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Moving lattice kinks and pulses: An inverse method
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We develop a general mapping from given kink or pulse shaped traveling-wave solutions including their
velocity to the equations of motion on one-dimensional lattices which support these solutions. We apply this
mapping—by definition an inverse method—to acoustic solitons in chains with nonlinear intersite interactions,
nonlinear Klein-Gordon chains, reaction-diffusion equations, and discrete nonlinear Schro¨dinger systems. Po-
tential functions can be found in a unique way provided the pulse shape is reflection symmetric and pulse and
kink shapes are at leastC2 functions. For kinks we discuss the relation of our results to the problem of a
Peierls-Nabarro potential and continuous symmetries. We then generalize our method to higher dimensional
lattices for reaction-diffusion systems. We find that increasing also the number of components easily allows for
moving solutions.@S1063-651X~99!14305-8#

PACS number~s!: 05.45.Yv, 63.20.Pw, 63.20.Ry
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I. INTRODUCTION

Finding exact traveling-wave~TW! solutions of nonlinear
lattice systems has been a problem of growing interes
recent years. Apart from some integrable systems which s
port TW solutions~e.g., Ref.@1#!, little is known about non-
integrable discrete systems. It appears to be difficult to pr
the existence of such waves because one has to deal
differential equations with advance and delay terms~on
some general properties of these equations see Ref.@2#!. The
existence of acoustic~pulse! solitary waves as traveling
wave solutions in lattices with nonlinear intersite interactio
has been proved in Ref.@3#. However, no proof is available
for other types of solitary waves, for instance, topologi
solitons in nonlinear Klein-Gordon~KG! lattices or other
discrete kink-bearing systems~an exception is given in Ref
@4#!. Stationary breathers have been shown to be generic
lutions for lattice systems~for a review and further refer
ences see Ref.@5#!. Again the question of whether movin
breathers on lattices exist has still not been answered
though a number of approaches to the subject are kn
@6–11#. An exception is the case of the integrable Ablowit
Ladik equation@12#.

Here we approach the TW existence problem from
inverse side—we show that for a given TW profile, corr
sponding equations of motion can be generated, so that t
equations of motion yield the chosen TW profile as a so
tion. This was done first in Ref.@13# for the tanh-shaped kink
and extended to reaction-diffusion-type systems in Ref.@14#.
However, in both cases the analysis was performed fo
specific class of profiles, whereas we will approach this pr
lem from a general point of view. This in turn will allow u
to obtain general information about the properties of the T
solutions.

The structure of the paper is as follows. In Sec. II w
introduce the equations of motion. Section III is devoted
PRE 591063-651X/99/59~5!/6105~11!/$15.00
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solutions of the nonlinear Klein-Gordon equation and
reaction-diffusion-type systems. In Sec. IV we study cha
with nonlinear intersite interactions which admit acous
~pulse! soliton solutions. We will refer to this type of lattic
asacousticchains. In Sec. V we deal with discrete nonline
Schrödinger-type~DNLS! equation. Section VI is devoted t
the structural stability of solitary waves and Sec. VII gen
alizes our method to higher space dimensions. Conclus
are given in Sec. VIII.

II. EQUATIONS OF MOTION

We consider a one-dimensional chain with lattice spac
equal to unity, which describes a system of interacting p
ticles of unity mass. Such a system has a direct phys
meaning and can describe, for example, simple quasi-o
dimensional molecular crystals. The interparticle interact
potential Wn2n8(r ) and the on-site potentialV(u) are, in
general, nonlinear functions:

ün52V8~un!1(
m

Wn2m8 ~un2um!, ~1!

where un is the displacement of thenth particle from its
equilibrium position andm,n are integers. If the second de
rivative ü in Eq. ~1! is replaced by the first derivativeu̇, we
obtain a system of reaction-diffusion equations.

Another system of interest is the generalized discrete n
linear Schro¨dinger equation

i ḟn1C~fn1122fn1fn21!

1F~ ufnu2!~fn211fn11!1G~ ufnu2!fn50 ~2!

which appears in various fields. Herefn(t) is a complex-
valued function andF andG are general nonlinear functions
6105 ©1999 The American Physical Society
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We are not aware of any systematic approach wh
shows the existence or even obtains analytical express
for TW solutions of the equations from above. Therefore
approach the problem from the opposite side. We formu
an inverse method of creating the potentialsV or W or the
pair of functions (F,G) for a given TW solution.

III. SOLUTIONS OF THE NONLINEAR KLEIN-GORDON
EQUATION

For the sake of simplicity let us consider the case of h
monic intersite interactionWn2n8(r )5(Cr2/2)dn,(n861) .
Then the equation of motion~1! becomes the well-known
nonlinear Klein-Gordon equation

ün5C~un1122un1un21!2V8~un!. ~3!

First, let us study the dispersion law for small-amplitu
waves oscillating around some minimumumin of the poten-
tial V(u). After linearizing the on-site potential around th
abovementioned minimum the dispersion law can be writ
as

vq
25g12C~12cosq!, ~4!

whereq is a wave number andg5V9(umin). The group ve-
locity s05]vq /]q attains its maximal valuesmax when
]s0 /]q50:

smax5AC2
Ag214gC2g

2
. ~5!

We are interested in TW solutions, i.e., solutions that pro
gate with a permanent shape and velocity

un~ t !5u~n2st![u~z!, z5n2st, ~6!

wheres is the velocity of the traveling wave. As a result, w
obtain a differential equation with delay and advance ter

s2u9~z!5C@u~z11!22u~z!1u~z21!#2V8@u~z!#.
~7!

