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Spin of Dirac’s relativistic membrane

E. Stedile*
The Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom

~Received 12 November 1998!

The Hamiltonian of Dirac’s relativistic membrane is linearized by means of a gauge transformation. It is
pointed out that the membrane spin is6\/2. Furthermore, in a quantum relativistic framework neutrinolike
particles are obtained when the membrane charge vanishes.@S1063-651X~99!02805-6#

PACS number~s!: 05.50.1q, 03.65.Bz, 11.27.1d
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I. INTRODUCTION

The history of membrane theories can be traced back
cades, starting from the papers by Yukawa@1#, Dirac @2#, and
later by Collins and Tucker@3#. Recently the study of mem
branes has enjoyed great interest, due to their formal s
larity to string theories and also because of some attrac
characteristics unique to membranes, such as the idea
their spectrum of excitations is richer than those afforded
strings, and moreover, that a superstring theory is merely
limiting case of a compactified supermembrane. Notable
velopments in the study of extended models for partic
have been considered within the context proposed by Di
where a relativistic membrane should describe an electric
charged particle. Much attention has been focused on th
ries of two-dimensional immersions~relativistic strings! in a
four-dimensional space-time. Also, it is expected that th
superspace extensions may provide a basic theory unif
gauge fields with matter. If we adopt a membrane model
particles where certain interactions with an external field
postulated, then it is possible to find a classical equilibri
configuration about which we can attempt a quantum tre
ment.

Relativistic membranes have been studied on a class
level by several authors@4#, where some alternative forms o
classical membrane action as well as supersymmetric ex
sions have been considered@5#. Dynamical properties of a
charged membrane immersed in a Minkowski space-t
have been studied by Onder and Tucker@6#, taking into ac-
count radial modes of oscillations. Later, the same auth
developed a semiclassical approach with a variational e
mate of the energy levels of a particular type of a charg
membrane@7#. However, the most important membrane a
proach is the Dirac framework, where the electron is
charged conducting closed surface, with Maxwell’s fr
equation holding outside it and where Dirac has impose
surface tension to prevent this surface from flying apart
this case any stabilizing force that would counteract
membrane tension would act as a pressure. This is merel
unconstrained ‘‘soap-bubble’’ problem in a new guis
whose experimental results produce a spherical config
tion. The classical equation of motion of such a charg
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spherically symmetric membrane describes an oscillatory
dial motion about its center of symmetry, contracting from
maximum radius down to a point@8# and then expanding
again. From the quantum-mechanical point of view it co
infinite energy to reduce the membrane to a point, and so
might expect a stable configuration about its equilibrium p
sition, where, according to the uncertainty principleDrDp
'\ the membrane tension is balanced by the electrost
force.

The Dirac model for the electron@2# is the most natural
concept that causes its total energy to be finite due to
Coulomb field, and which should allow one to investiga
whether the muon could be an electron in an excited st
However, in such a framework the spin and the quant
energy levels are still open problems. The aim of the pres
paper is twofold: first, we propose a method of linearizati
for the Hamiltonian of Dirac’s relativistic membrane; se
ond, we study its spin and derive its quantum energy
means of Dirac’s equation, at the limiting case when
membrane charge vanishes.

II. REVIEW ON THE CLASSICAL APPROACH

The Dirac formalism of a charged relativistic membra
is developed in a Minkowski space-timeM, where the mem-
brane is a~211!-dimensional manifoldT imbedded inM.
The action integral for the electromagnetic field outside
membrane is, in spherical coordinates,

I 52
1

16pEMAgFmnFmndt dR du df, ~2.1!

where g5udet gmnu is concerning the space-time metr
~Greek indices have the range 0, 1, 2, 3 and we adop
system of units wherec51 and\52.6054310270m2). The
condition dI 50 leads to Maxwell’s free equation]mFmn

50. Otherwise, the whole action integral for the membra
consists of an action integral for a free membrane@3# to
which we add the action due to the electromagnetic field
the surface of the manifoldT:

S52
L

4pETAḡ dt du df

1
1

8pETAgFmnFmndt dR du df, ~2.2!

where ḡ is the determinant of the induced metric on t
surface ofT and L is a constant. Since the membrane d

-
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PRE 59 6287SPIN OF DIRAC’S RELATIVISTIC MEMBRANE
namics involves the components of the induced metric, t
from the practical viewpoint we should provide a global p
rametrization. However, this is not in general possible wit
single coordinate system. Such a problem is intimately c
nected with the choice of a proper gauge, which should
constrain the motion of the membrane. In the case o
spherically symmetric membrane we take for the space-t
metric

gmn5diag@1,21,2R2,2R2sin2u#. ~2.3!

