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An explicit structural connection is established between the Bayes optimal classifier operakngjrary

input variables and a corresponding two-layer perceptron having normalized output activities and couplings
from input to output units of all orders up t. With suitable modification of connection weights and biases,
such a higher-order probabilistic perceptron should in principle be able to learn the statistics of the classifica-
tion problem and match the posteriori probabilities given by Bayes optimal inference. Specific training
algorithms are developed that allow this goal to be approximated in a controlled variational sense. An appli-
cation to the task of discriminating between stable and unstable nuclides in nuclear physics yields network
models with predictive performance comparable to the best that has been achieved with conventional
multilayer perceptrons containing only pairwise connectip84063-651X99)10205-§

PACS numbe(s): 07.05.Mh, 02.50.Ph, 07.05.Tp, 07.05.Kf

I. INTRODUCTION ics as archetypes of dynamical and statistical systems that
can learn by example, compute, and perform statistical infer-
The purpose of this paper is to establish and exploit @&nce. Their conceptual importance will grow as information
structural relationship between feedforward neural networksheory and Bayesian statistics assume greater roles within
of a certain type and Bayes’ rule of inference. This connecmainstream physics. A more practical facet of neural net-
tion was already present in seminal form in the original bookworks is seen in their emergence as effective tools for data
of Minsky and Paperfl] and is quite near the surface in the analysis in astronomy and high-energy physics and for the
classic work of Duda and Haf®]. A similar investigation statistical modeling of complex systems such as proteins,
was made more recently by Stoloet al. [3], based on a genes, and nucldil7,18. The present investigation is con-
Bahadur decompositidd] of the class-conditional probabil- cerned with both formal and applied aspects of neural-
ity. Among other contemporary works exploring interestingnetwork theory.
relations and comparisons between neural networks and In previous work [18—23, custom-tailored multilayer
Bayesian statistic§5—16], those of Rucket al. [9], Wan  feedforward neural networks have been applied successfully
[10], and Richard and Lippmanfll] are most relevant to to a variety of classification and function approximation
our considerations. These authors show that conventiongroblems in nuclear physics. With the proton and the neutron
neural-network techniques yield architecture-limited ap-numbers as binary-encoded input variables, global network
proximations to thea posterioriprobabilities of Bayes opti- models have been constructed that capture the statistical
mal classifiers. Here we shall examine the structure of theegularities of the stability-instability dichotomp19-21],
output generated by a two-layer perceptron that invol¥es ground-state spins and pariti¢$7,21,2Q, atomic masses
normalized, soft-maximum (soft-ma¥ activation or [18-21, and branching probabilities for different decay
“squashing” functions and(ii) arbitrary higher-order cou- modes[22]. Networks trained with error-backpropagation
plings to each output unit from the inputs, along with thescheme$23-26 based on gradient-descent minimization of
standard complement of biases and pairwise connectionappropriate objective functions can achieve predictive accu-
Such systems will be called higher-order probabilistic per+acy competitive with that of traditional phenomenological
ceptrons(HOPP$. For binary inputs and finite input and models. Continuing in a similar vein, we shall use the
output spaces, it will be demonstrated that the finite HOPRtability-instability classification problem as a test of the
architecture is sufficiently general to embody the full statis-practicality and the generalization abilities of higher-order
tical correlations inherent in the Bayesian approgZhto  probabilistic perceptrons. In contrast to conventional,
classification problems. Appealing to the formal results frommultilayer networks with exclusively pairwise connections,
Refs.[9-11] on the training of feedforward networks to ap- allowance will be made for the presence of feedforward con-
proximate Bayesian inference, we develop supervised learmections of any order between input and output units.
ing rules which, given an adequate body of training ex- Formal analysis of the properties of HOPP networks is
amples, will enable HOPP networks to produce closeconducted in Secs. 1I-VI. In Sec. Il we introduce the stan-
estimates of Bayesiaa posterioriprobabilities. dard pattern-classification problem and recall the Bayesian
Neural networks are of fundamental interest within phys-strategy for its solution. The higher-order probabilistic per-
ceptron is defined in Sec. Ill, and its structural relationship to
Bayes’ rule of inference is delineated in Sec. IV. Explicit
*Permanent address. formulas linking the network weights to the priors and class-
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conditional probabilities that enter Bayes’ rule are given inunstable nuclides based on specified proton and neutron
Sec. V. Section VI collects a number of remarks intended, imumbers, is actually of this type.

part, to illuminate the importance of the structural identity ~On the other hand, probabilistic classification problem
established in Sec. IV. The remainder of the paper is conis one in which additional information beyond not pro-
cerned with actual implementation of HOPP networks agvided or unattainable in principle or in practice, is required to
“Bayesian inference engines.” Learning algorithms for the determine the class V\_/ith certainty. In this situation, there
determination of HOPP connection weights are developed ifl0€s not exist a mapping(x) from input patterns to output
Sec. VII, based on mean-square-error and relative-entrop§lasses, ang(x|\) can be nonzero at the samdor differ-
objective functions. The results of numerical application of€NtA. (No commitment need be made regarding the charac-
HOPP networks to the nuclear stability-instability discrimi- (€7 Of the additional variables that influence the proper class
nation problem are presented and discussed in Sec. VIII. ISSIgnment in a given occurrence of the patterihese may
Sec. IX, concluding remarks are directed to the optimizatiorP" M@y not be random variables. The problem may be proba-

- : ; - ilistic without being stochasti27].) The task of predicting
(r)rfultillg Sepr rﬁ(r)cahé::ctures and comparisons with tradltlonaprotein secondary structure addressed in R&8-30,3 is

of this kind. Although in principle a full knowledge of the
sequence of amino acid residues should determine the
Il. PROBLEM FORMULATION AND BAYESIAN secondary-structure configuratida helix, 8 sheet, or cojl
DECISION THEORY in which each residue participates, the prediction is to be
made on the basis of the portion of the sequence within a
In the standard pattern-classification problgil1], one  restricted window surrounding the target residue. In each
faces the task of assigning individual patterns such prediction, the portion of the sequence outside the win-
=(Xq,---,Xg) Of finite length K to one of L classes\ dow is effectively unknown, although it is perfectly definite.
=1,... L. The “input” variablesx, may be continuous or (Of course, the working assumption in such studies is that
binary. However, the analysis to be performed in Sec. IVthe unseen part of the sequence has little influence on the
will be restricted to the binary case, i.ee{0,1} for k  secondary-structure assignment.
=1,... K, so that the input patterns are bit strings. In a The clean distinction of problem types drawn above be-
more general formulation of the classification problem, acomes muddy when one is confronted with typical real-
given input pattern may be assigned to more than one Cayyorld problems, wheré) in the deterministic case, the func-

egory \. Aside from peripheral comments in Sec. VI, we ton »(X), although existing in principle, is unknowfii) in
shall not be concerned with this elaboration the more general case of probabilistic classification, the con-

The Bayesian approach to the standard classificatioﬂit.iorlal densities or probabilitiep(x|A), as well as the

problem[2] is explicitly probabilistic and rests on the con- priors P()), are unknown.

i T - The Bayesian prescription itself loses some of its luster,
struction of thea posterioriprobability P(\ |x) that the class _; : ; - : ,
is \ if the input pattern is known to be. The probability of since the ingredients on the right-hand side of Bayes' (Lile

e . ) must beestimated(An additional real-world complication is
error is minimized by choosing the classor which P(\X)  {hat some of the inputs, supplied to the classifier may be

assumes its largest value, a decision principle which definege|evant for the classification decision, or redundant.

the Bayes optimal classifielThe a posteriori probability is Whether one uses neural-network modeling or some more
constructed via Bayes’ rule conventional method such as Parzen windd@s the esti-
mation process is normally based on a finite training sample
P(X|N)P(N) (a set of assignments of training patterns to their correspond-
P(\[x)= : (1) ing classes One imagines that the priori distribution

P() P(u) has been sampled to generate a particular dlassd

then the class-conditional density or distributiB(x|\) has
in terms of the class-conditional probabilitgr likelihood) been sampled to produce an inputn the case of determin-
p(x|\) that the pattern is when the category is known to be istic classification, the stated aim is usually to estimate, or
A and thea priori probability P(\) of finding N. The de-  approximate, the mapping(x) rather than the posteriori
nominator p(x)=2;:1p(x|,u)P(,u) guarantees that probability, and again the process of approximation of the
Ekzlp(MX):l' as required for a probability distribution target quantity involves e>.<tr.acti0n of the relevant infprma-
over exhaustive outcomeEStrictly, of coursep(x|\) is a  tion from a finite set of training samples. In general, limita-

probability density rather than a probability in the case thafions of both the estimation method and the training set will
the input variable, are continuous. preclude complete precision in the reproduction of the per-

