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for bioconvection patterns
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We consider a complex Swift-Hohenberg equation with control-parameter-dependent coefficients and use it
as a model to describe dynamical features seen in an experimental bacterial bioconvection pattern. In particu-
lar, we give numerical results showing the development of a phase-unstable pattern behind a moving front.
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[. INTRODUCTION old only if the neutral stability curvie= (k) [see Fig. 13)]
shows a clearly marked minimum &t £k.. If not, as is
Patterns form in various physical systems, and at variougenerically the case ji.= 1(0) is small[see Fig. )], the
scales. Whether they occur in fluids subject to temperaturéact thatkﬁzuc is comparable to the distance from threshold
gradients [1-11] or to parametric forcings[12,13, in  must be taken into account in the multiple scale analysis
Couette-Taylor flowg14], in directional solidificatior{15],  used to describe the bifurcation. As a consequence, a differ-
in chemical reactor§16—19, in liquid crystals[20-22, in  ent order parameter equation, namely, the complex Swift-
granular layer§23—26, in passive and active optical devices Hohenberg equation, should be used to model the near-
[27-37, or in biological system$38—54, they result from threshold dynamics. In scaled variables, this equation reads
the nonlinear competition between linearly growing, spa-
tially and/or temporally periodic modes. This competition d¢ i 22 i S
can be described in terms of envelope equations, which cap; = #¥~ (L +H1a)(Q+ V%= (1+iB)| "y +iy V=4,
ture the pattern dynamics near thresh@lor a review, see, (1)
for instance[55] or [56]). These equations are the partial-
differential-equation analogs of normal forms for dynamicalwhere s is a complex order parameter and all of the other
systems, and have been successfully used to analyze pattegisefficients are real. Such an equation was considered as a
and their defects. Sometimes, these equations are formalijodel for a passive optical system driven by an external field

derived from the microscopic description of the system un4n [61]. In [62,63, it was derived from the Maxwell-Bloch
der consideration, in which case the properties of a particular

pattern can be quantitatively related to physical parameters. Band of unstable modes at

More often, amplitude equations are written on the basis of ——— a finite distance from

symmetry arguments, and used to analyze generic pattern threshold

behaviorg57-59. A AH
Formally speaking, amplitude equations are only valid Ke

near threshold. As far as modeling is concerned, it is, how-
ever, generally accepted that they give a good qualitative

description of a pattern at a finite distance from threshold, as Mg

long as this pattern undergoes instabilities which are consis- > ~ Z—>
tent with the amplitude equation approximation. For in- ke 0 Ke ks g O k b
stance, phase instabilities are reasonably captured by ampli- (a) (b)

tude equations since the latter allow the phase of the order

parameter to vary. On the contrary, a new set of amplitude £ 1. sketch of the neutral stability curye(k) giving the
equations needs to be introduced in order to describe secongaye numberk of marginal Fourier modes as a function of the
ary instabilities involving harmonics of the basic structuregjstance from thresholg. (8) When >0, modes of wave number
[60]. In the case of a bifurcation towards a one-dimensionak in a band centered abolit. experience growth(b) When
traveling wave pattern, an amplitude equation description in=,,(0) is comparable t&?, the relative widthAk/k, of the band
terms of two counterpropagating waves of wave vectoks of unstable modes is of order one for small valuesugfthereby
can be expected to be valid at a finite distapciom thresh-  limiting the region of validity of amplitude equations.
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equations describing the dynamics of two-level lasers and Il. THE COMPLEX SWIFT-HOHENBERG EQUATION
thereby shown to provide a universal description of class A WITH CONTROL-PARAMETER-DEPENDENT
and C lasers near threshold. Later, this approach was ex- COEFFICIENTS

tended to optical parametric oscillators[itv,65.

