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We present generic scaling laws relating spreading critical exponents and avalanche exjiotieatsense
of self-organized criticalityin general systems with absorbing states. Using these scaling laws we present a
collection of the state-of-the-art exponents for directed percolation, dynamical percolation, and other univer-
sality classes. This collection of results should help to elucidate the connections of self-organized criticality
and systems with absorbing states. In particular, some nonuniversality in avalanche exponents is predicted for
systems with many absorbing statE81063-651X99)06205-4

PACS numbds): 05.40—a, 05.65+b, 05.70.Ln

Directed percolationDP) is broadly recognized as the evolution[17] and certain variants are related to DE3]. It
paradigmatic example of systems exhibiting a transition fromhas also been argued that sandpile mofEd share a num-
an active to an absorbing phagk?2]. DP critical behavior ber of features with systems having many absorbing states
appears in a vast array of systems, among others chemidgd0], and certain self-organized forest-fire models are related
reaction-diffusion models of catalygig], the contact process to dynamical percolatiofi21].
[4,1], damage spreading transitiopS], pinning of driven In self-organized models the so-callestalanche expo-
interfaces in random medigs], roughening transitions in Nentsare customarily determined. Surprisingly, in spite of
one-dimensional systenig], and Reggeon field theof]. their obvious similarities, the general connections between
This universality class has proven very robust with respect t§Préading and avalanche exponents have not, to the best of
the introduction of microscopic changes, and many appar@Ur knowledge, been given explicitly for general systems
ently different systems share the same critical “epidemic” orWith _absorblng states. Estabhs_hmg the gener_al scaling Iavys
“spreading” [9] and “bulk” exponents[1,2]. Nevertheless, relatlng avalanchg and sprgadlng exponents in systems vyﬂh
examples of a system exhibiting a transition to an absorbing2S0rbing states is the main goal of what follows. This will
state outside the DP class have been identified in rece /oW US to put together many different scaling relations and
years. Some examples follow. exponent values, presently quite dispersed, and sometimes
(1) Systems with two symmetric absorbing states or whafifficult to find in the literature, and should facilitate
is equivalent in many cases, systems in which the parity oProgress in this field.

the number of particies is conservgtD,11]. Let us first define in detail spreading and avalanche criti-
(2) Systems with an infinite number of absorbing states Cal exponents. The most accurate determination of the criti-
which exhibit nonuniversal spreading exponefit2,13. cal point of systems with absorbing states comes from “epi-

(3) Systems in which the dynamics is limited to the inter- demic” or “spreading” e_XF_Jeri_mentSEQ]. In these,_ a small
face between active and absorbing regions. These are in tigrturbation(localized activity is created at the origin of an
class of the exactly solvableoter mode[14], and compact otherwise absorbing configuration, leading to a spread of ac-
directed percolatioiCDP) [15]. tivity. In spreading experiments, it is customary to measure

(4) Some models of epidemics with immunizatiovo re- the number of particles, averaged over all rymluding
infectior) [16]. These belong to the so-callelynamic per- those that have reached the absorbing stie), the sur-
colation class; the final set of immune sites at criticality is a Vival probability P(t), and the mean-squared deviation from

percolation cluster. the originR?(t). At criticality these magnitudes scale as
Recently, connections between self-organized criticality Ly )
(SO0 and systems with absorbing states have attracted N(t)~t7,  P(t)~t™° R(t)~t? (]

much attention. For example, there has been a debate on
whether the extremal Bak-Sneppen model for punctuatewhere s, 8, andz[22] are the spreading exponents.
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TABLE I. Critical exponents for directed percolation. Expo- in the prototypical sandpile mod¢l9] avalanches are ob-
nents calculated by using scaling relations contained in this papeained by adding one sand grain to a stableabsorbing
are reported in the lower part. Where not reported uncertainties argonfiguration. In this way the system jumps among absorb-
in the last digit. Ford=4 we report the exact mean field values. ing configurations via avalanchelike rearrangements. The
following quantities and associated exponents are usually

Exponent d=1 d=2 d=3 d=4 measured:

B=p' 0.276494* 05834  0.80510° 1 P(s)~s TF(ss,), %)

1/8, 0.11%3)¢ 0.28535)¢ 0.452)° 1/2

Y 0.543867)% 0.35 0.19 0 Sc~e Yo, (3

v 1.733833)%2  1.2956) 1.1085)° 1

v, 1.096841)%  0.7334° 05815  1/2 (s)~€7, 4

6=0 0.159473" 0450810  0.7304)° 1 wheres is the size of an avalanclitotal number of active or

