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Theory of modulational instability in Bragg gratings with quadratic nonlinearity
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Modulational instability in optical Bragg gratings with a quadratic nonlinearity is studied. The electric field
in such structures consists of forward and backward propagating components at the fundamental frequency and
its second harmonic. Analytic continuous wave~CW! solutions are obtained, and the intricate complexity of
their stability, due to the large number of equations and number of free parameters, is revealed. The stability
boundaries are rich in structures and often cannot be described by a simple relationship. In most cases, the CW
solutions are unstable. However, stable regions are found in the nonlinear Schro¨dinger equation limit, and also
when the grating strength for the second harmonic is stronger than that of the first harmonic. Stable CW
solutions usually require a low intensity. The analysis is confirmed by directly simulating the governing
equations. The stable regions found have possible applications in second-harmonic generation and dark soli-
tons, while the unstable regions may be useful in the generation of ultrafast pulse trains at relatively low
intensities.@S1063-651X~99!03005-6#

PACS number~s!: 42.65.Tg
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I. INTRODUCTION

Optical parametric systems have attracted considerabl
tention in recent years. This is partly through obvious ap
cations to second-harmonic and subharmonic generation
also because they support a large range of multidimensi
solitary wave solutions or ‘‘simultons,’’ of both topologica
and nontopological nature@1–16#. The major difference be
tween a simulton and a Kerr type soliton is the source
nonlinearity. The nonlinear effect in forming a simulton
rooted in the parametric process in which two waves of d
ferent frequencies interact strongly through thex (2) nonlin-
earity, while that of a Kerr soliton is due to the nonline
refractive index. The different mechanism of providing no
linearity in parametric systems offers two key advanta
over Kerr systems. First, the parametric nonlinear effect
be much stronger than the Kerr effect. Thus a much low
input power is required to launch solitary waves. Seco
solitary waves in more than one dimension do not usu
exist in a nonsaturating Kerr system, but are supported
parametric systems.

These two advantages have a potential impact on both
theory and applications of optical solitons. For example,
quantum optics, a strong nonlinear effect translates to a la
effective binding energy between photons. It was sho
theoretically that a quantum simulton consisting of only tw
photons can exist@17#. Combining the low power require
ments and multidimensionality of simultons, a compact
trafast all-optical switching device which is not phase sen
tive was recently proposed@18#.

Much progress has been made on simulton experime
The existence of spatial simultons were experimentally c
firmed in 1995@19#. Recently, temporal simultons have al
been observed@20#. The reason that temporal simultons we
observed later is that material dispersion is normally sm
PRE 591063-651X/99/59~5!/6064~15!/$15.00
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which means that the formation distance of a simulton
often longer than the length of available materials. This d
ficulty can be overcome by mixing diffraction into dispersio
by tilting the wave front@20#, or by ‘‘writing’’ a Bragg grat-
ing into the material, to create a ‘‘gap simulton.’’ The r
ported experiment takes the first approach@20#. However,
the main focus of this paper is the second approach, wh
not only offers the opportunity of engineering the dispersio
but also supports solitons with new physics. For examp
gap simultons can propagate at a speed much lower than
speed of light~even zero speed!. Using Bragg gratings to
create strong dispersion is well known in Kerr systems@21#,
but applying this technique to parametric systems has o
been studied recently@22–25#. We term the parametric sys
tem with Bragg gratings a ‘‘parametric band-gap system
@22,23#. Encouragingly, theoretical studies have proven
existence of bright simultons in a parametric band-gap s
tem not only in one dimension@22–25# but also in two- and
three dimensions@22,23#. In one dimension, dark simulton
are also found@22–25#.

