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Spin of Dirac’s relativistic membrane
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The Hamiltonian of Dirac’s relativistic membrane is linearized by means of a gauge transformation. It is
pointed out that the membrane spinzigi/2. Furthermore, in a quantum relativistic framework neutrinolike
particles are obtained when the membrane charge vanis®E363-651X99)02805-9

PACS numbdrs): 05.50+q, 03.65.Bz, 11.2%:d

[. INTRODUCTION spherically symmetric membrane describes an oscillatory ra-
dial motion about its center of symmetry, contracting from a
The history of membrane theories can be traced back dénaximum radius down to a poiri8] and then expanding
cades, starting from the papers by Yukdlg Dirac[2], and  @dain. From the gquantum-mechanical point of view it costs
later by Collins and Tuckei3]. Recently the study of mem- Infinite energy to reduce the membrane to a point, and so we
branes has enjoyed great interest, due to their formal simm'.ght expect a stable_ configuration abogt Its e_qw_hbnum po-
larity to string theories and also because of some attractivév't'onh Where,baccordmg.to thebuTcertagnLy p[]lncmlﬂeAp .
characteristics unique to membranes, such as the idea th%trf::et e membrane tension is balanced by the electrostatic
their spectrum of excitations is richer than those afforded by Th.e Dirac model for the electraf2] is the most natural
strings, and moreover, that a superstring theory is merely thg0

S o ncept that causes its total energy to be finite due to the
limiting case of a compactified supermembrane. Notable deCoqumb field, and which should allow one to investigate

velopments in the study of extended models for particle§,nether the muon could be an electron in an excited state.
have been considered within the context proposed by D"a‘However, in such a framework the spin and the quantum
where a relativistic membrane should describe an electricallgnergy levels are still open problems. The aim of the present
charged particle. Much attention has been focused on thegraper is twofold: first, we propose a method of linearization
ries of two-dimensional immersioriselativistic stringgina  for the Hamiltonian of Dirac’s relativistic membrane; sec-
four-dimensional space-time. Also, it is expected that theilond, we study its spin and derive its quantum energy by
superspace extensions may provide a basic theory unifyinmeans of Dirac’s equation, at the limiting case when the
gauge fields with matter. If we adopt a membrane model fomembrane charge vanishes.

particles where certain interactions with an external field are

postulated, then it is possible to find a classical equilibrium Il. REVIEW ON THE CLASSICAL APPROACH

configuration about which we can attempt a quantum treat- The Dirac formalism of a charged relativistic membrane
ment.

L . . is developed in a Minkowski space-time, where the mem-
Relativistic membranes have been studied on a classm:g P P

. rane is a(2+1)-dimensional manifoldZ imbedded inM.
level _by several authov{gf.], where some alternative for_ms of The action integral for the electromagnetic field outside the
classical membrane action as well as supersymmetric exteliambrane is. in spherical coordinates
sions have been considergsl]. Dynamical properties of a ' ’
charged membrane immersed in a Minkowski space-time 1
have been studied by Onder and Tuck&}; taking into ac- I=- EJM\/QFMVFMVC“ dR & d¢, 2.1
count radial modes of oscillations. Later, the same authors
developed a semiclassical approach with a variational estivhere g=|detg,,| is concerning the space-time metric
mate of the energy levels of a particular type of a chargedGreek indices have the range 0, 1, 2, 3 and we adopt a
membrang7]. However, the most important membrane ap-system of units where=1 and#f =2.6054x 10~ "°m?). The
proach is the Dirac framework, where the electron is acondition §1=0 leads to Maxwell's free equation , F*”
charged conducting closed surface, with Maxwell's free=0. Otherwise, the whole action integral for the membrane
equation holding outside it and where Dirac has imposed gonsists of an action integral for a free membrdBg to
surface tension to prevent this surface from flying apart. Invhich we add the action due to the electromagnetic field on
this case any stabilizing force that would counteract thahe surface of the manifold:
membrane tension would act as a pressure. This is merely the
unconstrained “soap-bubble” problem in a new guise, S=— AJ \/:dt d6 do
whose experimental results produce a spherical configura- A7 )1 9
tion. The classical equation of motion of such a charged

