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Nature of transitions in augmented discrete nonlinear Schrdinger equations
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(Received 15 December 1998

We investigate the nature of the transitions between free and self-trapping states occurring in systems
described by augmented forms of the discrete nonlinear 8iiger equation. These arise from an interaction
between a moving quasiparticisuch as an electron or an excijand lattice vibrations, when the effects of
nonlinearities in interaction potential and restoring force are included. We derive analytic conditions for the
stability of the free state and the crossover between first- and second-order transitions. We demonstrate our
results for different types of nonlinearities in the interaction potential and restoring force. We find that,
depending on the type of nonlinearity, it is possible to have both first- and second-order transitions. We discuss
possible hysteresis effec{$1063-651X99)13305-1
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[. INTRODUCTION nonlinear in the oscillator displacement. The generalizations
of Egs.(1.2) and(1.3) lead t0[3,7,9|
The discrete nonlinear Schiimger equation,
dc

d ifi — =2 VinrCo+ E(Xm) C, (1.4
. Cm 2 dt n
if dt :En: anCn_X|Cm| Cm>» (1.0
me 2f ’ 2__
has appeared in many contexts in recent yéass3] in the az ¢ (Xm) + RE' (Xm) | *=0. 1.5

description of the motion of quasiparticles. Typicalty, is
the amplitude of the system to be in stdta), V,,, are
intersite transfer-matrix elements describing the linear evo
lution among stategn), andy is the nonlinearity parameter.
The microscopic origin and the precise extent of validity of
Eqg. (1.1) have come under close scrutiny recenft-6].

The nonlinearities in Eqs(1.4) and (1.5 can give rise to
exotic behavior as shown earli¢€8,7,8 including the de-
struction of self-trapping on increasing nonlinearity. In these
cases, as the nonlinearity parameter is increased, we first get

X X a transition to a self-trapping state. But, as the nonlinearity
However, Eq.(1.1) continues to be considered as a useful,ameter is further increased, the self-trapping state is de-
starting point for transport investigations. It is generally as-

’ > stroyed with a resulting extended or free quasiparticle.
sumeq that Eq(1.1) may be written dpwn as arising fromthe ] the present paper we investigate tiaure of the free
following coupled equations of motion:

to self-trapping transition for the case of a dimer when gen-
de eralized forms of the discrete nonlinear Sainger equation
L such as Eqgs(1.4) and(1.5 are operative. We show that, if
K dt _; VimrCn+ EoXmCm, (1.2 the transition is of first-order, hysteresis effects will be ob-
served as the nonlinearity parameter is increased and then
d2x decreased through the transition point. We derive a general
4 02X+ S|y 2=0. (1.3  analytic condition for the point in parameter space where the
t2 second-order transition turns into a first-order transition as
the parameters are varied. We demonstrate this effect by con-
Here,x,, is a vibrational displacement anglis the frequency Sidering several forms of nonlinearities fifix,,) andE(x,).
of the vibration, and the last terms in the right-hand side of

Eqg. (1.2 and the left-hand side of Ed1.3) describe the II. TRANSITION BETWEEN EXTENDED
interaction of the vibrations with the quasiparticl®, andS AND SELF-TRAPPING STATES

being appropriate constants. Time-scale disparity arguments ) ) ) ,
lead to Eq(1.1), the nonlinearity parameter being equal to Following the steps described in R¢T], one may write,
EoS/ w?. under the assumption of time-scale disparity in E(s4)

Generalizations of these results have been shown to arig¥'d (1.9, a closed equation for the quasiparticle amplitude

[3,7,8 when account is taken of the fact that molecular 0s-m>

cillators are not generally governed by lindaiooke’s type

restoring forces, and that the interaction energy is generally iﬁ%zg VorCn—h(lCm/2)Cm, 2.1)
n

*Permanent address: Physical Research Laboratory, Navrangpushere h(|cm/?) is simply —E(xy), the quantityx,, being
Ahmedabad 380009, India. expressed as a function fif,,|? obtained as a solution of
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f(Xm) == (RI©?)E’ (Xm)[C| % (2.2
Further, for the case of a dimem& 1,2), a closed evolution
equation for the probability differencp=|c,|?>—|c,|? re-
sults[7]:

d’p  dU(p)
U(p)=2V2p?+g(p)[39(p) —g(po) +2Vrel. (2.9

The functionU(p) can be viewed as the potential energy of
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a fictitious classical oscillator whose displacement is the g 1. Schematic plots of the graphical solution to E26).

probability differencep. In Eq. (2.4), the functiong(p) is
given, up to an arbitrary constant, by

dg(p) 1-p
dp " _h< 2 )

and py, 4o, andry are the initial values of, and of q
=i(cic,—c3cq) andr=cjc,+chcy, respectively, and we
have puti=1.