In this paper we study the modulational instability~MI ! of
continuous electromagnetic waves in the the parame
band-gap system, for a number of reasons. The first of th
is that MI in the closely related problem of a grating with
Kerr nonlinearity has proven interesting, and has led to
tential applications of such structures as tunable pulse g
erators@26#. Second, the absence of MI is a necessary c
dition for the stable copropagation of second-harmonic a
subharmonic fields, and hence for the stability of dark sim
tons. Since these applications of our work are outside
scope of this paper, our main objective here is to solve
one dimensional coupled parametric band-gap equations
continuous wave~CW! solutions and to determine their sta
bility.

Modulational instability of a parametric system witho
gratings has been studied previously Refs.@14,27,28#. Full
6064 ©1999 The American Physical Society
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PRE 59 6065THEORY OF MODULATIONAL INSTABILITY IN BRAGG . . .
analytical results were reported in@28#. This system is de-
scribed by a pair of coupled equations, whose modulatio
instability is a function of only two parameters: the ratio
dispersions at the fundamental and second harmonic and
phase mismatch between the two waves. MI in a Kerr sys
with gratings was studied@29,30#, also leading to a set of two
coupled equations, but for the forward and backward pro
gating modes. The stability of parametric simultons in t
Kerr limit has also been studied@38#. In contrast to this
work, a parametric band-gap system is described by f
coupled equations whose modulation instability is a funct
of five parameters, that will be discussed below. The d
bling of the number of equation and the addition of extra f
parameters greatly increase the level of complexity of the
problem in the new system. Even solving the equations
CW solutions is not trivial. Nevertheless, the modulation
instability of a band-gap parametric system is treated here
combining both analytical and numerical approaches. To
the results of modulational instability analysis, the fu
coupled equations are simulated directly using two differ
methods@31,32#.

The paper is organized as follows: we introduce
coupled parametric band-gap equations in Sec. II. The
coupled equations are then solved for CW solutions in S
III. Details of MI analysis are given in Sec. IV. Physic
interpretations using approximate techniques, together w
numerical results, are given in Sec. V. Finally, methods
numerical simulations and results are presented in Sec.

II. COUPLED PARAMETRIC BAND-GAP EQUATIONS

A parametric band-gap system is indicated schematic
in Fig. 1, which shows a nonlinear waveguide with mod
lated refractive index, and two sets of counterpropaga
fields. We consider a degenerate parametric process.
waves of different frequencies are involved: the first h
monic or the fundamental harmonic~FH! and the second
harmonic~SH!. We denote the carrier frequencies of the F
and SH byv1 and v2, respectively, wherev252v1. Each
has two possible propagation directions; we just cons
one-dimensional waveguides without additional transve
effects. Devices of this type have been fabricated in exp
ments for efficient second-harmonic generation@33#. For
simplicity, we take the waveguide to be infinitely long. W
thus do not need to consider boundary conditions, wh
play important roles in bistability and other effects. O
course, though any actual system is finite, the results of s
analysis still give valuable insight@37#. In practice one may
only need to introduce one of the four fields as inputs
obtain a steady state, as either fundamental field can gen
photons in the other three modes.

The system is similar to the doubly resonant optical pa

FIG. 1. Schematic of the double band gap system, combin
refractive-index modulation with a quadratic nonlinearity.
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metric oscillation~OPO! cavity system, which has been ex
tensively studied in theory and experiment@34,35#. In the
case considered here, however, there is a continuum of
gitudinal modes, which must be treated using a set
coupled parametric band-gap equations. The detailed de
tion of the equations in the shallow grating limit can b
found in Ref.@22#. A more rigorous derivation has extende
the results to deep gratings@36#. Here we consider shallow
gratings only.