A. Moving pulses

First we consider solutions of a bell-shaped localiz
form, i.e., pulses. Given the profileu(z) and its velocitys,
we can generate the on-site potentialV. The functionu(z)
should satisfy the following conditions:

u(z→6`)→0,
u(2z)5u(z),
u(z) is monotonic in@0,1`@ ,
u(z) is analytic in@0,1`@ .

To show that the potentialV can be generated in a uniqu
way, we rewrite Eq.~7! in the following form:

V8@u~z!#[ f @u~z!#

52s2u9~z!1C@u~z11!22u~z!1u~z21!#.

~8!
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Now we see that there exists a unique correspondence
tween the functionu(z) and the force functionf (u). Since
u(z) is analytic, we can always rewriteu(z61) in terms of
u(z). Therefore for eachu(z) with the conditions listed
above the functionf (u) can be uniquely defined. The poten
tial V is then obtained by integratingf (u) once. This result
does not change if we consider a more complicated inte
tion potentialW which incorporates anharmonic terms a
long range interactions. Thus, we showed here, that fo
given interaction potentialW, a given pulse profileu(z)
which satisfies the above conditions and a given velocity
the pulse we always generate a unique on-site potentiaV
which supports this TW profile as an exact solution of t
equations of motion.

What would happen if we lose the symmetry condition
u(z)? Consider two valuesz1 ,z2 at which u(z1)5u(z2).
Consequently, the argument of the force function is also
same. But the right-hand side~RHS! of Eq. ~8! will be dif-
ferent forz1 andz2 in general, which implies that we obtai
two different values for the force function at the sam
argument—a circumstance impossible for standard fu
tions. Thus, we have to require the symmetry ofu(z) which
guarantees that the force function is defined in a unique w
This is also the reason why we can exclude the existenc
more complicated pulse forms such as antisymmetric pul
symmetric pulses with several maxima, etc.

Let us investigate some properties ofV. Since forz→`
u→0 and u9→0, we find that f (0)50 which was to be
expected. To get more information about the dependenc
f (u) for smallu ~which tells us about the stability of the TW
solution! we need the leading order dependence ofu on z for
largez which is given by the ansatz of the TW profile. Let u
assume that our ansatz yields an exponential decay ofu(z)
for large distances, i.e.,

u~z→6`!;e2muzu, m.0. ~9!

After substituting Eq.~9! into Eq. ~8! we obtain

f ~u!.2u@m2s222C~coshm21!#. ~10!

The slope of the forcef (u) for smallu changes its sign when
C crosses the valueC1 given by

C15
s2m2

2~coshm21!
. ~11!

This means that the potentialV(u) has maxima atu50
when C,C1 and minima if C.C1. Consequently, the
asymptotic stateu(z→6`)50 is a dynamically unstable
one forC,C1 and a stable one forC.C1. There is another
critical value@see again Eq.~8!# of C given by

C25
s2u9~0!

2@u~1!2u~0!#
. ~12!

If C.C2, an additional extremum~maximum! in V(u) ap-
pears betweenu50 and u(0). The possible scenariosC1
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C1,C2 and C1.C2 are shown in Figs. 1~a! and 1~b!, re-
spectively. The above statements about stability hold for
exponentially decaying pulse. If the decay is nonexponen
the on-site potential can become nonanalytic atu50. For
example, for a Gaussian tail

u~z→6`!;e2mz2
~13!

the on-site potential for smallu gets dressed with logarithmi
corrections, e.g., form51

f ~u!5V8~u!.uF2s2~214 lnu!12C

2
2C

e
cosh~2A2 ln u!G . ~14!

Note that the solution also exists in the ‘‘anticontinuum
limit C50. This seems to be surprising, since the oscillat
are not interacting with each other. Still in this case we ha
a simple equation

f @u~z!#5s2u9~z!. ~15!

It can be easily noticed from the bell-shaped form ofu(z)
that the functionf (u) is anti-symmetric and has two zeroe
one of which is atu50. Thus, the potentialV(u) has a
maximum at u50 and a minimum at some value 0,u
,u(0) ~see Fig. 2!. The separatrix trajectory corresponds
the motion of each particle from the maximum of the pote
tial V(u) to the right wall and back. This motion needs in
nite time.

It follows that it is possible to prepare the initial phases
all particles on this separatrix such that their uncorrela
motion resembles the motion of a pulse solution through
system. This solution is dynamically unstable beca
V9(0),0.

Finally, we consider possible velocities for exponentia
decaying pulses~9!. We want to check whether our pulse
can be subsonic (s,smax) or supersonic (s,ssmax). Taking
into account that@see Eq.~10!#

FIG. 1. The potentialV(u) for a fixed pulse solution:~a! for
C1,C2 and ~1! C,C1,C2, ~2! C1,C,C2, ~3! C1,C2,C;
~b! for C1.C2 and ~1! C,C2,C1, ~2! C2,C,C1, ~3! C2,C1

,C. The potential is obtained for positiveu values and continued
to negative values for the sake of transparency.
y
l,

s
e

-

f
d
e
e

g5C~coshm21!2
m2s2

2
, ~16!

we compares with smax. Defining s05smax5s we find that
the pulse can be both subsonic and supersonic since in
case

s0
25C

coshm112A~coshm11!222~21m2!

21m2
. ~17!

Consequently for fixedC andm, s has to be small enough t
satisfy C.C1 @see Eq.~11!#, whens(C1).s0. Thus fors0
,s,s(C1) the solutions are supersonic, while fors,s0
they are subsonic.

