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Bayesian inference analysis of ellipsometry data
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Variable angle spectroscopic ellipsometry is a nondestructive technique for accurately determining the
thicknesses and refractive indices of thin films. Experimentally, the ellipsometry parametersc and D are
measured, and the sample structure is then determined by one of a variety of approaches, depending on the
number of unknown variables. The ellipsometry parameters have been inverted analytically for only a small
number of sample types. More general cases require either a model-based numerical technique or a series of
approximations combined with a sound knowledge of the test sample structure. In this paper, the combinatorial
optimization technique of simulated annealing is used to perform least-squares fits of ellipsometry data~both
simulated and experimental! from both a single layer and a bilayer on a semi-infinite substrate using what is
effectively a model-free system, in which the thickness and refractive indices of each layer are unknown. The
ambiguity inherent in the best-fit solutions is then assessed using Bayesian inference. This is the only way to
consistently treat experimental uncertainties along with prior knowledge. The Markov chain Monte Carlo
algorithm is used. Mean values of unknown parameters and standard deviations are determined for each and
every solution. Rutherford backscattering spectrometry is used to assess the accuracy of the solutions deter-
mined by these techniques. With our computer analysis of ellipsometry data, we find all possible models that
adequately describe that data. We show that a bilayer consisting of a thin film of poly~styrene! on a thin film
of silicon dioxide on a silicon substrate results in data that are ambiguous; there is more than one acceptable
description of the sample that will result in the same experimental data.@S1063-651X~99!02905-0#

PACS number~s!: 02.70.Lq, 78.20.Ci, 78.20.Bh, 02.60.Ed
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I. INTRODUCTION

Ellipsometry is a fast accurate technique for measur
the optical constants, interfacial roughness, and thickne
of thin films. The technique has become widespread over
last 30 years in a diverse range of fields. Two recent revie
@1,2# highlight examples of ellipsometry applications. The
include the determination of glass transition temperature
polymer thin films@3#, thin film swelling @4#, adsorption of
small molecules at solid/liquid interfaces@5,6#, the character-
ization of Langmuir-Blodgett films@7# and the determination
of damage depth profiles from ion implantation in silico
wafers@8#. For a given sample, ellipsometry measures el
ticity r, which is written as

r5
Rp

Rs
5tanceiD, ~1!

whereRp andRs are the Fresnel reflection coefficients, wi
p denoting the plane of reflection ands denoting the plane
perpendicular to it@9#. The Fresnel coefficients are depe
dent on experimental parameters: the angle-of-incidenc
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light, w0 ~conventionally measured from the sample surfa
normal!, and the wavelength of radiation,l. The Fresnel
coefficients are also functions of material parameters: co
plex refractive indices of each of the components,N, and
each of the layer thicknesses,d. The parameterD is the
change in phase difference between thep ands components
caused by reflection, whilec is the ratio of the amplitude
ratios of thep and s light components before and after re
flection. The ellipticity is measured by the analysis of t
elliptically polarized light reflected from a flat, smoot
sample surface. The ratio can be described algebraically
an expression derived from the Fresnel coefficients forn lay-
ers on a semi-infinite substrate, wheren is any integer num-
ber @9#. Starting with~c,D! pairs obtained at knownw0 and
l, one can invert this expression, under certain circu
stances outlined below, to find values for the unknown
rameters, such asN, d, and the roughness of each layer in
sample. Only a few specific cases have as yet been inve
analytically. Droletet al. @10# summarized these structures
~1! a single layer with unknown complex refractive index o
a known substrate;~2! a substrate with two layers and wit
one layer thickness being unknown;~3! multilayer systems
with any one unknown layer thickness;~4! multilayer sys-
tems with unknown substrate complex refractive index;~5! a
symmetric system of one layer of unknown thickness a
real refractive index embedded in two identical phases h
ing a real index; and~6! an optically absorbing layer on
substrate with a complex refractive index, and with the thic
ness of the layer being unknown.
ic
6138 ©1999 The American Physical Society
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Cases~1!–~5! require measurements onone substrate at
onewavelength andoneangle. Case~6! is somewhat differ-
ent in that it requirestwo different angles of incidence ontwo
different substrates. It should be noted that inherent corr
tion exists between measurements at two different value
w0 and l. Hence, increasing the number of measureme
does not necessarily increase the amount of informa
about a sample. Moreover, the use of multiplel values po-
tentially introduces more unknown material parameters
to optical dispersion and absorption. In some cases, howe
the number of unknowns can be reduced by using analy
or empirical expressions to describe a material’s opt
properties@11,12#.

A number of numerical inversion methods have been
veloped which are suitable for different problems. There
at least three categories of methods, as outlined below.

~1! There are exact numerical methods suitable for wh
the number of unknowns is equal to the number ofc andD
measurements. The Reinberg method@13# is most often cited
for single-angle, single-wavelength ellipsometry to det
mine the unknown refractive index and thickness of a t
nonabsorbing film on a reflecting substrate with known o
tical constants. A similar method is the functional-link neu
network approach of Parket al. @14#. Other techniques are
cited by Droletet al. @10#.

~2! When the number of unknown variables is grea
than the number ofc andD data points, an exact solution ca
obviously not be written. Multiparameter fitting methods,
which the Levenberg-Marquardt@15# algorithm is commonly
used, are suitable for data from variable angle spectrosc
ellipsometry~VASE! ~a technique where manyw0 andl are
used!. Such an algorithm is used to minimize the differen
between the experimental~c,D! spectra and the simulate
spectra generated from the Fresnel equations@12,9#. Models
can be built to include any number of layers, with compl
refractive indices, on any substrate and in any ambient
dium. Other physical properties such as biaxiality@16# and
surface roughness can also be included in the model. A
lated technique is the backpropagation neural netw
method of Fried and Masa@17#, which is trained to recognize
characteristics of~c,D! spectra.