For a quasimonochromatic electric field inside Bra
gratings, we can write the solutions to Maxwell’s equati
for fields aroundv1 ,v2 as @22#

E5 (
j 51,2

(
6

ejAj 6~z,t !e6 i jk 1z2 iv j t1c.c., ~2.1!

whereej are unit vectors indicating polarization direction
the sign6 represents right or left propagation, andjk1 is the
effective wave number of the corresponding carrier field. A
suming type-I phase matching, the Bragg grating structur
given ase j (z)5 ē j@11D j (z)#, whereē j is the spatial aver-
age ofe j (z) and j 51 and 2. Note thatē1,2 ~andD1,2) differ
due to material dispersion. We considerD j (z) to be the small
parameter here because of the shallow grating assump
and the results are expanded in terms of a small param
D.D j (z). Here the permittivitye j (z) is a periodic function
with a period ofd. We can expande j (z) in a Fourier series,
with

D j~z!5(
l

D j l exp~2i lk 1z!1c.c., ~2.2!

where D j l are in general complex coefficients, andk1
5p/d. Note that we have chosen the carrier wavenumbe
the FH to be the same as that of the grating. The car

frequency isv15k1 /Am0ē1, and the carrier wave number o

the SH isk252Am0ē2v1. We definedk5k222k1!k1, the
phase mismatch due to material dispersion.

With the above definitions, a parametric band-gap sys
is described by the following coupled equations@22#:

i F 1

vg
~1!

]

]t
1

]

]zGA111k1A121xEA11* A2150,

i F 1

vg
~1!

]

]t
2

]

]zGA121k1*A111xEA12* A2250,

~2.3!

i F 1

vg
~2!

]

]t
1

]

]zGA211dkA211k2A221xEA11
2 50,

i F 1

vg
~2!

]

]t
2

]

]zGA221dkA221k2*A211xEA12
2 50,

where xE 5 v1
2x̃ (2)/(k1c2), x̃ (2e1* •x(2)

•e1* e25e2* •x(2)
•e1e1, and

k j5 jk1D j j /2. To simplify the equations, we can alway
choose the phases ofej so thatxE is real. We neglect group
velocity dispersion of the medium, as this is usually mu
smaller than the grating dispersion. However, we have

g
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cluded the difference in material group velocities betwe
the two carriers, as this is not always negligible.

To reduce the number of free parameters, it is conven
to normalize Eqs.~2.3!. Generally speaking, the phase d
ference between both gratings can be arbitrary. This me
that bothk1 and k2 are complex. Here we only conside
cases in which the gratings are either in phase or ou
phase. Thus bothk1 and k2 can be made real by choosin
the origin of the coordinate correctly. In fact, we chose
origin such thatk1 is real and positive. With these choice
we introduce the relations

A165
k1

xE
Avg

~1!

vg
~2!

V16 ,

A265
k1

xE
V26 ,

~2.4!
j5k1z,

t5vg
~1!k1t.

Substituting these definitions into Eqs.~2.3! gives the nor-
malized equations

i S ]

]t
1

]

]j DV111V121V11* V2150,

i S ]

]t
2

]

]j DV121V111V12* V2250,

~2.5!

i S ]

]t
1r v

]

]j DV211rV211gV221V11
2 50,

i S ]

]t
2r v

]

]j DV221rV221gV211V12
2 50,

wherer v5vg
(2)/vg

(1) is the ratio of group velocity of the FH
and the SH,r5r vdk/k1 is a normalized phase mismatc
and g5r vk2 /k1 is the ratio of the grating strengths at S
and FH. The number of free parameters of our equati
hence reduces to three.

III. CW SOLUTIONS

CW solutions to Eqs.~2.5! can be written in the genera
form

Vj 65aj 6e2 i j Vt1 i jQ j, j 51,2, ~3.1!

whereaj 6 are complex amplitudes,V is the frequency, and
Q is the wave number of the CW solution. Substituting t
above ansatz into Eqs.~2.5!, we have

a11~V2Q!1a11* a211a1250,

a12~V1Q!1a12* a221a1150,
~3.2!