U 0.313684)"  0.229810"  0.1144)° 0 toppling sites, P(s) the associated probability distribution,

z 1265233 1.132510"  1.0523)° 1 s, the cutoff size(s) the mean size, and represents the

v lv, 1.580744) 1.7662) 1.90%5) 2 temperaturelike variable associated with the procassor
contact process or DP, the dissipation rate for sandpHes,

T 1.108 1.268 1.395 32

—F. in driven-interface modelghereF is the driving force.
0.391 0.459 0.490 12 |f €=0, the characteristic length is defined by the system

Y 2.277 1.593 1.232 1 sizeL through the scaling relatios.~LP. Analogously, the
D; 2.328 2.968 3.507 4 following exponents associated with the duratioare also
7y 1.159 1.450 1.730 2 measured:
Ty 0.576 0.771 0.904 1 _

P(t)~t™ ™
7 1.457 0.711 0.298 0 (H~t7g(t/to), ®
aSee[27]. to~e Yo, ®)
®Obtained using3= 8w . -
‘Referencd35]. (t)~e "M (7
dReferencd32]. ) . .
*Referencd 36]. Let us now prowdg the general s_cahng laws r_elatlng ava-
Referencd33]. Isei;;?se and spreading exponents in systems with absorbing

9Obtained using’, =zy/2.

hReferencd34]. From the definitions of; and §, it is evident that the total

number of particles isurvivingruns goes adls~t7"°, and

- . therefore its time integral is governed by the exponent 1
Once the critical point hz?\s t_)een located aqcurately all thek n+ 8. Thus an avalanche that dies at timnkas a typical
remaining standard critical indices can be estimated. For ref-

: it Sizes~t1*7%% The probability to die between timegsand
erence we show in Tabll a compilation of the state-of-the- t+dt scales a®(t)~t~° dt. Observe that the time is de-

art values for the usual exponents in directed percolation, . “ L :
corresponding to a synthesis of the best series expansion gﬂﬂed in such a way that after a “toppling{updating of a

) . dven sitg, it is increased byAt=1/N(t) [25]. Therefore the
simulation results. For the sake of completeness let us 9IVE  mber of tobplinas per unit time N (1). To express:, o
here their respective definitions. Callidgthe distance to the PRINGS P sVe P T

i L and y as functions of the spreading exponents, let us con-
critical point in terms of the reduced control paramegethe sider a specific avalanche size An avalanche of size
order parameter§, (&) the characteristic lengtttime), h P » Sy

an external field coupled tp, and y=L%var(p) the static |Snl ;ijnepe?\r{nein?lsf':iirf/}vrg dLi"émons’ sintands are not related

“susceptibility,” we have p~Af, p~h'n at the critical Y, 1€,

point, x~A~"", & ~A"", §~A"", P.=lim,_.P(t) t

~AP" andp(t)~t~* at the critical point. P(s1)= ftl dtP(s,|t)D(1), (8)
From the whole set of exponents that can be defined in

DP, only three are independent; the rest can be determinagheret; andt, are the minimum and maximum times com-

using well-known scaling relationsee Appendix In cer- patible withs;, andP(s|t) is the conditional probability of

tain systems possessing an infinite number of absorbingin avalanche having size given it dies at time. P(s|t) is

stateq/ 12,13, a fourth independent critical exponent has topg|| shaped, with its maximum &t-sY(** 7+ [26]. Writing

be introduced23,24). This is due to the fact that the expo- P(s|t) =t~ AT 7T IE(s/t1* 7 %) where F(u), the (normal-

nent & (which in DP coincides withy) is nonuniversal and jzed) scaling function, is nonsingular, we have, on changing

depends on the nature of the absorbing state in which thgarigples,

epidemic spreadf23,24. (Similarly, the exponeng’, nor-

[n;%h)/ identical toB, varies along withs in such systems P(s)=s (1742001t yt 5)f du? T 7 IR (), (9)
On the other hand, studies of avalanche transport employ

a different definition of the spread of activity. For instance,in other words,
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B 1+ n+26 10
1+ pts (10

With t,~ e "I, and usings;~t"7*? we have
Yo=v(1+ n+9). (11

The remaining exponeng and the fractal dimensioB
can be determined using the relatiops (2—7)/o=v)(1
+7) (this last equation fory has already been found by
other authorg27]), and the standard relatidd;=1/(cv, ).

Following a very similar derivation to the one just presented,”:
one can easily determine also the following scaling relations

for the exponents associated wi{t):
=1+,

g=0(1+n+8)=1ly, (12)

Y=(2-1)lo=v|(1-9).