Within this framework, one may distinguish two types of formance of the ideal Bayes classifier or in the reconstruction

classification problems, namelgeterministicand probabi- g;;ggor?ﬁe;mé?'?ﬂg g\l,?irr)ﬁalt?onan:](eetz?clj_?ﬁgwoéfernggﬁcgﬁ
listic. In a deterministic problem, knowledge of the input 9 y

- o s . inadequate architecture or an inadequate training algorithm.
vector>.< IS I prmmple sufflc[ent to detefm'“e the class In the next section, we introduce a type of neural network
unambiguously, i.e., there exists a mappi(@):x—wv from nich in principle, overcomes the architectural limitation.
the set of input patterng into the set of output classes

=1,... L.In Bayesian terms, there is no inpufor which IIl. HIGHER-ORDER PROBABILISTIC PERCEPTRONS
the distributions or densitigs(x|\) corresponding to two or

more different classes are simultaneously nonzero. Clearly,  Definition A higher-order probabilistic perceptron is a
P(\|x) should reduce @, ,(x - The problem studied in the two-layer feed-forward neural network characterized as fol-
second half of the paper, discrimination between stable ankbws.
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(1) The input layer consists oK units (labeled k  tem havingL output units may be viewed as a set lof
=1, ... K) whose activitie;, . . . X register the compo- single-output HOPP network elements that operate indepen-
nents of a given pattern vectar dently of one another-exceptas constrained by the condi-

(2) The output layer containsd units (labeled A tion =,y,(x)=1 imposed by the forn2) for the activation
=1,---,L in a 1-1 correspondence with the pattern clagsesfunction.

whose activities/((X), . ..,y (X) are to be computed from
ah (9 IV. THE BAYES CONNECTION
Nnx=——7, ) We now develop a structural relationship between HOPP
2 e networks and Bayesian classifiers, specializing to the case of
=it binary input patternshavingx,e{0,1} for k=1, ... K.

Theorem With a suitable choice of its synaptic couplings
whereu, is the net stimulus to the output urnit from the Wik, ok, of all orders fromm=0 to m=K, a higher-order

units of the input layer. With the “soft-maximum” activa- probabilistic perceptron can reproduce thposterioriprob-
tion or “squashing” function(2), the output activitiey,\(x)  abilities provided by the Bayes optimal classifier. As a cor-
constitute a probability distribution over possible outcomespllary, the minimum probability of misclassificatiofmini-
A—they lie on the interva[0,1] and sum to unity. This mum error rateis then achieved by imposing a winner-take-
choice of squashing function has been employed by a numy|| decision at the output layer.
ber of authorgsee, e.g., Ref$3,10,22). The validity of this theorem rests ofi) Bayes' rule of
(3) Each output unith receives synaptic connections, of inference, (i) a product decomposition of the class-
strengthw, i, ..., from all distinct combinations; - - -ky,  conditional probabilities entering Bayes’ rule, afid) the
of inputs, with the ordem running fromm=1 to m=K. simple act of identifying, for each, the output activity
Accordingly, the stimulusl, appearing in Eq(1) assumes Y, (x) of the HOPP with the Bayea posteriori probability
the form P(\|x) that patterrx belongs to class.
Proposition.TakeK =3 for simplicity of expression. It is

K K proposed that the class-conditional probability admits a prod-
UA(X)=W>\,o+i§1 W)\,ixi+i<j2:l Wy ij XiX; uct decomposition of the form
% POXIN) = p1(X2|N) p1(XaN) p1(X3|N) po(X1Xo| )
+ W ijkXiXj Xt - - F Wy 10 kXaXos - X,
i<j<k=1 U X pa(X1X3|N) p2(XoXg| M) pa(XaXaXg V), (4)

®) where all factors are positive semidefinite and together pre-
where we have added a bias tewy,. The indices, j, and  S€"ve Os_p(x|)\)s1. Thig _form has an obvious extensic_)n to
k are summed over the range.1. K, subject to the indi- arbitrary integraK. Specifically, a factopm(xy, - - - X [\) is
cated restrictions. Note that a given couplimg, . does present for every distinct combination ofi arguments

not come into effect unlesall of the transmitting units  Xk;» - - - Xk, taken from the sefxy, ... xg}, with m run-
K, ... .Kn have nonzero activitiesin the case of binary ning from 1 to K. The order chosen for the arguments
input patterns, all the transmitting units must be “opThe Xy, - - Xk 1S irrelevant, but theK!/[m!(K—m)!] factors

biasw, o may be viewed as measuring the strength of a confor given m may be different functions of their arguments.
nection to unit\ from an effective external field and treated (For the sake of an uncluttered notation, these different fac-
as a coupling of ordem=0. The number of bias and weight tors will be distinguished only by the labels on their argu-
parameters associated with each inpuis thus = _ (%) ments)

=2K, In practice such a decompositigior arbitrary integraK)

The HOPP system is perceptronsince it is a layered may be regarded as an identity. Its utility then hinges on the
arrangement of neuronlike units with feed-forward connec-complexity of the decision tree of the problem at hand—on
tions from one layer to the next. Activation of the input units the possibility of accurate representatiorpgk|\) by a rela-
in a given pattern produces a set of output activities repretively small number of factors in the general product. If all
senting a “percept” associated with that pattern. More espefactors except the first three on the right-hand side of(&x.
cially, the pattern may be assigned to a particular chaby  are approximated by unity, one has the familiar hypothesis
invoking a “winner-take-all” rule—the network is consid- [1] that all input components are independent. The indepen-
ered to have chosen classif the corresponding output unit dence hypothesis, which defines theive Bayes classifigis
is the most strongly active. The HOPP system is calledbften made in connecting feedforward neural nets with Baye-
probabilistic because specificatioi2) for the squashing sian inferencg1-3|.
function of the output units allows their activities to be in-  The product decomposition of the class-conditional prob-
terpreted as a probability distribution over thelasses\. It ability p(x|\) has a prominent counterpart in the structure of
is a higher-order network because the assumed two-layerwave functions in quantum many-body physics. In particular,
architecture, specified by E), incorporates not only pair- the ground state of a collection of indistinguishable bosons
wise connections from input to output unias in the el- has an exact Feenberg product representaf8?)33 in
ementary perceptrdr31,1]), but all higher-order connections terms of one-body, two-body, three-body, ., factors re-
consistent with the given number of inputs. The generic sysflecting the influence of a mean field and the existence of a
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hierarchy of interparticle correlations. The structural analogy p(XIN)P(N) ()

with Eq. (4) and its extensions to highd¢ is conceptually P\ |X)=— =y\(X)=—T——. (6)
useful in spite of the fact that the wave function for the Bose > p(xX|w)P(w) 3 et
system is symmetrical in all particle coordinates, whereas in a=1 a=1

the HOPP system the output unitsplay a special role as
receptors of stimuli and the input units are distinguishabléeNVe make the further identification
from one another.