Historically, the cubic Swift-Hohenberg equation with  We consider the complex Swift-Hohenberg equati2h
real coefficients and a real order paramefenas described At this stage, we lets be a function of both horizontal vari-
in [66] as a pattern-forming model for Rayleigh+&ed con- ablesx andy, but the numerics will be done for a one-
vection. Later, a quadratic version thereof was also considdimensional pattern. Equatiof2) has a simple solutiony
ered to model competition between hexagons and squaresQ, which corresponds to the absence of structure. When
(see, e.g.,[67]). Recently, a Swift-Hohenberg equation is larger than 0, an instability occurs and a spatially periodic
coupled to a mean-flow equation was shown to describe papattern is formed. Indeed, perturbations/of 0 with wave
terns in rotating convectiof68]. More generally, both the numberk grow or decay at a linear rate given by
real and complex Swift-Hohenberg equations and their gen-
eralizations have been used as generic pattern-forming mod- o(K)= ptiv—_(a,+ia)(ki—k*)2—iyk?,
els for one-dimensional periodic pattefig®—73. o ]

In this paper, we are interested in the dynamics of thétd the modes experiencing maximum 9£°Wth have a wave
complex Swift-Hohenberg equatidfh) when the parameters numberk=*k., and a frequency = »— yk; . The cubic or
involved in the equation depend on the distapcéom the ~ quintic nonllnear_ terms of qu)_ saturate this instability. In
bifurcation threshold. We consider th@t=Kk? is positive ~ Particular, traveling wave solutions of E) can be found,
and varies linearly and quadratically jin, whereas the other Wwhich ready=R exdi(wt+k-r)], where
parameters depend @nlinearly. Such an approximation can
be obtained by keeping the first terms of the Taylor expan- 0=p—ar(K—k9)?~ BR*~ (R, .
sion of the parameters in the distance from thresheljl.

We do not, however, include in the Swift-Hohenberg equa- w=v=ai(k®—k§)?= BiR* = (R = %k,
tion higher order nonlinear terms if or its derivatives, ex-

cept for one quintic term which might be needed in the cas@ndk=k|. Depending on the values of the parameters of Eq.
of a subcritical bifurcation. In other words, we do not con- (2) and on the wave numbég these solutions may undergo

sider the complex Swift-Hohenberg equation with control-& Phase instability75-81. This instability can be analyzed,
parameter-dependent coefficients as the result of a multipidt l€ast in the early stage of its development, by reducing Eq.
scales analysis, but we take it as a simple pattern-forming?) 10 @ single equation for the phase of the complex quantity
model for which the preferred wave numberand the sta- ¥ More precisely, wheny is close to a traveling wave so-
bility properties of plane wave solutions above threshold delution (3), we can writeys as =Rg(k)exp(6)+--- where
pend on the distance from threshold. This is a very naturaRo(K) is a solution of Eq/(3), # is such thatV 6=k varies
assumption, and this situation is likely to occur in manyslowly in space and time, and the dots stand for higher order
physical systems driven far from equilibrium by some exter-corrections coming from the fact th&y(k)exp(6) is no
nal forcing. longer an exact solution of the Swift-Hohenberg equation.
As a motivation, we describe below an experimental bio-Under these conditions, the phage satisfies a phase-
convection patterri74], in which bacteria multiply as the diffusion equation, which reads at lowest order
pattern evolves, thereby changing the control parameter as

the colony develops. We then consider the general complex a0 ab +ab; )
Swift-Hohenberg equation 5~ @K+ —2————(ke=3k%)
r
J
a—‘f=(u+iv>¢—<ar+iai><k§+vz>2w L 8K*(ke—k*)’af b +bf|7%0
) 5 ) 4 by erg br2 ax?
—(BeHiBIY P+ iyV2y— (G Hi )9y, (D ,

and use it to model this bioconvection pattern. We add quin- + _zm(kg_ k2)+7_bir_0’ (4)
tic terms in order to leave open the possibility of a subcritical by br |gy?

bifurcation and use the unscaled version of ELQ.since it
provides a convenient way to take into account the depenhere
dence of the various coefficients on the control parameter

