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Simulation of the temporal behavior of soliton propagation in photorefractive media
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We consider the propagation of light beams in photorefractive media in the framework of a~111!-
dimensional model. The Kukhtarev band transport model is introduced both in a time-dependent differential
equation describing the evolution of the space charge field and in a nonlinear wave propagation equation. This
latter is then numerically solved with a beam propagation method routine. The evolution in time and space of
an initially diffracting laser beam is simulated as a function of initial profiles and waists. The beam is shown
to go through a transient overfocused state prior to relaxing to a steady state soliton. Additional features such
as the stability condition of the system or effects such as optical branching and soliton interactions are studied.
@S1063-651X~99!15305-4#

PACS number~s!: 42.65.Tg, 42.65.Sf, 42.65.Hw, 42.65.Jx
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I. INTRODUCTION

The study of light propagation as spatial soliton beams
photorefractive media is a research topic that began in
early 1990’s. It is now widely studied in the general frame
photorefractive nonlinear optics. Since the prevision in 19
@1,2# of photorefractive spatial solitons and their first expe
mental observation in 1993@3,4#, this field of both theoreti-
cal and experimental investigations had led to the discov
of different types of solitons~quasisteady-state, screenin
and photovoltaic soliton! @5–7#. It also allowed a study of
new possibilities more recently of applications such as
ducting waveguides@8# by solitons or interactions betwee
solitons@9,10#.

In 1996, we proposed a theoretical and numerical an
sis, based on a~111!-dimensional theory, which allowed u
to explain the formation of solitons by showing the link e
isting between the quasi-steady-state soliton and the scr
ing one @11#. This study, using the photorefractive ban
transport model developed by Kukhtarevet al. @12# led to an
analytical expression of the space charge field as a func
of time allowing the introduction of particular initial cond
tions. The introduction of this space charge field equation
the wave equation yielded a time-dependent nonlinear w
propagation equation, which governs the conditions
propagation of the light beam in the photorefractive mediu

In order to perform a numerical resolution of this wa
equation, we conducted, in previously published pap
@11,13#, a mathematical treatment based on finding the s
ton solution of this equation. This allowed us to deduce
time evolution of the soliton profile, as well as the depe
dence of its half width at half maximum~HWHM! as a func-
tion of one basic parameter which is the ratior between the
peak irradiance and the sum of the background irradia
and the equivalent dark irradiance. This approach, wh
was, as we will discuss later, highly questionable from
physical point of view, nevertheless led to existence cur
of both the quasi-steady-state and screening solitons
function of the ratior, comparable to equivalent curves o
tained by other authors@14# using alternative and more sui
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able methods. The assumption that the wave equation,
more precisely, that the light induced refraction index profi
supports soliton solutions in both space and time is, in
certain sense, physically incorrect and has to bea posteriori
ascertained by a systematic resolution of that wave equa
Owing to the complexity of this equation, an analytical res
lution is impossible even in the~111!-dimensional approxi-
mation. Therefore, we propose in the present paper a num
cal resolution of the wave equation based on a be
propagation method~BPM! simulation @15#. The photore-
fractive crystal is supposed to be illuminated with lig
waves, whose profiles and waists have been obtained u
the mathematical approach described in Refs.@11# and @13#.
The propagation is then calculated using the split-step F
rier ~or BPM! procedure along the propagation axis and a
function of time, the propagation medium being conside
as infinitely long and broad. Several effects such as sol
propagation and interactions as well as optical branch
@16# are studied using this procedure.

II. THEORETICAL BASIS AND METHOD
OF CALCULATION

A. Space charge field and nonlinear
wave propagation equation

In the framework of the~111!-dimensional @~111!D#
model @11,13#, the space charge field has been shown
follow in time the following time-dependent expression:

Et5~E01Eph!exp~2t!