~2V22r vQ1r!a211ga221a11
2 50,

~2V12r vQ1r!a221ga211a12
2 50.
n
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From Eq.~2.5!, one notices that ifaj 6 are solutions, then
aj 6ei j u, whereu is a constant phase factor, are also so
tions. This symmetry indicates that we can always choosu
such that one ofaj 6 is real. Takinga11 to be real together
with Eq. ~3.2!, one can show thata12 is also real unless a
very specific relationship amonga11 ,g,V,Q and the real
part ofa12 is satisfied. Thus, for a given set of parameters
can only occur for a specified intensity. We do not consid
such nongeneric behavior here. Once we have takena16 to
be real, it is trivial to deduce from Eq.~3.2! thata26 are also
real.

To understand the physical meaning of the various par
eters, we consider the linear version of Eq.~3.2!. That is Eq.
~3.2! without the nonlinear terms. Two uncoupled linear d
persion relationships can be obtained from the linear eq
tion. For clarity, the two dispersion relationships are sho
in Fig. 2 for r v51. It shows the local frequencyV versus the
local wave numberQ at the fundamental gap~left-hand
side!, and the second-harmonic gap~right-hand side!. In our
normalized parameters, the fundamental gap has a widt
two units, whereas the second harmonic gap has a widt
2ugu, and has an offset of2r. The horizontal long-dashed
lines indicate a fundamental frequency~left-hand side!, and
its second harmonic~right-hand side!.

To obtain nonlinear CW solutions, we still need to sol
the full Eq. ~3.2!. CW solutions are usually classified int
two categories:~1! degenerate solutions and~2! nondegener-
ate solutions. We discuss each type of solution separate

A. Degenerate solutions

Degenerate CW solutions are solutions that have van
ing components. In practical terms, we can either allow
second-harmonic field or the subharmonic field to vani
However, no stable solution that is nontrivial results wh
the second-harmonic field vanishes. In order to see this,
notice that if we assume thata2650, then we can deduce
that a1650 immediately from Eq.~3.2!. This gives the
vacuum state

aj 650. ~3.3!

If we assume thata1650 anda26Þ0, we find that only
the last two of Eqs.~3.2! need to be satisfied. In other word
for a vanishing subharmonic field, the solutions to Maxwel

FIG. 2. Band gaps at the FH~left-hand side! and SH~right-hand
side!. Shown is the local frequencyV vs the local wave numberQ
at the two gaps. In our normalized parameters, the fundamenta
has a width of 2, whereas the second harmonic gap has a wid
2ugu and an offset of2r. The horizontal long-dashed lines indica
a fundamental frequency~left-hand side!, and its second harmonic
~right-hand side!. Note thatg is taken to be positive.
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PRE 59 6067THEORY OF MODULATIONAL INSTABILITY IN BRAGG . . .
equations only involve the usual linear behavior in a Bra
grating. There are solutions both above and below band
and any of the usual band-gap CW modes can be exc
This allows us to choose any two ofV,Q,a21 , anda22 as
free parameters. If we chooseQ and a22 , we obtain the
relationships

a1650,

V5
7A4 Q2 r 21g22r

2
, ~3.4!

a215
a22~22 Q r6A4 Q2 r 21g2!

g
.

In this solution, only the second harmonic exists—some
these degenerate solutions can be unstable against spon
ous down-conversion. These stability properties will be a
lyzed in Sec. III B.

B. Nondegenerate CW solutions

To obtain the general nondegenerate CW solutions in a
lytic form, we use the parametrizations introduced by
Sterke@29#:

a115
a

Af 211
,

~3.5!

a125
a f

Af 211
.

These equations imply thata11
2 1a12

2 5a2 and a12 /a11

5 f . Using Eqs.~3.5! and rearranging the last two equatio
of Eqs.~3.2!, we have

a2152 f 1Q2V,
~3.6!

a2252 f 212Q2V.

The meaning off can be understood as determining t
position of the FH component of the CW solution. For e
ample, taking f 561 and substituting Eq.~3.6! into Eq.
~3.2!, we find that

2Q~2 f r v12Vr 2g1r12V!50.

