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Control-parameter-dependent Swift-Hohenberg equation as a model
for bioconvection patterns
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We consider a complex Swift-Hohenberg equation with control-parameter-dependent coefficients and use it
as a model to describe dynamical features seen in an experimental bacterial bioconvection pattern. In particu-
lar, we give numerical results showing the development of a phase-unstable pattern behind a moving front.
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PACS number~s!: 45.70.Qj, 87.18.Hf, 47.54.1r
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I. INTRODUCTION

Patterns form in various physical systems, and at vari
scales. Whether they occur in fluids subject to tempera
gradients @1–11# or to parametric forcings@12,13#, in
Couette-Taylor flows@14#, in directional solidification@15#,
in chemical reactors@16–19#, in liquid crystals@20–22#, in
granular layers@23–26#, in passive and active optical device
@27–37#, or in biological systems@38–54#, they result from
the nonlinear competition between linearly growing, sp
tially and/or temporally periodic modes. This competitio
can be described in terms of envelope equations, which
ture the pattern dynamics near threshold~for a review, see,
for instance,@55# or @56#!. These equations are the partia
differential-equation analogs of normal forms for dynamic
systems, and have been successfully used to analyze pa
and their defects. Sometimes, these equations are form
derived from the microscopic description of the system
der consideration, in which case the properties of a partic
pattern can be quantitatively related to physical parame
More often, amplitude equations are written on the basis
symmetry arguments, and used to analyze generic pa
behaviors@57–59#.

Formally speaking, amplitude equations are only va
near threshold. As far as modeling is concerned, it is, ho
ever, generally accepted that they give a good qualita
description of a pattern at a finite distance from threshold
long as this pattern undergoes instabilities which are con
tent with the amplitude equation approximation. For
stance, phase instabilities are reasonably captured by am
tude equations since the latter allow the phase of the o
parameter to vary. On the contrary, a new set of amplit
equations needs to be introduced in order to describe sec
ary instabilities involving harmonics of the basic structu
@60#. In the case of a bifurcation towards a one-dimensio
traveling wave pattern, an amplitude equation description
terms of two counterpropagating waves of wave vectors6kc
can be expected to be valid at a finite distancem from thresh-
PRE 591063-651X/99/59~6!/6267~8!/$15.00
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old only if the neutral stability curvem5m(k) @see Fig. 1~a!#
shows a clearly marked minimum atk56kc . If not, as is
generically the case ifmc5m(0) is small@see Fig. 1~b!#, the
fact thatkc

2.mc is comparable to the distance from thresho
must be taken into account in the multiple scale analy
used to describe the bifurcation. As a consequence, a di
ent order parameter equation, namely, the complex Sw
Hohenberg equation, should be used to model the n
threshold dynamics. In scaled variables, this equation re

]c

]t
5mc2~11 ia!~V1¹2!2c2~11 ib!ucu2c1 ig¹2c,

~1!

wherec is a complex order parameter and all of the oth
coefficients are real. Such an equation was considered
model for a passive optical system driven by an external fi
in @61#. In @62,63#, it was derived from the Maxwell-Bloch

FIG. 1. Sketch of the neutral stability curvem(k) giving the
wave numberk of marginal Fourier modes as a function of th
distance from thresholdm. ~a! Whenm.0, modes of wave numbe
k in a band centered aboutkc experience growth.~b! When mc

5m(0) is comparable tokc
2 , the relative widthDk/kc of the band

of unstable modes is of order one for small values ofm, thereby
limiting the region of validity of amplitude equations.
6267 ©1999 The American Physical Society
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equations describing the dynamics of two-level lasers
thereby shown to provide a universal description of clas
and C lasers near threshold. Later, this approach was
tended to optical parametric oscillators in@64,65#.