~3! There exist inversion-after-approximation schem
such as that described by Charmet and de Gennes@18# for
multiple-angle single-wavelength ellipsometry. This tec
nique can determine an arbitrary refractive index profile o
depths much greater thanl/4p.

The preceding methods, although for the most part qu
to perform, are all limited when little or nothing is know
about the test sample. The exact numerical methods are
only for specific, very simple samples. The multiparame
fitting methods only globally minimize the difference b
tween the simulated and experimental spectra if the in
guess solution is close to the global minima. Otherwise, lo
minima solutions are given. The neural network schem
presented in the literature have, so far, only been trai
successfully for a limited set of solutions. The Charmet–
Gennes method@18# can only give results for specific samp
types over certain depth scales. Knowledge of the subs
and ambient refractive indices is also required. There
clearly a need for amodel-independenttechnique when a
sample is presented in which the structure is not well kno
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The use of VASE has become widespread for the stud
complex samples, as it is the most powerful ellipsome
technique. In any approach to the analysis of VASE data,
aim is to determine a unique physical description, or mod
of the unknown sample. Except in the case of exact d
inversion, however, there is a lingering question of t
uniqueness of the model obtained. Hence, prior to fitting
data to a model, one should assess the solution space
ambiguities. That is, one should find the number of ex
solutions that exist for a given set of~c,D! pairs. A study of
ambiguity in solution space has recently been presented
Polovinkin and Svitasheva@19# using a ‘‘step-by-step move
ment’’ numerical method to search solution space for d
from a single unknown layer deposited on a semi-infin
substrate. However, expanding this technique for
n-unknown problem would not be trivial. Unless the incr
ments used in the steps are infinitesimally small, there
finite possibility that such a search will not find all solution
to the problem. The search might miss a description of
sample that is the ‘‘true’’ description. We have therefo
developed an alternative method for assessing ambiguiti

In this paper, we use the simulated annealing~SA! algo-
rithm to perform multiparameter least-square fits to ellipso
etry data. Simulated annealing is a global optimization al
rithm designed to find the absolute minimum~or maximum!
of any given function@20–22#. It is completely general in
that it entails in principle no restrictions on the function to
minimized. In the case of ellipsometry data analysis, no
sumptions need to be made about the sample’s phys
properties. SA has solved previously intractable proble
such as the traveling salesman problem@23#, and it is widely
applied in fields ranging from ion beam analysis@24–29# to
natural language processing@30#. We show here that SA
finds solutions that correctly reproduce VASE data. Ho
ever, since it is a stochastic technique, if more than o
sample structure can fit the data, SA will randomly find on
one of the possible structures. To overcome this limitatio
we have also applied the Bayesian inference, which is
only way to consistently treat incomplete and noisy da
when additional prior information is known. It is realise
using the Markov chain Monte Carlo~MCMC! algorithm
@31–33#. The MCMC algorithm explores the whole param
eter space, and is therefore able to find each and every s
tion that is consistent with the data. Beneficially, it provid
confidence limits on the solutions obtained. It has alrea
been successfully applied to other techniques@34–37#. We
apply SA and MCMC techniques to both theoretically ge
erated and experimental ellipsometry data.

II. THEORY OF ELLIPSOMETRY: DERIVATION OF THE
FRESNEL REFLECTION COEFFICIENTS

The central equation of ellipsometry is given by Eq.~1!.
In this section, we present expressions for the Fresnel c
ficients@12#. For anm-layer system on a substrate~in which
m is a positive integer and the substrate is them11th layer!,
Snell’s law states
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N0 sinw05N1 sinw15¯5Nj sinw j5¯5Nm11 sinwm11 , ~2!
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where Nj is the refractive index of thej th layer andw j
represents the angle between the direction of propagatio
the j th layer and the perpendicular to the plane of the laye
interfaces.N0 is the ambient refractive index. For a syste
where the thickness of thej th layer isdj , the Fresnel reflec-
tion coefficients are given by

Rp5
S21p

S11p
~3!

and

Rs5
S21s

S11s
, ~4!

where

Sp,s5FS11p,s

S21p,s

S12p,s

S22p,s
G . ~5!

The matrixS is given by

Sp,s5I01p,sL1I12p,sL2¯I j ~ j 21!p,sL j¯LmIm~m21!p,s , ~6!

with

Iabp,s5F 1

tab

r ab

tab

r ab

tab

1

tab

G , ~7!

La5Feiba

0
0

e2 ibaG , ~8!
to
pe
te

f
n-

f
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and

ba5S 2pdaNa

l D coswa . ~9!

r ab is the amplitude reflection coefficient at the interfa
between substancea and b, and tab is the amplitude trans-
mission coefficient of theab interface. By convention, the
ambient substance is designated as medium 0, and the
strate medium is designated with the highest number.
reflection and transmission coefficients are expressed by

r ab5
na2nb

na1nb
~10!

and

tab5
2na

na1nb
, ~11!

where, for thes-polarized component,

na5Na coswa , ~12!

and, for thep-polarized component,

na5
Na

coswa
. ~13!