Following the lead of variational approaches to quantum uy(X)=In[p(X|\)P(N)]=Inp(x|\)+InP(\) (7)
many-body problemE35], it is natural to investigate the con-
vergence of successive approximantspix|\) in which  and calculate Ip(x|\) from the product expansiof#):
higher-order factorsp,-w(Xi---Xg/\) are set equal to
unity, for M=1,2, .. .. Thedecomposition exemplified by INP(X|\)=Inp;(X1|\)+1n ps(Xz|N)+Inpy(xgN)
Eq. (4) is more general than the product representation used

by Duda and Harf2] to generate the Chow expansii86]. +1n po (X1 X2 N) +1n (X1 X3\ ) +1n po(XoX3|N)

Curiously, the Duda-Hart representation has a structure +1n p3(X1XoX3[N). €]
analogous to that of the wave function used to model fer-
mion pairing in superconductof84]. After some routine algebra based on the above definitions

Pursuing the analogy with correlated many-body waveand representations such as E), the result foru, (x) can
functions somewhat farther, the hidden units in mult”ayerbe cast in the advertised for(ﬁ) Specific toK =3. Thus, the
neural networks with only single-unit biases o and pair-  stimulus u, is composed of a bias of output unit plus
wise or “two-body™ couplingsw, ; may be interpreted as singlet, doublet, and triplet stimuli to unitfrom the units of
the neural-network counterparts of the auxiliary “shadowthe input layeri.e., feedforward couplings of orders 0, 1, 2,

particle” variables in shadow wave functiofi37], in which  and 3. Extension of the Bayes connection to arbitréris a
real particles, shadows, and particles and shadows are corr@rajghtforward exercise.

lated with each other exclusively via two-body correlation
factors. The auxiliary shadow variables in such many-body
wave functions mimic, to some degree, the existing higher-
body correlations between the real particles. In a similar The explicit expressions for the biasg§’0 and couplings

V. EXPLICIT EXPRESSIONS

vein, the pairwise connections to and from the hidden unitsy, ;, w, ;, w, ;. etc., are rather complicated, reflect-
in multilayer networks take over tasks performed by highering the combinatoric explosion of terms for growirg
order connections in HOPP architectures. However, a very interesting feature emerges: the bias or in-
It will be helpful to adopt a special notation for the values teractionw, Ky ok of orderm=0,1,2 ... K contains a
: : Keky Ko,
taken by thep factors in Eq.(4): contribution from every ordeq in the product expansion
_ _ _ o with m=qg=K, i.e., from all thep(- - - IN) factors havingy
p1(X1=1N)=p1y, p1(Xxy=0|N)=p1,, in the indicated range. This feature is expressed in the ex-
_ pansions
p2(X1=1X=1[N)=p1op, p2a(X1=0x=1|N)=p12,,
K K
P2(X1=1X,=0|N)=p13\, p2(X1=0X,=0|\)=p1z,, Wy o=INPV)+ X W@, wy = wi®,
' q=1 " og=1
and similarly for higher-order factors, e.g.,
K K
p3(X1=1X;=0x3=1|\)=p1z3, , wyii= 2 WL wy =2 wil,, et (9)
q=2 q=3

p3(X1=0X,=1x3=0|\)=p1r3) . . .
: Complete to ordeq=3 in the product expansion @f{(x|\),

Then we may, for example, express(X1X,Xs|\) as we find
X1XoXa X1X2(1—X3) X(1—Xp)X3 K

p3(X1XoX3|N) = p155 %P oo Py _
123x P23 123\ Wg%zln P(M), W&’):E Inpiy .
(L=x1)xpXg _*1(1—X3)(1-Xg)

P23 P12
(1=x7)X2(1=x3) (1—x%1)(1—Xxp)X3 K K
- - 2 _ 3 _
X“Poan 123\ wl= > Inpin, wH= X Inpi.
i<j=1 i<j<k=1
(1-%1)(1=x2)(1~X3)
EETN : ® K ~
L . . . W pl Pix 2)— Piin
Identification The crucial step in forging the stated con- WXl _In(pn)’ N _12'1 ! (Pﬁx '

nection between neural networks and Bayes inference is to

identify the Bayesa posteriori probability for each clasa K .
with the activity y, of the neural-network output unit as- w® = 2 In(Pijk,A)
signed to that class: MO k)
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i APTx K DI APTIN estimation of B_ayesian posterior probabilitigs. These resylts
W§2?jzln<t—j’), w®=> In<'_—_’_) have been reviewed and augmented by Richard and Lipp-
' Pij APijx k=1 A PijKAPI K mann[11]. The primary focus is the standard classification
problem defined in Sec. Il, which the latter authors would

call a “1 of L” problem (meaning that the target output
associated with the correct class is unity and all other target
outputs are zepo For this case, Ruckt al.[9] have proven
These formulas entail the use of definitions of the kind (see also Ref10]) that in the limit of an infinite, unbiased
training sample, minimization of the mean-square deviation

3) _ In( Pijk,)\Pim)\Pi_jEAPWk,)\). (10

W
1jk,\ N [ —
J Pijk\Pijk APijkAPijk,\

P21~ P12, P32T P23 P31T P13, P21 P12, of actual output activities from their targetsver output
units and patternsalso serves to minimize a mean-square-
P32=pP23, P31= P13, error measure of the departure of these output activities from
the corresponding Bayes optimal discriminant functions. An
P21=P12: P32=P23, P31=P13: P123=P132, alternative statemefil 1] is that under the same assumption,
when network parameters are chosen to minimize a squared-
pP123=pP213, E€tC., error cost function, the outputs of the trained network pro-

vide direct estimates of the posterior probabilities of the
and the convention that any. .. with coincident indices Bayes classifier so as to minimize the mean-squared estima-
(ignoring bar tagsvanishes. It is permissible to interchange tion error. Moreover, for the more general classification
two indices on & . . . without disturbing the association of problem in which the desired outputs are binary and not
bars with indices, so as to obtain another name for the saMgecessarily “1 ofL” [11], the actual outputs of the trained
quantity that is more convenient for presenting the results ofetwork estimate the conditional expectations of the desired
the analysis. In deriving the above formulas we have nobytputs so as to minimize the mean-squared estimation error.
made specific use of the property tha{x;x,|\) should not (1t should be pointed out that the proofs given in Refs.
be decomposable into a product of two independent ong9—_11], unlike the demonstration of the Bayes structural
input factors, and other similar restrictions. equivalence for HOPP systems presented in Sec. IV, do not

The result(9) collecting higher-order contributions to require that the input patternshave binary componenjs.

lower-order couplings has a potentially important conse- Corresponding results hold when the cross-entropy objec-
quence f0r Compal’iSOHS Of feedfOI’\NaI’d neural networks aane function is emp'oyed_ The argument given in R:&ﬂ_] is
naive BayeSian classifiers. Structurally, the naive BayeS Clas-ead”y adapted to establish the same properties for the
sifier, predicated on the independence hypothesis, is equivgyliback-Leibler distancdalso called the relative entropy
lent to the elementary perceptrfh], which has only input Remark 3.In the context of the HOPP architecture, the
and output layers and output units with only biaggs, and  approximation to the Bayes ideal that is at the heart of the
pairwise incoming connections with weights, ;. Yet the  results summarized in remark 2 can in principle be arbitrarily
latter system may actually be superior in practice wheryood, since the theorem of Sec. IV shows that the assumed
trained on the real—correlated—data. The point is that th@yjerarchy of couplings furnishes sufficient structural com-
trained biases and pairwise interactions will in general inplexity to reproduce the Bayes recipe. However, one should
clude some effects of the higher-order correlations, i.e., thebe aware of a number of practica] Comp”(;ati((as well as
will incorporate some contributions from the factors gther caveats aired by Barnat5)).
p2.p3, - --px N the product expansion of the class- (g It is not clear how one can actually attain the global

conditional probability. This feature is also present in theminimum of the mean-square error if there are many local
analogous treatment of Stoloet al. [3] based on the Baha- minima of the error surface.

dur expansion. (b) The requirement of an infinite, unbiased training
sample is a strong one, and the quantitative consequences of
VI. FORMAL AND PRACTICAL REMARKS deviations from this ideal need to be investigated.