The paper is organized as follows. In Sec. Il, we show

how a pattern arises as a solution of B8) when x is R s the amplitude of the traveling wave and is given in Eq.
positive and find the region of stability of plane wave solu—(3)_ In this equation, the axis has been chosen parallel to

tions in thek-. plane by means of a phase diffusion equa-, .. \ave vectok and they axis is therefore perpen-
tion. In Sec. lll, we discuss the bioconvection experiment y Perp

and how the above equation can be used as a model whiéhcular tok. Equation(4) is nonlinear inV ¢ since w(k),
incorporates bacterial growth and migration. Section 1V isgiven by Eq.(3) with R=Ry(k), contains terms ink
devoted to numerical simulations of the model and Sec. \*=|V 6|2. The method used to obtain such an equation is a
discusses possible implications of these results for the analgeneralization to wave patterfid2] of the technique devel-
sis of bioconvection. oped in[83]. In one space dimension, stable wave vectors are

br:,Br+2§rR21 bi:ﬁi+2§iR2=
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FIG. 2. Domain of existence of one-dimensional traveling
waves (light gray) and Busse balloor{dark gray for «,=2.0 FIG. 3. Video frame showing the hioconvection pattgve].
+0.8%, @=0.8+0.5u, B,=10, Bi=-13-2.0u, k=05 The inset gives the pattern intensity as a function of position along
+0.51+0.8u%, y=0.453, and{,={;=0.0. Units are arbitrary. the line drawn on the video framéOne unit on thex axis of the

The dashed curve gives the wave vedtavhich experiences maxi- inset corresponds to 0.155 mm actual length. Units on the vertical
mum linear growth above threshold. axis are arbitrary.

. . 2 2 -
such that the coefficierE(k, i) of 9°6/dx” in the phase-  g,matimes been observg@s], bioconvection structures are

diffu_sjon equation is positivg, and the width of the rggion Ofin general stationary. Various hydrodynamic models describ-
stability of plane wave solutions can therefore be adjusted ang the coupling between the moving fluid and the swimming
changing the parametess, , «;,...,{;. In the absence of

. : S i e cells have been propos¢d0,85-90Q, for different types of
amplitude instabilities, thls region is the analog of the Buss%icroscopic organisms. Bioconvection has indeed been ob-
balloon [84] for convection patterns. Conversely,. ON€ CaNgaryed in gravitactic, chemotactic, or phototactic organisms
use Eq/(4) to choose the. dependence of the coefficients of (seer41]) In each case, depending on the cell size and on the
the Swift-Hohenberg equatio) in order to produce BUSSE oy of their motion, a different model is required. To our
balquns of various shape;. For. instance, Fig. 2 shows thEnowledge, the only weakly nonlinear analysis of a biocon-
stability domain of one-dimensional plane waves for \ection pattern is given if90] for bacteria. It is shown that

=2.0+0.8%, «;=0.8+0.5u, B,=1.0, Bi=— 12'3_ 2.04,  the bifurcation towards hexagons is stationary and supercriti-
¥=0.453,{,={;=0.0, andk,=0.5+0.5¢ +0.8u%, numeri-

cally computed by finding those lines in thex plane such —, this paper, we are interested in a one dimensional, trav-
thatE(k, 1) =0. Itis seen that no traveling wave is stable if g|ing wave bioconvection structure, which is produced by a
u>pg=035. _ culture ofBacillus subtilis To our knowledge, this pattern is

Equation (2) with control-parameter-dependent coeffi- the first traveling wave bioconvection pattern which has been
cients therefore appears as a smple, generic, pattern-form|%a|yzed_ The details are given [iA4], where the bacterial
system whose dynamic properties above threshold can hgyains and the experimental setup are described. The pattern
adjusted by an adequate choice of parameters. The following forced to be one-dimensional by restricting bioconvection
is an example of how such an equation can be used to modg] the meniscus formed by a nutritive fluid near a solid wall,

a bioconvection experiment. made of either agar or plastic. It is shown[ifd] that trav-
eling waves are easily produced each time motile strains
IIl. EXPERIMENTAL RESULTS 012836 or 011085 oBacillus subtilisswim in the meniscus