Historically, the cubic Swift-Hohenberg equation wi
real coefficients and a real order parameterc was described
in @66# as a pattern-forming model for Rayleigh-Be´nard con-
vection. Later, a quadratic version thereof was also con
ered to model competition between hexagons and squ
~see, e.g.,@67#!. Recently, a Swift-Hohenberg equatio
coupled to a mean-flow equation was shown to describe
terns in rotating convection@68#. More generally, both the
real and complex Swift-Hohenberg equations and their g
eralizations have been used as generic pattern-forming m
els for one-dimensional periodic patterns@69–73#.

In this paper, we are interested in the dynamics of
complex Swift-Hohenberg equation~1! when the parameter
involved in the equation depend on the distancem from the
bifurcation threshold. We consider thatV5kc

2 is positive
and varies linearly and quadratically inm, whereas the othe
parameters depend onm linearly. Such an approximation ca
be obtained by keeping the first terms of the Taylor exp
sion of the parameters in the distance from threshold (m).
We do not, however, include in the Swift-Hohenberg eq
tion higher order nonlinear terms inc or its derivatives, ex-
cept for one quintic term which might be needed in the c
of a subcritical bifurcation. In other words, we do not co
sider the complex Swift-Hohenberg equation with contr
parameter-dependent coefficients as the result of a mul
scales analysis, but we take it as a simple pattern-form
model for which the preferred wave numberkc and the sta-
bility properties of plane wave solutions above threshold
pend on the distance from threshold. This is a very natu
assumption, and this situation is likely to occur in ma
physical systems driven far from equilibrium by some ext
nal forcing.

As a motivation, we describe below an experimental b
convection pattern@74#, in which bacteria multiply as the
pattern evolves, thereby changing the control paramete
the colony develops. We then consider the general com
Swift-Hohenberg equation

]c

]t
5~m1 in!c2~a r1 ia i !~kc

21¹2!2c

2~b r1 ib i !ucu2c1 ig¹2c2~z r1 i z i !ucu4c, ~2!

and use it to model this bioconvection pattern. We add qu
tic terms in order to leave open the possibility of a subcriti
bifurcation and use the unscaled version of Eq.~1! since it
provides a convenient way to take into account the dep
dence of the various coefficients on the control parametem.

The paper is organized as follows. In Sec. II, we sh
how a pattern arises as a solution of Eq.~2! when m is
positive and find the region of stability of plane wave so
tions in thek-m plane by means of a phase diffusion equ
tion. In Sec. III, we discuss the bioconvection experime
and how the above equation can be used as a model w
incorporates bacterial growth and migration. Section IV
devoted to numerical simulations of the model and Sec
discusses possible implications of these results for the an
sis of bioconvection.
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II. THE COMPLEX SWIFT-HOHENBERG EQUATION
WITH CONTROL-PARAMETER-DEPENDENT

COEFFICIENTS

We consider the complex Swift-Hohenberg equation~2!.
At this stage, we letc be a function of both horizontal vari
ables x and y, but the numerics will be done for a one
dimensional pattern. Equation~2! has a simple solution,c
50, which corresponds to the absence of structure. Whem
is larger than 0, an instability occurs and a spatially perio
pattern is formed. Indeed, perturbations ofc50 with wave
numberk grow or decay at a linear rate given by

s~k!5m1 in2~a r1 ia i !~kc
22k2!22 igk2,

and the modes experiencing maximum growth have a w
numberk56kc , and a frequencyv5n2gkc

2 . The cubic or
quintic nonlinear terms of Eq.~2! saturate this instability. In
particular, traveling wave solutions of Eq.~2! can be found,
which readc5R exp@i(vt1kW•rW)#, where

05m2a r~k22kc
2!22b rR

22z rR
4,

~3!
v5n2a i~k22kc

2!22b iR
22z iR

42gk2,

andk5ukW u. Depending on the values of the parameters of
~2! and on the wave numberk, these solutions may underg
a phase instability@75–81#. This instability can be analyzed
at least in the early stage of its development, by reducing
~2! to a single equation for the phase of the complex quan
c. More precisely, whenc is close to a traveling wave so
lution ~3!, we can writec as c5R0(k)exp(iu)1••• where
R0(k) is a solution of Eq.~3!, u is such that¹W u5kW varies
slowly in space and time, and the dots stand for higher or
corrections coming from the fact thatR0(k)exp(iu) is no
longer an exact solution of the Swift-Hohenberg equati
Under these conditions, the phaseu satisfies a phase
diffusion equation, which reads at lowest order

]u

]t
5v~k!1F22

a rbr1a ibi

br
~kc

223k2!