. . . o (c) The implied minimization of the mean-square devia-
In this section we explor_e brlefly some of the implications i, of perceptron outputs from the corresponding Bayes op-

of our results and related findings. ) timal discriminant functions may not be sufficiently incisive.
Remark 1.We envision the following operation of the cgnsjder the two-class problem for the case of continuous

two-layer HOPP as an inferenc_e.machine: in a trainin nputsxe &, in the formulation of Ref[9] where a percep-
phase, the HOPP learns the statistics of the problem, which, \ith a single outpufF(x) is trained to producer 1

determine its weight parameters; in the computational phasg\,hen the input is from class 1 andl when it is from class

it effectively applies Bayes’ rulél). 2. The mean-square error measure takes the form
Remark 2The couplings and biases of a HOPP network q

may be determined by a training scheme that minimizes a _ )

well-chosen objective(or “cost”) function. Reasonable fX[F(x,w)—go(x)] p(x)dx, 11)
choices of objective function include the squared error and

the Kullback-Leibler distance or ‘“relative entropy[38],  wheregy(x) =P(A=1|x)—P(A=2|x) is the Bayes optimal
both computed over a set of training patterns. There exisliscriminant and the squared deviation is appropriately
strong results relating the computational output of suitablyweighted with the probability densitg(x) of the input vec-
trained neural-network classifiers—notably, perceptrons—taor. The output of the network will most closely approximate
the estimation of conditional probabilities, and indeed to thehe Bayes discriminant function whepgx) is large. Yet if



6166 CLARK, GERNOTH, DITTMAR, AND RISTIG PRE 59

the aim is to minimize the probability of misclassification, lem domain may permit identification and elimination of
the fit should be best on the decision boundaries of the claghese parameters. In Sec. VIII we shall propose and test a
sifier, where go(x)=0 (two-class problem and P(\|x)  systematic procedure that may serve to reduce the parametric

=P(u|x), A um=1,...L (general case As demon- COSts of HOPP networks to manageable proportions.
strated by Ruclet al. [9], these conditions do not generally ~ Remark 6 Another thrust in the articulation of Bayesian
occur wherep(x) is large. probability theory with neural networks, complementary to

Remark 4Higher-order perceptrons enjoy universal com-that explored here, involves the inference of the adaptive

putational properties quite apart from the Bayesian probabiWeight parameters or, more generally, treatment of the search

listic view generally adopted in this paper. In particular, the'" model space as an inference problem, based in any event

HOPP system defined in Sec. lll is a perfect generalizatioﬁ‘?n the givelns training_ data{183,14]._ In Ba%/ejian backl-_ d
instrument for deterministic classification problems involv- propagatiorf _]' approximate Bayesian methods are applie
ing K binary inputs and_ output classes. In this case, the to the determination of such statistical components of back-

L x 2K weights associated with the HOPP architecture can bgropagation as c_hoosir_lg a cost funqtion and _penqlty term
chosen to match an arbitrary Boolean target function. re'gu.lanzg}, pruning l_m|mportant weights, es?'”?a“”g uncer-
Moving beyond pattern classification tasks, it is also evj-tainties in the We'g_ht parametersz p_redlctlng “out-of-
dent that the basic HOPP architecture—an input layePaMPIe” pattems, estimating generalization error, and com-
coupled to an output layer via connections of arbitrary ordeP2/nd_different network structures. A salient benefit of

consistent with the number of inputs—should have great ytilBayesian model comparison is that it naturally incorporates

ity in the more general class of problems considered in funC_Occam'rS] razort[hl4]. E1>E<pI0|tat|on ?fh.th;]s setdc: :’:Ipplrt(_algches
tion approximation or regressiotprediction of real vari- may enhance the performance of higher-or@er“multilin-

ables [39]. Target outputs as well as inputs and actualear") networks.

outputs may be continuous as well as discrete, and the prob-

lem may be either “deterministic” or “probabilistic” ac- VII. TRAINING ALGORITHMS
cording to transparent extensions of the meanings assigned In preparation for a numerical demonstration of the capa-
to these terms within pattern classification. Again, the systenp)i”tieg ofpthe HOPP networks as classifiers. we now deverl)o
has the ability to capture correlations between the input vari- . X ) e P
ables of all orders, although a probabilistic interpretation ofsuperwsed learning algorithms based on gradient-descent op-

output activities(and, correspondingly, the adoption of soft- H\%'Zfitr']%gOﬂsmfﬁgjgysgeﬁgz; iznr%Jﬁiﬁg(?'gnt{r?g%gﬁct:
maximum output functionsis in general inappropriate. ' P y

We note that Carmesi®0] has introduced “multilinear” ical re;ults[9—ll] discusse_d in remqu 2 Of. Sec. VI, and
neural networks containing, by definition, couplings of all eSpEC'?”y. bi’j tEe expﬁct?tlor_\tr;that, |r_1”pract|_ge, HOZP rl{'.at'
orders fromN input neurons tdN output neurons. In contrast Works frained by such aigorithms Wit provide good esti-
to the familiar case of perceptrons with one or more hidde ates Of. Bayesa posteriori p_robab|I|t|es. Th_e derivaiions
layers(but only pairwise couplingsa convergence theorem proceed in close qnalogy \{Vlth the formulation of standard
for the back-propagation learning algorithm can be provenerrorback—propagaﬂon training schenjés-24.

for this system, in which case back-propagation reduces t% Having defined the HOPP network so that the activities of
the so-called “delta” rule of Widrow and Hof41,23. e output units form a complete set of probabilities over an

Given any input-output mapping, there exists a multilineareXhaUStive set of outcomes, it is possible to reduce the num-

network that reproduces it, and back-propagation trainin$er of output units by ond: —~L—1=L". (Implicitly or ex-

produces convergence to such a network in a finite numb licitly, this is fr_equently done in th? Ilteratur‘§8,22,_4_2,
of steps[40] most commonly in the case where a single output unit is used

Remark 5 There is the obvious danger, in structures in-EOI. rgpr(ta_sentfa gra(?etg chot|cet be_ttvveen t\évo aI:](_arna)(t;vgs.
volving higher-order interactions, that the combinatorial ex- '.T'Bla lon o O”I? 0 the ou pl:](un(ljsb_ma))/sthetac tlevfh y
plosion of weight parameters will overwhelm available com-Sultably renormailizing the weightand biasesthat enter the

putational resources and preclude tractable application ev prgssmr(?;) for fch_e stimuliu, (x) felt by the output units.
for relatively modest number of input units. Two com- o this end, we divide the numerator and denominator of Eq.

ments may be made to put this danger in perspective. (2 by exfiuL(x)], bringing the activityy, (x) of output unit

(a If many higher-order correlations among the input™ for input patternx into the form
variables are indeed present in the problem under consider-

ation, the difficulty is intrinsic and must also be faced when exgu(x)—u(X)] 12
attacking the problem using multilayer, pairwise-coupled ()= L’ ' (12)
feedforward networks. Accurate r_nodeling .wiII thgn gener- 1+ > ex U, (X) —uL(X)]

ally demand large numbers of hidden units, optimally ar- n=1

ranged in a single or multiple hidden layers. The HOPP
scheme has the virtue of making all higher-order correlationsvhere L'=L—1. The renormalized stimuli, (x) —u (X)
explicit. are seen to retain the general form of E8), and the differ-

(b) Even though the number of input variables may beences Wy o~ Wros Wy i=Wri, Wy ij=Weijs .-,
large in a given real-world problem, it will often be the casew, 5.k =W 1...x With 1<\<L' emerge as the only in-
that only a few higher-order correlations are important, sadependently adjustable parameters of the HOPP network.
that most of the weight parameters in the general HOPP aifhe notation is simplified by redefiningv, ;—w_o as
chitecture are zero or negligible. A knowledge of the prob-w, o, W, ;=W ;asw, ;, W, jj—Wy;j asw,j, ..., and
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Wy 10...k— Wi 12...k @S W)y 12...x. The activities of output L’ £,(X)
units 1 throughL"=L—1 are then given by s(x)= 2, t,(x)In A }
N=1 ya(x)
exfg u,(x)] , L
)= o Isasth @9 ool )| 1+ 3 exfu(] || (A7)
A=1
1+ 2 exdu,(x)]
#ot and
The normalization condition for the probability distribution L’ L’ 2
{yﬂ(x)|1s,us L} is invoked to determine the activity asso- e(x)= _[ E [y)\(x)—tx(x)]2+( Z [yx(X)—tx(X)]) ] )
ciated with the deleted output unit corresponding to the re- 2|1 A=1

maining categony: (18

It is to be noted that since the summations run only up to
B "=L—1, only independent HOPP parameters are present in
y,_(x)—l—zl Yu(X). (19 these formulas. In the case of either objective function, the
absolute minimum value of zero is reached if and only if
yvi(X)=t\(x) for all Ae{1,2,...L}. A potentially impor-

