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Miguel A. Muñoz,1,2 Ronald Dickman,3 Alessandro Vespignani,1 and Stefano Zapperi4

1The Abdus Salam International Centre for Theoretical Physics (ICTP), P.O. Box 586, 34100 Trieste, Italy
2Dipartimento di Fisica e Unita` INFM, Universitàdi Roma ‘‘La Sapienza,’’ Piazzale Aldo Moro 2, I-00185 Roma, Italy

3Departamento de Fı´sica, Universidade Federal de Santa Catarina, Campus Universita´rio Trindade, CEP 88040-900,
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We present generic scaling laws relating spreading critical exponents and avalanche exponents~in the sense
of self-organized criticality! in general systems with absorbing states. Using these scaling laws we present a
collection of the state-of-the-art exponents for directed percolation, dynamical percolation, and other univer-
sality classes. This collection of results should help to elucidate the connections of self-organized criticality
and systems with absorbing states. In particular, some nonuniversality in avalanche exponents is predicted for
systems with many absorbing states.@S1063-651X~99!06205-4#
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Directed percolation~DP! is broadly recognized as th
paradigmatic example of systems exhibiting a transition fr
an active to an absorbing phase@1,2#. DP critical behavior
appears in a vast array of systems, among others chem
reaction-diffusion models of catalysis@3#, the contact proces
@4,1#, damage spreading transitions@5#, pinning of driven
interfaces in random media@6#, roughening transitions in
one-dimensional systems@7#, and Reggeon field theory@8#.
This universality class has proven very robust with respec
the introduction of microscopic changes, and many app
ently different systems share the same critical ‘‘epidemic’’
‘‘spreading’’ @9# and ‘‘bulk’’ exponents@1,2#. Nevertheless,
examples of a system exhibiting a transition to an absorb
state outside the DP class have been identified in re
years. Some examples follow.

~1! Systems with two symmetric absorbing states or, w
is equivalent in many cases, systems in which the parity
the number of particles is conserved@10,11#.

~2! Systems with an infinite number of absorbing stat
which exhibit nonuniversal spreading exponents@12,13#.

~3! Systems in which the dynamics is limited to the inte
face between active and absorbing regions. These are in
class of the exactly solvablevoter model@14#, and compact
directed percolation~CDP! @15#.

~4! Some models of epidemics with immunization~no re-
infection! @16#. These belong to the so-calleddynamic per-
colation class; the final set of immune sites at criticality is
percolation cluster.

Recently, connections between self-organized critica
~SOC! and systems with absorbing states have attrac
much attention. For example, there has been a debat
whether the extremal Bak-Sneppen model for punctua
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evolution @17# and certain variants are related to DP@18#. It
has also been argued that sandpile models@19# share a num-
ber of features with systems having many absorbing st
@20#, and certain self-organized forest-fire models are rela
to dynamical percolation@21#.

In self-organized models the so-calledavalanche expo-
nentsare customarily determined. Surprisingly, in spite
their obvious similarities, the general connections betwe
spreading and avalanche exponents have not, to the be
our knowledge, been given explicitly for general syste
with absorbing states. Establishing the general scaling l
relating avalanche and spreading exponents in systems
absorbing states is the main goal of what follows. This w
allow us to put together many different scaling relations a
exponent values, presently quite dispersed, and somet
difficult to find in the literature, and should facilitat
progress in this field.

Let us first define in detail spreading and avalanche c
cal exponents. The most accurate determination of the c
cal point of systems with absorbing states comes from ‘‘e
demic’’ or ‘‘spreading’’ experiments@9#. In these, a small
perturbation~localized activity! is created at the origin of an
otherwise absorbing configuration, leading to a spread of
tivity. In spreading experiments, it is customary to meas
the number of particles, averaged over all runs~including
those that have reached the absorbing state! N(t), the sur-
vival probability P(t), and the mean-squared deviation fro
the originR2(t). At criticality these magnitudes scale as

N~ t !;th, P~ t !;t2d, R2~ t !;tz, ~1!

whereh, d, andz @22# are the spreading exponents.
6175 ©1999 The American Physical Society
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Once the critical point has been located accurately all
remaining standard critical indices can be estimated. For
erence we show in Table I a compilation of the state-of-the
art values for the usual exponents in directed percolat
corresponding to a synthesis of the best series expansion
simulation results. For the sake of completeness let us
here their respective definitions. CallingD the distance to the
critical point in terms of the reduced control parameter,r the
order parameter,j' (j i) the characteristic length~time!, h
an external field coupled tor, and x[Ld var(r) the static
‘‘susceptibility,’’ we have r;Db, r;h1/dh at the critical
point, x;D2g8, j';D2n', j i;D2n i, P`[ limt→`P(t)
;Db8, andr(t);t2u at the critical point.