Let us consider an explicit example of the sech-type p
file. Suppose the profile is described by the function

u~z!5u0 sech~mz!, ~18!

where u0 is the amplitude of the pulse andm its inverse
width. Using the expressions

u9~z!5u0m2@sech~mz!22 sech3~mz!#

5m2Fu~z!22
u3~z!

u0
2 G , ~19!

u~z21!1u~z11!52u0

cosh~mz!

sinh2 m1cosh2~mz!

52u0
2 coshm

u~z!

u0
21sinh2 mu2~z!

,

~20!

we reconstruct the on-site potentialV(u):

FIG. 2. The schematic representation of the pulse solution in
anticontinuum limit.
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V~u!52
1

2
@s2m212C#u21

s2m2

2u0
2

u4

1Cu0
2 coshm

sinh2 m
lnF u0

2

sinh2 m
1u2G . ~21!

It is easy to check that its shape will change withC exactly
as described above. We can rewrite this potential in the
lowing form:

V~u!52
1

2
k2u21

k222C

2u0
2

u41CAa21u0
2 ln~a21u2!,

~22!

where the parameters of the solutions andm are given by

m5arcsinh~u0 /a!, s5
Ak222C

arcsinh~u0 /a!
. ~23!

After proper rescaling constantsC andu0 can be eliminated
and, consequently, we can reduce the number of system
rameters to two. However, we are not able to rewrite
potential V(u) as a function independent from the para
eters of the solution~18!: s,u0 ,m. This means that we canno
yet answer whether the solution~18! comes as a family of
solutions of Eq.~22! or is a unique solution of the obtaine
equations of motion.

B. Moving kinks

Kinks or topological solitons are solutions which conne
two minima of the on-site potentialV(u). If V(u) has sev-
eral equivalent minima, a countable infinite set of station
~time-independent! kink solutions of the Klein-Gordon equa
tion ~3! exists ~in contrast to the space-continuous ca
where the continuum groups of translation symmetry p
vides a smooth family of stationary kink solutions!. Some of
these solutions will be local minima of the total energy, a
some will correspond to saddles. The question whether m
ing kinks as TW solutions~6! exist is still open. Some result
~see, e.g., Ref.@15#! suggest that kinks in discrete lattice
experience a so-called Peierls-Nabarro barrier. One inter
tation of this barrier is that it is the energy difference b
tween stable stationary kinks and unstable stationary kin
Indeed it is clear, that to unpin a stable stationary kink, o
needs at least this amount of energy. Another more soph
cated approach—the collective coordinate approach—
projection technique which aims at accounting for the d
namics of a kinklike object boosted to move along the latti
By coupling the kinks center of mass coordinates
phonons, one arrives at the result that a moving kink w
radiate, lose kinetic energy, and finally be trapped~pinned!
by the lattice. Here the barrier appears as a height of max
in a potential which is used to describe the kink motion.

Nevertheless, the analytical result of Ref.@13# suggests
that it is possible to construct an exact moving kink solutio
This result can be generalized for any profileu(z) that sat-
isfies the following conditions:
l-
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u(z→6`)→6u0,
u(z) is monotonic in ]2`,1`@ ,
u(z) is analytic in ]2`,1`@ .

Contrary to the case of pulse solutions, we do not need
require the functionu(z) to have certain symmetries, so th
we can restrict ourselves to monotonicity only. A nonsy
metric u(z) profile will simply imply a nonsymmetric func-
tion V(u). If the abovementioned conditions are satisfied,
again can uniquely map the functionu(z) onto the potential
V(u). For simplicity, we renormalize the variableu(z) by
the kink widthu(z)→u(z)/u0.

If

u~z→6`!;6~12e2muzu!, ~24!

we can perform the asymptotic analysis similar to the cas
the pulse solution. IfC,C1 @whereC1 comes from Eq.~11!#
it follows that V9(61),0. Therefore the extremal pointsu
561 are maxima and, consequently, the asymptotic gro
statesu561 are unstable. The sign ofV9(61) changes at
C5C1 so that forC.C1 these ground states are stable. A
other criticalC2 value is given by

C25
s2u-~0!

2@u8~1!2u8~0!#
. ~25!

If C,C2 the stateu50 is a minimum and ifC.C2 it is a
maximum and we have the standard double-well poten
For details see Fig. 3.

FIG. 3. The potentialV(u) for a kink solution: ~1! C,C1

,C2, ~2! C1,C,C2, and ~3! C1,C2,C. The potential is ob-
tained for positiveu values and continued to negative values for t
sake of transparency.
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For

u~z!5tanh~mz! ~26!

the explicit form of the potentialV(u) was obtained in Refs
@13# and @14# and can be written as follows:

V~u!5~s2m22C!u22
s2m2

2
u4

2
C

sinh2 m
ln~cosh2m2u2 sinh2m!. ~27!

The existence of such a solution does not imply the abse
of Peierls-Nabarro barrier for stationary kink solutions. W
demonstrate this for the particular case of the solution~26!.
We consider a chain with the on-site potential~27! with pa-
rametersC51, s50.5, m51. Then we calculate two sta
tionary kink solutions, one of which is stable, and the oth
one being a saddle in the energy landscape. Their ene
are E150.991796 andE250.992153, respectively~mea-
sured relatively to the absolute energy minimum!. The non-
zero difference is the Peierls-Nabarro barrier. In fact,
existence of a Peierls-Nabarro barrier already follows fr
the stability of one of the stationary kink solutions, whic
implies that a finite amount of energy is needed to get ou
the minimum.