The stationary states can be analyZ&} in a simpler
manner. Thusps, the value of the probability difference in
the stationary states obeys

dg(p)
2Vps==* \/1—p§[d—p} .
P=ps

1+p
2

(2.9

(2.9

We would now like to point out that the stability of the
stationary solutions of Eq2.6) with =0 can be decided
simply by considering the eigenvalues of the matrix,

0 2v. 0
-2v-gr 0 4g'], 2.7
0 g o0

where the primes refer to derivatives with respect to the ar-
gument. This stability matrix is obtained using the following

equations fomp, g, andr [7]:

dp
a—ZVq,

dqg dg
a——ZVq—rd—p,
dr_ dg
dat Ydp:

The plots(a), (b), and(c) show the graphs d&(ps) and 2/p; as a
function of pg near a second-order transition from a free to a self-
trapping state(a) shows the situation when the free state is stable
while (c) shows the situation when the self-trapping state is stable.
(b) shows the plot at the transition. The pldth, (e), and(f) cor-
respond to the situation near a first-order transition when the free
state changes from a stable to an unstable sdteshows the plot
when the free state is stable whit® shows the plot when it is
unstable(e) represents the transition. Note that the conditi18)

is satisfied in botl{b) and(e). The crossover betwedh) and(e) is
given by the condition2.12).

g"(0)=h"(3)=2V. (2.9

The functionh and its derivatives will, in general, depend on
the nature of nonlinearities. Als’(1/2) increases with the
nonlinearity parameter, and crosses the valile ®e get a
transition from a free to a self-trapping state. As the nonlin-
earity parameter further increases, it is possible that the self-
trapping state is destroyed if' (1/2) decreases again and
falls below the value ¥. An interesting situation arises if
h'(1/2)<2V for all values of the parameters. In this case the
free state is always stable and, in general, the self-trapping
state will not be obtained except in some special cases to be
discussed afterwards.

An alternative way of expressing E(.8), although per-
haps not particularly transparent, is

R(E'(x))?

=2V, (2.9

R
w’f’(X)+ EE"(x)

wherex is given by the solution 0f2?f(x) = — (R/2)E’'(X).
What is the nature of the transition when conditi@8)

is satisfied? To answer this question it is hecessary to con-

sider the nature of the plot of the right-hand side of &6),

sayG(ps), as a function ofs.

The stationary solution is stable provided the real parts of all
the eigenvalues of the matri2.7) are negative or zero.
Consider the extended or free polaron solution, which
corresponds t@,=0, and is always a solution of E(R.6).
The stability of this solution can be studied by considering
the eigenvalues of the matri2.7). An equivalent procedure Schematic plots o6 and 2V p; versusp, near the first-order
is to equate the slopes of the two sides of EZj6) at p; and second-order transitions in the vicinity of the point
=0. The condition for the transition between the stable andvhere condition(2.8) is satisfied, are shown in Fig. 1. Ex-
unstable free polaron states is given by panding the functioi&s in Taylor series for smalp,, we get

dp (2.10

d
G(py) = m—pz[ﬂ

L=ps
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g”(0) g"(0) 5 chain, there being a rotatdfor example, a dipoleat each
G~g"(0)ps+( 6 T) pst ..., (211  sitemwhose angle from a fixed direction # The choice of
an identical sinusoidal dependence @ffor both the restor-
where we have useg’ (0)=g”(0)=0 [see Eq.2.5]. The ing force and the interaction energy,
crossover between the second-order and first-order transi-

tions is obtained when the second term on the right-hand side — Sin(A 9) ,
of the above Taylor expansion is zero. Using E@s8) and A
(2.11), the condition for the crossover is given by E
0 .
h///(ll ) E(6)=XSIH(A0), (32)
g”(0)= 7 =6V, (2.12
are known[7] to lead to

where the relation between the derivativeggadndh is ob-
tained using Eq(2.5). Note that the conditior(2.12 ob- xlc|?