that forms near a flat or curved wall. What makes this bio-

Bioconvection occurs when unicellular organisthacte-  convection pattern particularly interesting is that, as de-
ria, algag gather at the surface of a fluid whose density isscribed below, it exhibits many dynamical features. In par-
less than their own. As a consequence, the heavy layer afcular, its properties evolve in time since the bacteria
cells which forms atop the fluid may become unstable if themultiply as they swim. Moreover, it develops behind a front
concentration of organisms gets too high. In a way similar tccreated by a cloud of cells swimming towards fresh nutri-
Rayleigh-Baard convection, plumes of sinking and rising ents, and the wave number of the structure behind the front is
fluid are formed, but here the cells are advected by the fluiduch that an instability develops. Space-time dislocations and
as they swim. This phenomenon was reported by Wager ieventually spatiotemporal disorder are then observed.
1911[38], and Platt devised the name ‘“bioconvectiof89]. Figure 3 shows a circular agar disk, together with the
The phenomenon has since been studied more extensivetye-dimensional bioconvection pattern in the bottom-right
both analytically[40,85—-90 and experimentallysee, e.g., corner. Although bacteria are present away from the agar
[91,92,59), and the interested reader may refer to the recentlisk, the pattern only forms in the meniscus near the disk,
review articles by Pedley and Kesslerl,42), and to refer- where the fluid is deeper. The inset gives a cross section of
ences therein. When viewed from above, bioconvection pathe patternwhite line at the bottom-right corngmwhich has
terns in general appear to be square or hexagonal, andaawavelength of about 1 mm. Figure 4 shows a space-time
tendency towards labyrinthine structures has also been seeliagram of the evolution of the structure, where many dy-
(see, e.g.[38,91]). Although drifting of the pattern has namical features can be seen. First, a front between regions
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density of cells. Because the coefficients of the Swift-
Hohenberg equation are control-parameter dependent, the
properties of the pattern and its stability change as the con-
trol parameter gets larger. Since bioconvection starts when
the layer of cells at the surface of the fluid becomes too
heavy, the control parametgr must be proportional to the
difference between the average cell concentrafioand
some critical valugp,, above which bioconvection appears.
Because the culture forms a cloud propagating from left to
right in Fig. 4, p should be a function of space, which van-
ishes ahead of the front. The exact form of this front depends
on the properties of the fluid and of the bacteria, but, as a
first approximation, we can use the analytic shape found by
Keller and Segel i94], which reads

80+

Time (min)

B exqd —(x—ct)/D]
PO e — (x—ct)/Dy D

p

This approximation is justified since the bacteria are chemo-
tactic towards fresh nutrients. The parameters are the Batio
between the motility parameter and the front speezhd the
parameter describing the scaled slope of the chemotactic
coefficient as a function of the inverse of the nutrient con-
centration. Moreover, since the culture is growing as it
propagates, we add a multiplicative term which describes
Location exponential growth behind the front, and thus definas

0

FIG. 4. Spatiotemporal diagram showing the evolution of the ex] — (x—ct)/D]
pattern[74]. The same portion of 51 video framésne of them is p(X,t)=po
shown in Fig. 3 was selected and transferred by computer to form {1+exd —(x—ct)/D]}"—D
a composite figure spanning 80 minutes in real time.

xexr{M tanl‘( - X—Ct— In(r — 1)”. 5)
with bacteria(on the lef) and without bacterigon the righy D
propagates from left to right in the figure at a speed
=0.225 mm/min, which is constant on average. The fresfNo saturation of the exponential growth is included in this
fluid appears black in the figure, whereas the culture of bacformula since we describe the phenomenon in the initial
teria is in dark gray. Behind this front, a pattern is formedStage of the culture developmefat typical doubling time is
(alternating dark and light gray stripesvhich travels away 90 minute$. The control parameter is given by the differ-
from the front. This pattern is unstable since new stripe€Ncep—p., Wherep, is a constant value for the threshold of
appear between existing ones, and eventually degenerates fioconvection. Whemp(x,t) exceeds., which happens at a
wards spatiotemporal disordgf4] (not shown in the figune  fixed distance behind the front, a pattern grows.