Furthermore, we are now in possession of a very effec
method to generate equations of motion which support
tionary kinkswithout a Peierls-Nabarro potential, i.e., whe
a stationary kink exists which can be placed anywhere in
chain. Such a system has a degenerated ground state
the constraint of existence of one kink. It can be easily g
erated by puttings50 in the above inverse method, and th
is also true for pulse solutions. Indeed, in the limits→0 we
generate systems which support kinks~or pulses! which
move with infinitesimally slow velocity. As the system
energy conserving and the kinetic energy becomes neglig
in this limit, the ground state becomes nearly degenerate,
a Goldstone mode appears fors50. We tested these predic
tions numerically and obtained excellent agreement. A p
ticular example of a potential supporting kinks with ze
Peierls-Nabarro potential is

V~u!52Cu22
C

sinh2 m
ln~cosh2 m2u2 sinh2 m!, ~28!

which was obtained for a kink solutionu(z)5tanh(mz) from
Eq. ~27! by puttings50. It is interesting to note that War
and Speight@16# also proposed a scheme which genera
systems supporting kink solutions with zero Peierls-Naba
potential. This scheme uses Bogomolnyi’s inequality@17#.
The structure of the potential functions was fixed, but
difference operators were chosen in an appropriate way.
method then generates equations of motion which are ra
hard to justify physically. This is not the case when using o
inverse method scheme.
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C. Reaction-diffusion systems

Let us also consider dissipative systems described by
discrete analog of reaction-diffusion equation of the form

u̇n5C~un1122un1un21!1 f ~un!. ~29!

The physical background of this equation differs from t
above considered nonlinear Klein-Gordon chains but it a
admits localized traveling-wave solutions. These systems
dissipative because we have a first order time derivative
stead of the inertia term. Here the functionf (u) can have
different meanings, for example, an ion current for ner
fibers ~see Ref.@18#!.

These systems lack time reversibility. The equation
TW solutions reads

2su8~z!5C@u~z11!22u~z!1u~z21!#1 f @u~z!#.
~30!

To generate a system for a moving pulse, let us consid
symmetric pulse with one maximum as described in
pulse section of the Klein-Gordon chains. Due to the fi
order derivative in Eq.~30! the left-hand side is antisymme
ric, while the RHS is symmetric. Consequently, we cann
definef (u) in a unique way. Any further complication of th
symmetry of the pulse will not help either. Thus, we co
clude that there exist no moving pulse solutions in Eq.~30!.

However, reaction-diffusion systems~30! support kink
solutions. The nonuniqueness problems disappear as lon
the kink shapeu(z) is a monotonous function. Due to th
first order derivative in Eq.~30! a kink shape moving to the
right with some given velocity will generate a functionf r
different from the functionf l generated by the same kin
moving with the same velocity but to the left.

As an example, let us consider a profileu(z)5tanh(mz).
Performing the abovementioned computations we obtain

f ~u!52sm~12u2!22C
u

11~12u2!sinh2 m
12Cu.

~31!

This result coincides with result of Bressloff and Rowlan
~see Ref.@14#!.

Finally, let us show that we can also obtain moving puls
provided we increase the number of components per s
Indeed consider

u̇n5C~un1122un1un21!1 f ~un ,vn!,

v̇n5C~vn1122vn1vn21!1g~un ,vn!. ~32!

Assumingun(t)5u(n2st), vn(t)5v(n2st) we find

2su8~z!5C@u~z11!22u~z!1u~z21!#1 f @u~z!,v~z!#,
(33)

2sv8~z!5C@v~z11!22v~z!1v~z21!#1g@u~z!,v~z!#.
(34)

Let us choose a certain profile foru(z). Fixing a value of
u5k we obtain a countable set of pointszi

(u) such that
u(zi)5k. Here i is an integer and counts all points. Th



.,

on
es
o

a

tr
he

ap

in

a
es

er
e
nu
s

s
a-

th
e

o

a
he

d
-
s
er

n

on
th

est

re-

e

n

w-
ry

tial
n-

f
s

po-
ll

6110 PRE 59S. FLACH, Y. ZOLOTARYUK, AND K. KLADKO
defines a countable set of functionszi
(u)(u). Similarly we

proceed withv(z). In order to solve the inverse problem, i.e
for given functionsu(z) andv(z) we have only to require

v~zi
(u)!Þv~zj

(u)! if iÞ j , u~zi
(v)!Þu~zj

(v)! if iÞ j .
(35)

This is a weak condition satisfied by most choices ofu and
v. For instance we can even choose symmetric functi
having just one maximum and decaying to zero at infiniti
The only restriction would be to shift the centers of the tw
functions apart, e.g.,v(z)5u(z2z0) for a givenu(z). But
also asymmetric functions with even several maxima are
lowed. Also possible is a symmetric function foru(z) having
one maximum and decaying at infinities, and an asymme
function forv(z) having the same other properties—with t
maxima of both functions coinciding (z050). It is a tedious
work to calculate examples, so in most cases it will be
propriate to obtain the functionsf and g numerically. The
reason for the easy construction of two-component mov
pulses is that we introduce two functionsf ,g of two vari-
ables, but determine them only on a line in their phase sp
$u,v%. That means that we do not completely define th
functions.

Adding a third component to the problem clearly furth
relaxes the conditions on the pulse forms. The existenc
two component pulses is partially known for space conti
ous systems@19#. Note that our inverse method works a
well in the space continuous case, i.e., where difference
the form un1122un1un21 are replaced by second deriv
tives.

