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Simulation of the temporal behavior of soliton propagation in photorefractive media
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We consider the propagation of light beams in photorefractive media in the framework(bf B-
dimensional model. The Kukhtarev band transport model is introduced both in a time-dependent differential
equation describing the evolution of the space charge field and in a nonlinear wave propagation equation. This
latter is then numerically solved with a beam propagation method routine. The evolution in time and space of
an initially diffracting laser beam is simulated as a function of initial profiles and waists. The beam is shown
to go through a transient overfocused state prior to relaxing to a steady state soliton. Additional features such
as the stability condition of the system or effects such as optical branching and soliton interactions are studied.
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PACS numbe(s): 42.65.Tg, 42.65.Sf, 42.65.Hw, 42.65.Jx

[. INTRODUCTION able methods. The assumption that the wave equation, and
more precisely, that the light induced refraction index profile

The study of light propagation as spatial soliton beams irsupports soliton solutions in both space and time is, in a
photorefractive media is a research topic that began in theertain sense, physically incorrect and has takgosteriori
early 1990's. It is now widely studied in the general frame of@scertained by a systematic resolution of that wave equation.
photorefractive nonlinear optics. Since the prevision in 19920Wing to the complexity of this equation, an analytical reso-
[1,2] of photorefractive spatial solitons and their first experi-ution is impossible even in thel+1)-dimensional approxi-
mental observation in 1993,4], this field of both theoreti- mation. Therefore, we propose in the present paper a numeri-
cal and experimental investigations had led to the discoverg@l resolution of the wave equation based on a beam
of different types of solitongquasisteady-state, screening, Propagation methodBPM) simulation[15]. The photore-
and photovoltaic soliton[5-7]. It also allowed a study of fractive crystal is supposed to be illuminated with light
new possibilities more recently of applications such as in\Waves, whose profiles and waists have been obtained using
ducting waveguide$8] by solitons or interactions between the mathematical approach described in Rif4] and[13].
solitons[9,10)]. The propagation is then calculated using the split-step Fou-

In 1996, we proposed a theoretical and numerical analytier (or BPM) procedure along the propagation axis and as a
sis, based on é1+1)-dimensional theory, which allowed us function of time, the propagation medium being considered
to explain the formation of solitons by showing the link ex- @s infinitely long and broad. Several effects such as soliton
isting between the quasi-steady-state soliton and the screeRtopagation and interactions as well as optical branching
ing one [11]. This study, using the photorefractive band [16] are studied using this procedure.
transport model developed by Kukhtaretval.[12] led to an
analytical expression of the space charge field as a function Il. THEORETICAL BASIS AND METHOD
of time allowing the introduction of particular initial condi- OF CALCULATION
tions. The introduction of this space charge field equation in
the wave equation yielded a time-dependent nonlinear wave
propagation equation, which governs the conditions of
propagation of the light beam in the photorefractive medium. In the framework of the(1+1)-dimensional[(1+1)D]

In order to perform a numerical resolution of this wave model [11,13, the space charge field has been shown to
equation, we conducted, in previously published paperéollow in time the following time-dependent expression:
[11,13, a mathematical treatment based on finding the soli-
ton solution of this equation. This allowed us to deduce the
time evolution of the soliton profile, as well as the depen- L kT 1
dence of its half width at half maximugWHM) as a func- +[1—exp — 7)]| (Eoxt Eph)—d— B N
tion of one basic parameter which is the ratibetween the I e |
peak irradiance and the sum of the background irradiance
and the equivalent dark irradiance. This approach, whichvhereE, is the initial space charge field,is the reduced
was, as we will discuss later, highly questionable from thetime to the dielectric relaxation time in the daik,,, is the
physical point of view, nevertheless led to existence curvespplied external electric fiel&, is the photovoltaic equiva-
of both the quasi-steady-state and screening solitons aslent field, andly is the artificial dark irradiancel is the
function of the ratior, comparable to equivalent curves ob- general light intensitywhich is the sum of the beam inten-
tained by other authofd4] using alternative and more suit- sity and the dark irradiangel’ its derivative to the trans-

A. Space charge field and nonlinear
wave propagation equation

E.=(Eo+Epnexp — 1)
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verse variable; kg is the Boltzmann constant, is the tem- Both experimental and alternative theoretical approaches
perature, ane is the electron charge. have proved the existence of these soliton solutions for cer-