Other expressions can be included to incorporate feat
such as surface roughness and anisotropic refractive ind
@16#. In this paper, we present analysis of a bilayer~i.e., two
adjacent parallel films! at the interface of a semi-infinite sub
strate and an ambient medium. In this case, the Fresne
efficients can be written as@9,12#
Rp,s5
~r 01p,s1r 12p,se

2 i2b1!1~r 01p,sr 12p,s1e2 i2b1!r 23p,se
2 i2b2

~11r 01p,sr 12p,se
2 i2b1!1~r 12p,s1r 01p,s1e2 i2b1!r 23p,se

2 i2b2
. ~14!
the
ich
se-
-

by
When analyzing dielectric materials, it is convenient
use an analytical expression to describe the optical dis
sion, and thereby reduce the number of unknown parame
According to the Cauchy dispersion model@12#,

Nj~l!5naj1
nbj

l2 1
ncj

l4 1¯ , ~15!

wherenaj , nbj , andncj are constants for thej th layer, and
l, by convention, is given here in units ofmm. Thencj terms
and above are small and can be neglected. The aim o
ellipsometry inversion algorithm is to find values for the u
knownNj anddj that produce the measured~c,D! spectra. In
some cases, there might be more than one combination oNj
anddj that are solutions within the experimental errors of t
data.
r-
rs.

an

III. SIMULATED ANNEALING ALGORITHM

Simulated annealing is based on an analogy with
mathematics of the thermal annealing of crystals in wh
defects from a crystal are removed by melting it and sub
quently cooling it down very slowly. In the annealing pro
cess, from the current statei of the system with energyEi ,
another statej with energy Ej is generated by a random
process, in which the statei is slightly altered. If the energy
decreases in the transition, that is, ifDE5Ej2Ei,0, the
system is taken to be in the new statej. If the energy in-
creases, then the transition has a certain probability given
the Boltzmann factor

P~ i→ j !5exp~2DE/kBT! if DE.0, ~16!
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TABLE I. Original structure used to simulate ellipsometry data and the corresponding main features of the MCMC solutions 1,
for this structure upon analysis of the simulated data. The semi-infinite substrate was chosen to haveN51.5, and the ambient medium ha
N51.0 ~corresponding to a vacuum!.

Solution d1 ~nm! na1 nb1 d2 ~nm! na2 nb2

original
structure

10.0 1.25 0.0015 55.0 1.45 0.0030

1 '10 broad
distribution

broad
distribution

'50 '1.45 '0.003

2 '15 broad
distribution

broad
distribution

'80,
tail down to 20

'1.48 broad
distribution

3 '50 '1.4 '0.005 '0 undetermined undetermined
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whereT is the absolute temperature of the system, andkB is
the Boltzmann constant. If the initial temperature of the s
tem is high enough, and if at each temperature enough
is allowed for the system to reach thermodynamic equi
rium, and if the cooling rate is slow enough, then atT
50 K the crystal is guaranteed to be in a state of minim
energy. Note that if the system is degenerate~i.e., more than
one state corresponds to the minimum energy! at T50 K the
system will be in any one of the minimum-energy degener
states.

In the SA analogy,E is represented by any objective fun
tion f [ f (x) to be minimized, and the state of the system
defined asx. In ellipsometry,x is the thickness, complex
refractive index and other physical properties of all layers
the sample. A state transition is defined as the generatio
a new structure given the previously calculated state by
domly changingdj andNj by some amount. The probabilit
P of accepting a transition from statex to statey is given by
the so-called Metropolis criterion@38#

P~x→y!5min$exp~2Dx2/T!,1%, ~17!

where f [Dx2 is the change inx2 due to the transition, and
T is a control parameter. In the computer implementation
the algorithm,P(x→y) is calculated and compared with
random numberr P@0,1#, and the transition is accepted
P(x→y).r . At high values of the control parameterT,
practically all the transitions are accepted, correspondin
the analogy to a liquid state with high entropy. AsT de-
creases, the probability of transitions decreases. At v
small values ofT, only transitions that lead to a decrease
x2 are accepted. In SA,T is initialized at some high valueT0
that allows almost all transitions to be accepted. ThenT is
decreased slowly, according, for instance, to

Ti 115kTi where 0,k,1. ~18!

At each value ofT,LM transitions are proposed. The succe
sion of all the accepted states is called a Markov chain. D
ing the SA process several Markov chains are computed,
for each value of the control parameter. The values ofT0 , k,
andLM define what is called the cooling schedule. For s
ficiently high values of these three parameters, it can
mathematically proven@20–22# that the global minimum of
the objective function is found. Given a sufficient coolin
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schedule, SA is thusguaranteedto find the best-fit model to
ellipsometry data. Practically, such a procedure of SA wo
lead to extremely long calculation times. A reasonable co
ing schedule, which leads to a high quality solution as o
posed to the best one, must therefore be used in most s
tions.

SA, while very successful in a wide range of problem
has a major shortcoming: it returns one state of the sys
corresponding to the global minimumx2 found, without any
indication of fit error. Even so, it is superior to other alg
rithms that are prone to give only a local minimum and d
pend on starting values. It is highly desirable to obtainall

FIG. 1. Simulated spectroscopic ellipsometry scans gener
for a bilayer at a vacuum-substrate interface. Values ofdj and Nj

are given in Table I. Simulated plots ofC and D are shown as
functions ofw0 for ~a! l5500 nm and~b! l5700 nm, and as func-
tions of l for ~c! w0555° and~d! w0565°.
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FIG. 2. Density of states ob-
tained with a MCMC analysis of
simulated data that was generate
from the structure described in
Table I, for each of six ‘‘un-
known’’ parameters:~a! d1 , ~b!
na1 , ~c! nb1 , ~d! d2 , ~e! na2 ,
and ~f! nb2 .
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possible solutions with corresponding confidence interv
A means to this end are described in Sec. IV.