Why not do the same for conservative systems? Then
functionsf ,g will be the components of the gradient of som
generating function~e.g., a potential!. Thus, we have to im-
pose this gradient condition, which will restrict the choice
functionsu,v.

IV. ACOUSTIC CHAINS

Now let us study systems which support acoustic~pulse!
solitary waves. In these systems the on-site potential is
sent @V(u)50# and the solitary waves appear due to t
nonlinearity of the interaction potentialW(r ). First of all, we
introduce the relative displacements,r n5un112un . In these
terms the equations of motion take the form

r̈ n5W8~r n11!22W8~r n!1W8~r n21!. ~36!

For TW solutionsr n(t)5r (n2st)5r (z) one can write

W8@r ~z11!#5s2r 9~z!12W8@r ~z!#2W8@r ~z21!#.
~37!

As shown in Ref.@3#, in such a lattice localized bell-shape
traveling-wave solutions can exist ifW(r ) has a hard anhar
monicity in the regionr ,0. Note that the acoustic soliton
correspond to a localized contraction of the chain and th
fore the functionr (z) should be completely negative.

It is evident by following the above line of argumentatio
for Klein-Gordon chains, that the pulser (z) has to be sym-
metric and must have only one maximum. Any deviati
from this leads to a nonuniqueness in the definition of
s
.

l-
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potential. This implies that acoustic chains admit at the b
moving kink solutions~nontopological! in the original vari-
ablesun(t), and even these kink solutions have to have
flection symmetry.

Suppose the functionr (z) satisfies the conditions for th
pulses given in Sec. III A. Then due to the symmetry ofr (z),

W8~r 1!5W8~r 0!1
1

2
s2r 9~0!, ~38!

where r 05r (0), r 15r (1). In order to find the unknown
function W8(r ) we have to solve the initial value problem
~37! where the initial condition should be the functionW8(r )
on the intervalr 0,r ,r 1. If W8(r ) is defined on this inter-
val, using Eqs.~37! and~38!, one can construct the functio
W8(r ) for r .r 1 which will be uniquely defined~see Fig. 4!
for eachW8(r ). This means that we can chooseW8(r ) in
@r 0 ,r 1# arbitrarily.

Therefore we find that for given$r (z),s% a countable in-
finite dimension of the space of solutionsW(r )PC2 exists.
Each function from this set supports one and the samer (z)
as an exact solution with one and the same velocity. Ho
ever, the function constructed in this way from an arbitra
initial value will be nonanalytic in general~it is easy to show
that all functions will be twice differentiable!.

To avoid the problem of generating nonanalytic poten
functions, we found another way of constructing the pote
tial. Supposer (z) is a pulse. ThenW8@r (z)#[r(z) is also a
pulse. Let us rewrite Eq.~37! as

r 9~z!5
r~z11!22r~z!1r~z21!

s2
. ~39!

Now instead of definingr (z) we definer(z) ~symmetric
bell-shaped pulse!. If this function is analytic, the RHS o
Eq. ~39! is also analytic. Then simply integrating this rh
twice, we find an analytic functionr (z) which is also of a

FIG. 4. The schematic representation of the creation of the
tentialW(r ) for acoustic chains. Different initial value choices wi
generate different potentials for one and the same TW profile.
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bell-shaped form providedr(z) decays for largez faster than
1/z2. Having r as a function ofr ~on a half axisz) we can
invert this dependence and considerr as a function ofr. This
gives us the force functionW8(r ). Notice that by that we can
avoid generating nonanalytic potentials.

Finally, let us take a look at the asymptotic behavior
the solitary solution. Supposer(z);e2mz for z→` and
W8(r ).Cr for r→0. Linearizing Eq.~6!, we obtain

s2

C
52

coshm21

m2
.1. ~40!

Thus, each moving acoustic soliton is supersonic.
In the following example we will illustrate how to con

struct the interaction potential from a given solution profi
Supposer(z)5r0 sech4(mz). We substitute it into the RHS
of Eq. ~39! and integrate it twice. Using the formula

E E sech4~mz!dz dz52
1

6m2 cosh2~mz!

1
2

3m2
ln@cosh~mz!#1K1z1K2

~41!

we calculate the functionr (z). In order to satisfy the bound
ary conditions, we putK150, K250. As a result, we obtain

r ~z!5
r0

3s2m2 F ln j~z!1Ar~z!

r0

3S 12
2~sinh2 m21!2j~z!

j2~z!
D G ,

j~z!511Ar~z!

r0
sinh2 m. ~42!
e
e

an

e
of
ble
f

.

We cannot express the force functionW8(r ) explicitly from
the above formula, but we have the inverse relationr (z)
5D@r(z)#, whereD is a function inverse toW8. The poten-
tial W(r ) can be calculated numerically.

V. BREATHERS OF THE DNLS-TYPE EQUATIONS

Here we study a general nonlinear chain governed by
~2!. It is already known that these systems have stand
breather solutions~see, e.g., Ref.@20#!. The standing breathe
is defined as a spatially localized solution which is perio
in time. The general breather solution with frequencyv, ve-
locity s, and wave numberq can be chosen to be

fn~ t !5F~n2st,Vt !, F~x→6`,y!→0,

F~x,y!5F~x,y12p!. ~43!

Periodicity of F(x,y) in y allows us to expand it into a
Fourier series:

F~x,y!5(
k

Fk~x!eikVt. ~44!

For DNLS systems these solutions may have only one n
zero Fourier harmonic with respect to time. Since the DN
equation has a gauge symmetryfn(t)→eivtcn(t), we can
actually always transform a breather solution into a stati
ary pulse solution~note that this is not possible for breath
solutions of, e.g., Klein-Gordon or acoustic chains!. As a
result Eq.~2! can be rewritten as

i ċn1kcn1C~cn111cn21!