Global regulation in the form of such a dynamic pattern is Next, we need to choose the parameterse;, . .. ,{; of
quite remarkable for a culture of microorganisms. It resultsEd. (2). We assume that these parameters, as well as the
from the interplay of cells swimming up and towards freshpreferred wave vectok., depend on the distance from
nutrients, fluid motion due to bioconvection, and expansiorihreshold x. The function k.(x) is chosen ask.=0.5
of the cell population. We understand this phenomenon ag-0.5u+0.8u2, so that the wavelength of the mode experi-
follows: behind the propagating front, the average density ofncing maximum growth decreases;agets larger. In other
bacteria reaches the critical threshold for bioconvection. Thavords, stripes tend to get closer to one another as the culture
pattern which is formed is regulated by the growth of thegrows. The coefficients, , «;, . .. ,{; are chosen in order to
culture and the average distribution of cells, in the sense thdtave a small Busse balloon. More precisely, we want the
the local wave number depends on the cell density and on thHeand of stable wave vectoks which is centered arourki,
cloud shape. As the culture grows, the wavelength of théo get narrower and eventually shrink to zero /asis in-
pattern is adjusted by insertion of new stripes between existreased above some thresh@ld, as shown in Fig. 2. This
ing ones and when the cell density gets too high, a thresholdill make the pattern unstable as the culture develops, and
is reached above which no stable structure can be sustainegikentually lead to spatiotemporal disorder. Indeed, since
The pattern then decays into a space-time disordered statep(X,t) grows in time, there will be a time when the differ-

To illustrate these ideas, we now develop a patternencep(x,t)—p. gets aboveug at some poinx. When the
forming model in the form of the complex Swift-Hohenberg size of the region(in x) where this happens gets large

equation discussed above, driven by a space- and timenough to sustain spatiotemporal disorder, the pattern will
dependent control parameter, which represents the averafgeeak and get disorganized at a small scale.
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Many other parameter choices can be made. It should,
however, be emphasized that the generic behavior of the pat-
tern does not depend on the particular parameter values used
in the model, but on the following crucial points. First, the
pattern is driven by a time- and space-dependent control pa-
rameter u=p—p.). Second, its properties change as the
control parameter is increasddue to the dependence of
a, ai,...,¢i on u). Third, the structure degenerates to-
wards spatiotemporal disordéice., the Busse balloon gets
narrower asu is increased

IV. NUMERICAL SIMULATIONS

We now show numerical simulations of the model with
the parameters given above, together witl+=0.3, andpg
=0.9,D0=10.0,r=10.0,\=0.001 for the shape of the driv-
ing front. The front speead=0.3 (arbitrary unit3 and the
frequencyr= —0.1 are chosen so that the relative scales in
the space-time diagram are similar to what is seen in the
experiment. The simulation is performed in one space di-
mension, in a box of size,= 350 (arbitrary unit$, and with
a time stepdt=0.001. We use a spectral-like compact finite
difference schem¢95] and nonreflecting boundary condi-
tions[96]. The data are evolved by means of a fourth order
Runge-Kutta scheme. The simulation has an interactive in-
terface bg|lt with the v|su'a| graph|cgl soﬁware AV3d- FIG. 5. Spatiotemporal diagram showing the evolution of
vanced Visual _Syste_n)LSNhlch makes it easier to choose the p(x,1)+Re ¥(x,1)] as a function of time betweet=0 and t
parameters which give the desired shape for the Busse bal:ggg (arbitrary units [74]. The parameters used to produce this
loon. . . _ diagram are(arbitrary unit$ p,=0.3, @,=2.0+0.85x, ;=0.8