IV. BAYESIAN INFERENCE AND THE MARKOV CHAIN
MONTE CARLO ALGORITHM

Suppose one wishes to studyx, about which somea priori
information I exists which can be expressed in terms of
conditional probabilityp(xuI ), that is, the probability ofx
given I. This is known as theprior distribution. It is the
knowledge one has aboutx before the experiment under con
sideration is done, and can include information coming fr
other sources, for instance complementary experiments.
pose also that some experimental observationsd[d(x) ex-
ist, which depend on the parametersx in a known way. The
knowledge of the dependence of the observations uponx is
then the conditional probabilityp(duxI ), the so-calledlike-
lihood function. It describes how probable it is to obtain
certain experimental result given well-known parameters
ellipsometry, that corresponds to calculating theoretical
gular or wavelength scans from known layer thicknesses
refractive indices. Bayes’ theorem describes how much
experimental observations alter the original beliefs about
parameterx:

p~xudI !5p~duxI !p~xuI !/p~duI !. ~19!
s.

e

p-

n
-
d
e
e

The probability density functionp(xudI) is called thepos-
terior distribution. It is knowledge aboutx gained from ex-
periments and any other measurements. It is possible to
p(xudI) to calculate the mean solution^x&, as well as confi-
dence intervals given by the standard deviations~x! of the
solution. If the problem is multimodal, that is, if there
more than one solution, means and errors for each solu
can be calculated, thereby obtaining all solutions of the pr
lem.

As p(duI ) is independent ofx, we can treat it as a nor
malization constant. In the general case, any thickness
refractive index values are possible, sop(xuI ) could also be
constant. However, in ellipsometry problems, it is more oft
the case that previous information about the system is av
able from other sources, such as the refractometry of
substrate, and this term represents these constraints. Hen
these cases it is not convenient to use maximum-entro
uninformative prior distribution@34#. Finally, p(duxI ) is
taken to depend onx2 through

p~duxI !}exp~2x2/2!, ~20!

where thex2 function is defined in the usual way@39#:

x2[(
q

@„Yexpt
q 2Ytheor

q ~x!…/sq#2, ~21!
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FIG. 3. Density of states ob-
tained with a MCMC analysis for
~a! na1 , ~b! nb1 , ~c! d2 , ~d! na2 ,
and ~e! nb2 for simulated data.
The dots are the partial densitie
for solution 1, the lower solid
lines are the partial densities fo
solution 2, and the upper solid
lines are for solution 3.
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where Yexpt
q and Ytheor

q are the experimental and theoretic
values, respectively, andsq is the experimental error at poin
q. Other sources of error, such as uncertainty in the value
w0 or l, can also be included.

A sample can be drawn from equation~19! using the
MCMC sampling method, in particular, the Metropoli
Hastings algorithm@38# based on the Metropolis criterion
Consider a Markov chainx0 ,x1 ,...,xn ,...,xm , with

p~xi ux0 ,x1 ,...,xi 21!5p~xi uxi 21!, ~22!

that is, the probability that thei th member of the chain isxi
depends only on the previous element of the chain. T
probability is determined by a random distributionq(xi ,y).
The Markov chain is then generated by proceeding fromxi to
xi 11 by considering a candidatey generated with the random
distribution q(xi ,y). The candidatey is then accepted~that
is, it becomesxi 11) with probability P(x→y) according to
the generalized Metropolis criterion

P~x→y!5min$@p~y!q~y,x!#/@p~x!q~x,y!#,1%, ~23!

where the acceptance functionp~x! is a function ofx ~see
below!. After running the Markov chain until equilibrium
has been reached@until the probability of the system being i
the statex is given by p~x!#, further (m-n) iterations are
calculated; the Markov chainxn ,...,xm so generated consti
tutes a sample from the acceptance distributionp~x!. This
of

at

sample is an empirical distribution which, if large enoug
reflects all the properties ofp without needing to evaluate i
directly. The acceptance function is defined as

p~y!5p~duxI !p~xuI !. ~24!

If the transition distributionq is chosen such that it is sym
metric, i.e.,

q~x,y!5q~y,x!, ~25!

then generating candidatex from the current elementy is
equally probable, and vice versa. The acceptance criterio
generate the Markov chain becomes

P~x→y!5min$exp~2Dx2/2!,1%. ~26!

The Markov chain so generated is then a sample
p(xudI), which means that it reflectsall the information over
x that can be obtained from the experimental data, tak
into account the experimental uncertainties as well as
previous system information. Not only can the averages
standard deviations of the thicknesses and refractive ind
be calculated, but ambiguous problems can also be co
niently treated. If there is more than one solution that fits
data correctly,p(xudI) will be multimodal.
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FIG. 4. Solution 1 from a
MCMC analysis of simulated el-
lipsometry data ~based on the
structure described in Table I!
shown as~a! nb1 vs na1 and as
~b! nb2 vs na1 . Each dot in the
figures represents one elementxi

of the Markov chain.
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V. EXPERIMENTAL DETAILS

Two samples were studied experimentally. The first o
consisted of a polished~111! single crystal of silicon on
which a thermal oxide was grown. The second sample
prepared by depositing a thin film of poly~styrene! on top of
a thermal oxide layer on a similar silicon substrate. The po
~styrene! was dissolved in toluene and deposited by sp
coating from the solution at 2000 rpm for 30 s.