1F~ ucnu2!~cn211cn11!1G~ ucnu2!cn50, ~45!

where k52v22C. Then we can definecn(t)5R(z)
1 i I (z), z5n2st, where the functionsR and I are real.
Separating real and imaginary parts of Eq.~45! we obtain the
unknown nonlinear functionsF andG expressed in terms o
breather envelopeR and I and breather parameters
F@R2~z!1I 2~z!#52C1
@R2~z!1I 2~z!#8

2$R~z!@ I ~z21!1I ~z11!#2I ~z!@R~z21!1R~z11!#%
, ~46!

G@R2~z!1I 2~z!#52k2
s

R~z! F I 8~z!2
@R2~z!1I 2~z!#8

2$I ~z!2@ I ~z21!1I ~z11!#/@R~z21!1R~z11!#R~z!%G . ~47!
ted
he
-

d

We are interested in symmetric profiles, i.e.,u(z)
[AR2(z)1I 2(z)5u(2z) in order to ensure single valu
properties of the functionsF,G. It is easy see that the profil
is symmetric and bell-shaped if, e.g., bothI (z) andR(z) are
symmetric or one of these functions is symmetric and
other one is antisymmetric. The lhs of Eq.~46! is symmetric.
If R and I are symmetric, the functionsR(z21)1R(z11)
andI (z21)1I (z11) are also symmetric and the derivativ
of R2(z)1I 2(z) is antisymmetric. Consequently, the RHS
this equation is antisymmetric. Obviously, this is possi
only for a trivial solutioncn(t)50.
-

Clearly moving solutions seem to have more complica
internal structures, as known from the solutions of t
Ablowitz-Ladik system@12#. These solutions can be repre
sented in the following form:

fn~ t !5un~ t !ei (qn2vt)5u~z!ei (qn2vt), z5n2st,
~48!

whereu(z) is a real envelope amplitude,s is breather veloc-
ity, q its wave number, andv its frequency. Substituting this
ansatz into Eq.~2!, we obtain two equations for real an
complex parts:
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~v22C!u~z!1cosq$C1F@u2~z!#%

3@u~z21!1u~z11!#1G@u2~z!#u~z!50, ~49!

2su8~z!1sinq$C1F@u2~z!#%@u~z11!2u~z21!#50.
~50!

After straightforward calculations the unknown nonline
functionsF and G can be expressed in terms ofu and the
system parameters

F@u2~z!#52C2
s

sinq

u8~z!

u~z11!2u~z21!
, ~51!

G@u2~z!#52~v22C!2cosq$C1F@u2~z!#%

3
u~z21!1u~z11!

u~z!

52~v22C!2
s

tanq

u8~z!

u~z!

u~z21!1u~z11!

u~z11!2u~z21!
.

~52!

If the envelope functionu(z) satisfies the conditions

u(z→6`)→0,
u(2z)5u(z),
u(z) is monotonic in@0,1`@ ,
u(z) is analytic in@0,1`@ ,

we can postulate again~similarly to Secs. III and IV! that for
any envelopeu(z) defined as above and the set of parame
(s,q,v) one can uniquely define the nonlinearity for th
equation given by functionsF andG.

Examples. Let us consider the particular case whenu(z)
5u0sech2(mz). Substituting this expression into Eqs.~51!
and ~52!, we obtain functionsF andG:

F~u2!52C1
sm

sinq sinh 2m F11
sinh2 m

u0
uG2

, ~53!

G~u2!52~v22C!2
2sm

tanq sinh 2m S cosh 2m2
sinh2 m

u0
uD .

~54!

~1! The Ablowitz-Ladik equation. Let us look at the par-
ticular case whenG[0. In this case we have only one un
known nonlinear functionF. After simplifying the ansatz
~51!, ~52! we obtain

u8~z!

u~z!
52

~2C2v!tanq

s

u~z11!2u~z21!

u~z21!1u~z11!
, ~55!

F@u2~z!#52C1
~2C2v!u~z!

cosq@u~z21!1u~z11!#
. ~56!

In the particular caseu(z)5u0 sech(mz) we obtain the
quadratic function

F~u2!52C1
2C2v

2 cosq coshm F11
sinh2 m

u0
2

u2G . ~57!
r

rs

We assume

2C2v

2 cosq coshm
5C,

2C2v

2 cosq coshm

sinh2 m

u0
2

5
l

2
, l.0.

~58!

Equation~55! yields

2C2v5
sm

tanq tanhm
. ~59!

We can rewrite these equations in more common way,
pressing the parameters of the solutions, v, andu0 through
q andm:

u05A2C

l
sinhm, v52C@12coshm cosq#,

s52C
sinhm

m
sinq. ~60!

This corresponds to the well-known integrable Ablowit
Ladik equation.

~2! DNLS with local nonlinearity. Now let us look at a
well-known equation of the DNLS family. In the case o
F(u2)[0, we have

i ḟn1C~fn1122fn1fn21!1G~ ufnu2!fn50. ~61!

We substitute the ansatz~48! and consider Eq.~49! that for
this particular case takes the following form:

u8~z!5a@u~z11!2u~z21!#, a5
C sinq

s
. ~62!

The absence of a to be defined function in this equat
makes this equation an equation for the pulse shape. Le
show that a pulse shaped functionu(z) cannot satisfy Eq.
~62!. Suppose first that our solutionu(z) is periodic with
some large periodL. In this case we can expand the solutio
into Fourier series

u~z!5 (
m52`

1`

um expS im
2p

L
zD . ~63!