Figure 5 is a gray scale spatiotemporal diagram of a quans o5, g,=1.0, gj=—1.3-2.0u, k.=0.5+0.54+0.842 7y
tity representing the total concentration of bacteria, namely=0.453, {,=¢,=0.0, v=-0.1, p,=0.9, c=0.3, D=10.0, r
p(x,t) + R ¢(x,t)]. Indeed, REy(x,t)] or a scaled version =10.0, \=0.001, L,=350.0, anddt=0.001. Time increases up-
thereof is the correction to the average dengity,t) due to  ward.
the presence of the pattern. The region without bacteria is on
the right. One can clearly see the driving front moving at aaroundx= 90 shows that such an event had just occurred, or
constant speed=0.3, and the pattern forming behind this was about to occur when the snapshot of Fig. 6 was taken.
front. Space-time dislocations are observed behind the front Figure 7 showsp(x,t) and R&y(x,t)] at a later time
and, as we had expected, the pattern eventually becomes dis965.5. The real part ofy describes the periodic structure
ordered. seen in the stripe pattern. From this figure, one can see that

The parameters are such that the bifurcation is a forwargy(x,t) given by Eq.(5) decays regularly on the left of the
bifurcation, since 8,>0 and {,=¢;=0. At threshold,

w(ke)=v— yk3=—0.1-0.543(0.5= —0.21, and 1.0

ldow L— N

| =-2y<0, e |

k dk ‘ & 05 B

c 2 \A \\\
so that amplitude perturbations travel in a direction opposite g .-
to the direction of travel of the pattern. In particular, if the '
stripes travel away from the front, amplitude perturbations
will travel towards the front. However, the situation is re-
versed wheru is increased, as can be seen from the propa- Lo
0 50 100 150 200 250 300 350

gation of space-time disorder away from the front in Fig. 5.
Figure 6 shows the quantities(x,t) (top curve and

|¢(X't)| (bOt,tom curye as_ functions of space, at timt? FIG. 6. Field profiles at=262.5(arbitrary unit3. The top curve
=262.5 (arbitrary unit3. It is seen that the pattern, which g 5 piot of the driving front as a function af and the bottom curve

corresponds to a nonzetfg forms at a given distance behind shows|y(x)|. The parameters used to produce this plot (aréi-
the front, and that its amplitude is related to the front shapeyary unity p.=0.3, @, =2.0+0.85x, a;=0.8+0.5u4, 8,=1.0, 5;

Insertion of new stripes between existing ones, which look= —1.3-2.0u, k,=0.5+0.54+0.8u2 y=0.453, {,={;=0.0, v
like dislocations in the spatiotemporal diagram of Fig. 5,=-0.1, p,=0.9, ¢=0.3, D=10.0, r=10.0, A=0.001, L,
occurs whenj¢(x,t)| vanishes. The dip in the profile 6§  =350.0, anddt=0.001.

position
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15 which slightly changes the shape of the front. Only the re-
gion near the front is shown. The way new stripes get in-
serted between existing ones reproduces the global regula-
0.5 tion of the experimental pattern remarkably well.

The essential message of these numerical experiments is
that the simple pattern-forming model given by E(.and
(5) is sufficient to reproduce and understand the complexity
of the experimental bacterial pattern. Two hypotheses were
made to construct this model. First we assumed that biocon-
vection takes the form of an oscillatory instability which
occurs when the average cell concentration gets above a
fixed threshold, whence the use of a complex Swift-
Hohenberg equation. Second, we considered that the culture

FIG. 7. Fields at=965.5 (arbitrary unit3. The top curve is a in the propagating cloud was growing in time, which in turn
plot of the driving front as a function of, and the bottom curve |€d to an instability of the pattern, whence the use of control-
shows Re/(x). The parameters used to produce this plot@arei-  Pparameter-dependent coefficients in E2).
trary unit9 p.=0.3, a,=2.0+0.85u, a;=0.8+0.5x, B,=1.0, 5;
=-1.3-2.0u, k.=0.5+0.50+0.84%, y=0.453,{,={=0.0, v
=-0.1, pp=0.9, ¢=0.3, D=10.0, r=10.0, A=0.001, L, V. DISCUSSION
=350.0, anddt=0.001.

amplitude

-0.5 AR RAARAL]]]

