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Bayesian inference analysis of ellipsometry data
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Variable angle spectroscopic ellipsometry is a nondestructive technique for accurately determining the
thicknesses and refractive indices of thin films. Experimentally, the ellipsometry parangeterd A are
measured, and the sample structure is then determined by one of a variety of approaches, depending on the
number of unknown variables. The ellipsometry parameters have been inverted analytically for only a small
number of sample types. More general cases require either a model-based numerical technique or a series of
approximations combined with a sound knowledge of the test sample structure. In this paper, the combinatorial
optimization technique of simulated annealing is used to perform least-squares fits of ellipsometbothata
simulated and experimenjgrom both a single layer and a bilayer on a semi-infinite substrate using what is
effectively a model-free system, in which the thickness and refractive indices of each layer are unknown. The
ambiguity inherent in the best-fit solutions is then assessed using Bayesian inference. This is the only way to
consistently treat experimental uncertainties along with prior knowledge. The Markov chain Monte Carlo
algorithm is used. Mean values of unknown parameters and standard deviations are determined for each and
every solution. Rutherford backscattering spectrometry is used to assess the accuracy of the solutions deter-
mined by these techniques. With our computer analysis of ellipsometry data, we find all possible models that
adequately describe that data. We show that a bilayer consisting of a thin film ¢étyoiyne on a thin film
of silicon dioxide on a silicon substrate results in data that are ambiguous; there is more than one acceptable
description of the sample that will result in the same experimental fa1#863-651X99)02905-7

PACS numbg(s): 02.70.Lq, 78.20.Ci, 78.20.Bh, 02.60.Ed

I. INTRODUCTION light, ¢4 (conventionally measured from the sample surface
norma), and the wavelength of radiatiom, The Fresnel
Ellipsometry is a fast accurate technique for measuringoefficients are also functions of material parameters: com-
the optical constants, interfacial roughness, and thicknessé¥ex refractive indices of each of the componerits,and
of thin films. The technique has become widespread over thgach of the layer thicknessed, The parameted is the
last 30 years in a diverse range of fields. Two recent review§hange in phase difference between phends components
[1,2] highlight examples of ellipsometry applications. Thesecaused by reflection, whilg is the ratio of the amplitude
include the determination of glass transition temperatures ifatios Of thep ands light components before and after re-
polymer thin films[3], thin film swelling [4], adsorption of flection. The ellipticity is measured by the analysis of the

small molecules at solid/liquid interfacfs,6], the character- eIIir%ti(I:ally r?olarizTehd Irigtfin rel;:etc):teg frorz’g g fllat,brsrinocl)lthb
ization of Langmuir-Blodgett film§7] and the determination sample surface. 1ne ratio can be described algeoraically by

of damage depth profiles from ion implantation in silicon an expression derived from the Fresnel coefficientsifiay-

ters[8]. F . le. el i I ers on a semi-infinite substrate, wherés any integer num-
wa ers(8]. ror a given sample, ellipsometry measures ellip-pqr gy Starting with(,A) pairs obtained at know, and
ticity p, which is written as

N\, one can invert this expression, under certain circum-
stances outlined below, to find values for the unknown pa-
_ &zt iA rameters, such ay, d, and the roughness of each layer in a
p anye's, (1) . .
Rs sample. Only a few specific cases have as yet been inverted
analytically. Droletet al.[10] summarized these structures as
whereR;, andRs are the Fresnel reflection coefficients, with (1) a single layer with unknown complex refractive index on
p denoting the plane of reflection arsddenoting the plane a known substrate(2) a substrate with two layers and with
perpendicular to if9]. The Fresnel coefficients are depen-one layer thickness being unknow(®) multilayer systems
dent on experimental parameters: the angle-of-incidence afith any one unknown layer thicknes&) multilayer sys-
tems with unknown substrate complex refractive ind&x;a
symmetric system of one layer of unknown thickness and
* Permanent address: Instituto Tecrgitm Nuclear, E.N. 10, 2685 real refractive index embedded in two identical phases hav-

Sacaven, Portugal. ing a real index; and6) an optically absorbing layer on a
"Author to whom correspondence should be addressed. Electrongubstrate with a complex refractive index, and with the thick-
address: j.keddie@surrey.ac.uk ness of the layer being unknown.
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Cases(1)—(5) require measurements ame substrate at The use of VASE has become widespread for the study of
onewavelength an@neangle. Casé6) is somewhat differ- complex samples, as it is the most powerful ellipsometry
ent in that it requireswo different angles of incidence dwo  technique. In any approach to the analysis of VASE data, the
different substrates. It should be noted that inherent correlaaim is to determine a unique physical description, or model,
tion exists between measurements at two different values aff the unknown sample. Except in the case of exact data
¢o and \. Hence, increasing the number of measurementiversion, however, there is a lingering question of the
does not necessarily increase the amount of informatiomniqueness of the model obtained. Hence, prior to fitting the
about a sample. Moreover, the use of multiplealues po- data to a model, one should assess the solution space for
tentially introduces more unknown material parameters duambiguities. That is, one should find the number of exact
to optical dispersion and absorption. In some cases, howevesplutions that exist for a given set @f,A) pairs. A study of
the number of unknowns can be reduced by using analyticambiguity in solution space has recently been presented by
or empirical expressions to describe a material's opticaPolovinkin and SvitasheVd 9] using a *“step-by-step move-
properties11,12. ment” numerical method to search solution space for data