Therefore,f 561 corresponds toQ50, indicating that the
FH components of the matching CW solutions are at
edges of the fundamental band gap. Sincek1 was taken to be
positive, in the linear limitf ,1 indicates an anomalous dis
persion and tuning above the band gap, whereasf .1 gives
normal dispersion below the band gap, as shown in Fig. 2
detailed discussion of thef parameter can be found in Re
@29#. A new feature in the double-band-gap case treated h
is that the fundamental and second-harmonic band gaps
have different widths, indicated byg, as well as different
locations, indicated byr ~see Fig. 1!.

The most general CW solutions can be found in clos
form and are discussed in Appendix A. However, whenQ
50, and thusf 561, the CW solutions take a simpler form
g
p,
d.

f
ne-
-

a-
e

-

e

A

re
an

d

We therefore consider the casef 561 separately. For clar-
ity, both degenerate and nondegenerate CW solutions
summarized in Table I.

f 561

Using an effective mass approximation~EMA! @22,23#,
we have proven previously that the parametric band-
equations~2.3!, which apply to second order nonlinear sy
tems without a grating, have soliton solutions; key aspect
this work are reviewed in Appendix B. The idea is that s
lutions to the parametric equations~B1!, can be transformed
approximately to solutions to the parametric band-gap eq
tions. Such a transformation is general and not limited jus
solitonlike solutions, provided that the EMA is valid. Th
requirement of the EMA to be valid is thatQ!1. The EMA
transformation gives exact CW solutions to the parame
band-gap equations whenQ50, i.e., whenf 561. Note that
the EMA can also give approximate CW solutions for sm
Q. However, we do not discuss such cases here.

CW solutions to parametric equations~B1! can easily be
obtained @13,28#. The EMA transformation between th
parametric equations and the parametric bandgap equati
given as

V115g1V1sgn~k1!,

V1252g1V1s1 ,
~3.7!

V215g2V2s1 ,

V225g2V2s1 ,

where V156A2a, V25sgn(s1h), and a
5uk2vg

(1)/(k1vg
(2))u3u22(2s1uk1uv11k2v21dkv2)/hu, h

52v1k1(V1 f ), g15Auk1v2 /(2k2v1)uuhueiVt/(k1v1),
andg25uhue2iVt/(k1v1).

Simplifying the above relationships, one arrives at

a1156A~V1 f !~2V1g1r!,
~3.8!

a2652V2 f ,

anda125a11 f according to Eq.~3.5!. The above solutions
are the same as the solutions obtained by solving Eqs.~3.2!
directly.

TABLE I. Summary of CW solutions to the parametric ban
gap system. Shown here is one degenerate solution and a no
generate solution withf 251. The vacuum state and more gene
CW solutions withf 2Þ1 are not listed for simplicity.

Mode Degenerate solutions Nondegenerate soluti

a11 0 6A(V1 f )(2V1g1r)
a12 0 f a11

a21 a22 (22 Q r1A4 Q2 r 21g2)/g 2V2 f
a22 arbitrary 2V2 f
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IV. MODULATION INSTABILITY ANALYSIS

Following the standard procedure@37#, we now add small
perturbations to the CW solutions and study their evoluti
We thus set

Vj 65@aj 61d j 6~j,t!#e2 i j Vt1 i jQ j. ~4.1!

Substituting this into Eq.~2.5! and neglecting terms involv
ing d j 6

2 gives

i S ]

]t
1

]

]j D d111d11~V2Q!1d121d11* a211a11d21

50,

i S ]

]t
2

]

]j D d121d12~V1Q!1d111d12* a221a12d22

50,
~4.2!

i S ]

]t
1r v

]

]j D d211d21~2V22r vQ1r!1gd22

12a11d1150,

i S ]

]t
2r v

]

]j D d221d22~2V12r vQ1r!1gd21

12a12d1250,

Below, we discuss the modulational instability of degener
CW solutions and nondegenerate CW solutions separate
a
a
ly
d
tto

d

n

.

e
.