+ 1J\/_F F~rdt dR dd d 2.2
%Tgp,v ?, ()
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namics involves the components of the induced metric, then JL
from the practical viewpoint we should provide a global pa- p(r,r)=—= '
rametrization. However, this is not in general possible with a ar \1-—r2
single coordinate system. Such a problem is intimately con-

nected with the choice of a proper gauge, which should not - 3

constrain the motion of the membrane. In the case of avhereu=er/(4a) and the other components of the ca-

spherically symmetric membrane we take for the space-tim80nical momentum vanish identically. Thus, in the present
metric approach the membrane has only radial modes of oscilla-

tions, and it behaves as a spherical oscillating bubble. Fi-
g,,=diad1,—1,~ R?,—R?sir’ 4. (2.3 nally, taking into account Eq$2.5 and(2.9) and since the
classical Hamiltonian is given b=pr—L, we obtain
However, if we consilder the transformation of the radial co-
ordinate in the fornX*=R—r, we obtain the induced metric
on the surfaceZ by deleting column 1 and row 1 in the H=Vp“+ui(r)+V(r),
space-time matrix given aboy&]. This yields

ur

(2.9

(2.10

which is the energy-momentum relation of the membrane,

1-r? 0 0 whereV(r)=e?/(2r). It is important to remark that the rela-
— 0 —(X1+1)2 0 tivis.tic Lagrangian§2.5) is similar to the Lagrang_ian of a
[9]= _ particle under the influence of an external potential and that
0 0 — (X +r)2sinPo Eq.(2.10 is similar to its Hamiltonian, wherg(r) replaces

(2.4 the rest mass of the particle apdeplaces its linear momen-
tum of translational motion. Moreover, by direct substitution

and then, in terms of the coordinates @, and¢, the surface  Of EQ. (2.8) into Eq.(2.9), we conclude from Eq(2.10 that
of the membrane has the equatih=0 or R=r(t). atr=a we haveH=ke?/4a3. With k=3a* we obtainH

The effective Lagrangian of the membrane can be derived 3e%/(4a) and with k=a* we get H=e?/(4a). Hence,
in the coordinate system whed'=0, if we take into ac- both values ok define two different values for the energy of

count Egs(2.2), (2.3), and(2.4). Since just outside the mem- the membrane at=a, sinceH(a) =+ u(a)+V(a). In par-
brane the field is merely Coulombian, i_EMVFWZGZ/r{ ticular, if the charge of the membrane is the electron charge

wheree is the charge of the membrane, then we get e=1.38<10 3¢ m, and if its equilibrium radius is the elec-
tron classical radiug=2.11x10"1° m, then we get wittk
. — €? =3a%, H=6.76x10 °® m=0.51 MeV, which is the elec-
L(r,r)=—Ar2V1—r2—E. (259 tron rest mass.

With the Bohr-Sommerfeld quantization method, Dirac

By means of the Eu|er-|_agrange equation the above LaLZ] has shown that the energy of the first excited state of the

grangian leads straightforwardly to the equation of motion Mmembrane is about a quarter of the muon mass. Moreover,
with a model of a charged membrane different from the

dl Arr2 : e2 Dirac model, Onder and Tucké¢6] havg derived a reason-
— +2ArV1—r2= —. (2.6) able value for the muon mass at the first level of excitation,
dt| /12 2r in the context of a three-dimensional oscillator. Because both

procedures above are semiclassical, their results are not trust-

If we impose that at the equilibrium position=a we must ~ worthy. With the purpose of finding a relativistic wave equa-
have i (a)=r(a)=0, we obtainA=e%4a% and then Eq. ti_on i_n the formiﬁallf(r,t)/at_=H}If(r,t), we notice tha_t_the
(2.6) becomes kinetic term T of the Hamiltonian(2.10 is the positive
square root ofp?+ u?. Therefore, ifp is replaced by
.2 . 233 . —ihdlor andT is substituted into the above wave equation,
r+-(1- r?)= -+ (1= r3)3%2, (2.7)  the resulting wave equation is unsymmetrical with respect to

space and time derivatives, and hence it is not relativistic.