A number of numerical inversion methods have been defrom a single unknown layer deposited on a semi-infinite
Ve|0p6d which are suitable for different prOblemS. There aregypstrate. However, expanding this technique for an
at least three categories of methods, as outlined below.  n.ynknown problem would not be trivial. Unless the incre-

(1) There are exact numerical methods suitable for whefpents used in the steps are infinitesimally small, there is a
the number of unknowns is equal to the numbeyaindA  nite possibility that such a search will not find all solutions

measurements. The Reinberg metho8] is most often cited 1, 1o proplem. The search might miss a description of the

for single-angle, single-wavelength ellipsometry to deter—Sample that is the “true” description. We have therefore

mine the unknown refractive index and thickness of a thlr]developed an alternative method for assessing ambiguities.

nonabsorbing film on a reflecting substrate with known op- ; )

, - . . ; In this paper, we use the simulated anneali4) algo-

tical constants. A similar method is the functional-link neural ithm t f i ter least fits o el

network approach of Parkt al. [14]. Other techniques are rthm 1o perform muttiparameter ieast-square nis 1o efipsom-
etry data. Simulated annealing is a global optimization algo-

cited by Droletet al.[10]. i . ) . .
(2) When the number of unknown variables is greaterrlthm designed to find the absolute minimyor maximum

than the number of andA data points, an exact solution can ©f any given function20-23. It is completely general in
obviously not be written. Multiparameter fitting methods, of th_at_lt _entalls in principle no restrictions on the functl_on to be
which the Levenberg-Marquarfit5] algorithm is commonly minimized. In the case of ellipsometry data analysis, no as-
used, are suitable for data from variable angle spectroscopRUmptions need to be made about the sample’s physical
ellipsometry(VASE) (a technique where many, andx are ~ properties. SA has solved previously intractable problems
used. Such an algorithm is used to minimize the differencesuch as the traveling salesman probl@8|, and it is widely
between the experiment#l),A) spectra and the simulated applied in fields ranging from ion beam analyg2gl—29 to
spectra generated from the Fresnel equatjd2s9). Models  natural language processiig0]. We show here that SA
can be built to include any number of layers, with complexfinds solutions that correctly reproduce VASE data. How-
refractive indices, on any substrate and in any ambient meever, since it is a stochastic technique, if more than one
dium. Other physical properties such as biaxialit)] and  sample structure can fit the data, SA will randomly find only
surface roughness can also be included in the model. A reane of the possible structures. To overcome this limitation,
lated technique is the backpropagation neural networkye have also applied the Bayesian inference, which is the
method of Fried and Maga 7], which is trained to recognize only way to consistently treat incomplete and noisy data
characteristics of,A) spectra. o when additional prior information is known. It is realised
(8) There eX|st_|nverS|0n-after-apprOX|mat|0n schemesusing the Markov chain Monte CarleMCMC) algorithm
such as that described by Charmet and de Geft#isfor 31 33 The MCMC algorithm explores the whole param-
multlple—angle smgle—wave!ength elllps_om.etry. Th|§ tech-gter space, and is therefore able to find each and every solu-
nique can determine an arbitrary refractive index profile OV€%ion that is consistent with the data. Beneficially, it provides

depths much greater thamar. ._,confidence limits on the solutions obtained. It has already
The preceding methods, although for the most part qu'df)een successfully applied to other technig[@$-37. We

to perform, are all limited when little or nothing is known . :
about the test sample. The exact numerical methods are go&ﬁ’ply SA and MC_:MC techmques to both theoretically gen-
Ierated and experimental ellipsometry data.

only for specific, very simple samples. The multiparamete
fitting methods only globally minimize the difference be-
tween the simulated and experimental spectra if the initial

guess solution is close to the global minima. Otherwise, local

minima solutions are given. The neural network schemed!. THEORY OF ELLIPSOMETRY: DERIVATION OF THE
presented in the literature have, so far, only been trained FRESNEL REFLECTION COEFFICIENTS

successfully for a limited set of solutions. The Charmet—de

Gennes metho[l8] can only give results for specific sample  The central equation of ellipsometry is given by Eg).
types over certain depth scales. Knowledge of the substrafe this section, we present expressions for the Fresnel coef-
and ambient refractive indices is also required. There idicients[12]. For anm-layer system on a substraie which
clearly a need for anodel-independentechniqgue when a mis a positive integer and the substrate isitie 1th layep,
sample is presented in which the structure is not well knownSnell’s law states
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NosSingg=Njsing;=---=N;sing;=-=Np;1SiNEn;1, 2
|

where N; is the refractive index of thgth layer ande; and

represents the angle between the direction of propagation in

the jth layer and the perpendicular to the plane of the layer's _ 2mdaNa

) X X = a COS@, . 9)

interfaces N, is the ambient refractive index. For a system A

where the thickness of theh layer isd;, the Fresnel reflec-

tion coefficients are given by rap is the amplitude reflection coefficient at the interface