A. Degenerate case

We start with the degenerate case for whicha1650, so
that Eqs.~4.2! decouple. Therefore, we introduce

d115g1~t!eiqj1g3* ~t!e2 iqj,
~4.3!

d125g2~t!eiqj1g4* ~t!e2 iqj.

Substituting the above equations into Eq.~4.2! and collecting
same exponential terms gives

i
d

dt
g11~V2Q2q!g11g21a21g350,

i
d

dt
g21~V1Q1q!g21g11a22g450,

~4.4!

i
d

dt
g32~V2Q1q!g32g42a21g150,

i
d

dt
g42~V1Q2q!g42g32a22g250.

The above ordinary differential equations have fundame
solutions which are linear combinations of terms that are
the form

gj~t!}eivt, ~4.5!

where thev are the eigenvalues of the matrix
S V2Q2q

1

2a21

0

1

V1Q1q

0

2a22

a21

0

2V1Q2q

21

0

a22

21

2V2Q1q

D . ~4.6!
ng
-

at

if
a

This matrix is real and nonsymmetric, so its eigenvalues
real or appear in complex conjugate pairs. CW solutions
stable only if all eigenvalues are real. For brevity, we on
considerQ50. This corresponds physically to a secon
harmonic band-gap mode either at the top edge or the bo
edge of the second-harmonic band gap.

SubstitutingQ50 into Eqs.~3.4! divides the CW solu-
tions into two different classes:a215a22 , and a215
2a22 . In analogy to the parameterf from Eq. ~3.5!, we can
also introduce a parameterf 2 which is the ratio ofa21 and
a22 @cf. Eq. ~3.5!#. Together with the sign ofk2 , f 2 tells us
the position of the SH component of the solution. Ifk2
.0, a215a22 corresponds to the lower edge of the ban
gap sincef 251, whereasa2152a22 corresponds to the
upper edge of the band-gap sincef 2521 @29#.

If a215a22 , the eigenvalues of the matrix can be writte
in the form

v56AR62AD, ~4.7!
re
re

-
m

-

where R511V21q22a22
2 , and D5(q211)V22a22

2 q2.
To have a stable CW solution,v must be real for allq. It is
thus necessary thatD.0. Thus,V2.a22

2 . Next we notice
that R22AD.0 at large q2. However, if this quantity
changes sign at any positive value ofq2, then the CW solu-
tion must be unstable. SolvingR22AD50 for q2 gives two
solutionsq0, whereq0

25V22(a2261)2. The conditionq0
2

,0 must also be satisfied for a stable CW solution, givi
V2,(a2221)2. Combining this with the previous require
ment,V2.a22

2 , we find that the amplitude ofa2 cannot be
too large, and we must satisfy the overall requirement th

a22
2 ,min~1/4,V2!. ~4.8!

Therefore, CW solutions of this type are always unstable
V50, and otherwise have a limited range of stability up to
critical value ofa22

2 .
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In order to understand the physics behind this, we no
that the down-conversion process requires both energy
servation and a symmetry requirement that the cross sec
is nonzero. Although this is rather complex at high inten
ties, it becomes relatively simple to understand at low int
sities. If we refer to the Fig. 2, we notice that a symmet
mode must couple to two subharmonic modes of the sa
symmetry~either both above or both below the band ga!.
This is impossible if the second harmonic is excited at l
amplitudes in a region whose energy is locatedbetweenthe
upper and lower band gaps of the subharmonic. Thus,
expect stable behavior at low intensities for any value ofV
satisfyingV2,1, which is precisely the result given by th
eigenvalue analysis at low intensity.