In view of the proliferation of weights that may occur in a . .
HOPP system, it is best to take advantage of the saving of2" difference between the behavior of the two cost func-

fered by the above renormalization scheme, which is rigoriions[24] is that the squared deviatid6) or (18) saturates
ous and independent of problem domair,l The numbeft & finite value of unity in case one of the target activities
of weight and bias parameters is reduced by a factofk(x) is unity and the corresponding network response)
(L—1)/L or by a total of ¥ parameters. One would like to 'S zero(or vice versg whereas the relative entrog$5) or

keep the number of parameters as small as possible for m;&?_i_;ends to Imﬂmg for SUCh extreme ”.“SmatChesr-] . .
reasons. First, the problem of determining optimal weights 1€ usual gradient-descent minimization technique is

and biases becomes more tractable computationally; and se%c_iopted to derive learning rules based on the mean-square-

ond, it is well known that the predictive capabilities of a €7 and relative-entropy cost functions. Thus, the weights

network model are enhanced if the training data can be fittean_d bla;)ses are to be incremented, after each pattern presen-
with fewer parameters. We now proceed with the derivatiorfation. by an amount

L’

of HOPP learning rules based on the familiar strategy of JE(X)
stepwise minimization of the chosen objective function. The Aw, (X)=—¢€ , (19
following derivations are actually cast in terms of on-line IWy

rather than batch updating—i.e., weights and biases are ad- L . .
justed after each pattern presentation rather than after eaifﬂ"er‘_eE(X) is given by Eq.(17) or (18) ande is a positive
pass through the training corpgsach “epoch’). Both op-  1€arning rate, g_enerally small compargd to unity. For
tions have been tried on the problem considered in Sec. ViIIEONOMY of notation, we use, as a generic symbol for the
and the “on-line” scheme was found to yield better results.Weight of any connection, of any order, received by output

Lety, (x) denote the activity generated by the network atUnit X, or the bias param(_ater of thgt unit._ It is_of course
output nodex in response to input pattes and lett, (x) be convenient to regard the bias of a given unit as just another

the corresponding target activity. Then tpattern-specific weight par_a_mete:_—th,(,e weight of_a connection to_ t_hat unit
contribution to the objective function is from a fictitious “field” node 0 with perpetual activity,

=1. To suppress wild oscillations in weight space, we fol-
low the usual practice of supplementing the r@®) by a

L
E(X)=s(x)= >, t,(X)In M} (15) so-called momentum term
= Ya(x)
A __EX + 7A 1 20
when the relative-entropy prescripti22,38,24 is adopted WA(X) =~ e =+ mAWL (X ), (20)

and
the positive momentum parameter also being taken less
1 L than unity. In this expressiodyw, (x—1) stands for the last
E(x)=e(X)= = 2 [t, () — Y\ (x)]? (16) weight change made before the current one. Evaluation of
251 the required partial derivatives leads to learning algorithms
of the form
for the mean-square error measure. The relative-entropy cost
function itself, denoted simply by, is of course formed by Ju\(X)

Aw, (X)= €A\ (X) + pAw, (x—1), (21

averaging Eq(15) over all patternx in the appropriate set,
while the usual squared-error cost functierfwith the con-
ventional factor 1/2) is obtained in the same manner fromwhereA, (x) is interpreted as an error signal and depends on
Eq. (16). Making use of the normalization relatighi4) and  the cost function assumed.

the analogous relation satisfied by the target activiti€z), For the relative-entropy cost function, the pattern-specific
the pattern-specific cost functiof$5) and(16) become error signal takes the very simple form

AWy,
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Ay (X) =ty (X) — Yy (X), (22 stability or instability of the corresponding nuclide to be de-
termined, and tha posterioriprobability P(\ |x) in this case
while in the case of the squared deviatid®) it becomes should collapse to a Kronecker del#q ,(, , wherev(x) is
the physical mapping that uniquely delivers a stability or

L’ instability assignment for giveR,N. The latter mapping has
AA(X)IVA(X)[ B =y () + 2—1 [t.(X) =Y L(X¥)] not yet been derived from fundamental considerations. It is
" accessible only as an empirical lookup table, and then only
L’ under the assumption that there are no stable nuclides be-
x| 1= 21 Yo(X) =Y (X) | [ (23)  yond those presently known. As in any exploration of the

capabilities of neural-network models in classification or
function approximation, a primary aim is to test generaliza-
gion performance. Accordingly, the standard protocol re-
quires the reservation of a subset of the data base as a test
set, restricting the data available for training. One should not
gpxpect the ideah posteriori probability or the target map-
ping to be realized in practice, for three reas@ee remarks
reduces to unity for any input pattern. Generally, the derivaﬁei?ﬁeseogosue% t\c/))lrzIrf(;,szlr:?glrj]ggrg?tfarOFc))ZteriCor:lter(c:)ttl)J;?)i:ﬁ
tives 9u, (x)/aw, are given by the products of the activities, distribution ogr] deterrﬁinistic mappin golron utationpal Iimita—y
in patternx, of the input units belonging to the one-unit, tions will necessitate a reductigﬁ ir%'the nF:meer of weight
two-unit, three-unit, etc. clusters extending feed-forward . ot Welg
parameters employed and therefore in the connectivity of the

connections, of the pertinent order, to output unitinde- model. Second, the training set may be too small and/or it
pendence of the weights may be exploited to facilitate com- ) ' 9 Y

putation: prior to a training run, one may calculate once and"& be subject to bias. This is expected to be the most seri-

for all the pattern-specific values of the activity products foroUs obstacle in the present example. Third, the training pro-

the given set of training patterns and store these values in aﬁnﬁg:{iii moafy tr;]%t %igg:r?ugg@éiﬁfg'f;ﬁlgi’;{]‘er;zqu'rneci T)IQI'
array for use during the training process. We note that for ) - y L
binary inputs the derivatives can only assume the values zer%Ch'eved' In the face of these uncertainties, t_he de_termlnlstlc
and unity problem we have selected at least has the virtue, in contrast

, - . to most real-world problems of probabilistic character, that
From the expression®2) and(23) it is seen that, in both ; T e y
training algorithms considered here, the training process ighe form of the posterior prp_ba@hty d!s_trlbut|on Imgwn It
is true that the nuclear stability-instability problem is a rather
quenched as the actual network outpy¢x) approach the academic one from a pragmatic viewpoiunnlike, say, the
desired values, (x). However, the algorithm based on the brag b  Say,

mean-square error may slow down or become stalemateg{Oblem of predicting ground-state spins of nuclén the

[24] upon encountering cases where one ofyihiex) is 0 but her hand, its computational demands are relatively modest,
should be 1(or is 1 and should be 0). On the other hand, inand result§19—-21] from earlier modeling studies with stan-

. . dard multilayer neural networks are on hand for comparison.
the relative-entropy learning scheme the penalty for such er- Most of the known nuclefand presumably all of the un-
rors may be too sevey@2]. known oneg are unstable. The data base for our computa-
tional study, obtained from the National Nuclear Data Center
VIIl. HOPP CLASSIFIERS FOR THE NUCLEAR at Brookhaven, is comprised of a total of 1557 nuclides, of
STABILITY-INSTABILITY DICHOTOMY which 215 are considered to be stable and 1305 are demon-

At the most fundamental level, the independent inputStraPly unstable with respect to electron captge, decay,
variables characterizing atomic nuclei are the proton numbeft, 8mission, or other modes of decay. A test set of 312 nu-
Z and the neutron numbe. It is currently impractical to  clides was formed by randomly selecting 260 unstable and
construct global quantum-mechanical models of nuclidic>? Stable nuclides from the total data base. The remaining
properties as functions & andN based on rigorous imple- 1245 nuclides constltgte the training set. The d'|str|.but|ons of
mentation of quantum chromodynamics, and even semiphdf@ining and test sets in thé-Z plane are shown in Figs(d)
nomenological effective hadronic theories fall short of true@nd 1b). . _ i _
quantitative description. Accordingly, artificial neural net- FOr this problem, it suffices to employ a single analog
works and other modern statistical methods offer interestin@UtPut unit, whose activity signals the decision made by the
alternatives [18-27 to such fundamental physical ap- _network model regardln_g_the stability or instability of the
proaches to the prediction of nuclear structure and dynamicd?Put nuclide. Target activity valuegx) of 1 and 0, respec-

The efficacy and practicality of the HOPP architecture, intively, are assigned to stable and to unstable nuclides; impos-
conjunction with the learning rules developed in Sec. VII ing a winner-take-all criterion, it is assumed that the network
have been tested on the problem of classifying nuclides ad1@S classified the input nuclide as stapimstablg if the
cording to the stability or instability of their ground states. aCtivity y(x) of the output unit is greater thdfess thaf 0.5.