However, if we consider the transformation of the radial c
ordinate in the formX15R2r , we obtain the induced metri
on the surfaceT by deleting column 1 and row 1 in th
space-time matrix given above@3#. This yields

@ ḡ#5S 12 ṙ 2 0 0

0 2~X11r !2 0

0 0 2~X11r !2sin2u
D
~2.4!

and then, in terms of the coordinatest, u, andf, the surface
of the membrane has the equationX150 or R5r (t).

The effective Lagrangian of the membrane can be deri
in the coordinate system whereX150, if we take into ac-
count Eqs.~2.2!, ~2.3!, and~2.4!. Since just outside the mem
brane the field is merely Coulombian, i.e.,FmnFmn5e2/r 4,
wheree is the charge of the membrane, then we get

L~r , ṙ !52Lr 2A12 ṙ 22
e2

2r
. ~2.5!

By means of the Euler-Lagrange equation the above
grangian leads straightforwardly to the equation of motio

d

dt F L ṙ r 2

A12 ṙ 2
G12LrA12 ṙ 25

e2

2r 2 . ~2.6!

If we impose that at the equilibrium positionr 5a we must
have r̈ (a)5 ṙ (a)50, we obtainL5e2/4a3, and then Eq.
~2.6! becomes

r̈ 1
2

r
~12 ṙ 2!5

2a3

r 4 ~12 ṙ 2!3/2. ~2.7!

Notice that this equation has regular cycles in the ph
plane ṙ versusr, about the equilibrium configuration for a
initial conditions. Searching for a solution to the above eq
tion, we consider a change of the integration variable in
form f (r )512 ṙ 2, and then we are led to a Bernoulli equ
tion for f (r ), whose solution yields the exact solution

ṙ 5A12
r 6

~kr22a3!2 , ~2.8!

where the constantk can assume the real values 3a2 anda2,
since these values lead toṙ (a)50. Moreover, the corre-
sponding radial momentum is
n
-
a
-

ot
a
e

-

d

-

e

-
e

p~r , ṙ !5
]L

] ṙ
5

m ṙ

A12 ṙ 2
, ~2.9!

wherem5e2r 2/(4a3) and the other components of the c
nonical momentum vanish identically. Thus, in the pres
approach the membrane has only radial modes of osc
tions, and it behaves as a spherical oscillating bubble.
nally, taking into account Eqs.~2.5! and ~2.9! and since the
classical Hamiltonian is given byH5pṙ2L, we obtain

H5Ap21m2~r !1V~r ! , ~2.10!

which is the energy-momentum relation of the membra
whereV(r )5e2/(2r ). It is important to remark that the rela
tivistic Lagrangian~2.5! is similar to the Lagrangian of a
particle under the influence of an external potential and t
Eq. ~2.10! is similar to its Hamiltonian, wherem(r ) replaces
the rest mass of the particle andp replaces its linear momen
tum of translational motion. Moreover, by direct substituti
of Eq. ~2.8! into Eq. ~2.9!, we conclude from Eq.~2.10! that
at r 5a we haveH5ke2/4a3. With k53a2 we obtainH
53e2/(4a) and with k5a2 we get H5e2/(4a). Hence,
both values ofk define two different values for the energy o
the membrane atr 5a, sinceH(a)56m(a)1V(a). In par-
ticular, if the charge of the membrane is the electron cha
e51.38310236 m, and if its equilibrium radius is the elec
tron classical radiusa52.11310215 m, then we get withk
53a2, H56.76310258 m50.51 MeV, which is the elec-
tron rest mass.