1
gbi

br
2

8k2~kc
22k2!2a r

2

brR0
2

br
21bi

2

br
2 G]2u

]x2

1F22
a rbr1a ibi

br
~kc

22k2!1
gbi

br
G]2u

]y2
, ~4!

where

br5b r12z rR
2, bi5b i12z iR

2,

R0 is the amplitude of the traveling wave and is given in E
~3!. In this equation, thex axis has been chosen parallel
the local wave vectorkW and they axis is therefore perpen
dicular to kW . Equation~4! is nonlinear in¹W u since v(k),
given by Eq. ~3! with R5R0(k), contains terms ink2

5u¹W uu2. The method used to obtain such an equation i
generalization to wave patterns@82# of the technique devel-
oped in@83#. In one space dimension, stable wave vectors
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such that the coefficientE(k,m) of ]2u/]x2 in the phase-
diffusion equation is positive, and the width of the region
stability of plane wave solutions can therefore be adjusted
changing the parametersa r , a i , . . . ,z i . In the absence o
amplitude instabilities, this region is the analog of the Bu
balloon @84# for convection patterns. Conversely, one c
use Eq.~4! to choose them dependence of the coefficients
the Swift-Hohenberg equation~2! in order to produce Buss
balloons of various shapes. For instance, Fig. 2 shows
stability domain of one-dimensional plane waves fora r
52.010.85m, a i50.810.5m, b r51.0, b i521.322.0m,
g50.453, z r5z i50.0, andkc50.510.5m10.8m2, numeri-
cally computed by finding those lines in thek-m plane such
that E(k,m)50. It is seen that no traveling wave is stable
m.mB.0.35.

Equation ~2! with control-parameter-dependent coef
cients therefore appears as a simple, generic, pattern-form
system whose dynamic properties above threshold can
adjusted by an adequate choice of parameters. The follow
is an example of how such an equation can be used to m
a bioconvection experiment.

III. EXPERIMENTAL RESULTS

Bioconvection occurs when unicellular organisms~bacte-
ria, algae! gather at the surface of a fluid whose density
less than their own. As a consequence, the heavy laye
cells which forms atop the fluid may become unstable if
concentration of organisms gets too high. In a way simila
Rayleigh-Bénard convection, plumes of sinking and risin
fluid are formed, but here the cells are advected by the fl
as they swim. This phenomenon was reported by Wage
1911@38#, and Platt devised the name ‘‘bioconvection’’@39#.
The phenomenon has since been studied more extens
both analytically@40,85–90# and experimentally~see, e.g.,
@91,92,54#!, and the interested reader may refer to the rec
review articles by Pedley and Kessler@41,42#, and to refer-
ences therein. When viewed from above, bioconvection
terns in general appear to be square or hexagonal, a
tendency towards labyrinthine structures has also been
~see, e.g.,@38,91#!. Although drifting of the pattern has

FIG. 2. Domain of existence of one-dimensional traveli
waves ~light gray! and Busse balloon~dark gray! for a r52.0
10.85m, a i50.810.5m, b r51.0, b i521.322.0m, kc50.5
10.5m10.8m2, g50.453, andz r5z i50.0. Units are arbitrary.
The dashed curve gives the wave vectork which experiences maxi
mum linear growth above threshold.
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sometimes been observed@93#, bioconvection structures ar
in general stationary. Various hydrodynamic models desc
ing the coupling between the moving fluid and the swimmi
cells have been proposed@40,85–90#, for different types of
microscopic organisms. Bioconvection has indeed been
served in gravitactic, chemotactic, or phototactic organis
~see@41#!. In each case, depending on the cell size and on
nature of their motion, a different model is required. To o
knowledge, the only weakly nonlinear analysis of a bioco
vection pattern is given in@90# for bacteria. It is shown tha
the bifurcation towards hexagons is stationary and superc
cal.