Substituting this expansion into Eq.~62! we obtain the alge-
braic equation

m
2p

L
52a sinS m

2p

L D , ~64!

wherem is unknown integer. The equationx52a sinx al-
ways has a finite number of roots for any nonzeroa. Sincem
is integer, we can actually solve Eq.~64! only for some spe-
cific values ofa. This does not depend onL, so we can
consider the limitL→`. A pulse solutionu(z) would re-
quire an infinite number of nonzero harmonics in Eq.~63!.
Therefore it is impossible to satisfy Eq.~62! with a pulse
shapedu(z). Consequently, Eq.~61! does not admit moving
breathers.
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It appears not to be possible to extend this method
systems such as acoustic or KG chains. Note, that the s
trum of a DNLS breather consists only of one frequency a
therefore can be transformed into two differential dela
advance equations while acoustic-KG breathers will have
infinite number of harmonics and obviously cannot be
written as a countable number of retarded and advan
ODE’s.

VI. CONTINUATION OF MOVING SOLUTIONS
FOR CONSERVATIVE SYSTEMS

Let us discuss the question, whether a conservative
tem which allows for a certain moving solution and has be
generated by our inverse method, has this solution as
isolated one, or as a part of a smooth family of solutions
other words, we consider a given moving solution, gene
the equations of motion, and search in the phase space v
ity of our solution for other moving solutions. That calls fo
a linear stability analysis of the phase space flow around
given moving solution. Since our solution has some unifo
asymptotic ground state~we assume that the parameters a
such that the uniform asymptotic state is a ground state,
discussions above!, we know that a part of the linear stabilit
analysis spectrum will be given by just solving the eige
value problem of linearized fluctuations around the grou
state. The eigenvectors will be plane wavesei (qn2vqt) ~they
will be deformed in the center of our moving solution! and
their spectrum is given by some dispersion relationvq . Note
that due to space discretenessvq is periodic in q. Let us
search forq values for which the plane wave can be cast in
the form

ei (qn2vqt)5hq~n2st!. ~65!

This is possible if

qs5vq . ~66!

Consider first the case of an acoustic chain. For smallq we
havevq5vq with v,s ~because all moving solutions wi
be supersonic, see discussions above!. Consequently, there i
only the trivial solutionq50 of Eq. ~66!, which simply cor-
responds to a shift of the center of mass of the acou
chain. We can always work in the frame where the cente
mass is resting at zero. Consequently, for acoustic chain
do not find plane waves which move with the same veloc
as the original solution. That implies that there are no sm
perturbations of our solution which have plane wave asym
totics and yield again a moving solution. Thus, we conclu
that if moving solutions are coming in families, all solution
on the family will be localized in space.

Consider now the case of an optical chain~KG case!.
Sincevq50Þ0, we will always find at least one nonzeroq
value~in general it will be a finite number ofq values which
tends to infinity ass→0) which solves Eq.~66!. In that case
we do know that there will exist perturbations with pla
wave asymptotics which deform our original localized mo
ing solution into a partly delocalized one, which is now
addition characterized by a nonzero amplitude in the asy
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totics ~i.e., the kink has oscillating tails atuzu→`). Some
numerical results that confirm the abovementioned ar
ments are given in Ref.@21#.

To further analyze this, we performed a numerical co
tinuation of a moving solution using the pseudospec
method which is essentially a Newton method inq space
~see, e.g., Refs.@22,23#!. We chose the moving kink solution
~26! which yields the potential~27!. The numerical method
traces the phase space of the system for moving solut
nearby the starting one with slightly changed velocities a
shapes. In Fig. 5 we show the dependence of the amplitudA
of the asymptotics versus velocitys. We indeed find that our
chosen solution ~26! „with C51, m5 ln(11A2), s
51/@A2 ln(11A2)#.0.802278 in this particular case… can
be continued, but it thus gets dressed with plane wave
ymptotics. The change of sign in the amplitude implies
phase change from 0 top. A slightly changed potential will
exhibit similar solutions but with slightly shifted curves i
Fig. 5. Thus, it follows that the moving solution with un
form asymptotics is structurally stable, i.e., has a similar
lution with uniform asymptotics for slightly changed equ
tions of motion. This follows from the fact that the crossin
of the A(s) curve in Fig. 5 withA50 is a generic intersec
tion.

VII. MOVING PULSES IN HIGHER LATTICE
DIMENSIONS

So far we have been discussing moving pulses and k
in one-dimensional lattices. In this chapter we will show th
the inverse method can be easily generalized to higher s
dimensions for reaction-diffusion equations, provided
take into account two or more components.

Let us consider a two-dimensional lattice. The functi
un(t) will now depend on two lattice indicesum,n(t). The
differences (un211un1122un) will now turn into some
general discrete LaplaciansD(um,n). Assuming a moving so-
lution in the form

um,n~ t !5u~m2sxt,n2syt ![u~x,y! ~67!

we arrive at the equations

2sxu,x2syu,y1D@u~x,y!#5 f ~u!. ~68!

