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Some consequences of exchangeability in random-matrix theory
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Properties of infinite sequences of exchangeable random variables result directly in explicit expressions for
calculating asymptotic densities of eigenvaluesr`(l) of any ensemble of random matricesH whose distribu-
tion depends only on tr(H†H), whereH† is the Hermitian conjugate ofH. For real symmetric matrices and for
Hermitian matrices, the densitiesr`(l) are constructed by summing up Wigner semicircles with varying radii
and weights as confirmed by Monte Carlo simulations. Extensions to more general matrix ensembles are also
considered.@S1063-651X~99!09504-5#
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The ‘‘explosive’’ development of random-matrix theor
~RMT! during the last decade has been covered recently
Guhret al. @1#, who emphasize the universal applicability
RMT to the fluctuation properties on local scales defined
mean level spacings of quantum~and of certain classical!
systems. Indeed, RMT is used considerably in vario
branches of physics, notably in nuclear physics, quan
chaology, and for investigating Hamiltonians of disorder
and strongly interacting quantum systems~@1–7# and refer-
ences therein!. Properties of distributions of eigenvalues, a
to a lesser extent of eigenvectors, of large random matr
have been thoroughly investigated for various specific
general random-matrix ensembles~RME!. Among the three
fundamental Gaussian ensembles~GE! @1,2#, we mention the
two associated with real symmetric~GOE! and with Hermit-
ian ~GUE! N3N random matricesHN . They are named af
ter the orthogonal and unitary transformations that leave
corresponding ensemble statistically invariant. The num
of distinct real random variables that are necessary to c
struct eachN3N matrix is Np , with Np5N1bNm , Nm
5N(N21)/2 andb51,2 for the GOE and GUE respective
@1,2#. A random variable whose distribution is Gaussian w
a zero mean and a variances2 is hereafter denoted a
N(0,s2). The previousNp variables that constitute the ma
trix elementsHi j are independentN@0,s2(11d i j )/2# vari-
ables. The GOE and GUE probability density function
thenGb,s(HN)5Kb,N exp@2tr(HN

2 )/(2s2)#, where tr means
trace. The variance is taken ass25aG

2 /N, aG5const, to
obtain a spectrum independent ofN whenN→`. In contrast
to the universality of GE local fluctuations around mean v
ues @1,2#, their asymptotic average density of eigenvalu
rW(l) @Eq. ~1!# is a bound distribution whose shape is u
realistic for most physical systems@1#. As the GE’s are er-
godic, the empirical distribution function FN(x)
5(number ofl<x)/N of every large matrix tends also to
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distribution function whose associated probability density
rW(l), the classical Wigner semicircle@1–3# ~a252baG

2 ,
L5ul2cu!:

rW~l!5~2/pa2!~a22L2!1/2 for L<a ~1!

~and 0 forL.a! whose scale parameter is its ‘‘radius’’a
and whose centering parameter isc ~c5^tr HN&/N50 for the
GOE and GUE!. However, recent sophisticated develo
ments, particularly on noncommutative probability theo
have created significant new results on the algebra of ran
matrices and have shed light on the theoretical importanc
the Wigner semicircular distribution@4–7#. Its further sig-
nificance as a reference density for constructing large-N den-
sities r`(l), bound or not, of broad RME classes is di
cussed in the present paper.

The setMN(R) @or MN(C)# of matrices with real~or
complex! entries is anN3N ~or 2N32N!-dimensional vec-
tor space over the field of real numbersR. The norm of a
matrix HN is taken here asiHNi5@ tr(HN

† HN)#1/2, whereHN
†

is the Hermitian conjugate ofHN . It gives to MN(R) @or
MN(C)# a structure of Euclidean space. Anyd-dimensional
subspaceSd of MN(R) or MN(C), given a basis, is isomor
phic to the spaceRd. Each matrixHN of Sd is thus in a
one-to-one correspondence with a vectorX of Rd, denoted
hereX5V(HN). The inverse transformation fromX to HN
is denoted asHN5M(X). If the basis ofSd is orthonormal,
the usual Euclidean norm ofX is equal toiHNi . The dimen-
sion d5Np is imposed by the symmetry of the RME, whic
is put in isometric correspondence withRd. We defineRi j