2y —
tained above corresponds to the crossover between Rhys. 1 h(lel®)= 1+( /A)2|c|4' 3-3
and Xe). When both the condition.8) and(2.12 are sat- X
isfied, we get a crossover from a second-order transition beyhereA =E,/A and y= E2R/w?. The limit A—0 gives the

tween the free and self-trapping states to a first-order transkiangard linear harmonic case. Here the oscillator potential is
tion between these states. The second-order transition f§ _ cog g)]/A2

obtained wherh”(1/2)<24V andh’(1/2)=2Vv. We apply our condition(2.8) for the transition to self-
For the case of a first-order transition, experimental mayapping state and obtain
nipulation of hysteresis effects is possible in principle if the

nonlinearity parameter can be controlled experimentally. 1 X
One end of the hysteresis loop is given by Ef8) while the h' (5) = r——F—5ap=2V. (3.9
other end is obtained as the simultaneous solution of Eg. 1+ L)
(2.6) and of 24
1 1+ps 1-ps First we note that the maximum o’ (1/2) occurs at
2V=§[h'( 5 )th' 5 ”(1—%)3/2- (213 (x/A)?=2. If the maximum value oh’(1/2) is less than

2V, the self-trapping state iseverobtained. This gives the
Within these two extremes both the free and self-trappingsondition for the existence of self-trapping state a¢\()?
states will be stable. The point at which the actual first-order> 27/4. This is the same condition as obtained by Wu and
phase transition occurs can be calculated by equating théenkre[8] through a more elaborate procedzure of solving a
potential energies of the free and self-trapping states usingubic equation. We also note that, foA/V)“>27/4, Eq.

Eq. (2.4) for the fictitious oscillator with displacemept,. 3.4) has two solutions as the nonlinearity paramegeis
varied. To determine the order of the transition, we use our
IIl. EXAMPLES second conditiorf2.12 to obtain
We now consider several examples that illustrate how the a1 5 (x/A)?—1
nonlinearities affect the transition between free and self- h 5 =3x(x/A) 272 (3.9
: . . [1+(x/2A)7]
trapping states and how interesting crossover aspects occur
between the first- and second-order transitions. Using Egs.(3.4) and (3.5), we find that the crossover be-
tween first-order and second-order transitions is obtained
A. Harmonic linear case when
For the case of harmonic potential and linear interaction 2_ 2 2_ 3
=4(1+ =(1+
[see Eq(1.1)], (xIV)?=4(1+a)?, (AIV)*’=(1+a)%a,
h(|C|2):X|C|2 (31) a=(3+ \/ﬁ)/G (36)

Condition (2.8 gives y=2V. Thus the free state becomes  Figure 2 shows the phase-space plot of the sys&ain
unstable giving a self-trapping state ass increased beyond e A/V versusy/V plane. The solid lines represent the
2V and remains in the self-trapping state for larger values of€c0Nnd-order transition while the dashed line corresponds to
x. Condition(2.12 is never satisfiedexcept forv=0) and the first-order transition. We notice that the free to self-

hence the transition to self-trapping state is always second/@PPing transition ag is increased, is always second order
order. while the self-trapping to free transitidneentrant transition

can be first-ordeor second-order. The two dash-dot lines on

either side of the first-order transition show the parameter

range where both the free and self-trapping states are stable
Consider the system termed a rotational polaron by Kenand thus hysteresis effects may be observed as the nonlinear-

kre et al. [7] whereinx is a rotation rather than a vibration ity parametery is varied.

and, therefore, denoted by an angle varialérhe system Figure 3 shows the plot of the stationary solutignsas a

could be an electron/exciton moving among the sitesf a  function of the nonlinearity parametg/V for two different

B. Rotational polaron
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8 T T T 7 1 T E0
7 //,/ E(x)= Xtanr(Ax). (3.7
7H 7 e .
/ . e
I Jopi 7 It is easy to verify that the form of the functidr(|c|?) is the
6 - ;o . same as Eq3.3). More general nonlinear functions may be
vl written with the oscillator potentigll —cn(Ax|k)JA?, and
= e i
TN 1
yz f(0=TsnAXK) dn(Ax]K),
4 ¥ I .
/4
Eo
3f - E(x)= Xsr(Ax|k), (3.9
9 1 1 1 1 1 | 1