Ellipsometry data were obtained on a rotating-analy
spectroscopic ellipsometerVASE @1,40# as a function of both
w0 andl. Angular scans were performed in air over ang
ranging from 30° to 85° in increments of 1°. Spectrosco
scans were typically performed overl ranging from 300 to
800 nm in 10-nm increments. Typical standard deviations
the data were 0.04° forc and 0.1° forD.

The thicknesses of the same films were measured
Rutherford backscattering spectrometry~RBS! using the
University of Surrey 2-MV Van de Graaff@41#. A 1.5-MeV
4He1 beam at normal incidence was employed. The ba
scattered particles were detected at a 165° scattering ang
the same plane as the beam and the normal to the sam
e

s

-
-

r

s
c

n

th

-
in

les

~IBM geometry!, and the detector resolution was 16-keV fu
width at half maximum.

VI. RESULTS AND DISCUSSION

A. Analysis of simulated test data

Before applying the algorithms described in the previo
sections to real data, we tested them on simulated data f
a predefined layer structure. This tactic has the advantag
eliminating uncertainties due to experimental errors a
more importantly, due to the limitations in the knowledg
about any given real sample. By using simulated data we
certain of the original structure when comparing with t
results obtained with SA and the MCMC algorithm. In sim
lated data there are no experimental errors, so we take ths i
values from Eq.~21! to be equal, and require that on avera
10% of all proposed transitions are accepted. The appro
produced, in this case, an unrealistically high error in
determination ofD and C of about 5° and 1°, respectively
and was chosen to obtain a sufficiently long Markov chain
a reasonable calculation time.
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FIG. 5. Solution 2 from a MCMC analysis o
simulated ellipsometry data~based on the struc
ture described in Table I! shown as~a! nb1 vs
na1 and ~b! d2 vs na1 . Each dot in the figures
represents one elementxi of the Markov chain.
e
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For the test structure given in Table I we inserted valu
into Eq.~14! and substituted into Eq.~1! to generate the dat
shown in Fig. 1. Two angular scans withw0 varying between
30° and 85° were generated, forl5500 and 700 nm. Two
spectroscopic scans were also generated, withl ranging
from 300 to 800 nm withw0565° and 55°.

We then used an SA algorithm to fit these simulated d
We treated the thickness of each of the two layers (d1 and
s

a.

d2) and two components of the refractive index (naj and
nbj ) of the two layers as free parameters, to make a tota
six free parameters. While the fits obtained were nearly p
fect, different solutions were obtained each time differe
random number sequences were used. This result means
even from such a simple structure~two transparent layers on
a transparent substrate!, and with a large amount of dat
available, the problem is still multimodal; each solution
ated
TABLE II. Averages and standard deviations~in parentheses! of the parameters for the MCMC solutions that reproduce the simul
ellipsometry data for a bilayer structure.

Solution d1 ~nm! na1 nb1 d2 ~nm! na2 nb2

original
structure

10.0 1.25 0.0015 55.0 1.45 0.0030

1 9.8~2.1! 1.15~8! 0.0080~65! 54.4~7.4! 1.44~1! 0.0036~13!

2a 17.7~3.4! 1.29~12! 0.0049~47! 49.5~18.5! 1.44~4! 0.0045~45!

2b 17.1~3.0! 1.07~4! 0.0002~4! 61.8~8.6! 1.45~2! 0.0021~14!

2c 16.5~2.2! 1.19~7! 0.0088~63! 79.5~5.3! 1.476~5! 0.0003~5!

3 50.2~8.7! 1.399~8! 0.0056~13! 2.2~2.0! 1.7~4! 0.026~14!
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ambiguous and not necessarily the original structure use
the data simulation.

We next applied a MCMC algorithm to the same data,
order to investigate the whole parameter space. The ca
lated marginal densities describing the posterior distributi
p(xudI) are shown in Fig. 2. Here p(xudI)
[(rd1 ,rna1 ,rnb1 ,rd2 ,rna2 ,rnb2), where r j reflects the
density of states, or in other words, the density of solutio
that are consistent with the data. Figure 2 thereby repres
the thickness and refractive index values that are consis

FIG. 6. Density of states obtained with a MCMC analysis for~a!
d, ~b! na, and~c! nb of a thin SiO2 layer on a silicon substrate.

TABLE III. Averages and standard deviations~in parentheses!
of the thickness and refractive index parameters~na and nb! of a
thin SiO2 film on a Si substrate, as obtained with the MCMC alg
rithm and with least-squares fits using the literature value~Ref.
@43#! for the bulk SiO2 refractive index, letting the refractive inde
vary. The layer thickness determined with RBS was 18~2! nm.

Solution d ~nm! na nb

MCMC 18.85~2! 1.4602~14! 0.004 527~91!

Least-squares fit 19.25~3! 1.4476a 0.003 666a

Least-squares fit 18.85~13! 1.4601~82!b 0.004 532~59!b

aLiterature values~Ref. @43#! for bulk SiO2, fixed in the fit.
bAllowed to vary in the fit.
in
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with the data. The multimodality of the problem is clear. F
instance, three distinct peaks inrd1 can be seen for the thick
nessd1 , centered at about 10, 15, and 50 nm. We will hen
forth refer to these as solutions 1, 2, and 3, respectiv
There is structure in the other parameters as well. The th
nessd2 has a very strong peak at 0 nm, which correspond
a single-layer solution, and also has two other broad pe
centered at about 50 and 80 nm. Both components of
refractive index of layer 1 (na1 and nb1) have a well-
defined peak on top of a diffuse background.na2 has two
well-defined peaks on top of a diffuse background, while
single peak on top of a flat background can be distinguis
in nb2 .