~or Ci j ! to be the matrix having a lone 1~or A21! as ~i,j!-
entry and all the others equal to 0. The family ofRi j ~or Ri j
and Ci j ! ~1< i , j <N! is a canonical orthonormal basis o
MN(R) @or MN(C)#. The family @$Ri j %,$(Ri j
1Rji )/&%,$(Ci j 2Cji )/&%# (1< i , j <N) is, for example,
an orthonormal basis of theNp5N2-dimensional subspace o
Hermitian matrices, and hence the associatedX components
are $Hii %, $& Re(Hi j )%, $& Im(Hij)%, (1< i , j <N). The
basis reduces to$(Ci j 2Cji )/&# (1< i , j <N) @Np5N(N
21)/2# if the matrices are further antisymmetric. A descri
tion of a stacking order is unnecessary here, as we cons

s
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6282 PRE 59G. LE CAËR AND R. DELANNAY
only RME’s associated with random vectorsX whose com-
ponents areNp exchangeable@8#.

The distribution function ofX is said to beNp exchange-
able if it remains unchanged by any permutation of theX
components. Ak-exchangeable sequence (X1 ,...,Xk) is n
extendible (n.k) if it is such that (X1 ,...,Xk)

5
d

(X18 ,...,Xk8) for some n-exchangeable sequenc

(X18 ,...,Xn8), where5
d

means that both members have t
same distribution. An infinite sequence of random variab
$Xk%, k51,...,̀ , is exchangeable if it isn exchangeable for
every finiten. It is a mixture of identically and independent
distributed~IID ! sequences as demonstrated by thede Finet-
ti’s theorem, which is valid in particular in Euclidean space
@8–14#. Then, there exists ap-dimensional (p>1) random
variableY such that the components ofX5(X1 ,...,Xn) are
conditionally IID random variables; that is, Prob(X1

<x1 ,...,Xn<xn)5P i 51
n Prob(Xi<xi uY5y), given Y5y

@11#. Finite versions of the de Finetti theorem further sho
how n-exchangeable sequences are close, in terms of a
tance between distributions, to mixtures of IID sequen
@8,9#. For instance, if a k-exchangeable sequence
n-extendible withn large as compared tok2, the former se-
quence is close to a mixture of IID sequences@8#. We discuss
below some notable RME’s for which theNp-exchangeable
sequences ofX components yield, whenNp→`, infinite ex-
changeable sequences which are mixtures of known ‘‘re
ence’’ sequencesR. The properties of some permutatio
invariant distributions are more naturally expressed in te
of characteristic functions~c.f.!. The distribution ofX is, for
example, calleda symmetric(0,a<2) @10,12# and refer-
ences therein# or sphericalfor a52 @11–14# if its c.f. is

f~ t!5^exp~ i t–X!&5fF t5S (
k51

Np

utkuaD 1/aG ~2!

for all real Np-dimensional vectorst. We denote byFNp
(a)

the class of such c.f. ForaÞ2, the representation of func
tions whose c.f. are given by Eq.~2! is solely known fora
51 @10,12#. For the spherical case, the density ofX depends
only on iXi whateverNp , as its c.f. depends only on th
modulus t of t and conversely@13#. The density ofHN

5M(X) if it exists is consequentlyf „tr(HN
† HN)…. By exten-

sion, the latter RME’s will be named ‘‘spherical’’ hereafte
For the spherical case,f(t) is given by Eq.~2! if and only if
it is represented by@12,13#

f~ t !5E
0

`

VNp
~rt !dPNp

~r ! ~3!

for some distributionPNp(r ) which is assumed to have n
mass at zero, whereVNp

(t) is the c.f. of a vectorU which is

uniformly distributed on the surface of the unit sphere inRNp

@12,13#, VNp
(t)5G(Np/2)(2/t)mJm(t), m5(Np22)/2 and

Jm is a Bessel function. An expression similar to Eq.~3!
which involves a c.f. different fromVNp

(t) is also known for

a51 @12#. As proven by Bretagnolleet al. ~see@12#!, Eq.~2!
admits the representation
s

is-
s

r-

s

f~ t !5E
0

`

exp~2rt a!dF~r ! ~4!

