions emerge for the logarithmically hard oscilla
potential. For the logarithmically soft potential we hav
found that the transition for the onset of the self-trappi
state can be both first order or second order. There is
destruction of the self-trapping state in this case.
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