With the Bohr-Sommerfeld quantization method, Dir
@2# has shown that the energy of the first excited state of
membrane is about a quarter of the muon mass. Moreo
with a model of a charged membrane different from t
Dirac model, Onder and Tucker@6# have derived a reason
able value for the muon mass at the first level of excitati
in the context of a three-dimensional oscillator. Because b
procedures above are semiclassical, their results are not t
worthy. With the purpose of finding a relativistic wave equ
tion in the formi\]C(r ,t)/]t5HC(r ,t), we notice that the
kinetic term T of the Hamiltonian ~2.10! is the positive
square root ofp21m2. Therefore, if p is replaced by
2 i\]/]r andT is substituted into the above wave equatio
the resulting wave equation is unsymmetrical with respec
space and time derivatives, and hence it is not relativis
Thus, we have to modify the Hamiltonian~2.10! in such a
way as to make it linear in space derivatives.

III. LINEARIZATION OF THE SQUARE
ROOT OPERATOR IN SPACE DERIVATIVES

Let us extend the standard Dirac method of linearizati
starting from Eq.~2.10! written in the formH5T1V(r ),
whereT5Ap21m2. In order to linearize this square root w
perform a gauge transformation of the momentump and in-
sert an additional term inT. Since the characteristics of th
membrane should not depend on the choice of the matr
employed in the linearization process, then let us consi
for instance, the matrices
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a5S 0 s

s 0D , b5S I 0

0 2I D , S5S s 0

0 s
D , ~3.1!

wherea andb are Dirac matrices,s are the Pauli matrices

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D ,

~3.2!

and I is the identity matrix. We remind the reader that t
matrices of Eq.~3.1! satisfy the relations

aj
25b25Sj

25I , $aj ,b%50,

$aj ,ak%52d jkI ,

@Sj ,ak#52i P jklal , @Sl ,b#50, ~3.3!

where j ,k,l 51,2,3 are in cyclic order. We then chooseT in
the form

T5a•@p2 iq#1 i ~a•f!bK1bm, ~3.4!

whereq andf are real vectors andK is an arbitrary operator
Sincep, q, andf commute witha andb, then let us assume
that the operatorK commutes withp2 iq, a, andb as well.
However, the Hermitian conjugate of the operatorT is

T†5a•@p1 iq#2 iK †b~a•f!1bm, ~3.5!

whereK† is assumed to commute also withp2 iq, a, and
b. Since the membrane has only radial modes of oscillatio
then let us take spherical coordinates with origin at its cen
of symmetry, and let us operate with the square ofT on an
arbitrary functionF(r ,u,f):

IT†TF5~p21m21q22 i @p , q#1 ip f bK†2 iK †bf p

1ab@p , m#2q fbK2K†bf q12i abqm

1K†K f 21 iK †af m2 i am f K !F. ~3.6!

By comparing both sides of the above equation, we see
the first requirement to obtain the desired linearization is t
K must be a linear operator. Moreover, ifk andk* are the
respective eigenvalues of the operatorsK and K†, then we
also have to assume thatK should be a Hermitian operato
Hence, replacingp by 2 i\“ we get from Eq.~3.6!

IT25@p21m21q21k2f 22\~“•q!#I

1@\~“•f!22q f#kb2 i @\~“m!22qm#ab.

~3.7!

From the third term of Eq.~3.7! we obtainuqu5\/r . Hence,
the desired linearization leads to the following system
independent equations:

q21k2f 22\~“•q!6k\~“•f!72kq f50 ~3.8!
s,
r

at
t

f

whose respective solutions areufu5\/r andk561. There-
fore, considering Eq.~3.4! and the above results, the linea
ized form of the Hamiltonian~2.10! is in spherical coordi-
nates

H5a•P1 i
\

r
abK1bm1IV, ~3.9!

whereP5p2 i\/r andp52 i\]/]r . The physical interpre-
tation of the operatorK will be given at the end of Sec. V.

For the sake of consistency it is important to remark th
according to Eq.~3.7!, if we had on the other handm5m0
~constant!, we would obtainq5f50, which turns Eq.~3.4!
into T5a•p1bm0. We recall that this is the kinetic term o
the relativistic Hamiltonian operator of a particle with re
massm0, if p is its linear momentum of translational motion
Thus, in this sense, the present method generalizes the
cess of linearization proposed by Dirac for a relativis
Hamiltonian operator.