for f~t! belonging to the classF`(a). Equation~4! yields
the asymptotic distribution ofa-symmetricX as a mixture,
defined by the distributionF(r ), of reference vectorsR
whose c.f. is exp(2rta). The components ofR are then IID
according to a Le´vy stable distribution, which isN(0,2r ) for
a52 @8,10–14#. The distribution of a finitek-exchangeable
spherical sequence which isn extendible (n@k) is also well
approximated by a mixture of normal distributions@8,9#.
From the distributions ofX and R, we deduce that any
a-symmetric RME is asymptotically a mixture of rando
Lévy matrices of the same symmetry with independent d
tinct entries~see @15# for a study of real-symmetric Le´vy
RME’s!. In particular, any spherical RME is asymptotical
a mixture of Gaussian ensembles with the same symme
Such spherical RME’s are thus not ergodic, as every largN
extendible random matrixHN is a Gaussian matrix. The uni
versality of the spectral fluctuations of suchHN’s is thus a
straightforward consequence of that of the reference G
For orthogonal~b51, real-symmetric matrices! or unitary
(b52, Hermitian matrices! extendible spherical RME’s, the
density ofHN which results from Eq.~4! for largeN is thus
written as

Pb~HN!5Kb,Nf @ tr~HN
2 !#5E

0

`

Gb,s~HN!dW~s! ~5!

for some distributionW(s). The elements ofHN are then
asymptotically independent under the prior condition thas
has a given values0 . The reference GE’s are the onl
spherical RME’s with independent matrix elements.

For orthogonal and unitary spherical RME’s, extendib
or not, we deduce from Eqs.~3! and ~4! that the ensemble
averaged asymptotic density isr`(l)5 limN→`@rN(l)#,
whererN(l) is a mixture ofrunif(l), the eigenvalue density
of a ‘‘uniform’’ orthogonal or unitary RMEUN5M(U) @see
below Eq.~3!#, for which tr(UN

2 ) is constant. The asymptoti
eigenvalue densityrunif(l) is indeedrW(l) from numerical
simulations and exact calculations@16#. The latter indicate
thatrunif(l) is actually very well approximated byrW(l) for
N as small as 50. For largeN, the GOE and GUE tend in fac
to fixed-trace ensembles asz5tr(HN

2 )/s2 has ax-square dis-
tribution with Np degrees of freedom which results in^(z
2^z&)2&1/2/^z&aN21. The asymptotic density is finally

r`~l!5 lim
N→`

E
ulu

`

gNr ~Np23! f ~Nr2/4!~r 22l2!1/2dr, ~6!

with

wN5E
0

`

r ~Np21! f ~r 2!dr, gN5N~Np/2!/~2~Np21!pwN!,

where f „tr(HN
† HN)… is the density defined in Eq.~5!. More

generally, the asymptotic density@Eq. ~6!# can be rewritten
as
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r`~l!52p21E
l2

`

~u2l2!1/2u21 dF~u! ~7!

for all spherical RME’s whose reference density is a Wign
semicircle. Calculation ofr`(l) for spherical ensembles o
all kinds of symmetries either with real or with comple
eigenvalues might similarly be performed from Eq.~4! @16#.
We describe below the example of orthogonal~CLOE! and
of unitary ~CLUE! Cauchy-Lorentz ensembles, whose as
ciated V(HN) are distributed according to a spheric
Cauchy distribution @10#, with a c.f. f(t)5exp
(2g @Sk51

Np tk
2#1/2):

Pb~HN!5
Kb,N

@11tr~HN
2 !/g2#~Np11!/2

. ~8!

With g25aC
2 /N, (aC5const), Eq.~6! yields

rb,`~l!5CF12E
0

p/2

cos~u!exp~2baC
2 cos2~u!/l2!duG ,

~9!

with C52p23/2b21/2aC
21. For smalll, distribution~9! has a

parabolic variation and is flatter than a Lorentz line who
maximum density is chosen asC. It decreases asl22 as l
→6` and has diverging moments. The CLOE density b
haves for small and largel in the same way as the density
the real-symmetric Le´vy ensemble with independent Cauch
entries@15#. Asymptotic eigenvalue densities independent
N are, however, reached for differentN dependences of th
scaling factor which varies asN21/2 for the CLOE @g, Eq.
~8!#, as it does for the GOE@s, Eq. ~5!#, and asN21 for the
Lévy ensemble@15#. Monte Carlo simulations~Fig. 1! were
performed for the CLOE from the stochastic representat