Notice that this equation has regular cycles in the phasd&nus, we have to modify the Hamiltonid@.10 in such a

. . . : way as to make it linear in space derivatives.
planer versusr, about the equilibrium configuration for all
initial conditions. Searching for a solution to the above equa-
tion, we consider a change of the integration variable in the IIl. LINEARIZATION OF THE SQUARE
form f(r)=1—f2, and then we are led to a Bernoulli equa- ROOT OPERATOR IN SPACE DERIVATIVES

tion for f(r), whose solution yields the exact solution Let us extend the standard Dirac method of linearization,

/6 starting from Eqg.(2.10 written in the formH=T+V(r),
r= )1 — , (2.8 ~ WhereT= Vp%+ 1. In order to linearize this square root we
(kr—2a%? perform a gauge transformation of the momentoirand in-
sert an additional term ifi. Since the characteristics of the
where the constarit can assume the real valuea®3anda®,  membrane should not depend on the choice of the matrices
since these values lead tqa)=0. Moreover, the corre- employed in the linearization process, then let us consider,

sponding radial momentum is for instance, the matrices
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0 o I o o 0 whose respective solutions df¢=7%/r and k= +1. There-
, B= —I)’ 3= 0 o (3.1 fore, considering Eq(3.4) and the above results, the linear-

a=

o0 0 ized form of the Hamiltoniar(2.10 is in spherical coordi-
. . . . ates
wherea and B are Dirac matricesg are the Pauli matrices
; h
o 0 1 o 0 —i . 1 0 H=aP+i—apK+putV, (3.9
Y1 o0 T2li o) Tlo —1)

whereP=p—if/r andp= —ihd/dr. The physical interpre-
and| is the identity matrix. We remind the reader that thetation of the operatoK will be given at the end of Sec. V.

matrices of Eq(3.1) satisfy the relations For the sake of consistency it is important to remark that,
according to Eq(3.7), if we had on the other hand=m
aj2=32=2j2=l, {a;,B}=0, (constant, we would obtaing=f=0, which turns Eq.3.4)

into T= a- p+ Bmy. We recall that this is the kinetic term of

the relativistic Hamiltonian operator of a particle with rest

massmy, if p is its linear momentum of translational motion.

] Thus, in this sense, the present method generalizes the pro-

(3, a]=2i€ja, [%,B]=0, 3.3 cess of linearization proposed by Dirac for a relativistic
Hamiltonian operator.

{CI(J ,aK}=25jkI,

wherej,k,1=1,2,3 are in cyclic order. We then choogén
the form
IV. LARGE AND SMALL COMPONENTS

T=a-[p—iql+i(a-f)BK+ Bu, (3.4 OF THE WAVE FUNCTION

We can write the wave equation of the membrane as a
whereq andf are real vectors anid is an arbitrary operator. Schralinger equation in a matrix forif oW/ gt=HW, if we
Sincep, ¢, andf commute witha and B, then let us assume take into account the Hamiltonian operat8r9) written as
that the operatoK commutes witlp—iq, «, andg as well.

However, the Hermitian conjugate of the operalais H=a I+ Bu+1V, 4.1

T'=a-[p+iq]—iK'B(a f)+ :
a[ptiq] =ik fla-D+ B, @9 wherell=P+iqBK. However, for stationary states, the time

dependence of the wave function can be split off according
to W(r,t)=W(r)exg —i&t/t], where &(r) defines the be-

eshavior of the time dependence of the complete wave func-
fion. Recall thate(r) is such that the matrix equation

whereK' is assumed to commute also with-iq, a, and
B. Since the membrane has only radial modes of oscillation
then let us take spherical coordinates with origin at its cent
of symmetry, and let us operate with the squard afh an

arbitrary function®(r, 6, ¢): HW(r)=EW(r) 4.2
r)=Ew(r :

