PHYSICAL REVIEW E VOLUME 59, NUMBER 6 JUNE 1999

Some consequences of exchangeability in random-matrix theory
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Properties of infinite sequences of exchangeable random variables result directly in explicit expressions for
calculating asymptotic densities of eigenvalyeg\) of any ensemble of random matriclswhose distribu-
tion depends only on tHH), whereH" is the Hermitian conjugate ¢i. For real symmetric matrices and for
Hermitian matrices, the densitips(\) are constructed by summing up Wigner semicircles with varying radii
and weights as confirmed by Monte Carlo simulations. Extensions to more general matrix ensembles are also
considered[S1063-651X99)09504-5

PACS numbgs): 02.50-r, 05.45~a, 21.10-k, 72.80.Ng

The “explosive” development of random-matrix theory distribution function whose associated probability density is
(RMT) during the last decade has been covered recently by, (\), the classical Wigner semicircld—3] (a®=2Ba2,
Guhret al.[1], who emphasize the universal applicability of A=|\—c|):

RMT to the fluctuation properties on local scales defined by
mean level spacings of quantuand of certain classichl pw(N) =(2/ma?)(a?—A)Y2 for A<a (1)
systems. Indeed, RMT is used considerably in various

branches of physics, notably in nuclear physics, quantunzland 0 for A>a) whose scale parameter is its “radiust
chaology, and for investigating Hamiltonians of disorderedand whose centering parametecic = (tr Hy)/N=0 for the

and strongly interacti_ng qua_ntu_m s_yste([&—_?] and refer- GOE and GUE However, recent sophisticated develop-
ences therein Propert|e_s of distributions of eigenvalues, af‘dments, particularly on noncommutative probability theory,
to a lesser extent of eigenvectors, of large random matricegyye created significant new results on the algebra of random
have been thoroughly investigated for various specific angnatrices and have shed light on the theoretical importance of
general random-matrix ensemblé8ME). Among the three  the wigner semicircular distributiofd—7]. Its further sig-
fundamental Gaussian ensembl€&E) [1,2], we mention the  njficance as a reference density for constructing |atgien-
two associated with real symmet(GOE) and with Hermit-  sities p..(\), bound or not, of broad RME classes is dis-
ian (GUE) NX N random matrice$ly . They are named af- cussed in the present paper.
ter the orthogonal and unitary transformations that leave the The setMy(R) [or M\(C)] of matrices with real(or
corresponding ensemble statistically invariant. The numbecomplex entries is aNX N (or 2N X 2N)-dimensional vec-
of distinct real random variables that are necessary to cortor space over the field of real humbéts The norm of a
struct eachNxN matrix is N, with N;=N+8N;,, N,  matrixHy is taken here a$H || =[tr(H{Hy)]¥2 whereH],
=N(N—-1)/2 andB=1,2 for the GOE and GUE respectively is the Hermitian conjugate dfly. It gives to My(R) [or
[1,2]. A random variable whose distribution is Gaussian withM (C)] a structure of Euclidean space. Adydimensional
a zero mean and a variane€ is hereafter denoted as subspace, of My(R) or My(C), given a basis, is isomor-
N(0,02). The previousN, variables that constitute the ma- phic to the spac&k’. Each matrixHy of Sy is thus in a
trix elementsH;; are independeni[0,0%(1+ 6;j)/2] vari-  one-to-one correspondence with a vecxoof RY, denoted
ables. The GOE and GUE probability density function ishereX=VY(H,). The inverse transformation frod to Hy
thenGg ,(Hn) =Kgn exq—tr(Hﬁ)/(Zaz)], where tr means is denoted asiy=M(X). If the basis ofS; is orthonormal,
trace. The variance is taken a$= /N, ag=const, to the usual Euclidean norm of is equal to|Hy|. The dimen-
obtain a spectrum independentdfvhenN—o. In contrast ~ siond=N, is imposed by the symmetry of the RME, which
to the universality of GE local fluctuations around mean val-is put in isometric correspondence wittf. We defineR;;
ues[1,2], their asymptotic average density of eigenvaluesior C;;) to be the matrix having a lone (br J—1) as(i,j)-
pw(\) [Eq. (1)] is a bound distribution whose shape is un-entry and all the others equal to 0. The familyRyf (or R;;
realistic for most physical systenj]. As the GE’s are er- and C;;) (1<i, j<N) is a canonical orthonormal basis of
godic, the empirical distribution function Fy(x) My(R)  [or  My(C)].  The family [{Rjj}.{(R;
= (number ofA<x)/N of every large matrix tends also to a +R;;)/v2},{(Cj;—C;)/v2}] (1<i<j<N) is, for example,
an orthonormal basis of the, = N2-dimensional subspace of
Hermitian matrices, and hence the associatetbmponents
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only RME’s associated with random vectofswhose com-
ponents ardN,, exchangeablés].