As pointed out in Sec. II, this example is actually a deter- _In the case of a single-unit output layer, the error signal
ministic classification problem, whereas the HOPP schem&3 derived for the mean-square-error cost function may be
was formulated within the more general setting of probabi-éduced to

listic pattern classification. In principle, the inputs in this

example—Z and N—provide sufficient information for the AX)=2y(X)[1—-y(X)][t(X)—y(X)]. (24

The linearity of the stimuli(3) in the adaptable weight pa-
rametersv, has the consequence that the partial derivative
of u,(x) appearing in Eq.(21) do not depend on these
weights, but only on the training pattesn currently im-
pressed at the input interface of the network. In the case
the bias parametev, =w, o of node\, the partial derivative
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120 - ' - ' - ' ' percentageof correctly classified input patterns. However,
this measure can easily be misleading because of the pre-
o TneSe L st dominance of unstable examples in the training and test sets.
Vv o A “lazy” net that routinely classifiesall input nuclides as

unstable would achieve scores of 83.94% correctly classified
examples on the training set and 83.33% on the test set.
However, such apparently strong performance would only

Proton Number Z

o o ag : 1 indicate that the network has learned of the high likelihood
i that an arbitrarily selected nuclide is unstable.
ol 1 A much more informative quality measure is the Mathews

correlation coefficienf44]

20 B

c— _pp qaq . (25
% 20 m o 20 700 20 o 160 \/(p+q)(p+q)(p+q)(p+q)
(a) Neutron Number N
110 , . , , , . , which is constructed to eliminate the effect of bias from first-
ol TS g order frequencies. In this formulg,is the number of stable
wl - g’ S input nuc!ides corrgctly classified as s;a_ltpet,he number of
A ;fgzgfg 2% unstable input nuclides correctly classified as unstaptbe
g0 = £2.40% o8 ] number of stable input nuclides incorrectly classified as un-
N T 5«2@%%?% 1 stable, andy the number of unstable input nuclides incor-
2ol byt ] rectly classified as stable. The value of the coefficient
2 ol N mm&f K | ranges between-1 and +1, taking its minimum value of
2 m@i&g"‘ —1 when all patterns are misclassified and its maximum or
or o fne " ) ideal value+1 when all patterns are correctly classified. In
30 - @g‘:“ﬁ“ 1 the case of a network model that assigns all patterns to one
0F gaen® . class(e.g., unstable C vanishes, indicating trivial perfor-
ol W& | mance.
| <% The Mathews coefficient is computed independently for
° 20 4w s 10 i 1o e the training and test sets. Evidently;+q is just the total
(b) Neutron Number N number of stables in the data set consideredand is the
FIG. 1. (a) Training set of 1245 nuclidesb) Test set of 312  total number of unstables, so the Mathews coefficient is in
nuclides. effect a function only of the numberof correctly identified

Apart from an irrelevant factor 2, this result coincides with Stables and the number of correctly identified unstables.
the usual back-propagation formula for the error signal genFigure 2 shows this functio@(p,p) for the training set.
erated by the output unft23-26. Just as in the familiar In our modeling experiments, each training run comprises
result, the producy(x)[1—y(x)] is the derivative of the @ prescribed number of epochs of exposure to the training
output-unit squashing function with respect to the stimulugPatterns. Since an on-lin@r “stochastic”) training proce-
u(x) received by the output unit. In similar vein, it may be dure is adopted, all four performance measures considered—
noted that the learning rul@1),(22) derived for the relative- Mean-square error measueepattern-averaged relative en-
entropy cost function has the form of the Widrow-Hp#fl] ~ tropy s, numberN.,, of correct classifications, and Mathews
“delta” learning rule, extended to allow for higher-order coefficient Cy—will show fluctuations throughout the
connections and including a momentum term. training process. These quantities are monitored during each
As in most applications of neural networks to the model-training run and the sets of weights yielding the minimem
ing of nuclear systematidd7—27, we adopt a binary rep- minimum s, maximum N¢or, and maximumCy, are re-
resentation of the inpu andN. Thus, the input layer of the corded. Generally, the HOPP network corresponding to the
HOPP network models to be studied consists of eight on-offfaximum Mathews coefficient found during a given run dis-
units that encod& as a bit string and another eight on-off plays predictive performance superior to that of the network
units that similarly encodl. In contrast to analog coding of configuration reached on completion of the run.
Z and N in the activities of one or more input nodes, this As specified above, the HOPP architecture for the stabil-
binary coding scheme emphasizes the integrahnta) char- ity discrimination problem consists of 16 input units and a
acter of the input variablepl9,200 and hence provides a Single output node. Allowing for feed-forward connections
more natural framework for modeling effects of shell struc-of all orders, this structure entails (50 = 2'6= 65536
ture and pairind43], effects which can be crucial in distin- adjustable weight parameters. Quite apart from the computa-
guishing between stability and instability. tional demands of training this huge set of weights, there is
In addition to the squared error and relative entropy, avdittle point in such an exercise. Far more parametric re-
eraged over training or test patterns, we have also used twgpurces are available than are needed to construct a lookup-
other quality measures to assess network performance hable that recapitulates the content of the training set. Thus it
learning and predictive modes. One is simply the nuniber can be expected that one may readily arrive at networks
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TABLE I. The number of connections for every order that come
into effect for at least one nuclide in the training siit{=1). The
first column gives the numbemn of input units feeding into the
output unit, the second the numbaf,, of connections of ordem
coming into action for at leastl.; training examples, and the last
the total number of possible connections of the order specified in

0.5

the first column.
0 i
i i e m W, (x)
05 ”Il’”” 1000 0 1 1
= 2 103 120
TR o nsatlen 3 424 >60
Correct Classifications of Stables 200 0 4 1161 1820
FIG. 2. Mathews correlation coefficie(@5), for the training set, 5 2204 4368
as a function of the numbgr=0,1,2 . . .,200 of correctly identi- 6 2932 8008
fied stables and of the numbﬁtt 0,1,2 ...,1045 of correctly iden- ! 2751 11440
tified unstables 8 1807 12870
' 9 793 11440
which fit the training data perfectly, yet fail in generalizing 10 211 8008
to new patterns. This expectation is borne out by experi- E 321 iggg
ments in which the connectivity was truncated at order 13 0 560
=3, i.e., experiments on HOPP networks with 697 adjust- 14 0 120
able parameters(Connections of ordem=3 are called 15 0 16
“quaternary,” since they involve four neurons—three input 16 0 1
neurons and one output neurpim several cases, training led Total 12 435 65536

to a perfect fit of the training data, but performance on the
test set was poor, with Mathews coefficients below 0.25.

Already atK = 16, one feels the effect of the combinatoric weights (including biases These nets correspond, respec-
explosion of parameters inherent in the HOPP architecturejyely, to values 200, 170, and 165 fbt,,. Tables lI-IV
Some means must be found to preselect relevant connegisplay, for each ordem listed, the number of connections
tions, reducing the number of adjustable parameters to @oming into action for at leash =200, N.;= 170, and
level that permits good generalization on the basis of they_, =165 nuclides in the training set. For valueswhigher
limited training set available. The fO”OWing S'[I’ategy is quite than those |isted, there are no connections exciteu&qyor
effective in the stability discrimination problem. more nuclides.