ITTT®=(p?+ u2+g°—i[p, q]+ipfBKT—iK Bfp
N afBK—K' Bfa+ 2i must be satisfied. Since we can express the wave function
aplp, pl-atp Bta+2iapap W (r) in terms of two-component functiongsz(%) and x

T F2 ik T g o i - :
+KKF+iK af u—iaufK)®. (3.6 z(ii) through the form(r)=(¥) then, owing to the defi-

itions of @ and B given in Eq.(3.1), we obtain from Eq.

By comparing both sides of the above equation, we see th 2 the system of equations with real coefficients

the first requirement to obtain the desired linearization is tha
K must be a linear operator. Moreover,«fand «* are the

respective eigenvalues of the operatirand K', then we (o-p)x+(u+tV=E¢e=0,
also have to assume thidtshould be a Hermitian operator.
Hence, replacing by —iAV we get from Eq(3.6) (u—V+E x— (o p)e=0. 4.3

2 71n24 ,,20 24 L2F2_ .
IT*=[p™+ p"+a"+ k=2 (V- ]l States with a well-defined value of the radial momentum of

+[#(V-f)—2qf]cB—i[A (V) —2qu]ap. the membrane will be described by the sysi@n3), and this
3 system has nonvanishing solutions if the determinant of its
(3.7) coefficients vanishes. Hence, from the determinant of the co-

efficients of the syster¥.3) we get
From the third term of Eq(3.7) we obtain|g|=7%/r. Hence, yster.3) we g

the desired linearization leads to the following system of ) s o o
independent equations: E=2VEH (Vo —p“— ) =0, (4.4

q?+ Kk f2—h(V-q) = kh(V-)F2xkqf=0 (3.8  and, solving forg, we obtain
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E1=+\p*Hu+V, &E=—\p?+u’+V. (4.5

These results point out the consistence of the Hamiltonian

operator given in Eq.3.9), because this latter leads to energy
values in agreement with the Hamiltonig®.10. We then
conclude that both solutiory and&, given above yield two

different forms for the time dependence of the wave

function:  W(r,t)=W(r)exd —&t/h] and  W(r,t)
=W(r)exd —&t/R]. Otherwise, in analogy to the case of a
particle in Dirac’s theory, we can denafg as the “positive
solution” andé&, as the “negative solution” of Dirac’s equa-
tion. Finally, a relation between the componegatand y can
be obtained from Eq4.3):

7P 4.6
In the nonrelativistic approximationp&u) we get for
“positive solutions” £&;—V~u and then Eq(4.6) yields

op

" @7

X <o
Thus, if the membrane oscillates with a velocity small com-
pared to the velocity of light, it follows from Ed4.7) that¢
can be interpreted as the “large component” apds the
“small component” of the wave function, for states of
“positive solutions.” On the other hand, for “negative solu-
tions” we haveyx> ¢, and thenyp becomes the “small com-
ponent” andy the “large component”of the wave function.

V. THE MEMBRANE SPIN

Let us assume that the membrane is spinning around the
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I[2, H]P=I([2,, a]P+[2;, a]P))®
+i([%,, ax]qx+[22-ay]Qy)Kq)ﬁ
2h
=|[2i(a/ypx—axpy)]CI>+r—z(xay—yax)q)l

2h
r_2(xay_ yax) K(I)ﬂ,

(5.3

sinceq,=#Ax/r? and qyzhy/r2 and also assuming that the
operatorK is diagonal. Onceb(x,y,z) is arbitrary, we thus
conclude from Egs(5.2) and(5.3) that either fork=+1 or
for k=—1 we can define the quantity

1
3=+ 5h3, (5.4

in such a way thatlJ,/dt=0, because it commutes with the
Hamiltonian operator and so it is a constant of the motion. It
is apparent that the same holds for the componégptand

Jy, and therefore we have a quantify= Q-+ (7/2)%=Q

+ S, which can be taken to be the total angular momentum of
the membrane, whel®is its spin angular momentum opera-
tor.