This space charge field induces, via the electro-optidain physical conditions in terms of soliton width, trapping
Pockels effect, a dependence on time of the refractive indefield, andr ratio[14]. Their profiley(X, 7) has to respect the
profile. This in turn implies that the deduced nonlinear wavefollowing differential equations:

equation is also time dependduntl]:
2

%y
U i d?U , —2vy+ E—{l—exd—(lﬂyz)ﬂ}
ﬁ—iyﬂl—exd—(lﬂw )71}
Y
2 x| 2N2 —2yexd —(1+ry?)7]=0, (7
- a|u| U ( 1+r72) yexd —(1+ry9)7] (7
X | 1+]|U|?
2 N2 2
+En(X,Z)ex — (1+[U[%)7]U, (2) v=——In(1+1)+—{Ei[—(1+r)7]—Ei(— )}
r r
where U is the light field normalized to/l4. X and Z are
transverse and longitudinal normalized coordinates with +%{exp[—(1+r)r]—exp(—r)}, @)
X z
X=—, Z=—, 3 where
Xo kX3
+oo@™ 0
wherek is the light wave vectorX; is a length which can be Ei(T):f 70{0_

chosen arbitrarily(Its value is only a scale factor: changing
it does not affect the physical meaning of the result. Zgt ) ) . o .
=kX2 be the normalization factor on the propagation axis. 1hese two differential equations, which in fact define the
soliton existence curves, have been numerically used in order
kZn2r X3 to obtain the initial profilesJ (X,00) which are introduced at

En(X,2)= ET<t:0)T the entrance of the crystal.

is the normalized generalized initial space charge field. The Method of calculation

value of Ey(X,Z) values depends of course on the crystal The numerical method used, called in the literature the
parameters and historid is a quantity which is characteris- split-step Fourier methofd 5], is a beam propagation method
tic of the quasi local mechanisms given by the following (BPM) which has been adapted to solve the nonlinear wave

expression: equation(2). As an initial profile aZ=0, we chose functions
defined numerically which satisfy Eq§/) and (8). The va-
; kznzreﬁXS(EextJr Epn) lidity of the BPM resolution has been systematically checked
N“= 2 ' (4) by insuring variation of the calculation conditions and pa-

rameters. In the simulation undertaken here, we have tested
the following behaviors(a) The space and time convergence
towards a screening solitofh) the occurrence of a quasi-
steady-state soliton, eventually changing to a less focalized
beam state(c) the influence of the drift transport mechanism

K2n2r X KT toggther with _the diffusiorj one, gr‘(di) Fhe occurrence of
D= °©f70"8 (5)  optical branching, when high nonlinearities are present.

2e

wheren is the initial index of refraction and.g is the effec-
tive linear electro-optic coefficienD is a quantity character-
istic of the diffusion mechanism of transport and is given by

Ill. NUMERICAL SIMULATIONS OF SOLITONS

B. Soliton profile TIME BEHAVIOR

In the general case when soliton propagation is consid- In this section, we present results of simulation obtained
ered, the diffusion mechanism is usually neglected, whictby the BPM procedure. The data obtained are reported using
means in our case th&=0. This is reasonable if, for in- Systematically four or more relevant images chosen from a
stance, an external field can be applied, allowing us to overtime-dependent movie at specifically interesting and signifi-
come the diffusion one. Considering the initial space chargéant times. The first image always corresponds to the initial
field as uniform[Ey(X,Z)=N?], a soliton solution of the time 7=0 and, thus, to the natural diffraction of the entrance
wave equatiorii.e., a solution whose profile does not changePeam with no photorefractive effect, the crystal being con-

throughout the propagation aloij can be expressed by  sidered linear. The last image corresponds=d, which, in
fact appears to be quite similar to the stationary stater.

UXx,z,m= \/Fy(x,r)exp(in) (6) The beam propagates from the left to the right alongzZhe
direction. The transverse directioficorresponds to diffrac-
with y(0,7)=1 andy(£«,7)=0. tion or focusing direction. The lengths alongand Z are
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expressed in normalized units following the expressions of 4
Eq. (3).