As was emphasized in Sec. Ill, the connection weight |t js worth noting that this procedure for sculpting the
Wy k,..-k, cOmes into play for a given input pattern if and connectivity of HOPP networks permits one to include con-
only if the input unitsk; - - -k, are all “on.” In the case of nections ofany order that satisfy the relevancy criterion of
bias parametersnf{=0) this condition is of course trivially activation by at leasil.; training examples. The parameter-
met for all training and test nuclides. More generally, for reduction strategy we have introduced is likely to have wide
each of the 65536 possible connections one must count thagpplicability.
number of nuclides among the 1245 in the training set for Training a HOPP network with the numb¥f of relevant
which this connection is activated and therefore necessaryeights began with the assignment of an initial value of zero
While time consuming, this task need be done only once foto all of these weightdNets have also been trained by start-
a given data set. The next step is to reduce the number dafig with initial weights chosen randomly from a uniform
couplings considered, by retaining only those which becomelistribution on[ —0.5,0.5, with no significant difference in
active forat least N.;; examples in the training set. In choos- the quality of the models derivedEach training run con-
ing the value ofN;;, there is an inevitable tradeoff between sisted ofN,,,= 36 000 epochs. Within an epoch, all nuclides
accuracy on the training séarguing for smallN.,;) on the of the training set were presented in random order, the order
one hand, and predictive accuracy and practicality of training
on the otherarguing for largeMN). TABLE Il. Same as in Table | foN;=200. The table is trun-

Table | shows the number of connections activated by atated at the order above which no more connections come into
least one training exampléNg,;=1), in each order fronm  effect for at leasN,; training examples.
=0 to m=16. As expected, this number first increases rap-
idly with increasing order, reaches a maximum at intermedi- m W )
ate order, and thereafter falls off very rapidly. The number of 0 1 1
relevant parameters is immediately reduced to 12 435; how- 1 14 16

2
3

ever, this number is still too large in comparison with the 89 120
available training set. 5 560

The best three HOPP “inference engines” we have found Total 109 697
in our numerical explorations hawy/=109, 127, and 143
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TABLE lll. Same as in Table Il foN.;=170. TABLE V. Performance of the eight best HOPP classifiers for

the nuclear stability-instability discrimination problem, found in a

m W, (18) large set of numerical simulations. The networks labeled 1-8, hav-
ing W connections, were trained by modified on-line gradient-

0 1 1 descent learning algorithms based on the mean-relative-entropy

1 14 16 (MRE) or mean-square-errdMSE) cost function(CF), with learn-

2 90 120 ing rate e and momentum parameter. The Mathews correlation

3 22 560 coefficient obtained by each net for the training €. is given

Total 127 697 along with the number of epochs at which this value was achieved

(Npesy @nd the corresponding Mathews coefficient on the test set
(Ciesd - See text for further details.

of presentation being changé@ndomly from epoch to ep-

och. Weights were updated upon each pattern presentation w CF € 7 Nbest  Cuain  Crest

based on Eqs(21) and (22) when training on the relative 1 143 MRE 0.025 0.2 224769 0.79 0.63
entropy and according to Eq21) and(23) when trainingon - 109 MSE 0.025 0.9 142982 0.68 0.63
the mean-square error. However, to speed up the training 127 MSE 0025 05 229718 0.74 0.63

process these weight changes were implemented if and only 143 MRE 0025 05 170254 080 063
if the HOPP responsg(x) to input patterrx, evaluated with g 143139 MSE 0025 09 137884 077 063
the current set of weights, departs from the corresponding 143 MSE 0025 09 147854 081 0.62
target value(x) by an amount greater in magnitude than 0.5. 143 MRE 0025 00 89400 078 062
About a hundred HOPP networks have been trained in ou, 143 MSE 0025 09 142660 081 061
numerical investigations, in which we have explored the ef- i i i i
fects of different choices for the relevancy cutdff;, the
learning ratee, the momentum parameter, and the maxi-
mum numbeN 5, Of epochs per training run. Table V sum- t col
marizes the properties of the best eight of these networf<aS column.

models. We have seen that an exact fit of the training data is As already ment|oneq, the fully trained networks d.eS|g—
o ) " - . nated 1-8 have been singled out from all those studied by
not useful in itself; thus “best” is to be understood in terms

) . vjrtue of their superior predictive performance on the
of the best performance on the test set, consistent with good _, ..., ~. o e LT :

g . o Stability-instability discrimination problem. The weight con-
accuracy on the training set. These networks are identified bX

number in the first column of the table. The second column guranqns of networks 1 and 4, 2 and 6, an_d.5, corresppnd,
respectively, to the maximal Mathews coefficient, the mini-

gives the number of connections that remain after applyingn . -
: . . al mean relative entropy, and the minimal mean-square de-
the parameter reduction procedure described above, in corre:-

spondence with the choices M, considered in Tables Il viation found in the last run of 36 000 training epochs. Simi-
rit - . .
IV. The entries in the third column indicate whether the larly, the pattems of weights in nets 3, 7, and 8 are those

. belonging to the maximal number of correctly identified
&i??asnﬂi%ﬁggmgg dgr tgjea'lpr;:ae::acflr\r/:;egtrzgﬁwlsgr)nin training examples recorded in the final run. Further training
pted. respo 9 Y0f the HOPP systems of Table V did not significantly im-

ratese and momentum parametessare listed in the fourth

and fifth columns, respectively prove their performance.
The final configuration of any of the networks 1-8 was in Network 5 represents a special case in which an attempt

fact reached through a succession of training runs of 36 00 as made to eliminate further unimportant weight param-
9 g ters. The relevancy criterion based on the cutoff choice
epochs. For nets 1 and [2 and §, successive runs were

started with the weights corresponding to the minimum valueNC”t: 165 yielded the same preselected HOPP architecture

of the mean relative entrogynean-square errbachieved in as for networks 4, 6, 7, and 8, all having 143 relevant con-

. . . - ections(including biases Training led to an intermediate
the '.”?’.“ed'at.e'y preceding run, while for nets 3, 5, 7, and é%etwork corresponding to the maximal Mathews correlation
the initial weights for a subsequent run were taken as thos

corresponding to the maximal Mathews coefficient found infﬁ?r?:]g(2?1%%6‘8'821;;;;2.:;;5; nlgtsv(c))?lg \}\/r:;nlp)r]rﬂneepdogﬁhe
the most recent training run. In the seventh column, we IiStfollowing procedure. For each of the 143 connections, the
fcor .eag_uengavr\fgg’r é?eep\g"::lﬁs Ofaihve\/h:\gst:]hei;vf’/aﬁ?:f&gsmMathews coefficient for the _training set was calt_:ulated with
oigt?ihed is given in column si;egnd the corresponding valu the strength of that connection set to zero, leaving the other
' ?Neights unchanged. The connection whose omission resulted
in the least deterioration in the Mathews coefficient was de-

of the Mathews coefficient . for the test set is listed in the

TABLE IV. Same as in Table Il foN;=165. leted. This process was in turn applied to the pruned net-
work, and iterated until a total of ten connections were re-
m Wi ) moved. The reduced importance of the deleted weights is
0 1 1 evident in their small magnitudes as well as their effect on
1 14 16 Cirain- The resulting HOPP architecture, with 133 nonvanish-
2 90 120 ing weights, provided the initial configuration for the remain-
3 38 560 ing 36 000 epochs of the training regimen.
Total 143 697 A similar pruning strategy has been employed extensively

in neural-network modeling of the atomic mass taj24]
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and the systematics of nuclear de¢ag], where it resulted in yielding Mathews coefficients for alpha-helix prediction
in significant improvement in the quality of the statistical significantly beyond about 0.&ee Refs[3,30).

models. In the present problem, further pruning of HOPP It seems most likely that the principal obstacle to im-
networks preoptimized using the relevancy criterion usuallyproved performance on the stability-instability discrimina-
did not produce significantly better networks. Network 5 istion problem is the limited size of the data set, which pre-

one of the rare cases where there was a noticeable imprové€nts one from maintaining predictive accuracy upon
ment in performance. reduction of the relevancy cutoN; below the range con-

The nuclear stability-instability discrimination problem sidered for Tables II-1V. In this connection, we note that the

has been studied earlier using standard multilayer feedf@ning procedures based on the relative-entropy and
forward nets with pairwise connectiofi$9—21. Among a squared-error objective functions produced optimized net-
large number of models generated by training with gradientyvOrks .Of essentially equ.|va.1|ent .quahty.. '!"deed' n many
descent back-propagation routin@stch as well as on-line cases it was found that, within a given training run in the Igte
and with a conjugate gradient algorithm, the best perfor-Stag.es of.development Of the better'n_etworks, the We'.ght
mance was recorded by a network with a f,our-layer architec_conﬂguranons corresponding to the minimum mean relative

q iah i bi entropy and the minimum mean-square error were reached
ture 16+ 9+6+2 and 227 weight parameters. Again, binary 5qer nearly the same number of completed epochs and are

input coding was adopted; two analog output neurons codeg, ;s very close to one another. Such behavior, as well as the
for_“stability” and “iqstability,” the discrimination decision very similar performance of the best networks of HOPP and
being made by a winner-take-all rule. This network, devel-siandard multilayer type, suggests that the existing solutions
oped by conjugate-gradient training, attained Mathews coefof the stability classification problem are about as good as
ficients of Cy5,=0.87 andCis=0.68. The results collected can be expected, given the complexity of this problem and
in Table V show that HOPP networks are capable of compathe restricted nature of the data set. Even so, one cannot rule
rable performance, with substantially better parametric effiout the existence of superior neural-network nuclear-stability
ciency. For example, network 6 has 143 parameters conelassifiers of one kind or another, which might be accessible
pared to 227 for the best multilayer network model. It maythrough the Bayesian techniques of model search developed
also be noted that network 2, with only 109 weights, almosin Refs.[13,14] (see remark 6 of Sec. VI

matches the predictive performance of network 1, as mea-
sured byC,. However, the additional weight parameters
possessed by network 1 result in significantly better learning
accuracy.