Finally, we might also expect that states of radial oscilla-
tions of the uncharged membrane with well-defined values of
momenta, should differ not only in the valuégp and&,/p
from Eg. (4.5, but also in the value connected to the mem-
brane spin. In order to study this point, let us consider the
free Hamiltonian and let us introduce the operator

h
S=5(2-p), (55

axis, due to the action of a constant external magnetic field

B,, and that it is instantaneously without translational mo
tion. Since the membrane has at any instant a spherical co
figuration then, owing to the influence &, the resulting

linear momentun® of an arbitrary point of its surface has a
direction different from that one of the position vector of this
point. However, we should expect that the angular momen
tum of rotation of the membran®=r X P might be a con-

stant of the motion. In order to investigate this point we
calculate its time rate of change in the Heisenberg picture i

whereX; is given in Eq.(3.1). However, the commutator of

Hje operatof5.5) with the free Hamiltonian is

h

and then we conclude that the operaggrof Eg. (5.5) indeed
commutes with the Hamiltonian of the uncharged membrane.

[ herefore, the physical quantity corresponding to the opera-

Cartesian coordinates and assume the kinetic term of thi@" Sp iS an integral of the motion. Once the momentpris

Hamiltonian given in the general for3.4). Before that we
notice thatP andQ satisfy the following commutation rules:

[X, PJ=i%d,, [P, PJ=0, [Q;, PJ=ifejp.
(5.2)

Hence, for the(), component we obtain
I[QzaH](D:I([Qzapx]ax+[ﬂzvpy]ay)¢

:I[ih(axpy_aypx)]q)v (5.2
where®(x,y,z) is an arbitrary function and sind®, com-
mutes withf, , f,,
spherically symmetric functions. Otherwise, if we evaluatel
the time rate of change &, when operating onmb(x,y,z)
and consider the rule@.3)(d), (e), we get

also an integral of the motion, as can be seen by direct cal-
culation, then the physical quantity corresponding to the op-
erator

1 0 O
S=3%=35/0 0 1 (5.7
0 0 -1

is also an integral of the motion, if we take the momentum

along theZ axis. Since the eigenvalues of an operator that is
n(r), andV(r), because these latter are given by a diagonal matrix are the same values of its diago-

nal elements, then the eigenvaluesSfare +#/2. In an

analogous way we can extend this result to the components

S, andsS; .



6290

E. STEDILE

PRE 59

Let us end this section with a physical interpretation forever, we remind the reader that the only possible values of

the operatoK that appears in the Hamiltoni&8.9). To start,
we take the definition of given in Eq.(3.1) and write

0 oP
a-P= oP 0O (5.9
Now if we consider the operator identity
(o-A)(o-B)=A-B+io-(AXB) (5.9

that holds for the operato®s andB commuting witheo, but
not necessarily with each other, we get-()(o- Q)

=(o-1)[o- (rXP)]=i[(o-r)(r-P)—r?(c-P)] which
leads to
or .
o-P=—[r-P+io-Q]. (5.10
r
Therefore, from Eqs(5.8) and (5.10 we find
)
a-P=a,| P, +i T , (5.11

where @, = e-r/r is a Hermitian matrix and®,=(1/r)(r-p
—ih)=—ihdlor—ihlr. Otherwise, the scalar
a- 11 that appears in Eq4.1) means

A
a-II=a-P+i FarﬁK, (5.12

and thus if this operator acts on an arbitrary function

®(r,0,¢) we have, by considering E¢5.11),

(- I D= ¢

o Q  h
Pr+IT+I FﬁK}(D (513)

From this matrix equation we conclude that either for
=+1 or k=—1 we obtain

Lo Q+1h
P +i———

. (5.19

a-I1= ¢«

If we define the operatoK in a similar way as in the rela-
tivistic electron theory by means of
hK=plo Q+1], (5.15

we conclude that both the Hamiltoni#8.9) and its equiva-

lent form (4.1) contain naturally the above operator, and that

product

that allow the linearization performed in Sec. Ill atel, and
also, that the spin:#/2 of the membrane only holds far
==*1. Thus, according to the present approach, the unique
value allowed forj should be 1/2.