For example, if one uses a BTiO,, (BTO) crystal, by
choosingX,= 10 um, a HeNe laser beam of 10 mW/€nd
a artificial dark irradiance of 1 mWw/cth one obtainsr
=10, a screening soliton HWHM of 20.64m, and Z,
=2.52 mm. In this particular case, the width of the image
alongx is 64 um and the real length alongis 25.8 mm.
Considering =5 pm/V, one must apply an electric field of
9.764 kV/cm to achievé&=1.

I #
[

a)7=0 b) 7=0.2
A. Convergence toward a screening soliton

In the first calculation, we study the behavior of a soliton
beam with an input beam profile equal t0(X,0,0)
=Jry(X,»). This means that we introduced, on the en-
trance face of the crystal, the steady-state screening soliton
profile. The conditions of the calculation al=1, D=0,
andr=10. The zero value ob is connected to neglecting
the diffusion. Ther value higher than 3 corresponds to a
screening soliton with a diameter twice larger than the mini-
mum of the existence curvghe so-called quasi-steady-state ) T=9'5 —_—— - d r=1
solitor) [11,13,17. Normalized longitudinal dimension (Z)

Figure 1 represents the four imagesrat0, 0.2, 0.5, and
1. Our calculations show that, for= 10, the beam appears to
overfocus somewhere along tiedirection and reproduces
this scheme quasiperiodically alondiita longer crystal had
been considered in the calculatjorThis overfocusing has
been hinted to be maximum &t0.2 (in fact 7=2/r), which
corresponds to the quasi-steady-state soljtbh,17]. Thus
the initial profile goes transiently through the quasi-steady-
state, then progressive(fFig. 1(c)] relaxes towards a pure z
screening soliton solution exhibiting a HWHM equal to that % o
of the entrance beatHWHM=2.064. The calculation for
T=o gives a beam profile roughly constant along zhaxis.
Figure Xe) shows the comparison between the beam profiles F|G. 1. Convergence to the screening soliton. The calculation
on the entrance face of the crystal and at the point where it isarameters artl=1, D=0, r =10 with the input profileU(X,00)
narrowest in Fig. (b), which corresponds to the maximum = y(X,»). (a) ==0, (b) 7=0.2, () =0.5, (d) =1 which is

Transversal normalized dimension (X)

v

1

Beam Profile
(Arbitrary Units)

¢) Normalized transversal dimension (X)

of the overfocusing effect. similar to 7=c. (e) reports a comparison between the screening
soliton profile and the beam profile at the minimum width(ti X
B. Evolution from the quasisteady state soliton goes from—32 to +32, Z from 0 to 10.24. In accordance with the
to a less focalized state example given in Sec. lll, it is important to note the difference

- between scaling factons, andZ,.
In the second part of our calculatiofBig. 2), we chose

the entrance profile to correspond to that of the quasi-steady-

state soliton (i.e., minimum waist in timg U(X,0,0) (1/r)shorter than of the quasi-steady-ste2&) demonstrates
=ry(X,2k) at the predicted time-=2/r.We set the fol- that obtaining a transient soliton behaviorsat 1/r is pos-
lowing parametersN=1, D=0, andr=100. The calcula- sible. This is clearly seen on Fig(l8, for which an entrance
tions reported were done a0, 7=0.02=2/f, 7=0.25, and  profile U(X,0,0)= Jry(X,1k) is introduced: we computed

=1 the propagation profiles at times-0, 7=0.01=1/r,7=0.05,
Our simulations clearly show that the initial natural dif- and =1.
fraction at7=0 focuses at=0.02[Fig. 2(b)], a time corre- Our calculations evidence that, at the time at which the

sponding to the build up of the quasi-steady-state solitontransient soliton is expected, the HWHM is unchanged
The beam profile at that time is the same as on the crystdhroughout the propagation. It corresponds to the beam pro-
entrance. Then, since we are in a transient regiwkjch file on the entrance face of the crysf&ig. 3(b)]. This con-
means that this soliton has a limited lifetimehe beam firms the soliton character of this particular solution at
eventually diffracts progressively towards a less focused—=0.01.

state.