IV. LARGE AND SMALL COMPONENTS
OF THE WAVE FUNCTION

We can write the wave equation of the membrane a
Schrödinger equation in a matrix formi\]C/]t5HC, if we
take into account the Hamiltonian operator~3.9! written as

H5a•P1bm1IV, ~4.1!

whereP5P1 iqbK. However, for stationary states, the tim
dependence of the wave function can be split off accord
to C(r ,t)5C(r )exp@2iEt/\#, whereE(r ) defines the be-
havior of the time dependence of the complete wave fu
tion. Recall thatE(r ) is such that the matrix equation

HC~r !5EC~r ! ~4.2!

must be satisfied. Since we can express the wave func
C(r ) in terms of two-component functionsw5(C2

C1) and x

5(C4

C3) through the formC(r )5(x
w) then, owing to the defi-

nitions of a and b given in Eq.~3.1!, we obtain from Eq.
~4.2! the system of equations with real coefficients

~s•p!x1~m1V2E!w50,

~m2V1E!x2~s•p!w50. ~4.3!

States with a well-defined value of the radial momentum
the membrane will be described by the system~4.3!, and this
system has nonvanishing solutions if the determinant of
coefficients vanishes. Hence, from the determinant of the
efficients of the system~4.3! we get

E 222VE1~V22p22m2!50, ~4.4!

and, solving forE, we obtain
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E151Ap21m21V, E252Ap21m21V. ~4.5!

These results point out the consistence of the Hamilton
operator given in Eq.~3.9!, because this latter leads to ener
values in agreement with the Hamiltonian~2.10!. We then
conclude that both solutionsE1 andE2 given above yield two
different forms for the time dependence of the wa
function: C(r ,t)5C(r )exp@2E1t/\# and C(r ,t)
5C(r )exp@2E2t/\#. Otherwise, in analogy to the case of
particle in Dirac’s theory, we can denoteE1 as the ‘‘positive
solution’’ andE2 as the ‘‘negative solution’’ of Dirac’s equa
tion. Finally, a relation between the componentsw andx can
be obtained from Eq.~4.3!:

x5
s•p

m1E2V
w. ~4.6!

In the nonrelativistic approximation (p!m) we get for
‘‘positive solutions’’ E12V'm and then Eq.~4.6! yields

x'
s•p

2m
w!w. ~4.7!

Thus, if the membrane oscillates with a velocity small co
pared to the velocity of light, it follows from Eq.~4.7! thatw
can be interpreted as the ‘‘large component’’ andx as the
‘‘small component’’ of the wave function, for states o
‘‘positive solutions.’’ On the other hand, for ‘‘negative solu
tions’’ we havex@w, and thenw becomes the ‘‘small com
ponent’’ andx the ‘‘large component’’of the wave function

V. THE MEMBRANE SPIN

Let us assume that the membrane is spinning around tZ
axis, due to the action of a constant external magnetic fi
Bz , and that it is instantaneously without translational m
tion. Since the membrane has at any instant a spherical
figuration then, owing to the influence ofBz , the resulting
linear momentumP of an arbitrary point of its surface has
direction different from that one of the position vector of th
point. However, we should expect that the angular mom
tum of rotation of the membraneV5r3P might be a con-
stant of the motion. In order to investigate this point w
calculate its time rate of change in the Heisenberg pictur
Cartesian coordinates and assume the kinetic term of
Hamiltonian given in the general form~3.4!. Before that we
notice thatP andV satisfy the following commutation rules

@xj , Pk#5 i\dk
j , @Pj , Pk#50, @V j , Pk#5 i\« jkl pl .

~5.1!