between substance and b, andt, is the amplitude trans-

Sap mission coefficient of theb interface. By convention, the
szs— (3)  ambient substance is designated as medium 0, and the sub-
i strate medium is designated with the highest number. The
and reflection and transmission coefficients are expressed by
Suis _Ya=?
Rszgsl (4) Fab vat vy (10
where and
2v
Sips  Sizp, tp=——— 11
Semlsmr ov © e -
The matrixS is given by where, for thes-polarized component,
v,=N_,COS@,, (12
Sps=lop,sbalizpsb 2 ljj—np.ski "Lmlmm-1)p,s- (6) o :
. and, for thep-polarized component,
with
Na
1 rg Va:COSgD . (13
J— _— a
t t
labp,s= ab tab , (7 Other expressions can be included to incorporate features
Fab i such as surface roughness and anisotropic refractive indices
tan  tap [16]. In this paper, we present analysis of a bilagies., two
, adjacent parallel filmsat the interface of a semi-infinite sub-
L= e'fa 0 ®) strate and an ambient medium. In this case, the Fresnel co-
a=| 0 e 'fap efficients can be written d9,12]
|
Fot.sT F120s€  2P1) + (Fo1p of 120 s+ € 2PN o3 07 12P2
R - (Foap,str12p,s )+ (Fop,s 12,5 ) 23p,s (14

p's_(1+rom,srlzp,seilzﬁl)+(r12p,s+ lNoip,s™ eflzﬁl)rzsp,seilzﬁz'

When analyzing dielectric materials, it is convenient to
use an analytical expression to describe the optical disper-
sion, and thereby reduce the number of unknown parameters,

According to the Cauchy dispersion mod&P],

an

F—i_.“’ (15)

an
Nj()\)=naj+ F-ﬁ-

whereng;, nb;, andnc; are constants for thgth layer, and
A\, by convention, is given here in units pfm. Thenc; terms

Ill. SIMULATED ANNEALING ALGORITHM

Simulated annealing is based on an analogy with the
mathematics of the thermal annealing of crystals in which
defects from a crystal are removed by melting it and subse-
guently cooling it down very slowly. In the annealing pro-
cess, from the current statef the system with energg; ,
another statg with energyE; is generated by a random
process, in which the statds slightly altered. If the energy
decreases in the transition, that is,AE=E;—E;<0, the

and above are small and can be neglected. The aim of agystem is taken to be in the new stdtdf the energy in-
ellipsometry inversion algorithm is to find values for the un- creases, then the transition has a certain probability given by

knownN; andd; that produce the measuréglA) spectra. In

some cases, there might be more than one combinatidh of

the Boltzmann factor

andd; that are solutions within the experimental errors of the

data.

P(i—j)=exp(—AE/kgT) if AE>O, (16)
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TABLE I. Original structure used to simulate ellipsometry data and the corresponding main features of the MCMC solutions 1, 2, and 3
for this structure upon analysis of the simulated data. The semi-infinite substrate was chosenNe-Haveand the ambient medium had
N= 1.0 (corresponding to a vacuym

Solution d; (nm) na; nb; d, (nm) na, nb,

original 10.0 1.25 0.0015 55.0 1.45 0.0030

structure

1 ~10 broad broad ~50 ~1.45 ~0.003
distribution distribution

2 ~15 broad broad ~80, ~1.48 broad
distribution distribution tail down to 20 distribution

3 ~50 ~1.4 ~0.005 ~0 undetermined undetermined

whereT is the absolute temperature of the system, lants  schedule, SA is thuguaranteedo find the best-fit model to
the Boltzmann constant. If the initial temperature of the sys<llipsometry data. Practically, such a procedure of SA would
tem is high enough, and if at each temperature enough timkead to extremely long calculation times. A reasonable cool-
is allowed for the system to reach thermodynamic equilibing schedule, which leads to a high quality solution as op-
rium, and if the cooling rate is slow enough, thenTat posed to the best one, must therefore be used in most situa-
=0 K the crystal is guaranteed to be in a state of minimumtions.
energy. Note that if the system is degenefate, more than SA, while very successful in a wide range of problems,
one state corresponds to the minimum engedyf =0 K the  has a major shortcoming: it returns one state of the system
system will be in any one of the minimum-energy degenerateorresponding to the global minimug? found, without any
states. indication of fit error. Even so, it is superior to other algo-
In the SA analogyE is represented by any objective func- rithms that are prone to give only a local minimum and de-
tion f=f(x) to be minimized, and the state of the system ispend on starting values. It is highly desirable to obtaih
defined asx. In ellipsometry,x is the thickness, complex