-1.5 I | l | I
0 50 100 150 200 250 300 350

position

The complex Swift-Hohenberg equati¢?) considered in
this paper gives a generic description of traveling wave pat-

front, which explains the regularity of the periodic structuretems which develop above a Hopf bifurcatiGrs opposed to

on the left of Fig. 7 and of the spatiotemporal diagram of . . ) X )
Fig. 5. It can also be seen in this figure that the wave numbe? drift bifurcation [97)). T.h.e mtroductlon of cc_mtrql—
k of the pattern is driven by the shape of the front. parameter-dependent cqefﬂments turns this equa’glon into a

Finally, we show another space-time diagram in Fig. 8,Very general r_nodel which can ade_q_uately describe Busse
for which the parameters are the same as before, except th ?Iloon_s of various shapes. The stability results as we!l as the
pe=0.2, which makes the pattern grow faster, &ne 9.43, ynamical behaviors d|scu_ssed here are therefqrg_llkely to

apply to many other traveling wave patterns exhibiting spa-
tiotemporal behaviors, such as those recently observed in
some convection experimenf88]. Equation(2) is also a
good model to study wave number selection in a pattern
driven by a space-dependent control parameter, as is the case
here(in particular, see Fig.)7 Such an analysis is, however,
beyond the scope of this paper.

It is also interesting to draw some conclusions about what
one can learn, from a biological point of view, from the
above model. First, the strains Bécillus subtilisused in the
experiment are believed not to exchange signals with one
another that influence swimming. The global behavior which
corresponds to the existence of a pattern, as well as the com-
plexity of the structure, could have suggested that signalling
between cells was necessary. Moreover, the presence of dis-
locations in the spatiotemporal diagram could have been in-
terpreted as a form of global regulation, where the cells
would know the history of the pattern. What the Swift-
Hohenberg model suggests is that space-time dislocations
and later space-time disorder are simply the signature of a
phase instability of the structure behind the moving front,
and that the same phenomenon would be observed in any
pattern which would undergo a similar type of instability.

Second, the experimental pattern clearly exhibits traveling
waves, which means that the bifurcation towards bioconvec-

FIG. 8. Spatiotemporal diagram showing the evolution off[ion .is oscillatory. Fer a_hydrodynamics point_of vi.ew,_this
p(xt)+ R ¥(x,1)] as a function of time, betweet=0 andt  IMPplies that the vertical distribution of cells swimming in a
=373.5 (arbitrary unit3. Only part of the field in thex direction  fluid at rest before bioconvection occurs undergoes a Hopf
(42<x<280) is shown. The parameters used to produce this diabifurcation. This possibility was recently discussed for pho-
gram are (arbitrary unity p.=0.2, a,=2.0+0.854, «;=0.8 totactic algae by Vincent and Hill ifB8]. However, because
+0.5u, B,=1.0, Bj=—1.3-2.0u, k.=0.5+0.54+0.8u2 7y our pattern is made one dimensional by being restricted to
=0.453, {,={=0.0, v=—0.1, pg=0.9, ¢c=0.3, D=9.43, r the meniscus of the fluid near a vertical boundary, surface-
=10.0, A=0.001, L,=350.0, and dt0.001. Time increases up- tension effects could be relevant and could in fact trigger
ward. traveling waves, as they do for thermal convectj®8]. It
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would therefore be very instructive to study this pattern intion like Eq.(2) could then be derived, along lines similar to

narrow channels, where such effects could be better corthose followed in[62,63 for laser systems anié8] for ro-

trolled. tating convection. This would give us quantitative informa-
Before any hydrodynamic model can be made, the role ofion on the nature of the bifurcatide.g., Hopj which leads

surface tension in the bioconvection process must be aso the traveling wave pattern described in this paper, and on

Sessed(in two dimensions, it is considered as negl|g|b|e the way it Saturateé_e_, Subcritica”y or Supercritica“y

[100])). Moreover, the way cell motion couples to fluid flows

must be investigated. To this end, one could use markers and

quk at vertical _sllces of the fluid, as is commonly done in ACKNOWLEDGMENTS

fluid flow experimentgsee, e.g.[101]). Such experimental

results could then be compared to theoretical models for the This work was partially supported by a research grant
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