From the whole set of exponents that can be defined
DP, only three are independent; the rest can be determ
using well-known scaling relations~see Appendix!. In cer-
tain systems possessing an infinite number of absorb
states@12,13#, a fourth independent critical exponent has
be introduced@23,24#. This is due to the fact that the expo
nent d ~which in DP coincides withu) is nonuniversal and
depends on the nature of the absorbing state in which
epidemic spreads@23,24#. ~Similarly, the exponentb8, nor-
mally identical tob, varies along withd in such systems
@23#.!

On the other hand, studies of avalanche transport em
a different definition of the spread of activity. For instanc

TABLE I. Critical exponents for directed percolation. Exp
nents calculated by using scaling relations contained in this p
are reported in the lower part. Where not reported uncertainties
in the last digit. Ford54 we report the exact mean field values.

Exponent d51 d52 d53 d54

b5b8 0.27649~4!a 0.583~4!b 0.805~10!c 1

1/dh 0.111~3!d 0.285~35!d 0.45~2!e 1/2

g8 0.54386~7!a 0.35 0.19 0

n uu 1.73383~3!a 1.295~6!f 1.105~5!c 1

n' 1.09684~1!a 0.733~4!g 0.581~5! 1/2

d5u 0.15947~3!a 0.4505~10!h 0.730~4!c 1

h 0.31368~4!a 0.2295~10!h 0.114~4!c 0

z 1.26523~3!a 1.1325~10!h 1.052~3!c 1

n uu /n' 1.58074~4! 1.766~2! 1.901~5! 2

t 1.108 1.268 1.395 3/2

s 0.391 0.459 0.490 1/2

g 2.277 1.593 1.232 1

D f 2.328 2.968 3.507 4

t t 1.159 1.450 1.730 2

s t 0.576 0.771 0.904 1

g t 1.457 0.711 0.298 0

aSee@27#.
bObtained usingb5dn uu .
cReference@35#.
dReference@32#.
eReference@36#.
fReference@33#.
gObtained usingn'5zn uu/2.
hReference@34#.
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in the prototypical sandpile model@19# avalanches are ob
tained by adding one sand grain to a stable orabsorbing
configuration. In this way the system jumps among abso
ing configurations via avalanchelike rearrangements. T
following quantities and associated exponents are usu
measured:

P~s!;s2t f ~s/sc!, ~2!

sc;e21/s, ~3!

^s&;e2g, ~4!

wheres is the size of an avalanche~total number of active or
toppling sites!, P(s) the associated probability distribution
sc the cutoff size,̂ s& the mean size, ande represents the
temperaturelike variable associated with the process:D for
contact process or DP, the dissipation rate for sandpilesF
2Fc in driven-interface models~hereF is the driving force!.
If e50, the characteristic length is defined by the syst
sizeL through the scaling relationsc;LD. Analogously, the
following exponents associated with the durationt are also
measured:

P~ t !;t2t tg~ t/tc!, ~5!

tc;e21/s t, ~6!

^t&;e2g t. ~7!

Let us now provide the general scaling laws relating a
lanche and spreading exponents in systems with absor
states.

From the definitions ofh andd, it is evident that the total
number of particles insurvivingruns goes asNs;th1d, and
therefore its time integral is governed by the exponen
1h1d. Thus an avalanche that dies at timet has a typical
size s;t11h1d. The probability to die between timest and
t1dt scales asD(t);t2d21dt. Observe that the time is de
fined in such a way that after a ‘‘toppling’’~updating of a
given site!, it is increased byDt51/Ns(t) @25#. Therefore the
number of topplings per unit time isNs(t). To expresst, s,
and g as functions of the spreading exponents, let us c
sider a specific avalanche size, says1. An avalanche of size
s1 can have different durations, sincet ands are not related
in a deterministic way, i.e.,

P~s1!5E
t1

t2
dtP~s1ut !D~ t !, ~8!

wheret1 and t2 are the minimum and maximum times com
patible withs1, andP(sut) is the conditional probability of
an avalanche having sizes, given it dies at timet. P(sut) is
bell shaped, with its maximum att;s1/(11h1d) @26#. Writing
P(sut)5t2(11h1d)F(s/t11h1d), where F(u), the ~normal-
ized! scaling function, is nonsingular, we have, on chang
variables,

P~s!5s2~11h12d!/~11h1d!E duud/~11h1d!F~u!, ~9!

in other words,
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t5
11h12d

11h1d
. ~10!

With tc;e2n uu, and usingsc;tc
11h1d , we have

1/s5n i~11h1d!. ~11!

The remaining exponentg and the fractal dimensionD f
can be determined using the relationsg5(22t)/s5n i(1
1h) ~this last equation forg has already been found b
other authors@27#!, and the standard relationD f51/(sn').
Following a very similar derivation to the one just present
one can easily determine also the following scaling relati
for the exponents associated withP(t):

t t511d,

s t5s~11h1d!51/n i , ~12!

g t5~22t t!/s t5n i~12d!.