refractive index and other physical properties of all layersin 4, 130
the sample. A state transition is defined as the generation ofA(deg) A=500 nm | Aldeg) 9o=55°
a new structure given the previously calculated state by ran- 120 120
domly changingd; andN; by some amount. The probability
P of accepting a transition from stateto statey is given by 60 110
the so-called Metropolis criteriof88] e e | eyt
—mi Av2/ 50 : pden 3.0 A (nm)
P(x—y)=min{exp(—Ax*/T). 1}, 17 Wdeg) A=500 nm ] W(deg) $o=55°
2.5
wheref=Ax? is the change iry? due to the transition, and %0 T
T is a control parameter. In the computer implementation of 20 2.0
the algorithm,P(x—Y) is calculated and compared with a 10
random number €[0,1], and the transition is accepted if % 45 Sg?d )75 90 !%00 200 500 600_ 700 800
P(x—y)>r. At high values of the control parametdr; 180 e ‘0 A (nm)
practically all the transitions are accepted, corresponding in A(de2) A=700 nm | Aldeg) £o=65°
the analogy to a liquid state with high entropy. Asde- 120 ®
creases, the probability of transitions decreases. At very B/\
small values ofT, only transitions that lead to a decrease in 60 7
x? are accepted. In SA is initialized at some high valug, o 6
that allows almost all transitions to be accepted. Tfies 30 8 By 0 500 400 200, 500, 700 800
decreased slowly, according, for instance, to 50 16
\If(di%> A=700 nm ¥(deg) P,=65°
Ti+1=kT, where 0<k<1. (19 30 15/\
20 14
At each value ofT,L,, transitions are proposed. The succes- 10 '3
sion of all the accepted states is called a Markov chain. Dur- 30 45 gg?deg)% 20 300 400 ;\00 500, 700 800
ing the SA process several Markov chains are computed, one
for each value of the control parameter. The value$gfk, FIG. 1. Simulated spectroscopic ellipsometry scans generated

andLy define what is called the cooling schedule. For suf-for a bilayer at a vacuum-substrate interface. Valuesaind N;
ficiently high values of these three parameters, it can bare given in Table I. Simulated plots & and A are shown as
mathematically provefi20—27 that the global minimum of functions of¢, for (a) A=500 nm andb) A =700 nm, and as func-
the objective function is found. Given a sufficient cooling tions of \ for (c) ¢,=55° and(d) ¢,=65°.
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nb, nb,

possible solutions with corresponding confidence intervals. The probability density functiop(x|dl) is called thepos-

A means to this end are described in Sec. IV. terior distribution It is knowledge aboux gained from ex-
periments and any other measurements. It is possible to use
p(x|dl) to calculate the mean solutidr), as well as confi-

IV. BAYESIAN INFERENCE AND THE MARKOV CHAIN dence intervals given by the standard deviatitr) of the
MONTE CARLO ALGORITHM solution. If the problem is multimodal, that is, if there is
) ) o more than one solution, means and errors for each solution

_Suppose one wishes to studyabout which soma priori .4 pe calculated, thereby obtaining all solutions of the prob-

information| exists which can be expressed in terms of th _

conditional probabilityp(x|1), that is, the probability of As p(d|l) is independent ok, we can treat it as a nor-

given |. This is known as theprior distribution. It is the  5jization constant. In the general case, any thickness and

knowledge one has aboubefore the experiment under con- efraciive index values are possible, sx|1) could also be
sideration is done, and can include information coming fromc,ngtant. However, in ellipsometry problems, it is more often
other sources, for instance complementary experiments. SUgsg case that previous information about the system is avail-
pose also that some experimental observatasl(x) €x-  apie from other sources, such as the refractometry of the
ist, which depend on the parametars a known way. The g hsirate, and this term represents these constraints. Hence in
knowledge of the dependence of the observations UpSN  hase cases it is not convenient to use maximum-entropy’s

then the conditional probabilitp(d|xl), the so-calledike- ninformative prior distribution[34]. Finally, p(d|xI) is
lihood function It describes how probable it is to obtain a (51en to depend o? through

certain experimental result given well-known parameters. In

ellipsometry, that corresponds to calculating theoretical an-

gular or wavelength scans from known layer thicknesses and p(d|xl)=exp — x?/2), (20)
refractive indices. Bayes’ theorem describes how much the

experimental observations alter the original beliefs about thguhere they? function is defined in the usual wdg9]:
parameteix:

2_ q v 2
p(x|d1) = p(d|x1)p(x1)/p(d]D). (19 X°= 2 [V Viheo )/ o4l @)
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Pnar (arb. units)
paz (arb. units)

na;

FIG. 3. Density of states ob-
tained with a MCMC analysis for
(@ nay, (b) nby, () dz, (d) nay,
and (e) nb, for simulated data.
The dots are the partial densities
for solution 1, the lower solid
lines are the partial densities for
solution 2, and the upper solid
lines are for solution 3.

Papy (arb. units)
Pmz (arb. units)

0.00 0.0t 002 003 1.3
nb; nagz
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nb,

where Y¢, and Y{..,, are the experimental and theoretical sample is an empirical distribution which, if large enough,
values, respectively, and, is the experimental error at point reflects all the properties af without needing to evaluate it
q. Other sources of error, such as uncertainty in the values afirectly. The acceptance function is defined as
¢ Or A\, can also be included.

A sample can be drawn from equati¢fh9) using the w(y)=p(d|x1)p(x]|1). (24)
MCMC sampling method, in particular, the Metropolis-
Hastings algorithn{38] based on the Metropolis criterion.