0 10 20 30 40 30 60 70 30 \{vhfare cn and sn are Jacobian glliptic functions with the el-
XV liptic modulusk. If k=0, the functions cn and sn are, respec-
tively, cos and sifEgs.(3.2]. If k=1, they are, respectively,
FIG. 2. Plot of the phase diagram for the rotational polaron withsech and tanh. Again, using the properties of Jacobian ellip-
sinusoidal nonlinearities in the parameter spaée) versusy/A, tic function, it is possible to show thehll(|c|2) has the same

showing the regions of free and self-trapping states denoted by form as in Eq(3.3). Thus the phase diagram is similar to that
and II, respectively. The solid line corresponds to a second-ordepf Fig. 2.

transition while the dashed line corresponds to a first-order transi-
tion. The dash-dot lines on either side of the first-order transition
enclose the region of hysteresis effe@enated by Il where both
free and self-trapping states are stable. Consider an oscillator, which behaves normally for small

. , displacementg (simple harmonig while it has a hard spring
values of A/V showing both first-order and second-order ¢, .o or |arge displacements. Such an oscillator has been

transitions. Note that, for the f|rst-0rder_ tran_3|t|0n, we will modeled by the following oscillator potentia(x) [9,10]:
observe a hysteresis loop as the nonlinearity parameter IS

C. Logarithmically hard oscillator

varied. X
It is interesting to note that the form of the function Ux)=ka(a—|x|) In(l—u)+|x| . (3.9
h(|c|?) in Eq. (3.3 is very general and can be obtained for a

other types of nonlinearities also. Consider the case wher

the oscillator potential i§1— sech(\x) /A2, and Rote that this potential is defined only fix|<a and it re-

duces to the harmonic potentigkx? for small x. As |x|

1 —a, the potential diverges. The nonlinear functibfx) is
f(x) = secliAx)tani(Ax), given by
1 T T T T T T T T X
08 — —kaln 1—5 for x>0
' f(x)= :
0.6 |- - (x) X (3.19
kaln| 1+ — for x<O0,
04 na b . a
02 _m ] and the interaction will be taken to be linear, i.&(x)
= 0 :‘ =Eyx. The functionh has then an exponential forf8,10]:
02 ' - )
o4l i h(lc|?) = xo(1—e Wxalel), (3.11)
-0.6 [ . where the nonlinearity parametgrand the saturation param-
08| T 4 eter o are given by
2
-1 1 1 1 1 1 1 1 1 GEO
0 5 10 15 20 25 30 35 40 45
XV X= " Xo=Eoa. (3.12

FIG. 3. Plot of the stationary-state probability differenxever-
sus the parametey/V showing the onset of self-trapping followed
by its disappearance on increasing nonlinearity for the rotational
polaron. Curvega) and(b) correspond ta\/V=2.8 and 6, respec-
tively. In (a) the transition corresponding to the disappearance of o ) . ) .
self-trapping is of second order while {b) it is of first order. The ~ The results are very similar to the sinusoidal nonlinearities
stable states are shown by solid line while the unstable states ag@nsidered in the previous subsection. By considering the
shown by dashed lines. The region of stability of the free statemaxima ofh’(1/2) we find that the self-trapping state does
(ps=0) is shown only forA/V=6 (curve b. not exist if (yo/V)<e. For (xo/V)>e, Eq.(3.13 has two

Condition (2.8) for the transition to self-trapping state gives

hr(%):Xe*X/zXOZZV_ (3.13
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FIG. 4. Plot of the phase diagram for the logarithmically hard  FIG. 5. Plot of the phase diagram for the logarithmically soft
potential in the parameter space,/V versusy/V, showing the potential in the parameter spacé/y, versusy/xo, showing the
regions of free and self-trapping states shown by | and Il, respecregions of free and self-trapping states shown by | and I, respec-
tively. The solid line corresponds to a second-order transition whildively. The solid line corresponds to a second-order transition while
the dashed line corresponds to a first-order transition. The dash-dtite dashed line corresponds to a first-order transition. The dash-dot
lines on either side of the first-order transition enclose the region ofines on either side of the first-order transition enclose the region of
hysteresis effect&egion IlI). hysteresis effect&egion IlI).

solutions as the nonlinearity paramefers varied. The sec- We take the interaction to be linear, i.&(x)=Eox. The
ond condition(2.12 which determines the order of the tran- functionh has the form,

sition, gives »
h([c|?) = xo(eW I~ 1), (3.18
3
h”’(%):X—2 e X/ 2x0=24v. (3.14  where we have introduced the nonlinearity parameger
Xo =GEy/k and the saturation parametgg=Kka. Condition