In this paper, we are interested in a one dimensional, tr
eling wave bioconvection structure, which is produced b
culture ofBacillus subtilis. To our knowledge, this pattern i
the first traveling wave bioconvection pattern which has be
analyzed. The details are given in@74#, where the bacteria
strains and the experimental setup are described. The pa
is forced to be one-dimensional by restricting bioconvect
to the meniscus formed by a nutritive fluid near a solid wa
made of either agar or plastic. It is shown in@74# that trav-
eling waves are easily produced each time motile stra
OI2836 or OI1085 ofBacillus subtilisswim in the meniscus
that forms near a flat or curved wall. What makes this b
convection pattern particularly interesting is that, as d
scribed below, it exhibits many dynamical features. In p
ticular, its properties evolve in time since the bacte
multiply as they swim. Moreover, it develops behind a fro
created by a cloud of cells swimming towards fresh nu
ents, and the wave number of the structure behind the fro
such that an instability develops. Space-time dislocations
eventually spatiotemporal disorder are then observed.

Figure 3 shows a circular agar disk, together with t
one-dimensional bioconvection pattern in the bottom-rig
corner. Although bacteria are present away from the a
disk, the pattern only forms in the meniscus near the d
where the fluid is deeper. The inset gives a cross sectio
the pattern~white line at the bottom-right corner!, which has
a wavelength of about 1 mm. Figure 4 shows a space-t
diagram of the evolution of the structure, where many d
namical features can be seen. First, a front between reg

FIG. 3. Video frame showing the bioconvection pattern@74#.
The inset gives the pattern intensity as a function of position al
the line drawn on the video frame.~One unit on thex axis of the
inset corresponds to 0.155 mm actual length. Units on the ver
axis are arbitrary.!
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6270 PRE 59J. LEGA AND N. H. MENDELSON
with bacteria~on the left! and without bacteria~on the right!
propagates from left to right in the figure at a spe
.0.225 mm/min, which is constant on average. The fre
fluid appears black in the figure, whereas the culture of b
teria is in dark gray. Behind this front, a pattern is form
~alternating dark and light gray stripes!, which travels away
from the front. This pattern is unstable since new strip
appear between existing ones, and eventually degenerate
wards spatiotemporal disorder@74# ~not shown in the figure!.

Global regulation in the form of such a dynamic pattern
quite remarkable for a culture of microorganisms. It resu
from the interplay of cells swimming up and towards fre
nutrients, fluid motion due to bioconvection, and expans
of the cell population. We understand this phenomenon
follows: behind the propagating front, the average density
bacteria reaches the critical threshold for bioconvection. T
pattern which is formed is regulated by the growth of t
culture and the average distribution of cells, in the sense
the local wave number depends on the cell density and on
cloud shape. As the culture grows, the wavelength of
pattern is adjusted by insertion of new stripes between ex
ing ones and when the cell density gets too high, a thresh
is reached above which no stable structure can be susta
The pattern then decays into a space-time disordered st

To illustrate these ideas, we now develop a patte
forming model in the form of the complex Swift-Hohenbe
equation discussed above, driven by a space- and t
dependent control parameter, which represents the ave

FIG. 4. Spatiotemporal diagram showing the evolution of
pattern@74#. The same portion of 51 video frames~one of them is
shown in Fig. 3! was selected and transferred by computer to fo
a composite figure spanning 80 minutes in real time.
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density of cells. Because the coefficients of the Sw
Hohenberg equation are control-parameter dependent,
properties of the pattern and its stability change as the c
trol parameter gets larger. Since bioconvection starts w
the layer of cells at the surface of the fluid becomes
heavy, the control parameterm must be proportional to the
difference between the average cell concentrationr and
some critical valuerc , above which bioconvection appear
Because the culture forms a cloud propagating from left
right in Fig. 4,r should be a function of space, which va
ishes ahead of the front. The exact form of this front depe
on the properties of the fluid and of the bacteria, but, a
first approximation, we can use the analytic shape found
Keller and Segel in@94#, which reads

r5r0

exp@2~x2ct!/D#

$11exp@2~x2ct!/D#%r /(r 21)
.