Consider a Markov chaiflg Xy ... X, »... X, With If the transition distributiorg is chosen such that it is sym-

metric, i.e.,

P(Xi[ X0, X1, Xi—1) = P(Xi|Xi 1), (22)
ax,y)=q(y.x), (25

that is, the probability that theh member of the chain is;
depends only on the previous element of the chain. Thafen generating candidate from the current elemeny is
probability is determined by a random distributiq(x;,y).  equally probable, and vice versa. The acceptance criterion to
The Markov chain is then generated by proceeding fRold  generate the Markov chain becomes
X; ;1 by considering a candidayegenerated with the random
distribution q(x; ,y). The candidate is then acceptechat
is, it becomes; , ;) with probability P(x—Yy) according to
the generalized Metropolis criterion

P(x—y)=min{exp(—Ax?/2),1}. (26)

The Markov chain so generated is then a sample of
P(x—y)=min{[ w(y)q(y,x) /[ 7(x)q(x,y) 1,1}, (23 p(x|dl), which means that it reflectl the information over

x that can be obtained from the experimental data, taking

where the acceptance functiar(x) is a function ofx (see into account the experimental uncertainties as well as any

below). After running the Markov chain until equilibrium previous system information. Not only can the averages and

has been reachégdntil the probability of the system being in standard deviations of the thicknesses and refractive indices

the statex is given by mw(x)], further (m-n) iterations are be calculated, but ambiguous problems can also be conve-

calculated; the Markov chaix,,... X, SO generated consti- niently treated. If there is more than one solution that fits the
tutes a sample from the acceptance distributir). This  data correctlyp(x|dl) will be multimodal.
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0.00 FIG. 4. Solution 1 from a
1.0 1.1 1.2 1.3 1.4 MCMC analysis of simulated el-
lipsometry data (based on the
na1 structure described in Table) |
shown as(a) nb; vs na; and as
0.010 ' ' ' - sm'”:oo . (b) nb, vs na;. Each dot in the
Solution 1 ] figures represents one elemeqt
e e e of the Markov chain.
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V. EXPERIMENTAL DETAILS (IBM geometry, and the detector resolution was 16-keV full

Two samples were studied experimentally. The first oneWldth at half maximum.

consisted of a polishedl1l) single crystal of silicon on
which a thermal oxide was grown. The second sample was VI. RESULTS AND DISCUSSION
prepared by depositing a thin film of pdstyreng on top of
a thermal oxide layer on a similar silicon substrate. The poly-
(styreng was dissolved in toluene and deposited by spin- Before applying the algorithms described in the previous
coating from the solution at 2000 rpm for 30 s. sections to real data, we tested them on simulated data from
Ellipsometry data were obtained on a rotating-analyzem predefined layer structure. This tactic has the advantage of
spectroscopic ellipsometsnse [1,40] as a function of both  eliminating uncertainties due to experimental errors and,
¢@o and\. Angular scans were performed in air over anglesmore importantly, due to the limitations in the knowledge
ranging from 30° to 85° in increments of 1°. Spectroscopicabout any given real sample. By using simulated data we are
scans were typically performed overranging from 300 to certain of the original structure when comparing with the
800 nm in 10-nm increments. Typical standard deviations imesults obtained with SA and the MCMC algorithm. In simu-
the data were 0.04° fap and 0.1° forA. lated data there are no experimental errors, so we take;the
The thicknesses of the same films were measured witkalues from Eq(21) to be equal, and require that on average
Rutherford backscattering spectrometiRBS) using the 10% of all proposed transitions are accepted. The approach
University of Surrey 2-MV Van de Graaf4l]. A 1.5-MeV  produced, in this case, an unrealistically high error in the
“He" beam at normal incidence was employed. The backdetermination ofA and ¥ of about 5° and 1°, respectively,
scattered particles were detected at a 165° scattering angle amd was chosen to obtain a sufficiently long Markov chain in
the same plane as the beam and the normal to the samplageasonable calculation time.

A. Analysis of simulated test data
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0.03 "5 L i | Solution 2

1.0 1.1 1.2 1.3 1.4

na, simulated ellipsometry datébased on the struc-

FIG. 5. Solution 2 from a MCMC analysis of

ture described in Table) Ishown as(a) nb; vs
— T T T T na; and(b) d, vs na;. Each dot in the figures
represents one elemextof the Markov chain.

. Solution 2

°

1.0 1.1 1.2 13 1.4
na1

For the test structure given in Table | we inserted valuesl,) and two components of the refractive indexa( and
into Eq.(14) and substituted into Eq1) to generate the data nb;) of the two layers as free parameters, to make a total of
shown in Fig. 1. Two angular scans wigy varying between six free parameters. While the fits obtained were nearly per-
30° and 85° were generated, far=500 and 700 nm. Two fect, different solutions were obtained each time different
spectroscopic scans were also generated, withanging random number sequences were used. This result means that
from 300 to 800 nm withpy=65° and 55°. even from such a simple structut&o transparent layers on

We then used an SA algorithm to fit these simulated dataa transparent substrateand with a large amount of data
We treated the thickness of each of the two layets §nd  available, the problem is still multimodal; each solution is

TABLE Il. Averages and standard deviatiotia parenthesgsof the parameters for the MCMC solutions that reproduce the simulated
ellipsometry data for a bilayer structure.