The distribution function oK is said to beN, exchange-
able if it remains unchanged by any permutation of ¥e
components. Ak-exchangeable sequenc,(...,X,) is n
%xtendible 6>k) if it is such that Kq,....X})

=(X1,....Xy) for some n-exchangeable
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¢(t)=f0x exp(—rt*)dF(r) (4)

for ¢(t) belonging to the clasf..(a). Equation(4) yields
the asymptotic distribution ofi-symmetricX as a mixture,
defined by the distributior=(r), of reference vector®

sequence whose c.f. is expfrt®). The components dR are then 11D

(X{,....X!), where i means that both members have the@ccording to a Ley stable distribution, which i8l(0,2r) for
same distribution. An infinite sequence of random variables*=2 [8,10—-14. The distribution of a finit&-exchangeable

{Xi}, k=1,...00, is exchangeable if it im exchangeable for

spherical sequence whichnsextendible (> k) is also well

every finiten. It is a mixture of identically and independently @PProximated by a mixture of normal distributiop8,9].

distributed(lID) sequences as demonstrated bydberinet-

From the distributions ofX and R, we deduce that any

ti's theorem which is valid in particular in Euclidean spaces @;Symmetric RME is asymptotically a mixture of random

[8—14]. Then, there exists p-dimensional p=1) random

variableY such that the components ¥f=(X,,...,X,) are
conditionally IID random variables; that is, Prob(
<Xqy,....Xp=X,)=II{_;ProbX;<x;|Y=y), given Y=y

[11]. Finite versions of the de Finetti theorem further show
how n-exchangeable sequences are close, in terms of a di§
tance between distributions, to mixtures of IID sequence
if ak-exchangeable sequence is

[8,9]. For instance,
n-extendible withn large as compared t?, the former se-
guence is close to a mixture of IID sequenf&k We discuss
below some notable RME’s for which tié,-exchangeable
sequences oX components yield, wheN,— o, infinite ex-

Levy matrices of the same symmetry with independent dis-
tinct entries(see[15] for a study of real-symmetric vy
RME'’s). In particular, any spherical RME is asymptotically
a mixture of Gaussian ensembles with the same symmetry.
Such spherical RME’s are thus not ergodic, as every large-
xtendible random matriki is a Gaussian matrix. The uni-

é/ersality of the spectral fluctuations of sueh’s is thus a

straightforward consequence of that of the reference GE's.
For orthogonal(8=1, real-symmetric matricgésor unitary
(B=2, Hermitian matriceisextendible spherical RME’s, the
density ofHy which results from Eq4) for largeN is thus
written as

changeable sequences which are mixtures of known “refer-

ence” sequencef. The properties of some permutation-
invariant distributions are more naturally expressed in terms

of characteristic functioné&c.f.). The distribution ofX is, for
example, calledr symmetric(0<a<2) [10,12 and refer-
ences thereihor sphericalfor a=2 [11-14 if its c.f. is

Np 1l
P(t)=(exp(it-X))=¢ t:(kZl |tk|a) } @

for all real N,-dimensional vectors. We denote by (a)
P

the class of such c.f. Far# 2, the representation of func-
tions whose c.f. are given by E¢) is solely known fora
=11[10,12. For the spherical case, the densityXotlepends
only on [X| whateverN,, as its c.f. depends only on the
modulust of t and conversel{13]. The density ofHy

= M(X) if it exists is consequentlf/(tr(HLH n)). By exten-

sion, the latter RME’s will be named ‘“spherical” hereafter.

For the spherical case(t) is given by Eq.(2) if and only if
it is represented bj12,13

#0= | “0n rmdpy o) @

for some distributionPy,(r) which is assumed to have no
mass at zero, whetﬁNp(t) is the c.f. of a vectoltJ which is
uniformly distributed on the surface of the unit spher&if
(12,13, QNp(t)=F(Np/2)(2/t)me(t), m=(N,—2)/2 and
Jn is a Bessel function. An expression similar to E8)
which involves a c.f. different fronﬁ),\,p(t) is also known for
a=1[12]. As proven by Bretagnollet al. (see[12]), Eq.(2)
admits the representation

Ps(Hy) =K g nfLtr(HR) 1= f:GB,AHN)de (5)

for some distributionW(o). The elements oHy are then
asymptotically independent under the prior condition that
has a given valuery. The reference GE's are the only
spherical RME's with independent matrix elements.