In order to discover possible correlation between the d
ferent parameters, we calculated the partial density of st
rna1 , rnb1 , rd2 , rna2 , andrnb2 corresponding to the thre
solutions 1, 2, and 3, defined as follows:

solution 1 d1,13.5 nm,

solution 2 13.5 nm,d1,20 nm,

solution 3 d1.20 nm. ~27!

The results obtained for all three solutions are shown
Fig. 3. It is clear that solution 3 is the single-layer solutio
as the peak centered atd1'50 nm is correlated to the stron
peak atd2'0 nm and to the corresponding undetermin
refractive index for layer 2. It is also apparent that solution
corresponds tod2'50 nm. Solution 2 seems to correspon
to d2'80 nm but also includes a tail that extends to lowd2
values. Finally, while the values ofna2 for solutions 1 and 2
and ofnb2 for solution 1 are well-defined peaks, we obser
broad distributions inna1 andnb1 for solutions 1 and 2 and
nb2 for solution 2. These results are summarized in Tabl

The broad distributions ofna1 , nb1 , nb2 , and d2 can
hide additional structure. To uncover any hidden structure
Fig. 4, we plotted, for solution 1,nb1 as a function ofna1
andnb2 as a function ofna1 . Likewise, in Fig. 5, for solu-

FIG. 7. Optical dispersion of the real part of the refractive ind
obtained from a MCMC analysis of ellipsometry data from a th
SiO2 layer on a silicon substrate~shown as the solid line!, compared
to the literature values of refractive index for bulk SiO2 ~shown as
dots!.
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TABLE IV. Averages and standard deviations of the thickness and refractive index obtained fr
poly~styrene!/SiO2 bilayer on a Si substrate, as obtained by several means: a least-squares fit that u
known SiO2 refractive index, with and without allowing for aDd1 nonuniformity in the thickness of the
poly~styrene! layer; and MCMC analysis, for the whole range of solutions found and restricted to the
probable solution.

Solution d1 ~nm! na1 nb1 d2 ~nm! na2 nb2 Comments

bilayer of
poly~styrene!
and SiO2

36.9–45.8a 93.4~1.8!b 1.4476c 0.003 666c

least squares
with nonuniformity

36.1~0.7! 1.557~3! 0.028~2! 97.7~0.1! 1.4476d 0.003666d Dd15
4.45~0.37!

least squares 37.2~0.8! 1.556~9! 0.024~6! 97.7~0.1! 1.4476d 0.003666d Dd150

MCMC 48.5~26.9! 1.52~5! 0.01~1! 90.5~25.7! 1.482~16! 0.0033~30! d11d25
139~2!

MCMC
restricted

28.4~6.7! 1.54~4! 0.016~11! 109.2~6.1! 1.483~11! 0.0031~22! 10,d1,40
90,d2,120

aDetermined with RBS. The two values indicate spots in the edge and center of the sample.
bDetermined with RBS.
cSiO2 values from the literature~Ref. @43#!.
dHeld constant during the least-squares fitting procedure.
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tion 2 we plottednb1 as a function ofna1 and d2 as a
function of na1 . Each point in these plots represents o
individual solution obtained, that is, one elementxi of the
Markov chain. The figures can then be seen as phase
grams where the layer structures~within each of the solu-
tions! that are consistent with the data lie. No extra struct
can be found in solution 1, except thatnb1 and na1 are
related to each other within a broadband:20.075(na1
21.07),nb1,20.075(na121.4). Solution 2 is more inter
esting. It is clear from Fig. 5~a! that it corresponds to at leas
two different solutions, as two more or less disjoint areas
be observed. Furthermore, a closer look at Fig. 5~b! reveals
that three different solutions are present. One solution, w
d2 centered around 80 nm corresponds to the peak that
be seen in Fig. 5~a!. On the other hand, the tail at lowd2
values seen in Fig. 5~a! corresponds to two different solu
tions, one with lowna1 values and the other with highna1
values. These can be seen in Fig. 5~b! as the two branche
extending to lowd2 values. Calculation of partial densit
functions reveals that the lowna1 value branch is correlate
with the~low nb1)/~low na1) region in Fig. 5~a!, and that the
high na1 value branch is correlated with the~high
nb1)/~high na1) region.

We are finally left with five distinct solutions, all of which
can adequately reproduce the test data shown in Fig. 1.
calculated for each one of these the average and stan
deviation for all parameters, which are given in Table
Solution 1 is, within the error bounds, the original lay
structure used to calculate the test data analysed. As it is
possible to decide which of the solutions found is the ‘‘co
rect’’ one from the ellipsometry data only, extra informatio
would be needed in a real experiment. It should be no
however, that in this case such information must include
thickness of layer 1, since it is the only parameter tha
clearly different between solution 1 and the other poss
solutions, within one standard deviation. Alternatively, info
mation on the refractive index of both layers would al
e

ia-

e

n
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an

e
ard
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ot
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d,
e
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e

suffice ~taking into account that realistic errors smaller th
1° would lead to smaller standard deviation values!: the only
solution with similar refractive index of the first layer is so
lution 2c, which can be distinguished from solution 1 wi
basis on the refractive index of the second layer.