Solution d; (nm) na; nby d, (nm) na, nb,
original 10.0 1.25 0.0015 55.0 1.45 0.0030
structure

1 9.82.1) 1.158) 0.008(65) 54.47.4) 1.441) 0.003613)
2a 17.73.9) 1.2912) 0.004947) 49.518.5 1.444) 0.004545)
2b 17.1(3.0) 1.074) 0.00024) 61.88.6) 1.452) 0.002114)
2c 16.52.2 1.197) 0.008863) 79.55.3 1.4785) 0.00035)

3 50.28.7) 1.3998) 0.005€13) 2.22.0 1.7(4) 0.02614)
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2 FIG. 7. Optical dispersion of the real part of the refractive index
& obtained from a MCMC analysis of ellipsometry data from a thin
SiO, layer on a silicon substratehown as the solid linecompared
1.40 145 1.50 1.55 to the literature values of refractive index for bulk $Si@hown as
na dots.
with the data. The multimodality of the problem is clear. For
= c) instance, three distinct peaksgg, can be seen for the thick-
= nessd;, centered at about 10, 15, and 50 nm. We will hence-
=f forth refer to these as solutions 1, 2, and 3, respectively.
2 There is structure in the other parameters as well. The thick-
N nessd, has a very strong peak at 0 nm, which corresponds to
& a single-layer solution, and also has two other broad peaks
centered at about 50 and 80 nm. Both components of the
0.000 0.002 0.004 0.006 0.008 0.010 refractive index of layer 1 {a; and nb;) have a well-

nb defined peak on top of a diffuse backgroumd, has two
well-defined peaks on top of a diffuse background, while a
single peak on top of a flat background can be distinguished
in nb,.

_ _ o ~In order to discover possible correlation between the dif-
ambiguous and not necessarily the original structure used iferent parameters, we calculated the partial density of states

the data simulation. Pnals Pnbls Pd2 Pnaz, andppyy corresponding to the three
We next applied a MCMC algorithm to the same data, insplutions 1, 2, and 3, defined as follows:

order to investigate the whole parameter space. The calcu-

FIG. 6. Density of states obtained with a MCMC analysis(&r
d, (b) na, and(c) nb of a thin SiG layer on a silicon substrate.

lated marginal densities describing the posterior distributions solution 1 d;<13.5 nm,

p(x/dl) are shown in Fig. 2. Here p(x/dl)

=(pg1,Pna1»Pnb1Pd2:Pnaz:Pnb2), Where p; reflects the solution 2 13.5 nmd;<20 nm,

density of states, or in other words, the density of solutions,

that are consistent with the data. Figure 2 thereby represents solution 3 d;>20 nm. (27

the thickness and refractive index values that are consistent

The results obtained for all three solutions are shown in

TABLE IIl. Averages and standard deviatiofia parentheses Flg 3. It is clear that solution 3 is the Single-layer solution,

of the thickness and refractive index paramef@sandnb) of a  as the peak centered @f~50 nm is correlated to the strong
thin SiQ, film on a Si substrate, as obtained with the MCMC algo- peak atd,~0 nm and to the corresponding undetermined
rithm and with least-squares fits using the literature vaRef.  refractive index for layer 2. It is also apparent that solution 1
[43]) for the bulk SiQ refractive index, letting the refractive index corresponds tal,~50nm. Solution 2 seems to correspond

vary. The layer thickness determined with RBS wag218m. to d,~80 nm but also includes a tail that extends to ldw

: values. Finally, while the values ofa, for solutions 1 and 2
Solution d (nm) na nb and ofnb, for solution 1 are well-defined peaks, we observe
MCMC 18.852) 1.460214) 0.004 52791) brboafd dlst|r|b_ut|ons |rr|11a1 andn?l for solutions _1 adnq 2 agld
Least-squares fit 19.29 1.4476 0.003 666 nb, for solution 2. These results are summarized in Table I.

The broad distributions oha;, nby, nb,, andd, can
hide additional structure. To uncover any hidden structure, in
3 iterature valuegRef. [43]) for bulk SiO,, fixed in the fit. Fig. 4, we plotted, for solution Inb; as a function oha;
PAllowed to vary in the fit. andnb, as a function oha, . Likewise, in Fig. 5, for solu-

Least-squares fit ~ 18.853)  1.460182°  0.004 53259)°
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TABLE 1V. Averages and standard deviations of the thickness and refractive index obtained from a
poly(styreng/SiO, bilayer on a Si substrate, as obtained by several means: a least-squares fit that uses the
known SiQ refractive index, with and without allowing for Ad; nonuniformity in the thickness of the
poly(styrene layer; and MCMC analysis, for the whole range of solutions found and restricted to the most
probable solution.

Solution d; (nm) na; nb; d, (nm) na, nb, Comments

bilayer of 36.9-45.8 93.41.89° 1.4476 0.003666

poly(styreng

and SiQ

least squares 36.10.7 1.5573) 0.0282) 97.70.1) 1.4476  0.003668 Ad,=

with nonuniformity 4.450.37

least squares 37128 1.5569) 0.0246) 97.710.1) 1.4476  0.003666 Ad;=0

MCMC 48.526.9 1.525) 0.011) 90.525.7 1.48216) 0.003330) d;+d,=
13912

MCMC 28.46.7 1544) 0.01611) 109.26.1) 1.48311) 0.003122) 10<d,<40

restricted 90<d,<120

aDetermined with RBS. The two values indicate spots in the edge and center of the sample.
®Determined with RBS.

SiO, values from the literaturéRef. [43)).