For orthogonal and unitary spherical RME’s, extendible
or not, we deduce from Eq$3) and (4) that the ensemble-
averaged asymptotic density is..(A)=limy_.[pn(A)],
wherepy(A) is a mixture ofp,i¢(\), the eigenvalue density
of a “uniform” orthogonal or unitary RMBUJ = M(U) [see
below Eq.(3)], for which tr(U2) is constant. The asymptotic
eigenvalue densitp,i#(\) is indeedpy(\) from numerical
simulations and exact calculatioh$6]. The latter indicate
thatp,.ii(\) is actually very well approximated k(M) for
N as small as 50. For lardé, the GOE and GUE tend in fact
to fixed-trace ensembles as tr(Hﬁ,)/a2 has ay-square dis-
tribution with N, degrees of freedom which results §(z
—(2))?)Y2(z)aN~1. The asymptotic density is finally

p.(N\)= lim

N— o

fler<Np3>f(Nr2/4)(r2—>\2)1’2dr, (6)
A
with

<pN=f0 riNe=DE(r2)dr,  yy=NMN2/2MN Ve,

Wheref(tr(HLHN)) is the density defined in Eq5). More
generally, the asymptotic densifizq. (6)] can be rewritten
as
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FIG. 1. Comparison of the binned distributionp(\)
= (average number of eigenvalueg \— AN/2 N + AN/2])/(NAN)
with the binned theoretical distribution calculated from E).(®)
for the CLOE; p(\) is calculated from Monte Carlo simulations
with AN =0.04, 4x 10° matrices andN=50(x), N=100(+).

pmo\)=2w—1f;(u—>\2)1’2u—1dF(u) 7
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FIG. 2. Comparison of Monte Carlo distributiopé\) [see leg-

end of Fig. 1,AN=0.04, 2x10° matricesN=100(+)] with the
binned theoretical distributions calculated from EGO) (solid
lineg) for the sum of independent CLOE and GOE matrices.

(Np+1)/2[Eq.(8)] is replaced by, + m)/2, wheremis an
integer (M>1). Whenm increases, their asymptotic densi-
ties evolve progressively to the Wigner semicirglés] as

moments

of order k are finte for k<m

for all spherical RME’s whose reference density is a Wigner(p.(\) varies agh|~(M"1) when\ — + o). Simulationg 16]
semicircle. Calculation op.,(\) for spherical ensembles of of the largeN density of real eigenvalues of antisymmetric
all kinds of symmetries either with real or with complex Hermitian Cauchy spherical ensembles confirm thdf\) is

eigenvalues might similarly be performed from E4) [16].
We describe below the example of orthogof@LOE) and

a sum of asymptotic eigenvalue densities of antisymmetric

Hermitian GE with varying radii. The latter densities are

of unitary (CLUE) Cauchy-Lorentz ensembles, whose asso-modified Wigner semicircles that differ a little from,(\)
ciated V(Hy) are distributed according to a spherical in the central regior{2]. The simulated radial density of

Cauchy distribution [10], with a c.f. ¢(t)=exp

(—y [P 214
KB’N

. 8
[1+tr(HY)/ 2] Mo D72 ©

Pg(Hn) =
With y?=a2/N, (ac=const), Eq.(6) yields
w2
pﬁ,m(x):c[l—f cog 6)exp( — Baz co(H)/I\?)da/|,
0

9)

with C=27"328"124 . For small\, distribution(9) has a
parabolic variation and is flatter than a Lorentz line whos
maximum density is chosen & It decreases as 2 as\

— * oo and has diverging moments. The CLOE density be
haves for small and largein the same way as the density of
the real-symmetric [y ensemble with independent Cauchy
entries[15]. Asymptotic eigenvalue densities independent o

N are, however, reached for differeNtdependences of the
scaling factor which varies ad~*2 for the CLOE[y, Eq.
(8)], as it does for the GO, Eq. (5)], and asN ™ for the
Lévy ensemblg15]. Monte Carlo simulationgFig. 1) were

performed for the CLOE from the stochastic representation,
d
Hy=rUy, where 1/ is the absolute value of a normal vari-

able with zero mear{10] which is independent olUy
d

= M(U). The vectorU is obtained fromU=G/||G||, where
G is a Gaussian vector with IID components. Equati®nis
easily generalized to orthogonal or unitary Studeft§]
RME'’s for which the exponent of the Cauchy distributio

complex eigenvalues agrees similarly with the theoretical
density deduced from E@4) for asymmetric Cauchy spheri-
cal matrices with complex eIemer[th=2N2] [16].