Let us derive explicitly the expression fot. In DP, we
have, forA<0, or forA=0 and finiteL, the scaling form for
the survival probabilityP(t) ~t~%e~ Yt with t~|A| "I, or
t.~L"I"". Since the probability density for dying at tine
is —dP(t)/dt, we can write

<t>=f t%[—P(t)]dt~ ft:tﬁe“tcdt

~t§"5J u~ % 'du. (13)

Ug

So(t)~|A|~ =97 giving the value ofy, . In the finite-size
case{t)~L 1~ d7I/". (observe that, andu, are unimpor-
tant lower cutoffs.
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TABLE II. Critical exponents for dynamical percolation. Expo-
nents calculated by using scaling relations contained in this paper
are reported in the lower part. The rest of the exponent values are
from [37]. Where not reported uncertainties are in the last digit. For
d=2, values expressed as fractions refer to exact refiffs For
d=6 we report the exact mean field values.

Exponent d=2 d=3 d=6
B=pB’ 5/36 0.417 1
V)| 1.506 1.169 1
vy 43/18 1.795 1

4/3 0.875 1/2

96/91 1.188 3/2

o 36/91 0.452 1/2
D¢ 91/48 2.528 4
T 1.092 1.356 2
ot 0.664 0.855 1
Yt 1.367 0.752 0
n 0.586 0.536 0
6=0 0.092 0.356 1
z 1.771 1.497 1

pend upon the environment itself. Recently this kind of non-
universality has been observed in the class of sandpile
models with fixed energ§30].

(3) For models in the CDP class we have=4/3, o
=2/3, y=1, =312, 0v=1, andy;=1/2 ind=1 and mean
field values ind=2 and above.

(4) For dynamical percolation we can take advantage of
our scaling laws, using them the other way around, i.e., using
the well-known avalanchéclustey exponents for standard
percolation[31,37] permits us to determine the spreading
exponentg 24] with good accuracy. In Table I, we report a
collection of exponent values b= 2,3, and 6 spatial dimen-

All the scaling relations derived so far are general, and sions.
valid for all systems with absorbing stateSpecific scaling In summary, we have reported the general scaling rela-
relations for systems in the DP class can be written using théons that rule general systems with absorbing states, and
well-known relation[9] »+25=dz?2. Using the best values present a collection of exponent values that can be useful as
for the spreading exponents in DP taken from the bibliograa reference. We believe that this coherent derivation and col-
phy (Table ), we obtain the values of the avalanche expo-lection of otherwise scattered scaling laws and exponent val-
nents for DP in different dimensiorithey are also summa- yes may facilitate progress in drawing connections and simi-
rized in Table ). larities in many systems which show absorbing states and

Applying our general relations to other classes of modelsgyajanche behavior.

we reach the following conclusions. _ Note added After completion of this work we became
(1) For models_ with parity conservation, using the known 5y are of a recent paper by Lauritsenal. [38], in which
result for spreading exponenfisl], we predictr~1.22, 0 oy similar scaling relations to the ones proposed here are
~0.24, y~3.25, 11~1.28, 0;~0.31, andy~2.33 ind=1  joiyeq for directed percolation in the presence of an absorb-
[28] and mean field values above that dimension. These reihg wall. In particular, as in systems with many absorbing

sults have also bee.n derived and ngmencally testdasn .__states, they find in that cas®# 6. A direct consequence is
(2) In systems with many absorbing states, a generalize .
at, as discussed here, some avalanche exponents do not

hyperscaling relation has to be introduced, due to the fac . i ) .
that in this case the exponentgnd 7 are nonuniversal and take. their cqrrespondmg DP vaues. Some other interesting
therefore5+ 6 in general(on the other hand, the combina- scaling relations can be found [89].

tion %+ & retains its DP value The generalized scaling law

for these systems 23,24 n+ 5+ 6=dz/2. Applying our This work has been partially supported by the European
scaling laws we predict nonuniversal valuesrofy, 7,, and  Network under Project No. FMRXCT980183. We thank K.
v; for systems with many absorbing states; i.e., if experi-B. Lauritsen, H. Park, and R. M. Ziff for useful comments
ments are performed on a fixed environment, the results dend remarks.
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APPENDIX: SCALING RELATIONS FOR DP

Here we present a collection of scaling laws for the DP

universality clas$1,2,9.

n+ 6+ 6=dz/2,
o= (v +dv,)IB-1,
B=p",
0=20,

Y =y—v=dv,—28,

BRIEF REPORTS
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B=16v, (A1)
B'=dv,
z=2v, /VH )

Di=1ov,)=d+(v|—B)/v,,
y=2—-7)lo=dv, +v-28.

Observe that not all of these relations are independent.
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