VI. THE CASE OF THE UNCHARGED MEMBRANE

At the limiting case when the membrane charge tends to
zero we obtain from Eq4.3
(6.9

e=(o-n)x, x=(o-ne,

wheren=p/£ is an unit vector. The vectaris parallel to the
momentum of the membrane for positive solutions, and it is
antiparallel to that momentum for negative solutions. Thus,
the spatial partP(r) of the wave function becomes

1)
(o n)so) ' ©2

Otherwise, when we act upon the wave functdngr) with
the pseudoscala#r n, their components change places ow-
ing to the results given in Ed6.1)

x| (O l)(so
e 1 0/ix
and we conclude that the action of the operaten upon the

spatial part of the wave function of an uncharged membrane
is equivalent to the action of the matrixi ys,

\If(r)=(

(o-n)W(r)= (6.3

0 |

(0'~n)=<I O)I—iy5, (6.4

where ¥5=v3%%1%, Yo=8, and y=Bq;, i=12.3.
Now if we introduce two linear combinations of the func-
tions ¢ and x by means of

1 1
Q=5 (et x)=5l1+(o-n]e,

1 1
F=3(e=x=5[l1-(an]e, (6.5

we easily see that the functiod® and F satisfy the respec-
tive relations
(o-n) D=,

(o-n)F=—F (6.6)

K is connected to the total angular momentum of the mem-

brane. Moreover, sinc&k commutes withe,, B, andP,,

which allow us to conclude that the two-component func-

then it commutes as well with the complete Hamiltoniantions ® andF are the eigenfunctions of the operater-@1),
(3.9), and hence it is a constant of the motion. Otherwisethis latter defining the component of the membrane spin

using the operator identitf2 X Q=iA£ we are led to

2
h2K?= Q+3ha +Eﬁ2=J2+Eh2 (5.16
2 4 4" '

along the direction of its momentum. Then, according to
Egs. (6.6) the operatoro-n has the eigenvalues-1 and
—1, which define the helicity of the membrane. Otherwise,
since the actions of the operatorgr-(n) and —ivys; are
equivalent, according to E¢6.4), then we see from Ed6.5)

wherelJ is the total angular momentum operator defined bethat their respective eigenfunctions are

low Eq.(5.4). It is easy to verify that the operatbfK? is an
integral of the motion and that it has the eigenvaltiés?,
where k=% (j +1/2) andj are the eigenvalues & How-

1
F=-(+iy)W.

1
= —(1—iys)W, 5

5 (6.7)
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This means that when we multiply the four-component waven this case positive and negative states, which can be con-
functionW(r) by (I =iys), it changes into a two-component sidered as “charge conjugate” states. Once the term “charge
function. We then conclude that each value of the momeneonjugate” is meaningless for uncharged membranes, it is
tum corresponds to a state with a well-defined helicity and tdetter to speak about states corresponding to a massless lep-
only one spin state. For positive helicity the momentum andon and to its corresponding antiparticle. Thus, if we accept
the spin are parallel for states whefe + p, and if the he-  this model for neutrinolike particles, and since it is already
licity is negative they are antiparallel for states wherewell established that the neutrino and the antineutrino are
£=—p. Such states can be only realized for unchargediifferent particles, then they differ in helicity according to
membranes, which should move with the velocity of light. the present framework, as should be expected. The next step
Hence, a longitudinal polarization of the uncharged memis to determine the energy levels of the charged membrane
brane, in the sense of the direction of its spin, is uniquelypy means of Dirac’s equation. This is a subject under inves-
connected to the direction of its momentum. That is onlytigation.

possible if the membrane rest energy is null.
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