HN5
d

rU N , where 1/r is the absolute value of a normal var
able with zero mean@10# which is independent ofUN

5M(U). The vectorU is obtained fromU5
d

G/iGi , where
G is a Gaussian vector with IID components. Equation~9! is
easily generalized to orthogonal or unitary Student’s@10#
RME’s for which the exponent of the Cauchy distributio

FIG. 1. Comparison of the binned distributionsr(l)
5(average number of eigenvalues in@l2Dl/2,l1Dl/2#)/(NDl)
with the binned theoretical distribution calculated from Eq.~9! ~d!
for the CLOE; r~l! is calculated from Monte Carlo simulation
with Dl50.04, 43105 matrices andN550(x), N5100(1).
r

-

e

-

f

n,

(Np11)/2 @Eq. ~8!# is replaced by (Np1m)/2, wherem is an
integer (m.1). Whenm increases, their asymptotic dens
ties evolve progressively to the Wigner semicircle@16# as
moments of order k are finite for k,m
~r`(l) varies asulu2(m11) whenl→6`!. Simulations@16#
of the large-N density of real eigenvalues of antisymmetr
Hermitian Cauchy spherical ensembles confirm thatr`(l) is
a sum of asymptotic eigenvalue densities of antisymme
Hermitian GE with varying radii. The latter densities a
modified Wigner semicircles that differ a little fromrW(l)
in the central region@2#. The simulated radial density o
complex eigenvalues agrees similarly with the theoreti
density deduced from Eq.~4! for asymmetric Cauchy spheri
cal matrices with complex elements@Np52N2# @16#.

The large-N eigenvalue distribution of the sum of inde
pendent matrices can be deduced from the law of addi
for Blue’s functions, the functional inverses of the Green
functions, for Hermitian RME’s or of generalized Blue
functions for non-Hermitian RME’s@6,7#. For independent
spherical matrices of the same symmetry, it is simply sho
using c.f., that they are built from the sum of reference d
sities using the appropriate scale factors and weights.
large-N density of the sum of two orthogonal or unitar
spherical matricesHN5H1N1H2N is thus obtained from Eq
~7! where the distributionF(u) of the square of the radiu
u5u11u2 is calculated from the known distributions of th
radius squaresu1 andu2 . The large-N density of the sum of
two independent matrices, one from the GOE with a deg
erate distribution,u152aG

2 @see above Eq.~1!#, and one
from the CLOE with a densityf 2(u2)5aCp21/2u2

23/2exp
(2aC

2/u2) (u2.0) is, for example,

r~l!5CE
max~l2,2aG

2
!

`

S~u!23/2~u2l2!1/2

3exp@2aC
2 /S~u!#u21 du, ~10!

whereC52aCp23/2, S(u)5u22aG
2 . For computer calcu-

lations of Eq. ~10! ~Fig. 2!, we use the fact thatS21/2 is
distributed as the absolute value ofN@0,1/(2aC

2 )#.
Equations~6! and ~7! and their generalizations may ap

pear as intuitively obvious for RME’s whose density

FIG. 2. Comparison of Monte Carlo distributionsr~l! @see leg-
end of Fig. 1,Dl50.04, 23105 matricesN5100(1)# with the
binned theoretical distributions calculated from Eq.~10! ~solid
lines! for the sum of independent CLOE and GOE matrices.
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f „tr(HN
† HN)…. The concept of exchangeability has, howev

the advantage of providing rigorous proofs and thus a dee
characterization of such ensembles. Further, exchangea
has consequences which are much far-reaching than t
just discussed. First, the orthonormal bases which have b
selected in the present paper are adapted to RME’s wh
distributions depend on tr(HN

† HN). For some other RME’s
profit can be taken from the freedom in the basis choice
define new random vectorsY, whose components are linea
combinations of the previousX components, so that they ar
still exchangeable or evena symmetric. In the asymptotic
limit, the de Finetti theorem applied to suchY yields in turn
initial RME’s as mixtures of RME’s whose entries are line
combinations of IID variables. A simple example is a RM
HN whose distribution depends on a quadratic form in
elements ofHN , which reduces toXTAX when expressed in
terms ofX, whereA is a symmetricNp3Np positive definite
matrix. Defining Y5A1/2X @17#, the distribution ofY is
spherical and thus the largeN distribution of extendibleHN
is a mixture of RME’s whose entries are linear combinatio
of IID Gaussian variables and may thus be correlated.