The range of relevancy parameters fraW;=200 to We have studied a perceptron architecture for solving
N¢rit=165 was found to produce an acceptable tradeoff beelassification problems that contains only input and output
tween accuracy of fit and predictive power. Within this layers but(i) allows for synaptic connections of all orders
range, where the number of connections runs from 109 t@onsistent with the number of input units afig) incorpo-

143, well-trained HOPP models show remarkably littlerates output-unit activation functions that collectively com-
spread inCig values, although the details of connectivity are pute a probability distribution over an exhaustive set of out-
quite variable from model to model. This robustness is concomes. Assuming binarftwo-state input units, it has been
sistent with the fact that there was generally little to beestablished that such higher-order probabilistic perceptrons
gained by attempts to improve upon the preselected conne¢HOPPS$ are sufficiently general to represent the correlations
tion pattern by the pruning routine. For relevancy-optimizedamong the input variables and generateatosterioriprob-
architectures such as those of Tables 11—V it is not hard taabilities given by a Bayes-optimal classifier. In addition, we
construct HOPP networks with a predictive Mathews coeffi-have developed supervised learning algorithms for training
cient close to 0.6. However, it has proven difficult to go HOPP networks on a set of correctly classified examples,
much beyond this value, either with the HOPP architecturesvith the goal of achieving optimal or near-optimal perfor-
adopted or with the more conventional multilayer feed-mance. The introduction of these algorithms, which employ
forward architectures. This difficulty is a reflection of the mean-square-error and relative-entropy objective functions,
complexity of the distribution of stable and unstable nuclideshas its basis in theorems enunciated by Retkl. [9] and

in the N-Z plane, where the stables intermingle with un- Richard and Lippmanihl1].

stables in an intricate pattern along the valley of stability ina The HOPP architecture and associated learning rules have
sea of instability. Indicative of this complexity are the very been applied to the nontrivial task of deciding on the stability
long training times needed to create the networks of Table Vor instability of nuclear ground states. One putative disad-
It is of some interest to compare the present situation withvantage of HOPP networks is poor scaling with problem
that encountered in an even more difficult classificationsize, as measured by the dimensionality of the input space. If
problem, namely, that of predicting protein secondary strucall possible connections are retained, there is a combinatoric
ture from the primary amino acid sequeri@8-30,3,45,46  explosion of higher-order weight parameters as the number
It has been standard practice to treat this problem as one of input variables is increased. We have sought to overcome
probabilistic classification, supplying a multilayer, feed- this difficulty by imposing a relevancy criterion on the reten-
forward, pairwise-coupled neural network with partial se-tion of weight parameters: all connections that are not ex-
guence information passed through a sliding or jumping win-cited by at leasN,; training patterns are deleted. This strat-
dow. Such approaches—as well as other statistical methodsyy, aimed at improving parametric efficiency while
based on sequence information alone—have not succeededeserving important higher-order correlations, may prove

IX. CONCLUSIONS
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useful in a wide range of classification problems. It is foundcrimination problem in terms of the importance of
that relevancy-optimized HOPP solutions for the stability-connections of various orders. First, it should be recalled that
instability discrimination task are competitive with solutions the elementary perceptron with only biases and pairwise con-
obtained with conventional multilayer perceptrons trained bynections is inadequate, yielding Mathews correlation coeffi-
back-propagation and conjugate gradient procedures. cientsCiq 0N the test set of at best slightly larger than 0.3.
It should be emphasized that conventional feedforwarBased on the relevancy criteridas reflected in Tables II—-
neural networks, with one or more hidden layers but onlylV) the training data indicate that the most important connec-
biases and pairwise connections, may also suffer from podions for deciding stability are the binafye., pairwis¢ and
scaling behavior. The danger is merely more apparent in theernary ones, the quaternary connections being far less im-
case of HOPP networks, whidhart with a (finite) architec-  portant. Indeed, in our computer experiments, the great ma-
ture general enough to match the correlation structure of anjprity of the ternary connections had to be retained to obtain
problem with the specified numbers of inputs and outputs. Iyood (or “optimized”) HOPP models. It is of course these
practice, what really matters is the complexity of the prob-ternary connectiongalong with a few quaternary links
lem at hand, in terms of the pattern of the higher-order corwhich introduce the nonlinearities that are represented in the
relations between input variables. In applying HOPP nets tenultilayer structure of the traditional architecture and permit
large problems, the immediate need is to trim the architece, to be raised above 0.6. The situation is exemplified by
ture to suit the given problem. In the case of traditional netscomparisons drawn from the experiments summarized in
the existing complexity must be dealt with by introducing aTable V. With 33 fewer quaternary connections and one less
sufficient number of hidden units, in one or more hiddenternary coupling, network 2 is almost as good in generaliza-
layers, again with the prospect of an explosion of resourcgion as network 1. This illustrates the relative unimportance
demands. Optimization of this architecture is in general &f quaternary connections, as does the fact that of the ten
very hard problem[Indeed, even an infinite number of hid- connections deemed least important when pruning network
den nodes may be required in a three-layer (see Ref. 5 only two are ternary while eight are quaternary.
[12]).] The HOPP architecture is an attractive alternative to  Qur formal and computational findings suggest that
that of traditional networks, in at least two respects. higher-order probabilistic perceptrons should be useful in
(i) It provides a framework for efficient and systematic many classification problems that arise in science and tech-
optimization strategies. A transparent option is to truncateology, whether probabilistic or deterministic in character.
the expansiort3) at successively higher orders until satisfac- Among scientific applications, one may consider the predic-
tory performance is attained, within the limitations of the tion of diverse aspects of protein structure related to protein
data set available. Optimization based on the relevancy criolding [45,46) and classification of compounds according to
terion has the advantage that the most important links irrystal structure, as well as further global modeling exercises
expansion3) may be selected regardless of order. in nuclear physics such as assignment of ground-state spins
(i) With input units directly connected to outputs, it pro- and parities to novel nuclear species. As a natural sequel to
vides for more straightforwarthnd more rapigitraining of & the present study of the stability-instability dichotomy,
given number of weight parameters. HOPP systems may be taught to generate a probability dis-
On the other hand, the absence of a hidden layer may bgibution over the possible fates of the ground state of an
construed to imply a sacrifice in parallel distributed processinput nuclide, which may include stability and decay into
ing, a feature of multilayer networks that is Commonly re-various modes 4 decay’ :8 decay, electron Capture,
garded as highly advantageds]. Still, it must be remem-  fissjon, . ..). Therelevant body of data, referring to nearly
bered that both HOPP and conventional architectdtes 1600 nuclear ground states, consists of stability assignments
latter with at least one hidden layer that can contain an arbipr branching probabilities for the observed modes of decay.
trary number of unitsprovide the raw material for universal Although this problem is one of function approximation
machines. Whereas in HOPPs it is the presence of highefather than simple classification, it is nevertheless amenable
order couplings that permit the description of all possibleto HOPP modelingsee remark 4 of Sec. YIMoreover, it is
correlations between input patterns, in conventional apof considerable interest in view of the predictive success
proaches this responsibility falls on the set of hidden unitsachieved with pairwise-coupled multilayer feedforward nets
Formal relationships and correspondences between two-layg@ained on the relative-entropy cost functif22]. The com-
HOPPs and pairwise-coupled multilayer perceptrons are ygilexity of the problem is expected to remain within the
to be explored, as are more practical issues such as systeBpunds of practical computation, since the presendsay
atic differences in parametric efficiency and fault tolerancefive possible decay modes implies a number of initial HOPP
For the illustrative problem studied in this paper, the existingweights five times that of the stability-instability discrimina-
simulations suggest that the two approaches are comparablyn task.
effective for the primary task of generalization.
Even for problems omodestsize, a large fraction of the
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