Hence, for theVz component we obtain

I @Vz ,H#F5I ~@Vz ,Px#ax1@Vz ,Py#ay!F

5I @ i\~axpy2aypx!#F, ~5.2!

whereF(x,y,z) is an arbitrary function and sinceVz com-
mutes withf x , f y , m(r ), andV(r ), because these latter a
spherically symmetric functions. Otherwise, if we evalua
the time rate of change ofSz when operating onF(x,y,z)
and consider the rules~3.3!~d!, ~e!, we get
n

-

ld
-
n-

n-

in
he

I @Sz ,H#F5I ~@Sz , ax#Px1@Sz , ay#Py!F

1 i ~@Sz , ax#qx1@Sz ,ay#qy!kFb

5I @2i ~aypx2axpy!#F1
2\

r 2 ~xay2yax!FI

2
2\

r 2 ~xay2yax!kFb, ~5.3!

sinceqx5\x/r 2 and qy5\y/r 2 and also assuming that th
operatorK is diagonal. OnceF(x,y,z) is arbitrary, we thus
conclude from Eqs.~5.2! and~5.3! that either fork511 or
for k521 we can define the quantity

Jz5Vz1
1

2
\Sz ~5.4!

in such a way thatdJz /dt50, because it commutes with th
Hamiltonian operator and so it is a constant of the motion
is apparent that the same holds for the componentsJx and
Jy , and therefore we have a quantityJ5V1(\/2)S5V
1S, which can be taken to be the total angular momentum
the membrane, whereS is its spin angular momentum opera
tor.

Finally, we might also expect that states of radial oscil
tions of the uncharged membrane with well-defined values
momenta, should differ not only in the valuesE1/p andE2/p
from Eq. ~4.5!, but also in the value connected to the me
brane spin. In order to study this point, let us consider
free Hamiltonian and let us introduce the operator

Sp5
\

2
~S•p!, ~5.5!

whereS is given in Eq.~3.1!. However, the commutator o
the operator~5.5! with the free Hamiltonian is

@H, Sp#5
\

2
@a•p, S•p#, ~5.6!

and then we conclude that the operatorSp of Eq. ~5.5! indeed
commutes with the Hamiltonian of the uncharged membra
Therefore, the physical quantity corresponding to the ope
tor Sp is an integral of the motion. Once the momentump is
also an integral of the motion, as can be seen by direct
culation, then the physical quantity corresponding to the
erator

Sz5
\

2
Sz5

\

2S 1 0 0 0

0 21 0 0

0 0 1 0

0 0 0 21
D ~5.7!

is also an integral of the motion, if we take the momentu
along theZ axis. Since the eigenvalues of an operator tha
given by a diagonal matrix are the same values of its dia
nal elements, then the eigenvalues ofSz are 6\/2. In an
analogous way we can extend this result to the compon
Sx andSy .
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Let us end this section with a physical interpretation
the operatorK that appears in the Hamiltonian~3.9!. To start,
we take the definition ofa given in Eq.~3.1! and write

a•P5S 0 s•P

s•P 0 D . ~5.8!

Now if we consider the operator identity

~s•A!~s•B!5A•B1 i s•~A3B! ~5.9!

that holds for the operatorsA andB commuting withs, but
not necessarily with each other, we get (s•r )(s•V)
5(s•r )@s•(r3P)#5 i @(s•r )(r•P)2r 2(s•P)# which
leads to

s•P5
s•r

r 2
@r•P1 i s•V#. ~5.10!

Therefore, from Eqs.~5.8! and ~5.10! we find

a•P5arFPr1 i
s•V

r G , ~5.11!

wherear5a•r /r is a Hermitian matrix andPr5(1/r )(r•p
2 i\)52 i\]/]r 2 i\/r . Otherwise, the scalar produc
a•P that appears in Eq.~4.1! means

a•P5a•P1 i
\

r
arbK, ~5.12!

and thus if this operator acts on an arbitrary functi
F(r ,u,f) we have, by considering Eq.~5.11!,

~a•P!F5arFPr1 i
s•V

r
1 i

\

r
bKGF. ~5.13!

From this matrix equation we conclude that either fork
511 or k521 we obtain

a•P5arFPr1 i
s•V1\

r G . ~5.14!