Finally, the MCMC analysis tested only two-layer stru
tures ~although with the possibility of reducing their thick
ness to zero!. Allowing the existence of extra layers woul
be almost certain to increase the number of possible s
tions.

B. Analysis of a thin SiO2 film on Si

The thickness of the thermal oxide on silicon substr
was determined to be 18~2! nm using RBS analysis, assum
ing the bulk density@42# of SiO2 of 6.631022at/cm3 in the

FIG. 8. VASE ellipsometry data measured from a poly~styrene!
~layer 1!/SiO2 ~layer 2! bilayer on a silicon substrate in air~solid
line!. The dashed lines are the best-fit result from SA using a mo
of two homogeneous layers.
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FIG. 9. Density of states ob-
tained with a MCMC analysis of
ellipsometry data from the
poly~styrene!/SiO2 bilayer on a
silicon substrate showing result
for ~a! d1 , ~b! na1 , ~c! nb1 , ~d!
d2 , ~e! na2 , and~f! nb2 .
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data fitting. SA and MCMC analyses were performed on
set of ellipsometry data obtained from three spectrosco
scans (300 nm,l,700 nm) performed atw0572°, 75°, and
78°. The experimental errors were included in the analysi
given in Eq. ~21!, and hence the confidence limits in th
solutions calculated with the MCMC algorithm reflect th
exact error structure of the problem. The posterior distri
a
ic

as

-

tion p(xudI)[(rd ,rna ,rnb) is shown in Fig. 6. A single
very well-defined solution has been obtained, which me
that the problem is fully unambiguous. This result is e
pected in this trivial case, since the problem could also
solved by exact data inversion. Nevertheless, obtaining
expected result provides confidence in the SA-MCM
method.
e
FIG. 10. Results of a MCMC analysis for th
poly~styrene!/SiO2 bilayer on a silicon substrate
showing solutions asd2 vs d1 .
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FIG. 11. Results of a MCMC analysis for th
poly~styrene!/SiO2 bilayer on a silicon substrate
showing solutions asna1 vs d1 .
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The average and standard deviation of the thickness
refractive index of the layer are given in Table III. The tab
also reports the SiO2 thickness and refractive index param
eters ~na and nb! that were obtained from a Levenber
Marquardt least-squares fit to the same data performed
commercial software@40# using the literature values@43# for
the refractive indices of bulk Si and SiO2. The refractive
indices obtained from MCMC analysis is slightly higher th
the literature values for the bulk material, but the same o
cal dispersion as found in bulk SiO2 is obtained, as shown in
Fig. 7. The difference in index could reflect real differenc
in structure and density between the thin film and the b
material. If the refractive index parameters are allowed
vary in the least-squares fit, then very similar values are
tained as from the MCMC analysis, as seen in Table
Finally, when analysing a single spectroscopic scan~at w0
572°), the same single well-defined solution is obtain
which means that the scans atw0572°, 75°, and 78° contain
redundant information.
nd

ith

i-

s
k
o
b-
.

,

C. Analysis of a poly„styrene…/SiO2 bilayer on Si

The thicknesses of each of the two layers in t
poly~styrene!/SiO2 bilayer were determined with RBS, as
suming the bulk density of polystyrene@44# of 8.4
31022at/cm3 and of SiO2 as before. The thickness of th
oxide layer was found to be 93.4 nm. The thickness of
poly~styrene! layer was measured at two positions on t
sample. Two different values~36.9 and 45.8 nm! were ob-
tained, which indicates that the layer thickness is inhomo
neous, as is sometimes found in films deposited by spin c
ing. Table IV summarizes these results from RB
Ellipsometry data, from both angular and spectrosco
scans, were obtained from the same bilayer sample. Th
data are shown in Fig. 8.

We first obtained a least-squares fit to the ellipsome
data using commercial software@40# that makes use of the
Levenberg-Marquardt algorithm. The resulting paramet
are given in Table IV. The fits, however, are not good, as
be seen in Fig. 8. A good fit could only be obtained
e
FIG. 12. Results of a MCMC analysis for th
poly~styrene!/SiO2 bilayer on a silicon substrate
showing solutions asna2 vs d2 .
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FIG. 13. Results of a MCMC analysis for th
poly~styrene!/SiO2 bilayer on a silicon substrate
showing solutions asna2 vs na1 .
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assuming a model in which thickness non-uniformity of t
poly~styrene! layer is allowed. The results from this refine
fitting model are listed in Table IV. However, in the mod
that we implemented, no thickness nonuniformity is cons
ered, which means that a perfect and realistic fit to the d
can never be obtained. As thex2 would be due to a limita-
tion in the model and not to experimental error, the resu
obtained would not reflect the structure of the problem
limitations of the model instead. In order to overcome t
problem, we took as the error bar for each data point, not
experimental error, but the deviation between the data
the best-fit assuming homogeneous layers. The minimum
ror in each point was set to 1°. This approach isad hocto the
extent that only by taking into account all physical effec
including thickness nonuniformity, would one obtain abs
lutely accurate marginal densities. This method ensures h
ever, that all solutions similar to the best fit will be high
probable in the MCMC calculation, and therefore will refle
the real structure of the problem.

The results obtained for the poly~styrene!/SiO2 bilayers
are shown in Fig. 9. The thickness of both layers is clea
ambiguous, asd1 takes values between 10 and 120 nm, a
d2 falls between 20 and 130 nm. Note that a single la
model ~with d1 or d250) is not an acceptable solution. O
the other hand, thenaj values for the two layers are we
defined. The wavelength-dependent components hav
strong peak at lownbj values and a tail extending to hig
values. The tail is more pronounced for the poly~styrene!
layer. It should be noted that, although close, thenaj values
are different in the two layers: slightly above and sligh
below 1.5 for the poly~styrene! ~layer 1! and SiO2 ~layer 2!,
respectively.