This approximation is justified since the bacteria are chem
tactic towards fresh nutrients. The parameters are the ratD
between the motility parameter and the front speedc, and the
parameterr describing the scaled slope of the chemotac
coefficient as a function of the inverse of the nutrient co
centration. Moreover, since the culture is growing as
propagates, we add a multiplicative term which describ
exponential growth behind the front, and thus definer as

r~x,t !5r0

exp@2~x2ct!/D#

$11exp@2~x2ct!/D#%r /(r 21)

3expFlt tanhS 2
x2ct

D
2 ln~r 21! D G . ~5!

No saturation of the exponential growth is included in th
formula since we describe the phenomenon in the ini
stage of the culture development~a typical doubling time is
90 minutes!. The control parameterm is given by the differ-
encer2rc , whererc is a constant value for the threshold
bioconvection. Whenr(x,t) exceedsrc , which happens at a
fixed distance behind the front, a pattern grows.

Next, we need to choose the parametersa r , a i , . . . ,z i of
Eq. ~2!. We assume that these parameters, as well as
preferred wave vectorkc , depend on the distance from
threshold m. The function kc(m) is chosen askc50.5
10.5m10.8m2, so that the wavelength of the mode expe
encing maximum growth decreases asm gets larger. In other
words, stripes tend to get closer to one another as the cu
grows. The coefficientsa r , a i , . . . ,z i are chosen in order to
have a small Busse balloon. More precisely, we want
band of stable wave vectorsk, which is centered aroundkc ,
to get narrower and eventually shrink to zero asm is in-
creased above some thresholdmB , as shown in Fig. 2. This
will make the pattern unstable as the culture develops,
eventually lead to spatiotemporal disorder. Indeed, si
r(x,t) grows in time, there will be a time when the diffe
encer(x,t)2rc gets abovemB at some pointx. When the
size of the region~in x) where this happens gets larg
enough to sustain spatiotemporal disorder, the pattern
break and get disorganized at a small scale.
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Many other parameter choices can be made. It sho
however, be emphasized that the generic behavior of the
tern does not depend on the particular parameter values
in the model, but on the following crucial points. First, th
pattern is driven by a time- and space-dependent control
rameter (m5r2rc). Second, its properties change as t
control parameter is increased~due to the dependence o
a r , a i , . . . ,z i on m). Third, the structure degenerates t
wards spatiotemporal disorder~i.e., the Busse balloon get
narrower asm is increased!.

IV. NUMERICAL SIMULATIONS

We now show numerical simulations of the model w
the parameters given above, together withrc50.3, andr0
50.9, D510.0, r 510.0,l50.001 for the shape of the driv
ing front. The front speedc50.3 ~arbitrary units! and the
frequencyn520.1 are chosen so that the relative scales
the space-time diagram are similar to what is seen in
experiment. The simulation is performed in one space
mension, in a box of sizeLx5350 ~arbitrary units!, and with
a time stepdt50.001. We use a spectral-like compact fin
difference scheme@95# and nonreflecting boundary cond
tions @96#. The data are evolved by means of a fourth ord
Runge-Kutta scheme. The simulation has an interactive
terface built with the visual graphical software AVS~Ad-
vanced Visual Systems!, which makes it easier to choose th
parameters which give the desired shape for the Busse
loon.

Figure 5 is a gray scale spatiotemporal diagram of a qu
tity representing the total concentration of bacteria, nam
r(x,t)1Re@c(x,t)#. Indeed, Re@c(x,t)# or a scaled version
thereof is the correction to the average densityr(x,t) due to
the presence of the pattern. The region without bacteria is
the right. One can clearly see the driving front moving a
constant speedc50.3, and the pattern forming behind th
front. Space-time dislocations are observed behind the f
and, as we had expected, the pattern eventually becomes
ordered.