1@12exp~2t!#F ~Eext1Eph!
I d

I
2

kBT

e

I 8

I
G , ~1!

whereE0 is the initial space charge field,t is the reduced
time to the dielectric relaxation time in the dark,Eext is the
applied external electric field,Eph is the photovoltaic equiva-
lent field, andI d is the artificial dark irradiance.I is the
general light intensity~which is the sum of the beam inten
sity and the dark irradiance!, I 8 its derivative to the trans-
6116 ©1999 The American Physical Society



t
de
v

g

s.

h
ta
-

ng

-
by

sid
ic

-
ve
rg

ge

hes
cer-
g

he
rder
t

the
d
ave

ed
a-
sted
ce
i-
zed
m

ed
sing

a
ifi-

itial
ce
n-

e

PRE 59 6117SIMULATION OF THE TEMPORAL BEHAVIOR OF . . .
verse variablex; kB is the Boltzmann constant,T is the tem-
perature, ande is the electron charge.

This space charge field induces, via the electro-op
Pockels effect, a dependence on time of the refractive in
profile. This in turn implies that the deduced nonlinear wa
equation is also time dependent@11#:

]U

]Z
5

i

2

]2U

]X2
1$12exp@2~11uUu2!t#%

3S N22D
]uUu2

]X
D U

11uUu2

1EN~X,Z!exp@2~11uUu2!t#U, ~2!

whereU is the light field normalized toAI d. X and Z are
transverse and longitudinal normalized coordinates with

X5
x

X0

, Z5
z

kX0
2

, ~3!

wherek is the light wave vector.X0 is a length which can be
chosen arbitrarily.~Its value is only a scale factor: changin
it does not affect the physical meaning of the result. LetZ0

5kX0
2 be the normalization factor on the propagation axi!

EN~X,Z!5Et~ t50!

k2n2r effX0
2

2

is the normalized generalized initial space charge field. T
value of EN(X,Z) values depends of course on the crys
parameters and history.N is a quantity which is characteris
tic of the quasi local mechanisms given by the followi
expression:

N25
k2n2r effX0

2~Eext1Eph!

2
, ~4!

wheren is the initial index of refraction andr eff is the effec-
tive linear electro-optic coefficient.D is a quantity character
istic of the diffusion mechanism of transport and is given

D5
k2n2r effX0kBT

2e
~5!

B. Soliton profile

In the general case when soliton propagation is con
ered, the diffusion mechanism is usually neglected, wh
means in our case thatD50. This is reasonable if, for in
stance, an external field can be applied, allowing us to o
come the diffusion one. Considering the initial space cha
field as uniform@EN(X,Z)5N2#, a soliton solution of the
wave equation~i.e., a solution whose profile does not chan
throughout the propagation alongZ! can be expressed by

U~X,Z,t!5Arg~X,t!exp~ ivZ! ~6!

with g(0,t)51 andg(6`,t)50.
ic
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e

e
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-
h

r-
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Both experimental and alternative theoretical approac
have proved the existence of these soliton solutions for
tain physical conditions in terms of soliton width, trappin
field, andr ratio @14#. Their profileg(X,t) has to respect the
following differential equations:

22vg1
]2g

]X2
2$12exp@2~11rg2!t#%

3S 2N2
g

11rg2D 22g exp@2~11rg2!t#50, ~7!

v52
N2

r
ln~11r !1

N2

r
$Ei@2~11r !t#2Ei~2t!%

1
1

tr
$exp@2~11r !t#2exp~2t!%, ~8!

where

Ei~t!5E
2t

1`e2u

u
du.

These two differential equations, which in fact define t
soliton existence curves, have been numerically used in o
to obtain the initial profilesU(X,00) which are introduced a
the entrance of the crystal.

Method of calculation

The numerical method used, called in the literature
split-step Fourier method@15#, is a beam propagation metho
~BPM! which has been adapted to solve the nonlinear w
equation~2!. As an initial profile atZ50, we chose functions
defined numerically which satisfy Eqs.~7! and ~8!. The va-
lidity of the BPM resolution has been systematically check
by insuring variation of the calculation conditions and p
rameters. In the simulation undertaken here, we have te
the following behaviors.~a! The space and time convergen
towards a screening soliton,~b! the occurrence of a quas
steady-state soliton, eventually changing to a less focali
beam state,~c! the influence of the drift transport mechanis
together with the diffusion one, and~d! the occurrence of
optical branching, when high nonlinearities are present.