Figure 10 shows that the thickness of the two layers
strongly linearly correlated:d11d2'140 nm. This result
probably stems from their similar refractive index values a
the associated weak reflection from the interface between
two layers. The order of the layers are not, however, in
changeable: it is clear that the SiO2 film is not on top of the
poly~styrene! layer. Moreover, no single-layer solution co
responding to an average refractive index value is obtain
The behavior of the refractive index values in the two lay
-
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is quite different, as can be seen in Figs. 11 and 12. For
most probable value ofd1 @i.e., the poly~styrene! layer#,
which is in the range between 10 and 40 nm the value ofna1

is poorly defined, with a large scattering of values appare
For the SiO2 layer, in contrast, the most probabled2 values
~around 90–120 nm! are related to a well-defined range
na2 values. The independence between the refractive in
values of the two layers can also be seen by plottingna1 vs
na2 , which is done in Fig. 13. Forna1'1.5, na2 can take
any value within its allowed range; and forna2'1.48,na1
can take any value within its allowed range.

Finally, the average and standard deviation of the thi
ness and refractive index components of the two layers
obtained with MCMC analysis, are given in Table IV. Th
results obtained for the most probable solution (d1
'10– 40 nm andd2'90– 120 nm) are also given, and the
match well the best fit obtained.

VII. CONCLUDING REMARKS

As far as we are aware, the SA-MCMC approach dem
strated here is the first systematic method that can ana
VASE data without any knowledge of the thin film structur
and provide aguaranteethat the global minima in the erro
will always be reached. The method findsall possible struc-
tures that can produce an ellipsometry data set and calcu
the errors on the fits. Although other methods could be
veloped to search the solution space in a systematic fash
these are unlikely to be guaranteed to find all solutions. T
capabilities of the SA-MCMC method increase the applic
tions of ellipsometry to include the analysis of unknow
multilayer samples. The SA-MCMC method is therefore
intriguing and attractive alternative to the Levenber
Marquardt and similar least-squares methods often use
analyze VASE data. Our analysis of these relatively sim
structures can be extended to more complicated systems
sisting of three or more layers, having an unknown subst
or ambient, and having surface roughness and biaxiality.
computations shown in this paper have, as yet, not been
timized for speed, but we expect that significant improv
ments are possible.
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Grötzschel, Nucl. Instrum. Methods Phys. Res. B149, 233
~1999!.

@27# N. P. Barradas, C. Jeynes, and M. A. Harry, Nucl. Instru
Methods Phys. Res. B136-138, 1163~1998!.

@28# N. P. Barradas, C. Jeynes, and S. M. Jackson, Nucl. Instr
Methods Phys. Res. B136-138, 1168~1998!.

@29# N. P. Barradas, C. Jeynes, K. P. Homewood, B. J. Sealy,
M. Milosavljevic, Nucl. Instrum. Methods Phys. Res. B139,
235 ~1998!.

@30# Y. A. Wilks, B. M. Slator, and L. M. Guthrie,Electric Words:
Dictionaries, Computers, and Meanings~MIT Press, Cam-
bridge, 1996!, p. 203–206.

@31# Maximum Entropy and Bayesian Methods in Inverse Pro
lems, edited by C. R. Smith and W. T. Grandy~Reidel, Dor-
drecht, 1985!.

@32# Maximum Entropy in Action, edited by B. Buck and V. A.
Macaulay~Clarendon, Oxford, 1994!.

@33# P. M. Lee,Bayesian Statistics: An Introduction, 2nd ed.~Ar-
nold, London, 1997!.

@34# R. Fischer, M. Mayer, W. von der Linden, and V. Dose, Ph
Rev. E55, 1 ~1997!.

@35# W. von der Linden, M. Donath, and V. Dose, Phys. Rev. Le
71, 899 ~1993!.

@36# N. P. Barradas, A. P. Knights, C. Jeynes, O. A. Mironov, T.
Grasby, and E. H. C. Parker, Phys Rev. B.59, 5097~1999!.

@37# N. P. Barradas, C. Jeynes, M. Jenkin, and P. K. Marriott, T
Solid Films ~to be published!.

@38# N. Metropolis, A. W. Rosenbluth, A. H. Teller, and E. Telle
J. Chem. Phys.21, 1087~1953!.

@39# P. R. Bevington and D. K. Robinson,Data Reduction and
Error Analysis for the Physical Sciences, 2nd ed.~McGraw-
Hill, New York, 1994!, pp. 65–72.

@40# WVASE32 Software, Version 3.148, J. A. Woollam Co., Inc
Lincoln, NE.

@41# C. Jeynes, N. P. Barradas, M. J. Blewett, and R. P. We
Nucl. Instrum. Methods Phys. Res. B136-138, 1229~1998!.

@42# CRC Handbook of Chemistry and Physics, 75th ed. edited by
D. R. Lide and H. P. R. Frederikse~CRC Press, Boca Raton
FL, 1995!, pp. 4–148.

@43# Handbook of Optical Constants, edited by E. D. Palik~Aca-
demic, London, 1991!, pp. 547 and 749.

@44# Polymer Handbook, 3rd ed. edited by J. Brandrup and E. H
Immergut~Wiley, Chichester, 1989!, p. V/82.