The eigenvalues of the matrix for the second case,a21

52a22 , can be written in the same form,

v56AR6AD, ~4.9!

where R511V21q22a22
2 , and D5(q211)(V22a22

2 ).
Note thatD now takes a different form. Again, to guarant
D.0, we must haveV2.a22

2 . Solving R2AD50 for q2

gives only one solution. This indicates thatR2AD is either
greater or smaller than 0 regardless the value ofq as long as
V2.a22

2 is satisfied. Takingq50, we findR2AD5@(V2

2a22
2 )1/221#2. Therefore, CW solutions of this type ar

stable whenV2.a22
2 .
e
-

o

n-
th
tic
us

W

i-
e
n-
on
-
-

e

e

The physical reason for this result is that an antisymm
ric second-harmonic mode can only couple to two subh
monic modes of the opposite symmetry~one above and one
below the band gap!. If the second harmonic is excited a
low amplitudes, this is only energy-conserving in a regi
almost in the center of the band gap of the subharmo
which is just the opposite of the previous case. Thus,
expect stable behavior at low intensities for any value ofV
Þ0, which is, again, precisely the result given by the eige
value analysis at low intensity.

B. Nondegenerate case

In this general case, we take the perturbations to be of
forms @37#

d115g1~t!eiqj1g5* ~t!e2 iqj,

d125g2~t!eiqj1g6* ~t!e2 iqj,
~4.10!

d215g3~t!eiqj1g7* ~t!e2 iqj,

d225g4~t!eiqj1g8* ~t!e2 iqj.

Similar to Sec. IV A, we havegj (t)}eivt. The eigenval-
uesv are determined by the matrix
A51
A11

1

2a11

0

2a21

0

0

0

1

A22

0

2a12

0

2a22

0

0

a11

0

A33

g

0

0

0

0

0

a12

g

A44

0

0

0

0

a21

0

0

0

A55

21

22a11

0

0

a22

0

0

21

A66

0

22a12

0

0

0

0

2a11

0

A77

2g

0

0

0

0

0

2a12

2g

A88

2 , ~4.11!
at
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where A1152q2Q1V, A225q1Q1V, A3352qrv
22Qrv1r12V, A445qrv12Qrv1r12V, A5552q
1Q2V, A665q2Q2V, A7752qrv12Qrv2r22V,
and A885qrv22Qrv2r22V. We note that changing th
signs of f , g, V, andr, and swapping the sign in the so
lution of the quadratic Eq.~A2!, effectively changing the
sign of Q, the determinant of the 838 matrix ~4.11!, is un-
changed. We therefore only need to consider cases with p
tive g.

As in Sec. IV A, a stable CW solution requires all eige
values of the above matrix to be real. Eigenvalues of the
838 matrix are not usually available in simple analy
form. We hence obtain the eigenvalues numerically. We
a FORTRAN77subroutine,DGEEV from theLINPACK, to evalu-
ate the eigenvalues. To determine the stability of a given C
solution, we compute the instability growth rate Im (v) by
varying q from 0 to 20 with a step size of 0.01. If the max
si-

is

e

mum of Im (v) at this stage is smaller than 1028, we further
increase the range ofq and reduce the step size and repe
the calculation. We consider a CW solution to be stable if
maximum of Im (v) is smaller than 1028.

The main difficulty with proceeding further is that the
are five degrees of freedom in choosing the parame
r v , f , g, r, and V. Nevertheless, we can narrow ou
search by considering the physical significance of the fi
parameters:~1! r v , the ratio of material group velocities a
the FH and the SH. For most materials, this ratio is arou
unity. Three values,r v50.5, 1.0, and 2.0, were chosen
represent a large range of possible situations.~2! f gives the
position of a CW solution with respect to the fundamen
band-gap. Typical values off are f 560.1, 60.5, and61.0.
Note thatf and 1/f are equivalent, the only difference bein
the direction of propagation@29#. ~3! g represents the rela
tive strengths of the gratings at the FH and the SH. T
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valuesg50.1, 0.5, 1, 2, and 10 cover a large range of si
ations~recall that6g lead to the same results!. ~4! r is the
phase mismatch between the FH and the SH due to mat
dispersion.~5! V relates to the intensity,

a11
2 1a12

2 1a22
2 1a21

2 , ~4.12!

of a CW solution. In experiments,r and V can be varied
continuously, and there are no typical values. We there
treat them as ‘‘free,’’ and scanr, and V space for MI at
given values ofr v , f , andg.