III. NUMERICAL SIMULATIONS OF SOLITONS
TIME BEHAVIOR

In this section, we present results of simulation obtain
by the BPM procedure. The data obtained are reported u
systematically four or more relevant images chosen from
time-dependent movie at specifically interesting and sign
cant times. The first image always corresponds to the in
time t50 and, thus, to the natural diffraction of the entran
beam with no photorefractive effect, the crystal being co
sidered linear. The last image corresponds tot51, which, in
fact appears to be quite similar to the stationary statet5`.
The beam propagates from the left to the right along thZ
direction. The transverse directionX corresponds to diffrac-
tion or focusing direction. The lengths alongX and Z are
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expressed in normalized units following the expressions
Eq. ~3!.

For example, if one uses a Bi12TiO20 ~BTO! crystal, by
choosingX0510 mm, a HeNe laser beam of 10 mW/cm2 and
a artificial dark irradiance of 1 mW/cm2, one obtainsr
510, a screening soliton HWHM of 20.64mm, and Z0
52.52 mm. In this particular case, the width of the ima
along x is 64 mm and the real length alongz is 25.8 mm.
Consideringr eff55 pm/V, one must apply an electric field o
9.764 kV/cm to achieveN51.

A. Convergence toward a screening soliton

In the first calculation, we study the behavior of a solit
beam with an input beam profile equal toU(X,0,0)
5Arg(X,`). This means that we introduced, on the e
trance face of the crystal, the steady-state screening so
profile. The conditions of the calculation areN51, D50,
and r 510. The zero value ofD is connected to neglectin
the diffusion. Ther value higher than 3 corresponds to
screening soliton with a diameter twice larger than the m
mum of the existence curve~the so-called quasi-steady-sta
soliton! @11,13,17#.

Figure 1 represents the four images att50, 0.2, 0.5, and
1. Our calculations show that, forr 510, the beam appears t
overfocus somewhere along theZ direction and reproduce
this scheme quasiperiodically along it~if a longer crystal had
been considered in the calculation!. This overfocusing has
been hinted to be maximum att50.2 ~in fact t52/r ), which
corresponds to the quasi-steady-state soliton@11,17#. Thus
the initial profile goes transiently through the quasi-stea
state, then progressively@Fig. 1~c!# relaxes towards a pur
screening soliton solution exhibiting a HWHM equal to th
of the entrance beam~HWHM52.064!. The calculation for
t5` gives a beam profile roughly constant along theZ axis.
Figure 1~e! shows the comparison between the beam profi
on the entrance face of the crystal and at the point where
narrowest in Fig. 1~b!, which corresponds to the maximum
of the overfocusing effect.

B. Evolution from the quasisteady state soliton
to a less focalized state

In the second part of our calculations~Fig. 2!, we chose
the entrance profile to correspond to that of the quasi-ste
state soliton ~i.e., minimum waist in time! U(X,0,0)
5Arg(X,2/r ) at the predicted timet52/r .We set the fol-
lowing parameters:N51, D50, and r 5100. The calcula-
tions reported were done att50, t50.0252/r , t50.25, and
t51.

Our simulations clearly show that the initial natural d
fraction att50 focuses att50.02 @Fig. 2~b!#, a time corre-
sponding to the build up of the quasi-steady-state solit
The beam profile at that time is the same as on the cry
entrance. Then, since we are in a transient regime,~which
means that this soliton has a limited lifetime!, the beam
eventually diffracts progressively towards a less focu
state.

C. Occurrence of a non-quasi-steady-state transient soliton

The introduction on the entrance face of the crystal o
light profile satisfying Eq.~7!, but corresponding to a time
f
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(1/r )shorter than of the quasi-steady-state~2/r! demonstrates
that obtaining a transient soliton behavior att51/r is pos-
sible. This is clearly seen on Fig. 3~b!, for which an entrance
profile U(X,0,0)5Arg(X,1/r ) is introduced: we computed
the propagation profiles at timest50, t50.0151/r ,t50.05,
andt51.

Our calculations evidence that, at the time at which
transient soliton is expected, the HWHM is unchang
throughout the propagation. It corresponds to the beam
file on the entrance face of the crystal@Fig. 3~b!#. This con-
firms the soliton character of this particular solution
t50.01.