) . ) N (2.8 for the transition to self-trapping state gives
Equations(3.13 and(3.14) give us the following condition
for the crossover between first-order and second-order tran- h'(1)= yeX2xo=2v. (3.19
sition:
We note thah’(1/2) is a monotonically increasing function

\ e X 3 of x and has a solution for all values ¥f This is similar to
Xo 3e E_Z 3. (319  the case of simple harmonic oscillator. However, unlike the

simple harmonic oscillator, the transition in this case can be

Figure 4 shows the phase-space plot in ¥géV versusy/V bot.h first- anq second-ordeiThe second_ .condi.tiom2.12),
plane. The behavior is very similar to the one observed folVhich determines the order of the transition, gives

the sinusoidal potential case treated in the previous subsec- 3
tion (Flg 2) h///(%): )(—2eX/2X0:24V. (32@
Xo

D. Logarithmically soft oscillator . . . .
Equations(3.19 and(3.20 give us the following condition

_ Consider an oscillator, which behaves normally for smallfor the crossover between first-order and second-order tran-
displacements (simple harmonif; while it has asoftspring  sjtion:
force for large displacements. We model this by the follow-

ing oscillator potential/(x): Vv = X
—=43e®, =243, 3.2
" Lo=VBed 1 -=2\3 (3.21)

Ux)y=ka(a+|x|)|In 1+% —1|x|]. (3.1

Figure 5 shows the phase-space plot in\Wig, versusy/ xo
plane. Figure 6 shows the plot of the stationary statess a
The nonlinear functiorf(x) is given by function of y/xg for two different values oW/ y, showing
both the second- and the first-order transitions.

Before we conclude this section, we note that in the cases

X
kaln| 1+ 3 for x>0 when the free state never loses its stability as the nonlinearity
f(x)= (3.17 parameter is varied, it is still possible that the self-trapping
_kamnl 1- f) for x<0. state is stable in some parameter range. As an example, con-
a sider the following form of the functioh:
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FIG. 6. Plot of the stationary-state probability differenxever-
sus the parametey/ xo showing the onset of self-trapping for the
logarithmically hard potential. Curve&@) and (b) correspond to
V/xo=1 and 25, respectively. Ifa) the transition corresponding to
the free to self-trapping state is of second-order whiléjnit is of
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nonlinearities in the interaction potential and anharmonicities
of vibrations and are unlikely to be physically relevant. For
example, the unharmonic potential, which gives the function
hin Eqg. (3.22, is a sum of a linear term proportional {x|

and a logarithmically soft potential.

IV. CONCLUDING REMARKS

We have investigated the nature of the free to self-
trapping transition relevant to the effect of nonlinearities in
the interaction potential and anharmonicities in the restoring
force in a system consisting of quasiparticles interacting with
vibrations. We have given explicit calculations for the two-
site system. We have determined the phase diagram of the
system in parameter space. The regions of free and self-
trapping states have been clearly identified. We have shown
how the nature of the transition between these states can be
determined. The first-order transition shows hysteresis ef-
fects as the parameter is varied. We have illustrated our re-
sults using several examples. For the rotational polaron with
sinusoidal interaction we have found that the transition in-

first-order. The stable states are shown by solid lines while the/olving the onset of the self-trapping state is second-order
unstable states are shown by dashed lines. The region of stability &fut that the one corresponding to the destruction of the self-

the free statefs=0) is shown only forV/y,=25 (curve b.

h(|c|?) = xo( WOl ~005kl—1) (3.2

trapping state could be first-order or second-order. The same
conclusions emerge for the logarithmically hard oscillator
potential. For the logarithmically soft potential we have
found that the transition for the onset of the self-trapping

LetV/xo=9. In this case, the free state is always stable sincétate can be both first order or second order. There is no

condition(2.8) is not satisfied for any value of the nonlinear-

ity parametery. The self-trapping state is stable between

X/ xo=7.238... t011.5D.... Theplot of the stationary
stateg, as a function ofy/ xo will show two closed loops on

either sides op;=0 axes. However, we expect that the types

of functionh as in Eq.(3.22 correspond to exotic forms of

destruction of the self-trapping state in this case.
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