FIG. 5. Dependence of the amplitude in the asymptotics o
moving kink on the velocity for a given equation~see text!.



o
ad
it

s

nd
e

th
va

e
th
e

ym
te
th
io

ns
th
ls

on
ird
he

m

ac
ie

i
e
e
-
-
o

S
er
o

g
-

-

m-
e
ne
of

t-

po-
o-

in

ear
ices

m

on
ite

ear
en-

ntial
n
ave
We
not

ve-
S-

and

s.
os-
nd
on
s in
lize

find
lso

ems
sys-

ily
ry

6114 PRE 59S. FLACH, Y. ZOLOTARYUK, AND K. KLADKO
Fixing a value ofu we obtain a line in the$x,y% space and
since the RHS should not change, the LHS should be c
stant on this line—a very restrictive condition. If we inste
consider two components moving in the same directions w
same velocities, the equations become

2sxu,x2syu,y1D@u~x,y!#5 f ~u,v !, ~69!

2sxv ,x2syv ,y1D@v~x,y!#5g~u,v !. ~70!

Again fixing a value foru we obtain some line in$x,y%. If
we consider functionsu,v decaying to zero at infinities, thi
line will be a closed loop. Let us assume thatv is not con-
stant on the loops of constantu. That helps, but still if we fix
some point on the loop with some given value ofv there will
be a countable number of other pointspi on the loop where
v takes the same value. Then the LHS’s of Eqs.~69! and~70!
have to be equal in these points. We can satisfy this co
tion by demanding two symmetries but only in the case wh
we have onlytwo points pi . First our pulse functionsu,v
should be invariant under reflections at a line parallel to
direction of motion. This ensures that the first order deri
tives on the LHS’s of Eqs.~69! and~70! will be the same in
all pi . To ensure invariance of the Laplacians inpi we only
have to demand that the chosen direction of motion~defined
by sx ,sy) is parallel to a reflection symmetry line of th
lattice. For instance, for a square lattice these will be only
major lattice axes and the diagonals. The initially assum
condition thatv varies along the loop of constantu can be,
e.g., easily satisfied by considering pulses which are s
metric under point reflections and whose symmetry cen
are shifted along the line of motion. Note that contrary to
one-dimensional case the inverse method yields the funct
f ,g in a two-dimensional part of their phase space$u,v%.

What if we add a third component? The conditio
weaken again, similarly to the case of two components in
one-dimensional lattice. For instance, one can design pu
where two components are invariant under point reflecti
with centers shifted along the line of motion, and the th
component will be off-centered from the line connecting t
two first centers.

Let us consider a three-dimensional lattice and two co
ponents. Fixingu we now obtain a closed surface in$x,y,z%.
Requiringv to generally vary on this surface, we find thatv
will stay constant at least on loops embedded on the surf
Since the lattice is invariant only under discrete symmetr
we cannot satisfy invariance of the LHS’s of equations sim
lar to Eqs.~69! and ~70! on this loop. Consequently, ther
exist no moving two-component pulses in a thre
dimensional lattice~and straightforwardly in any higher
dimensional lattice!. This is in contrast to the space
continuous case, where space is invariant under continu
symmetries. Then we can satisfy the invariance of the LH
along the loop trivially if both pulses are invariant und
rotations around a line pointing in the direction of their m
tion. The initial condition thatv is constant only on loops
~not on the whole surface! is easily obtained by considerin
pulses u,v with shifted centers, just as in the two
dimensional case.

Adding a third componentw to the three-dimensional lat
tice case reduces the problem of constantv andw on a loop
n-
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to that in a countable set of pointspi . Still we need a sym-
metry to ensure invariance of LHS’s in the pointspi . This is
easily achieved in the case when we have only two pointspi
by demanding two symmetries. First we need all three co
ponentsu,v,w to be invariant under reflection at a plan
which contains the direction of motion. Secondly this pla
has to be parallel to any mirror reflection symmetry plane
the lattice. Again the initial condition of having just coun
able sets of pointspi with coinciding values$u,v,w% can be
achieved by shifting the centers of the three pulse com
nents apart while staying on one line—the direction of m
tion. For instance, for a cubic lattice with lattice points atx
5 l , y5m, z5n and l ,m,n integer reflection symmetry
planes are$x,y,0%, $0,y,z%, $x,0,z%, $x,6x,z%, $x,6z,z%,
$x,y,6x% among possible others. Any vector embedded
these planes is an allowed moving direction.

VIII. CONCLUSIONS

In this paper we have studied several types of nonlin
lattice systems. Contrary to most papers on nonlinear latt
where authors try to find a solution~either analytically or
numerically! of the given system, we approach the proble
from the opposite side—we look for the system~in fact, for
the interaction and/or on-site potentials! which admits some
specific solution.

We have studied kinks and pulses in the Klein-Gord
system, acoustic solitons in chains with nonlinear inters
interactions and discrete breathers in the nonlin
Schrödinger-type systems. In all these cases the method
ables us to generate a unique on-site or interaction pote
for a given pulse or kink and its velocity if this solutio
satisfies certain conditions. As a particular result, we h
shown that the acoustic solitons are always supersonic.
also conclude that nonzero Peierls-Nabarro barrier does
prevent discrete kinks from propagating with constant
locities. In the case of discrete moving breathers in DNL
type systems we create nonlinear terms in Eq.~2! for given
envelope profile and breather frequency, wave number,
velocity.

Our method is equally well suited for dissipative system
Systems of coupled reaction-diffusion equations do not p
sess one important property which is time reversibility a
therefore despite being closely related to the Klein-Gord
type equations, do not have pulse traveling-wave solution
the one-dimensional case for one component. We genera
the search for pulses to higher lattice dimensions and
that moving pulses can be easily obtained provided we a
increase the number of components.

All presented results can be easily extended to syst
with longer range interactions, and to space continuous
tems~i.e., to partial differential equations!. Note that the con-
tinuum limit of the considered difference equations is eas
recovered by choosing solitary wave profiles which va
slowly along the lattice.
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