D. Influence of the beam shape on the soliton propagation

C. Occurrence of a non-quasi-steady-state transient soliton The transient soliton solutions exhibit a particular prop-

The introduction on the entrance face of the crystal of aerty: another soliton solution having the same HWHM can
light profile satisfying Eq(7), but corresponding to a time exist, but at another time. For instance the soliton solution at
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Transversal normalized dimension (X)

a)7=0 b) 7=0.02

Transversal normalized dimension (X)

c) =025 d)z=1

c) 7=0.05 d)z=1
Normalized longitudinal dimension (Z)

v

Normalized longitudinal dimension (Z)

FIG. 2. Occurrence of a transient quasi-steady-state soliton. The
calculation parameters a=1, D=0, r=100 with an input pro-
file equal toU(X,00)= \r #(X2/r). (a) =0, (b) 7=0.02=2/r, (c) Beam Profile
7=0.25,(d) 7=1. X goes from—32 to +32, Z from 0 to 10.24. (Arbitrary Units)

7=0.01 has the same HWHM as the solution fe£0.05.
This case is reported in Fig. 3, the two profiles of the con-
sidered solitons being shown in Fig(eR Our illustrations et U
show the beam computed at tinre:0.05[Fig. 3(c)] with an ¢) Normalized transyersal dimensiondiX)

entrance beam profile corresponding to the transient solution = 3 Evolution through a transient non-quasi-steady-state
at 7=0.01. The overfocusing observed evidences that thegjiton The calculation parameters d¥e=1, D=0, r =100 with
time 7=0.05 does not correspond to a soliton propagation;nitia conditions U(X,00)= \r y(X,1k). (@ =0, (b) 7=0.01
However, the introduction of the beam profile corresponding— 1 (¢) r=0.05=7,, (d) =1, (¢) comparison between soliton
to the soliton solution at=0.05 would have allowed a soli- profiles atr=0.01 (solid line) and atr=0.05 (dotted ling, r=1. X

ton propagation at that particular time. These features argoes from—32 to +32, Z from 0 to 10.24.

explained by the differences in the profiles of the entrance

beams since their HWHM are the same. They consequentliyn accordance with the previous results given by

point out the role of the profile shape. Christodoulide<et al. [14] and Krolikowskiet al.[18]. Fur-
thermore, our calculations also show an asymmetry in the
E. Numerical simulation of drift combined with diffusion beam profile, with higher intensities on the inside beam cur-
transport mechanisms vature. This feature may have some analogy with the self-

As previously mentioned, th€l+1)D theory of solitons ﬁ;efepﬁzlgr? zﬁ%??e?oixgztgg%al hints of such behaviors
in photorefractive media generally neglects the diffusion P d '
term in the band-transport model, which is known to be re-

sponsible for self-bending effecfs,14]. In this part of the F. Simulation of optical branching
simulation, the diffusion term has been kept in the wave Several authors discussed the stability conditions of pho-
equation(2) and is included in the parametBr. torefractive spatial solitons and the robustness of the self-

Figure 4 reports the propagation of a laser beam withtrapped propagation against localized perturbatjd®s-23.
initial conditions equivalent to the screening solitons andContrary to what happens in Kerr-like media, photorefractive
with the calculation parametefdé=1 andr=10 (as in Fig.  screening solitons are shown to be stable as long as the ma-
1), but with D=0.1. Our calculations, performed at0, terial and the propagation parameters are along the existence
7=0.2, 7=0.25, andr=1, indicate the installation of a pro- curve[14]. On the other hand, Jerominekal.[16] observed
gressive bending of the light beam in direction of thaxis  propagation of a light beam in photorefractive LiNb@&c-
(given by the sign oD). companied with what he called optical branching, namely,

A careful observation of the successive Figéa)44(f) the division of the optical beam in several branches. It is,
evidences a rather significant self-focusing effect preceding however, important to point out that the experimental condi-
progressive installation of the bending process in the directions used by Jerominek correspond to the presence of high
tion of thec axis. The numerically calculated phenomenon isnegative nonlinearities, responsible for dark solitons.
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a) 7=0 b) 7=0.025

d) 7=0.15

Transversal normalized dimension (X)

€) 7=0.5

f)z=1

Normalized longitudinal dimension (Z)
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b) 7=0.02

Transversal normalized dimension (X)

) 7=0.25 dz=1 >
Normalized longitudinal dimension (Z)

FIG. 5. Optical branching in photorefractive media. The calcu-
lation parameters arbl=5, D=0.1, r=10, with an input profile
U(X,00)= \/Fy(X,oo). (@) =0, (b) 7=0.02,(c) 7=0.25,(d) 7=1. X
goes from—32 to +32, Z from 0 to 10.24.