If we define the operatorK in a similar way as in the rela
tivistic electron theory by means of

\K5b@s•V1\#, ~5.15!

we conclude that both the Hamiltonian~3.9! and its equiva-
lent form ~4.1! contain naturally the above operator, and th
K is connected to the total angular momentum of the me
brane. Moreover, sinceK commutes withar , b, and Pr ,
then it commutes as well with the complete Hamiltoni
~3.9!, and hence it is a constant of the motion. Otherwi
using the operator identityV3V5 i\V we are led to

\2K25S V1
1

2
\sD 2

1
1

4
\25J21

1

4
\2, ~5.16!

whereJ is the total angular momentum operator defined
low Eq. ~5.4!. It is easy to verify that the operator\2K2 is an
integral of the motion and that it has the eigenvalues\2k2,
wherek56( j 11/2) andj are the eigenvalues ofJ. How-
r

t
-

,

-

ever, we remind the reader that the only possible values ok
that allow the linearization performed in Sec. III are61, and
also, that the spin6\/2 of the membrane only holds fork
561. Thus, according to the present approach, the uni
value allowed forj should be 1/2.

VI. THE CASE OF THE UNCHARGED MEMBRANE

At the limiting case when the membrane charge tends
zero we obtain from Eq.~4.3!

w5~s•n!x, x5~s•n!w, ~6.1!

wheren5p/E is an unit vector. The vectorn is parallel to the
momentum of the membrane for positive solutions, and i
antiparallel to that momentum for negative solutions. Th
the spatial partC(r ) of the wave function becomes

C~r !5S w

~s•n!w
D . ~6.2!

Otherwise, when we act upon the wave functionC(r ) with
the pseudoscalars•n, their components change places o
ing to the results given in Eq.~6.1!

~s•n!C~r !5S x

w
D 5S 0 I

I 0D S w

x
D ~6.3!

and we conclude that the action of the operators•n upon the
spatial part of the wave function of an uncharged membr
is equivalent to the action of the matrix2 i g5,

~s•n!5S 0 I

I 0D 52 i g5 , ~6.4!

where g55g3g2g1g0 , g05b, and g i5ba i , i 51,2,3.
Now if we introduce two linear combinations of the fun
tions w andx by means of

F5
1

2
~w1x!5

1

2
@ I1~s•n!#w,

F5
1

2
~w2x!5

1

2
@ I2~s•n!#w, ~6.5!

we easily see that the functionsF andF satisfy the respec-
tive relations

~s•n!F5F, ~s•n!F52F ~6.6!

which allow us to conclude that the two-component fun
tions F andF are the eigenfunctions of the operator (s•n),
this latter defining the component of the membrane s
along the direction of its momentum. Then, according
Eqs. ~6.6! the operators•n has the eigenvalues11 and
21, which define the helicity of the membrane. Otherwis
since the actions of the operators (s•n) and 2 i g5 are
equivalent, according to Eq.~6.4!, then we see from Eq.~6.5!
that their respective eigenfunctions are

F5
1

2
~ I2 i g5!C, F5

1

2
~ I1 i g5!C. ~6.7!
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This means that when we multiply the four-component wa
functionC(r ) by (I6 i g5), it changes into a two-componen
function. We then conclude that each value of the mom
tum corresponds to a state with a well-defined helicity and
only one spin state. For positive helicity the momentum a
the spin are parallel for states whereE51p, and if the he-
licity is negative they are antiparallel for states whe
E52p. Such states can be only realized for uncharg
membranes, which should move with the velocity of lig
Hence, a longitudinal polarization of the uncharged me
brane, in the sense of the direction of its spin, is uniqu
connected to the direction of its momentum. That is o
possible if the membrane rest energy is null.

VII. CONCLUDING REMARKS

The present approach leads to extended neutral and m
less particles with spin6\/2. The Dirac equation postulate
e
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in this case positive and negative states, which can be c
sidered as ‘‘charge conjugate’’ states. Once the term ‘‘cha
conjugate’’ is meaningless for uncharged membranes,
better to speak about states corresponding to a massless
ton and to its corresponding antiparticle. Thus, if we acc
this model for neutrinolike particles, and since it is alrea
well established that the neutrino and the antineutrino
different particles, then they differ in helicity according
the present framework, as should be expected. The next
is to determine the energy levels of the charged membr
by means of Dirac’s equation. This is a subject under inv
tigation.
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