The parameters are such that the bifurcation is a forw
bifurcation, since b r.0 and z r5z i50. At threshold,
v(kc)5n2gkc

2520.120.543(0.5)2520.21, and

1

k

dv

dk U
kc

522g,0,

so that amplitude perturbations travel in a direction oppo
to the direction of travel of the pattern. In particular, if th
stripes travel away from the front, amplitude perturbatio
will travel towards the front. However, the situation is r
versed whenm is increased, as can be seen from the pro
gation of space-time disorder away from the front in Fig.

Figure 6 shows the quantitiesr(x,t) ~top curve! and
uc(x,t)u ~bottom curve! as functions of space, at timet
5262.5 ~arbitrary units!. It is seen that the pattern, whic
corresponds to a nonzeroc, forms at a given distance behin
the front, and that its amplitude is related to the front sha
Insertion of new stripes between existing ones, which lo
like dislocations in the spatiotemporal diagram of Fig.
occurs whenuc(x,t)u vanishes. The dip in the profile ofucu
d,
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aroundx590 shows that such an event had just occurred
was about to occur when the snapshot of Fig. 6 was tak

Figure 7 showsr(x,t) and Re@c(x,t)# at a later time,t
5965.5. The real part ofc describes the periodic structur
seen in the stripe pattern. From this figure, one can see
r(x,t) given by Eq.~5! decays regularly on the left of th

FIG. 5. Spatiotemporal diagram showing the evolution
r(x,t)1Re@c(x,t)# as a function of time betweent50 and t
.965 ~arbitrary units! @74#. The parameters used to produce th
diagram are~arbitrary units! rc50.3, a r52.010.85m, a i50.8
10.5m, b r51.0, b i521.322.0m, kc50.510.5m10.8m2, g
50.453, z r5z i50.0, n520.1, r050.9, c50.3, D510.0, r
510.0, l50.001, Lx5350.0, anddt50.001. Time increases up
ward.

FIG. 6. Field profiles att5262.5~arbitrary units!. The top curve
is a plot of the driving front as a function ofx, and the bottom curve
showsuc(x)u. The parameters used to produce this plot are~arbi-
trary units! rc50.3, a r52.010.85m, a i50.810.5m, b r51.0, b i

521.322.0m, kc50.510.5m10.8m2, g50.453, z r5z i50.0, n
520.1, r050.9, c50.3, D510.0, r 510.0, l50.001, Lx

5350.0, anddt50.001.
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6272 PRE 59J. LEGA AND N. H. MENDELSON
front, which explains the regularity of the periodic structu
on the left of Fig. 7 and of the spatiotemporal diagram
Fig. 5. It can also be seen in this figure that the wave num
k of the pattern is driven by the shape of the front.

Finally, we show another space-time diagram in Fig.
for which the parameters are the same as before, excep
rc50.2, which makes the pattern grow faster, andD59.43,

FIG. 7. Fields att5965.5 ~arbitrary units!. The top curve is a
plot of the driving front as a function ofx, and the bottom curve
shows Rec(x). The parameters used to produce this plot are~arbi-
trary units! rc50.3, a r52.010.85m, a i50.810.5m, b r51.0, b i

521.322.0m, kc50.510.5m10.8m2, g50.453, z r5z i50.0, n
520.1, r050.9, c50.3, D510.0, r 510.0, l50.001, Lx

5350.0, anddt50.001.

FIG. 8. Spatiotemporal diagram showing the evolution
r(x,t)1Re@c(x,t)# as a function of time, betweent50 and t
5373.5 ~arbitrary units!. Only part of the field in thex direction
(42,x,280) is shown. The parameters used to produce this
gram are ~arbitrary units! rc50.2, a r52.010.85m, a i50.8
10.5m, b r51.0, b i521.322.0m, kc50.510.5m10.8m2, g
50.453, z r5z i50.0, n520.1, r050.9, c50.3, D59.43, r
510.0, l50.001, Lx5350.0, and dt50.001. Time increases up
ward.
f
er

,
hat

which slightly changes the shape of the front. Only the
gion near the front is shown. The way new stripes get
serted between existing ones reproduces the global reg
tion of the experimental pattern remarkably well.