Let us derive explicitly the expression forg t . In DP, we
have, forD,0, or forD50 and finiteL, the scaling form for
the survival probabilityP(t);t2de2t/tc with tc;uDu2n uu, or
tc;Ln uu /n'. Since the probability density for dying at timet
is 2dP(t)/dt, we can write

^t&5E t
d

dt
@2P~ t !#dt;E

t0

`

t2de2t/tcdt

;tc
12dE

u0

`

u2de2udu. ~13!

So^t&;uDu2(12d)n uu, giving the value ofg t . In the finite-size
case,̂ t&;L2(12d)n uu /n' ~observe thatt0 andu0 are unimpor-
tant lower cutoffs!.

All the scaling relations derived so far are general, an
valid for all systems with absorbing states. Specific scaling
relations for systems in the DP class can be written using
well-known relation@9# h12d5dz/2. Using the best value
for the spreading exponents in DP taken from the bibliog
phy ~Table I!, we obtain the values of the avalanche exp
nents for DP in different dimensions~they are also summa
rized in Table I!.

Applying our general relations to other classes of mod
we reach the following conclusions.

~1! For models with parity conservation, using the know
result for spreading exponents@11#, we predictt'1.22, s
'0.24, g'3.25, t t'1.28, s t'0.31, andg t'2.33 in d51
@28# and mean field values above that dimension. These
sults have also been derived and numerically tested in@29#.

~2! In systems with many absorbing states, a generali
hyperscaling relation has to be introduced, due to the
that in this case the exponentsd andh are nonuniversal and
thereforedÞu in general~on the other hand, the combina
tion h1d retains its DP value!. The generalized scaling law
for these systems is@23,24# h1d1u5dz/2. Applying our
scaling laws we predict nonuniversal values oft, g, t t , and
g t for systems with many absorbing states; i.e., if expe
ments are performed on a fixed environment, the results
,
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pend upon the environment itself. Recently this kind of no
universality has been observed in the class of sand
models with fixed energy@30#.

~3! For models in the CDP class we havet54/3, s
52/3, g51, t t53/2, s t51, andg t51/2 in d51 and mean
field values ind52 and above.

~4! For dynamical percolation we can take advantage
our scaling laws, using them the other way around, i.e., us
the well-known avalanche~cluster! exponents for standard
percolation@31,37# permits us to determine the spreadin
exponents@24# with good accuracy. In Table II, we report
collection of exponent values ind52,3, and 6 spatial dimen
sions.

In summary, we have reported the general scaling re
tions that rule general systems with absorbing states,
present a collection of exponent values that can be usefu
a reference. We believe that this coherent derivation and
lection of otherwise scattered scaling laws and exponent
ues may facilitate progress in drawing connections and s
larities in many systems which show absorbing states
avalanche behavior.

Note added. After completion of this work we becam
aware of a recent paper by Lauritsenet al. @38#, in which
very similar scaling relations to the ones proposed here
derived for directed percolation in the presence of an abs
ing wall. In particular, as in systems with many absorbi
states, they find in that casedÞu. A direct consequence is
that, as discussed here, some avalanche exponents d
take their corresponding DP values. Some other interes
scaling relations can be found in@39#.

This work has been partially supported by the Europe
Network under Project No. FMRXCT980183. We thank
B. Lauritsen, H. Park, and R. M. Ziff for useful commen
and remarks.

TABLE II. Critical exponents for dynamical percolation. Expo
nents calculated by using scaling relations contained in this pa
are reported in the lower part. The rest of the exponent values
from @37#. Where not reported uncertainties are in the last digit. F
d52, values expressed as fractions refer to exact results@37#. For
d56 we report the exact mean field values.

Exponent d52 d53 d56

b5b8 5/36 0.417 1
n uu 1.506 1.169 1
g 43/18 1.795 1
n' 4/3 0.875 1/2
t 96/91 1.188 3/2
s 36/91 0.452 1/2
D f 91/48 2.528 4

t t 1.092 1.356 2
s t 0.664 0.855 1
g t 1.367 0.752 0
h 0.586 0.536 0
d5u 0.092 0.356 1
z 1.771 1.497 1
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APPENDIX: SCALING RELATIONS FOR DP

Here we present a collection of scaling laws for the D
universality class@1,2,9#.

h1d1u5dz/2,

dh5~n uu1dn'!/b21,

b5b8,

d5u,

g85g2n uu5dn'22b,
s
-

,

,
et

ys

n-

,

b5un uu , ~A1!

b85dn uu ,

z52n' /n uu ,

D f51/~sn'!5d1~n uu2b!/n' ,

g5~22t!/s5dn'1n uu22b.

Observe that not all of these relations are independent.
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