9Held constant during the least-squares fitting procedure.

tion 2 we plottednb; as a function ofna; andd, as a  suffice (taking into account that realistic errors smaller than
function of na;. Each point in these plots represents onel® would lead to smaller standard deviation vajuéise only
individual solution obtained, that is, one elementof the  solution with similar refractive index of the first layer is so-
Markov chain. The figures can then be seen as phase ditstion 2c, which can be distinguished from solution 1 with
grams where the layer structurésithin each of the solu- basis on the refractive index of the second layer.

tions) that are consistent with the data lie. No extra structure Finally, the MCMC analysis tested only two-layer struc-
can be found in solution 1, except thab; and na; are tures(although with the possibility of reducing their thick-
related to each other within a broadbane:0.075na,  ness to zerp Allowing the existence of extra layers would
—1.07)<nb;<—0.075(a; —1.4). Solution 2 is more inter- be almost certain to increase the number of possible solu-
esting. It is clear from Fig. @) that it corresponds to at least tions.
two different solutions, as two more or less disjoint areas can

be observed. Furthermore, a closer look at Figp) Beveals

that three different solutions are present. One solution, with

d, centered around 80 nm corresponds to the peak that can

be seen in Fig. ®). On the other hand, the tail at lods, The thickness of the thermal oxide on silicon substrate
values seen in Fig.(8) corresponds to two different solu- Was determined to be {8 nm using RBS analysis, assum-
tions, one with lowna, values and the other with higha,  ing the bulk density42] of SiO, of 6.6x 10**at/cn? in the
values. These can be seen in Figb)5as the two branches

extending to lowd, values. Calculation of partial density

B. Analysis of a thin SiG, film on Si

180

functions reveals that the lowa; value branch is correlated  a(deg) 4 Q=400 nm
with the (low nb,)/(low na,) region in Fig. %a), and that the 120
high na; value branch is correlated with théhigh
nb;)/(high na;) region. 60
We are finally left with five distinct solutions, all of which A=600 nm VAR
can adequately reproduce the test data shown in Fig. 1. We % 4 0 80 800 460 600 800 1000
calculated for each one of these the average and standarc g, #ldes) 00 A (nm)
deviation for all parameters, which are given in Table II. ¥ldeg) ¥(deg)
Solution 1 is, within the error bounds, the original layer A=600 nm 60
structure used to calculate the test data analysed. As itis not _‘<
possible to decide which of the solutions found is the “cor- 20 o 30
rect” one from the ellipsometry data only, extra information o 0
would be needed in a real experiment. It should be noted, ~ 20 40 g0 = 80 20000y By 1%

however, that in this case such information must include the
thickness of layer 1, since it is the only parameter that is F|G. 8. VASE ellipsometry data measured from a gslyreng
clearly different between solution 1 and the other possiblglayer 1)/SiO, (layer 2 bilayer on a silicon substrate in aisolid
solutions, within one standard deviation. Alternatively, infor- line). The dashed lines are the best-fit result from SA using a model
mation on the refractive index of both layers would alsoof two homogeneous layers.
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FIG. 9. Density of states ob-
tained with a MCMC analysis of
ellipsometry data from the
poly(styreng/SiO, bilayer on a
silicon substrate showing results
for (@) di, (b) na;, (c) nby, (d)
d,, (e) nay, and(f) nb,.

data fitting. SA and MCMC analyses were performed on a&ion p(x|d1)=(pg,pna.Pns) iS Shown in Fig. 6. A single
set of ellipsometry data obtained from three spectroscopigery well-defined solution has been obtained, which means
scans (300 nrRIA<<700 nm) performed ap,=72°, 75°, and
78°. The experimental errors were included in the analysis apected in this trivial case, since the problem could also be
given in Eqg.(21), and hence the confidence limits in the solved by exact data inversion. Nevertheless, obtaining an
solutions calculated with the MCMC algorithm reflect the expected result provides confidence in the SA-MCMC
exact error structure of the problem. The posterior distribumethod.

140
120
100
T 80-
£
o 60-
ge) ]
40+
20+

0
0

20 40 60 80

d; (nm)

| 1(I)0 | 1é0 | 140

that the problem is fully unambiguous. This result is ex-

FIG. 10. Results of a MCMC analysis for the
poly(styrene/SiO, bilayer on a silicon substrate
showing solutions ad, vsd;.



PRE 59 BAYESIAN INFERENCE ANALYSIS OF ELLIPSOMETRY DATA 6149

2.0 ' 1 1 T T | T T T T T T

0
1

oo°
1.9' 5;%%%@

ool
:
o6

FIG. 11. Results of a MCMC analysis for the
poly(styreng/SiO, bilayer on a silicon substrate
showing solutions ama; vsd;.
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The average and standard deviation of the thickness and C. Analysis of a poly(styrene)/SiO, bilayer on Si
refractive index of the layer are given in Table Ill. The table  The thicknesses of each of the two layers in the
also reports the Sifthickness and refractive index param- poly(styreng/SiO, bilayer were determined with RBS, as-
eters (na and nb) that were obtained from a Levenberg- suming the bulk density of polystyreng44] of 8.4
Marquardt least-squares fit to the same data performed witlx 10??at/cn?® and of SiQ as before. The thickness of the
commercial softwar@40] using the literature valugg3] for  oxide layer was found to be 93.4 nm. The thickness of the
the refractive indices of bulk Si and SjOThe refractive poly(styreng layer was measured at two positions on the
indices obtained from MCMC analysis is slightly higher thansample. Two different value36.9 and 45.8 ninwere ob-
the literature values for the bulk material, but the same optitained, which indicates that the layer thickness is inhomoge-
cal dispersion as found in bulk Sj@ obtained, as shown in neous, as is sometimes found in films deposited by spin coat-
Fig. 7. The difference in index could reflect real differencesing. Table IV summarizes these results from RBS.
in structure and density between the thin film and the bulkEllipsometry data, from both angular and spectroscopic
material. If the refractive index parameters are allowed tascans, were obtained from the same bilayer sample. These
vary in the least-squares fit, then very similar values are obdata are shown in Fig. 8.
tained as from the MCMC analysis, as seen in Table lll. We first obtained a least-squares fit to the ellipsometry
Finally, when analysing a single spectroscopic s(ang,  data using commercial softwafd0] that makes use of the
=72°), the same single well-defined solution is obtainedlevenberg-Marquardt algorithm. The resulting parameters
which means that the scansgg=72°, 75°, and 78° contain are given in Table IV. The fits, however, are not good, as can