The essential message of these numerical experimen
that the simple pattern-forming model given by Eqs.~2! and
~5! is sufficient to reproduce and understand the comple
of the experimental bacterial pattern. Two hypotheses w
made to construct this model. First we assumed that bioc
vection takes the form of an oscillatory instability whic
occurs when the average cell concentration gets abov
fixed threshold, whence the use of a complex Sw
Hohenberg equation. Second, we considered that the cu
in the propagating cloud was growing in time, which in tu
led to an instability of the pattern, whence the use of contr
parameter-dependent coefficients in Eq.~2!.

V. DISCUSSION

The complex Swift-Hohenberg equation~2! considered in
this paper gives a generic description of traveling wave p
terns which develop above a Hopf bifurcation~as opposed to
a drift bifurcation @97#!. The introduction of control-
parameter-dependent coefficients turns this equation in
very general model which can adequately describe Bu
balloons of various shapes. The stability results as well as
dynamical behaviors discussed here are therefore likely
apply to many other traveling wave patterns exhibiting s
tiotemporal behaviors, such as those recently observe
some convection experiments@98#. Equation ~2! is also a
good model to study wave number selection in a patt
driven by a space-dependent control parameter, as is the
here~in particular, see Fig. 7!. Such an analysis is, howeve
beyond the scope of this paper.

It is also interesting to draw some conclusions about w
one can learn, from a biological point of view, from th
above model. First, the strains ofBacillus subtilisused in the
experiment are believed not to exchange signals with
another that influence swimming. The global behavior wh
corresponds to the existence of a pattern, as well as the c
plexity of the structure, could have suggested that signal
between cells was necessary. Moreover, the presence of
locations in the spatiotemporal diagram could have been
terpreted as a form of global regulation, where the ce
would know the history of the pattern. What the Swif
Hohenberg model suggests is that space-time dislocat
and later space-time disorder are simply the signature o
phase instability of the structure behind the moving fro
and that the same phenomenon would be observed in
pattern which would undergo a similar type of instability.

Second, the experimental pattern clearly exhibits travel
waves, which means that the bifurcation towards bioconv
tion is oscillatory. From a hydrodynamics point of view, th
implies that the vertical distribution of cells swimming in
fluid at rest before bioconvection occurs undergoes a H
bifurcation. This possibility was recently discussed for ph
totactic algae by Vincent and Hill in@88#. However, because
our pattern is made one dimensional by being restricted
the meniscus of the fluid near a vertical boundary, surfa
tension effects could be relevant and could in fact trigg
traveling waves, as they do for thermal convection@99#. It
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would therefore be very instructive to study this pattern
narrow channels, where such effects could be better c
trolled.

Before any hydrodynamic model can be made, the role
surface tension in the bioconvection process must be
sessed~in two dimensions, it is considered as negligib
@100#!. Moreover, the way cell motion couples to fluid flow
must be investigated. To this end, one could use markers
look at vertical slices of the fluid, as is commonly done
fluid flow experiments~see, e.g.,@101#!. Such experimenta
results could then be compared to theoretical models for
swimming of flagellated organisms, as, for instance,
scribed in @102#, and help to construct a hydrodynam
model for the experimental pattern studied here.

If such a model were available, a Swift-Hohenberg eq
.

L

. C

to

-
J.

h.

i-

hy
n-

f
s-

nd

e
-

-

tion like Eq.~2! could then be derived, along lines similar
those followed in@62,63# for laser systems and@68# for ro-
tating convection. This would give us quantitative inform
tion on the nature of the bifurcation~e.g., Hopf! which leads
to the traveling wave pattern described in this paper, and
the way it saturates~i.e., subcritically or supercritically!.
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