D. Influence of the beam shape on the soliton propagation

The transient soliton solutions exhibit a particular pro
erty: another soliton solution having the same HWHM c
exist, but at another time. For instance the soliton solution

FIG. 1. Convergence to the screening soliton. The calcula
parameters areN51, D50, r 510 with the input profileU(X,00)
5Arg(X,`). ~a! t50, ~b! t50.2, ~c! t50.5, ~d! t51 which is
similar to t5`. ~e! reports a comparison between the screen
soliton profile and the beam profile at the minimum width in~b!. X
goes from232 to 132, Z from 0 to 10.24. In accordance with th
example given in Sec. III, it is important to note the differen
between scaling factorsX0 andZ0 .
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t50.01 has the same HWHM as the solution fort50.05.
This case is reported in Fig. 3, the two profiles of the co
sidered solitons being shown in Fig. 3~e!. Our illustrations
show the beam computed at timet50.05 @Fig. 3~c!# with an
entrance beam profile corresponding to the transient solu
at t50.01. The overfocusing observed evidences that
time t50.05 does not correspond to a soliton propagati
However, the introduction of the beam profile correspond
to the soliton solution att50.05 would have allowed a soli
ton propagation at that particular time. These features
explained by the differences in the profiles of the entra
beams since their HWHM are the same. They conseque
point out the role of the profile shape.

E. Numerical simulation of drift combined with diffusion
transport mechanisms

As previously mentioned, the~111!D theory of solitons
in photorefractive media generally neglects the diffus
term in the band-transport model, which is known to be
sponsible for self-bending effects@5,14#. In this part of the
simulation, the diffusion term has been kept in the wa
equation~2! and is included in the parameterD.

Figure 4 reports the propagation of a laser beam w
initial conditions equivalent to the screening solitons a
with the calculation parametersN51 andr 510 ~as in Fig.
1!, but with D50.1. Our calculations, performed att50,
t50.2, t50.25, andt51, indicate the installation of a pro
gressive bending of the light beam in direction of thec axis
~given by the sign ofD!.

A careful observation of the successive Figs. 4~a!–4~f!
evidences a rather significant self-focusing effect precedin
progressive installation of the bending process in the dir
tion of thec axis. The numerically calculated phenomenon

FIG. 2. Occurrence of a transient quasi-steady-state soliton.
calculation parameters areN51, D50, r 5100 with an input pro-
file equal toU(X,00)5Ar t(X2/r ). ~a! t50, ~b! t50.0252/r , ~c!
t50.25, ~d! t51. X goes from232 to 132, Z from 0 to 10.24.
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in accordance with the previous results given
Christodoulideset al. @14# and Krolikowskiet al. @18#. Fur-
thermore, our calculations also show an asymmetry in
beam profile, with higher intensities on the inside beam c
vature. This feature may have some analogy with the s
steepening effect@15#. Experimental hints of such behavior
have been reported on BaTiO3 @17#.

F. Simulation of optical branching

Several authors discussed the stability conditions of p
torefractive spatial solitons and the robustness of the s
trapped propagation against localized perturbations@19–23#.
Contrary to what happens in Kerr-like media, photorefract
screening solitons are shown to be stable as long as the
terial and the propagation parameters are along the exist
curve@14#. On the other hand, Jeromineket al. @16# observed
propagation of a light beam in photorefractive LiNbO3 ac-
companied with what he called optical branching, name
the division of the optical beam in several branches. It
however, important to point out that the experimental con
tions used by Jerominek correspond to the presence of
negative nonlinearities, responsible for dark solitons.