BaTiO; crystals are on the way and seem to confirm some
elements of our calculatior4d7].

It is important to note thatN depends on an arbitrary

FIG. 4. Evidence of beam bending. The calculation parametergpace scale facto(o Therefore’ an increase in the value of

are N=1, D=0.1, r=10, with an input profile U(X,00)
=ry(X,»). (@ =0, (b) 7=0.025,(c) 7=0.05, (d) 7=0.15, (e)
7=0.5, and(f) 7=1. X goes from—32 to +32, Z from 0 to 10.24.

Figure 5 shows a simulation of that phenomenon by tak-
ing the initial profile of the screening soliton calculated from
Egs.(7) and(8) with N=1 andr =10, and usindfN=>5 (i.e.,
high nonlinearity and D=0.1 for the computation of the
propagation. It can be observed that the beam strongly self-
focuses at a distance shorter than the diffraction length. It
then divides in several branchésr filaments, propagating
as bending solitons. The bending effect is due to the nonzero
value ofD. It is remarkable that the diameter of the branches
is significantly narrower than the initial screening soliton. On
the other hand, the closely neighboring branches develop in-
teractions between each othg,10,23. Additionally, we
can note that the characteristics of the branches seem to re-
spect the existence curve of the solitons. For instance, the
upper branch in the steady state configuration on Fid) 5
can be defined by its ratio to dark irradiance 1.87 and its
HWHM of 0.9.

The simulation presented in Fig. 6 corresponds to calcu-
lations equivalent to that of Fig. 5, but with parametdrand
D close to those expected for the BaTi@ystal, taking into

Transversal normalized dimension (X)

a)7=0 b) 7=0.15

c)7=05

d)r=1

Normalized longitudinal dimension (Z)

account the physical parameters of this crystal. The external gig. 6. Optical branching in photorefractive BaiOThe cal-
field applied is equal to 10 kV/cm, the entrance beam walistylation parameters, taken in accordance with the corresponding
is 15 um and the propagation length is about 7 mm. Ourphysical values of BaTiQare N=2.25,D=0.01,r =10. The ap-
calculations evidence quasiperiodic self-focusing, as well aglied electric field is 10 kV/cm. The input profile i8(X,00)
diffracting branches of smaller intensity bending in the two=\r y(X,), the waist being equal to 18m. (a) =0, (b) =0.15,

transverse directions.

Experiments on photorefractivéc) 7=0.5, (d) ==1. X goes from—32 to +32, Z from 0 to 10.24.
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N can be either seen as an increase of the electric (ald Our numerical data confirm, by comparison with the ex-
any other parameter iN) or as a decrease of the scale factor:perimental datd17], the validity of the space charge field
both interpretations lead to the fact thatNfis increased and nonlinear wave equation used. Indeed, the fact to take
whereas the input profile is not changed, the one screeninigitial conditions with quasi-steady-state and screening soli-
soliton that can exist is significantly narrower than the inputions effectively shows transient occurrence of the quasi-
profile. Our calculations show that the self-focusing phenomStéady-state and stable convergence to the screening soliton.
enon is unstable if the input profile is far wider than the 11iS Presents am posteriori validation of the assumption
soliton diameter. Our calculations are confirmed by a similaf™@de in our previous publicatior$1,13.

bidimensional steady-state prediction by Mamaewal. [23] The simulation estapllshes a strong stability of the modgal,
as long as the calculation parameters are close to the soliton

existence curve. Indeed, it confirms that {the-1)D model is
IV. CONCLUSION stable. Furthermore, since our calculations satisfactorily de-
scribe the experimental data, which of course correspond to a
In this paper, we evidenced the temporal behavior of pho¢2+1)D system, this indicates that tfi2+1)D system is also
torefractive self-focusing and spatial solitons through BPMstable and that §1+1)D system is able to simulate a real
numerical simulations performed on the basis dfLla1)D system with good accuracy.
model of laser light propagation in photorefractive media. The model used here allows us, not only to simulate soli-
Our numerical simulations show the following essential featon propagation, but also to study more sophisticated phe-
tures. nomena such as optical branching.
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