Second, the ensembles which are mixed in the de Fin
theorem are not reduced to the sole Gaussian ensembles
instance, the two-parameter Wigner semicircle is obtaine
a limiting distribution for broad conditions on random mat
ces@2,3# or even on matrices with fixed entries@18#. Every
RME, which is asymptotically a mixture of RME’s with IID
entries whose eigenvalue densities arerW(l) @Eq. ~1!#, has
thus a large-N density that is obtained by summing up sem
circles with varying square radiiu and centering parameter
c. The weight of a semicircle~u,c! is given by the bivariate
distribution ofu andc.

Third, analogs of de Finetti theorems have also been
rived for two-dimensional exchangeable arrays and for s
chastic processes@8,19#. Further extensions to rea
symmetric RME’s, more general than the spherical RME
discussed above, result in fact from a theorem of Kallenb
@19# on infinite random jointly rotatable 2D arrays. Le
H:(Hi j ) i , j >1 be such an array and for eachN, consider the
subarray (Hi j ), ~1< i , j <N! as anN3N matrix HN . H is

jointly rotatable if for eachN, HN5
d

ONHNON
T for all or-

thogonalN3N matrices. Kallenberg has proven that an
finite array H is jointly rotatable if and only if it has the
following stochastic representation:

Hi j 5
d

vd i j 1t~gi j 1gji !1 (
k51

`

mk~mikmjk2d i j !, ~11!

where all symbols, exceptd i j , denote random variables
Latin symbols stand for IIDN(0,1) variables while Greek
d.

J.
,
er
lity
se
en
se

o

e

s

tti
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e-
-

s
rg

-

symbols represent arbitrary random variables independen
the Latin variables. Further, themk’s satisfy (k51

` mk
2,`

@19#. To interpret the various contributions in Eq.~11!, we
fix first the values of Greek random variables. Thed i j terms
in Eq. ~11! are then seen to produce a global shiftc of the
eigenvalues of the matrix whose elements are given by
sum of the remaining terms. The termt(gi j 1gji ) is readily
noticed to be an element of a GOE matrix,N@0,2t2(1
1d i j )#. Although different, the matrix associated with th
first part of the last sum is reminiscent of random matrices
Marcenko-Pastur ensembles and of some recent extens
of them @20,21#. If the latter matrix belongs to an ergodi
RME and if its spectral density is also a Wigner semicirc
~see@20,21# for some examples!, as it is for the GOE, then
the total matrix has a semicircular density, as deduced
instance from Blue’s functions@6,7#. However, the latter
semicircle isa priori shifted. Letting now the Greek vari
ables vary, we deduce that the asymptotic density of state
the considered ensembles is again given by the sum
shifted Wigner semicircles of varying radii. There are, ho
ever, general RME’s represented by Eq.~11! whose
asymptotic densities do not reduce to such sums. The de
tion of a criterion to determine beforehand if it is the case
not for a given RME is hence desirable.

The present work yields additionally a simple numeric
method of calculation of asymptotic densities in the num
ous cases where the latter are built from shifted Wig
semicircles and where closed form formulae cannot be
rived. The numerical calculation ofr`(l) may be performed
for huge matricesHN as no storage of matrix elements
required to get the characteristicsa andc @c5tr(HN)/N and
a52„tr(HN

2)/N2c2
…

1/2# of the semicircle associated with
given HN . We notice further that properties of distribution
of quadratic forms@17,22#, here tr(HN

2 ), may be helpful to
check such numerical results and for theoretical@Eq. ~11!#
purposes. Similar numerical methods may be applied to
trices with complex eigenvalues@16#.

To conclude, the present paper points out the significa
of the concept of exchangeability in RMT which reinforc
amongs others the importance of the classical Gaussian
sembles. The problems of the extension of the Kallenb
representation to Hermitian matrices and of its explicit co
struction for RME’s which are relevant in physics are fina
raised.
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