he

FIG. 3. Evolution through a transient non-quasi-steady-s
soliton. The calculation parameters areN51, D50, r 5100 with
initial conditions U(X,00)5Arg(X,1/r ). ~a! t50, ~b! t50.01
51/r , ~c! t50.055t1 , ~d! t51, ~e! comparison between soliton
profiles att50.01 ~solid line! and att50.05 ~dotted line!, t51. X
goes from232 to 132, Z from 0 to 10.24.
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Figure 5 shows a simulation of that phenomenon by t
ing the initial profile of the screening soliton calculated fro
Eqs.~7! and~8! with N51 andr 510, and usingN55 ~i.e.,
high nonlinearity! and D50.1 for the computation of the
propagation. It can be observed that the beam strongly s
focuses at a distance shorter than the diffraction length
then divides in several branches~or filaments!, propagating
as bending solitons. The bending effect is due to the nonz
value ofD. It is remarkable that the diameter of the branch
is significantly narrower than the initial screening soliton. O
the other hand, the closely neighboring branches develop
teractions between each other@9,10,22#. Additionally, we
can note that the characteristics of the branches seem t
spect the existence curve of the solitons. For instance,
upper branch in the steady state configuration on Fig. 5~d!
can be defined by its ratio to dark irradiancer 51.87 and its
HWHM of 0.9.

The simulation presented in Fig. 6 corresponds to ca
lations equivalent to that of Fig. 5, but with parametersN and
D close to those expected for the BaTiO3 crystal, taking into
account the physical parameters of this crystal. The exte
field applied is equal to 10 kV/cm, the entrance beam w
is 15 mm and the propagation length is about 7 mm. O
calculations evidence quasiperiodic self-focusing, as wel
diffracting branches of smaller intensity bending in the tw
transverse directions. Experiments on photorefrac

FIG. 4. Evidence of beam bending. The calculation parame
are N51, D50.1, r 510, with an input profile U(X,00)
5Arg(X,`). ~a! t50, ~b! t50.025, ~c! t50.05, ~d! t50.15, ~e!
t50.5, and~f! t51. X goes from232 to 132, Z from 0 to 10.24.
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BaTiO3 crystals are on the way and seem to confirm so
elements of our calculations@17#.

It is important to note thatN depends on an arbitrar
space scale factorx0 . Therefore, an increase in the valuers

FIG. 5. Optical branching in photorefractive media. The calc
lation parameters areN55, D50.1, r 510, with an input profile
U(X,00)5Arg(X,`). ~a! t50, ~b! t50.02,~c! t50.25,~d! t51. X
goes from232 to 132, Z from 0 to 10.24.

FIG. 6. Optical branching in photorefractive BaTiO3. The cal-
culation parameters, taken in accordance with the correspon
physical values of BaTiO3 are N52.25, D50.01, r 510. The ap-
plied electric field is 10 kV/cm. The input profile isU(X,00)
5Arg(X,`), the waist being equal to 15mm. ~a! t50, ~b! t50.15,
~c! t50.5, ~d! t51. X goes from232 to 132, Z from 0 to 10.24.
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N can be either seen as an increase of the electric field~or
any other parameter inN! or as a decrease of the scale fact
both interpretations lead to the fact that ifN is increased
whereas the input profile is not changed, the one scree
soliton that can exist is significantly narrower than the inp
profile. Our calculations show that the self-focusing pheno
enon is unstable if the input profile is far wider than t
soliton diameter. Our calculations are confirmed by a sim
bidimensional steady-state prediction by Mamaevet al. @23#

IV. CONCLUSION

In this paper, we evidenced the temporal behavior of p
torefractive self-focusing and spatial solitons through BP
numerical simulations performed on the basis of a~111!D
model of laser light propagation in photorefractive med
Our numerical simulations show the following essential fe
tures.
d
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Our numerical data confirm, by comparison with the e
perimental data@17#, the validity of the space charge fiel
and nonlinear wave equation used. Indeed, the fact to
initial conditions with quasi-steady-state and screening s
tons effectively shows transient occurrence of the qua
steady-state and stable convergence to the screening so
This presents ana posteriori validation of the assumption
made in our previous publications@11,13#.

The simulation establishes a strong stability of the mod
as long as the calculation parameters are close to the so
existence curve. Indeed, it confirms that the~111!D model is
stable. Furthermore, since our calculations satisfactorily
scribe the experimental data, which of course correspond
~211!D system, this indicates that the~211!D system is also
stable and that a~111!D system is able to simulate a re
system with good accuracy.

The model used here allows us, not only to simulate s
ton propagation, but also to study more sophisticated p
nomena such as optical branching.
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