redundant information. be seen in Fig. 8. A good fit could only be obtained by
1 .55 T T ° T T T T T T T T T T
1.50
N .
g 1.45- FIG. 12. Results of a MCMC analysis for the
poly(styreng/SiO, bilayer on a silicon substrate
4 ) showing solutions asa, vs d,.
o BT R 0T
1404 R -
1.35 — T T 1

0 20 40 60 80 100 120 140
d, (nm)
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c 1.454 ° 7] FIG. 13. Results of a MCMC analysis for the
poly(styreng/SiO, bilayer on a silicon substrate
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assuming a model in which thickness non-uniformity of theis quite different, as can be seen in Figs. 11 and 12. For the
poly(styreng layer is allowed. The results from this refined most probable value ofl; [i.e., the polystyreng layer],
fitting model are listed in Table IV. However, in the model which is in the range between 10 and 40 nm the valueagf
that we implemented, no thickness nonuniformity is consid-s poorly defined, with a large scattering of values apparent.
ered, which means that a perfect and realistic fit to the datgor the SiqQ layer, in contrast, the most probatide values

can never be obtained. As thé would be due to a limita- (around 90—120 ninare related to a well-defined range of
tion in the model and not to experimental error, the results, , values. The independence between the refractive index
obtained would not reflect the structure of the problem but,ajyes of the two layers can also be seen by plottiag vs
limitations of the model instead. In order to overcome thisng, which is done in Fig. 13. Fona,;~1.5, na, can take
problem, we took as the error bar for each data point, not thg,y vajue within its allowed range; and fom,~1.48,na,
experimental error, but the deviation between the data andy, take any value within its allowed range.

the best-fit assuming homogeneous layers. The minimum er- fina|ly, the average and standard deviation of the thick-
ror in each point was set to 1°. This approachdshocto the  ness and refractive index components of the two layers, as
extent that only by taking into account all physical effects,gpained with MCMC analysis, are given in Table IV. The

including thickness nonuniformity, would one obtain abso-resyits obtained for the most probable  solutiod; (
lutely accurate marginal densities. This method ensures hows 19_ 40 nm andl,~90—120 nm) are also given, and they

ever, that_ all solutions similar to the best fit will bg highly match well the best fit obtained.
probable in the MCMC calculation, and therefore will reflect
the real structure of the problem.

The results obtained for the pdbtyrene/SiO, bilayers
are shown in Fig. 9. The thickness of both layers is clearly As far as we are aware, the SA-MCMC approach demon-
ambiguous, asl; takes values between 10 and 120 nm, andstrated here is the first systematic method that can analyze
d, falls between 20 and 130 nm. Note that a single layeNVASE data without any knowledge of the thin film structure,
model (with d; or d,=0) is not an acceptable solution. On and provide aguaranteethat the global minima in the error
the other hand, thea; values for the two layers are well will always be reached. The method final possible struc-
defined. The wavelength-dependent components have tares that can produce an ellipsometry data set and calculates
strong peak at lownb; values and a tail extending to high the errors on the fits. Although other methods could be de-
values. The tail is more pronounced for the getyreng¢  veloped to search the solution space in a systematic fashion,
layer. It should be noted that, although close, tiizg values  these are unlikely to be guaranteed to find all solutions. The
are different in the two layers: slightly above and slightly capabilities of the SA-MCMC method increase the applica-
below 1.5 for the polgstyrene (layer 1) and SiQ (layer 2,  tions of ellipsometry to include the analysis of unknown
respectively. multilayer samples. The SA-MCMC method is therefore an

Figure 10 shows that the thickness of the two layers aréntriguing and attractive alternative to the Levenberg-
strongly linearly correlatedd;+d,~140nm. This result Marquardt and similar least-squares methods often used to
probably stems from their similar refractive index values andanalyze VASE data. Our analysis of these relatively simple
the associated weak reflection from the interface between thgiructures can be extended to more complicated systems con-
two layers. The order of the layers are not, however, intersisting of three or more layers, having an unknown substrate
changeable: it is clear that the Silm is not on top of the  or ambient, and having surface roughness and biaxiality. The
poly(styreng layer. Moreover, no single-layer solution cor- computations shown in this paper have, as yet, not been op-
responding to an average refractive index value is obtainedimized for speed, but we expect that significant improve-
The behavior of the refractive index values in the two layersments are possible.

VIl. CONCLUDING REMARKS
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