The largeN eigenvalue distribution of the sum of inde-
pendent matrices can be deduced from the law of addition
for Blue’s functions, the functional inverses of the Green'’s
functions, for Hermitian RME’s or of generalized Blue's
functions for non-Hermitian RME’$6,7]. For independent
spherical matrices of the same symmetry, it is simply shown,
using c.f., that they are built from the sum of reference den-
sities using the appropriate scale factors and weights. The
largeN density of the sum of two orthogonal or unitary
spherical matricebly=H 5+ H,y is thus obtained from Eq.

(7) where the distributiori-(u) of the square of the radius
Q= u;+ U, is calculated from the known distributions of the
radius squares; andu,. The largeN density of the sum of
‘two independent matrices, one from the GOE with a degen-
erate distribution,u1=2aé [see above Eq(1)], and one
drom the CLOE with a densityf ,(Up) = ac~ YU, ¥exp
(—a&luy) (uy>0) is, for example,

oo

p()\)ch S(u)f3/2(u_)\2)1/2

m

2

ax(A? 20g)

x exd — a&/S(u)Ju~tdu, (10)
whereC=2acm %2 S(u)=u—2aZ. For computer calcu-
lations of Eq.(10) (Fig. 2), we use the fact tha® 2 is
distributed as the absolute value Mf0,1/(222)].
Equations(6) and (7) and their generalizations may ap-
n pear as intuitively obvious for RME’s whose density is
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f(tr(HLHN))_ The concept of exchangeability has, however,sSymbols represent arbitrary random variables independent of
the advantage of providing rigorous proofs and thus a deepdhe Latin variables. Further, thg,’s satisfy Si_;uf<o
characterization of such ensembles. Further, exchangeabilifit9]. To interpret the various contributions in E@.1), we

has consequences which are much far-reaching than tho$e first the values of Greek random variables. Thgterms

just discussed. First, the orthonormal bases which have beén Eg. (11) are then seen to produce a global skiif the
selected in the present paper are adapted to RME’s whosgigenvalues of the matrix whose elements are given by the
distributions depend on #{{Hy). For some other RME's, sum of the remaining terms. The terrfg;; +9;;) is readily
profit can be taken from the freedom in the basis choice tgioticed to be an element of a GOE matriX]0,27%(1
define new random vectos, whose components are linear + 5,)]. Although different, the matrix associated with the
combinations of the previous components, so that they are fjrst part of the last sum is reminiscent of random matrices of
still exchangeable or evea symmetric. In the asymptotic parcenko-Pastur ensembles and of some recent extensions
limit, the d? Finetti theorem appll,ed to sudhyields in turn ¢ them [20,21]. If the latter matrix belongs to an ergodic
initial RME's as mixtures of RME's whose entries are linear e anq if its spectral density is also a Wigner semicircle
combinations of IID variables. A simple example is a RME (see[20,21] for some examplésas it is for the GOE, then

;N vvehczseoglstnbl;]t]or? dgpendsto?pA; quhadratlc form (|jn_ the[he total matrix has a semicircular density, as deduced for
ements oy, Which reduces When Expressedin -, qiance from Blue's function$6,7]. However, the latter

terms ofX, whereAis a symmetridN, X N,, positive definite semicircle isa priori shifted. Letting now the Greek vari-

matrix. Defining Y=AY?X [17], the distribution ofY is . .
spherical and thus the largé¢ distribution of extendibleH ables vary, we deduce that th_e asymptotic density of states of
the considered ensembles is again given by the sum of

is a mixture of RME’s whose entries are linear combinations’, ) - . .
of IID Gaussian variables and may thus be correlated. shifted Wigner sem|c!rcles of varying radii. There are, how-
Second, the ensembles which are mixed in the de Finet§Vel. general RME's represented by E@1) whose
theorem are not reduced to the sole Gaussian ensembles. FsYMPptotic densities do not reduce to such sums. The defini-
instance, the two-parameter Wigner semicircle is obtained aéon of a criterion to determine beforehand if it is the case or
a limiting distribution for broad conditions on random matri- Not for a given RME is hence desirable.
ces[2,3] or even on matrices with fixed entri¢$8]. Every The present work yields additionally a simple numerical
RME, which is asymptotically a mixture of RME’s with IID method of calculation of asymptotic densities in the numer-
entries whose eigenvalue densities ajg\) [Eq. (1)], has 0Ous cases where the latter are built from shifted Wigner
thus a largeN density that is obtained by summing up semi- semicircles and where closed form formulae cannot be de-
circles with varying square radii and centering parameters rived. The numerical calculation @f.(\) may be performed
c. The weight of a semicircléu,c) is given by the bivariate for huge matricesHy as no storage of matrix elements is
distribution ofu andc. required to get the characteristigandc [c=tr(Hy)/N and
Third, analogs of de Finetti theorems have also been deg=2(tr(H\2)/N—c?)*?] of the semicircle associated with a
rived for two-dimensional exchangeable arrays and for stogjven H,,. We notice further that properties of distributions

chastic processeq8,19. Further extensions to real- quadratic formg17,29, here trﬁﬁ), may be helpful to

symmetric RME’s, more general than the spherical RME'S heck such numerical results and for theoret 11
discussed above, result in fact from a theorem of Kallenber " y ! " (629, (11)]

[19] on infinite random jointly rotatable 2D arrays. Let %urposes. Similar numerical methods may be applied to ma-

H:(Hjj)i, j=1 be such an array and for eahconsider the trlC_?é (\;\gt:cﬁl%rgpiﬁz elrgeig\é?ug&g. oints out the significance
subarray Hj;), (=i, j<N) as anNXN matrix Hy. H is ’ P paper p 9

) of the concept of exchangeability in RMT which reinforces
jointly rotatable if for eachN, HN:ONHNO-[\FI for all or-  &mongs others the importance of the _classmal Gaussian en-
thogonalN X N matrices. Kallenberg has proven that an in- sembles. The problem;lof the extension Of. the Ke}ll_enberg
finite arrav H is iointl ;otatable i and onlv if it has the representation to Hermitian matrices and of its explicit con-

array jointly L y struction for RME’s which are relevant in physics are finally
following stochastic representation: raised
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Hii:w&ii+7(gii+gii)+k21 MMy = 8ip), - (11) Etrangees, and the Division of Engineering and Applied
Science (California Institute of Technologyfor financial
where all symbols, exceps;;, denote random variables. support, Professor B. Fultz and his group for their welcome,
Latin symbols stand for IIDN(0,1) variables while Greek and P. Bogdanoff for a careful reading of the manuscript.

[1] T. Guhr, A. Muler-Groeling, and H. A. Weidenniler, Phys. [4] P. Neu and R. Speicher, J. Stat. PH§8. 1279(1995.

Rep.299 189 (1998. [5] R. Gopakumar and D. J. Gross, Nucl. Phygi®, 379(1995.
[2] M. L. Mehta, Random Matricesrevised and enlarged 2nd ed. [6] E. Brezin and A. Zee, Nucl. Phys. B02, 613(1993; A. Zee,
(Academic, New York, 1991 ibid. 474, 726 (1996.

[3] A. M. Khorunzhy, B. A. Khoruzhenko, and L. A. Pastur, J. [7] R. A. Janik, M. A. Nowak, G. Papp, and I. Zahed, Acta Phys.
Math. Phys.37, 5033(1996. Pol. B 28, 2949(1997.



PRE 59 CONSEQUENCES OF EXCHANGEABILITY IN RANDOM. . . 6285

[8] D. J. Aldous,Ecole d’Efede Probabilifes de Saint-Flour Xlll-  [15] P. Cizeau and J. P. Bouchaud, Phys. ReB0F1810(1994.
1983 edited by P. L. Hennequin, Lecture Notes in Mathemat-[16] G. Le Cae and R. Delannay, STATPHYS20, Paris, July 20—
ics Vol. 1117 (Springer, Berlin, 198 p. 1. 25, 1998(unpublished

[9] P. W. Diaconis, M. L. Eaton, and S. L. Lauritzen, Scand. J.[17] A. M. Mathai and S. B. ProvosQuadratic Forms in Random
Statist.19, 289(1992. Variables(Dekker, New York, 1992

[10] K. T. Fang, S. Kotz, and K. W. NgSymmetric Multivariate [18] L. Arnold, Linear Algebr. Appl.13, 185(1976.
and Related Distribution§Chapman and Hall, London, 1990 [19] O. Kallenberg, Prob. Theory Rel. Fields, 415(1988.
[11] Y. L. Tong, The Multivariate Normal Distribution(Springer, ~ [20] V. Marchenko and L. Pastur, Math. USSR 3b457 (1967.

Berlin, 1990. [21] A. Khorunzhy and G. J. Rodgers, J. Math. Phgs, 3300
[12] T. Gneiting, J. Multivariate Anal64, 131 (1998. (1997.
[13] I. J. Schoenberg, Ann. Mati39, 811 (1938. [22] A. M. Mathai, S. B. Provost, and T. HayakawB8jlinear

[14] P. Ressel, Ann. Pro.3, 898(1985. Forms and Zonal PolynomialSpringer, New York, 1996