V. RESULTS AND INTERPRETATION

As the number of variables is large, it is difficult to obta
much physical intuition from the equations as they sta
even though they do give an exact solution for the stabi
properties of the CW solutions to the parametric band-
problem. We know that only those combinations of CW a
plitudes that satisfy the steady-state equations, and h
stable eigenvalues, are able to exist as stable, translatio
invariant, coupled fields inside the grating. To obtain mo
physical insight, it is useful to consider various limits th
allow the problem to become more analytically tractable, a
more closely comparable to similar band-gap problems
have been treated previously. In particular, we consider
nonlinear Schro¨dinger~NLS! equation limit, where the prob
lem essentially reduces to the usual nonlinear refractive
dex case, as one limit that has been extensively studied
viously. Another limit of interest, is the case whenf 561,
so that the Bragg-grating polariton modes behave essent
identically to low-velocity massive particles.

A. Nonlinear Schrödinger equation limit

In the NLS limit, the SH can be adiabatically eliminate
leaving just the lower-frequency field. This means that
problem reduces to the usual problem of a Bragg gra
with a nonlinear refractive index. A further simplification
discussed below, is possible in some cases. This reduce
entire problem to a single nonlinear Schro¨dinger equation for
a single polariton mode of the lower-frequency Bragg gr
ing. The approximation is somewhat analogous to the red
tion of a relativistic nonlinear field theory~which contains
particle and antiparticles!, to a simpler nonrelativistic field
theory. As in the relativistic case, the approximate the
contains only slowly moving particles of one type, in th
appropriate physical regime.

This limit requires two conditions: low intensity

a11
2 1a12

2 1a22
2 1a21

2 !1

and large phase mismatch. The second condition implies

g!r,

so that the linear coupling terms in the last two of Eqs.~2.5!
can be neglected. Thus these equations can be written
proximately asV2652V16

2 /r @4#, and the first two of Eqs
~2.5! that remain reduce to evolution equations similar
those for a grating with a Kerr nonlinearity. In turn, the
equations reduce to the NLS equation in the low-intens
-
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limit @29,38,39#. Thus the four coupled parametric band-g
equations are now approximated by the NLS equation,

i
]u

]t
2

1

2
V9

]2u

]j2 1Auuu2u50, ~5.1!

where V9528/( f 1 f 21)3 is the dispersion,A52( f 2

1 f 22)/@r( f 1 f 21)2# is the effective nonlinear coefficient
and uuu25a11

2 1a12
2 5a2. The dispersion is normal whenf

.0 and anomalous whenf ,0. The sign of the nonlinearity
is determined byr. MI of the NLS has been solved prev
ously @37#. It is well known that stable CW solutions requir
normal dispersion and positive nonlinearity or anomalo
dispersion and negative nonlinearity (f r,0). CW solutions
are unstable otherwise (f r.0). More accurately, the stabil
ity is determined by the eigenvalues

v56 1
2 uV9uqAq22q0

2, ~5.2!

where q0
25( f 21 f 22)( f 1 f 21)a2/(2r). The solutions are

real for all q if f r,0, so the CW solutions can be stab
against small perturbations for smalla2. By contrast, the
solutions are imaginary iff r.0 anduqu,q0, and CW solu-
tions are thus unstable.

To compare the above predictions with results obtain
from solving the full matrix@Eq. ~4.11!#, we vary the value
of r while keepinga relatively small. The intensity is varied
by changingV. We thus plot the instability growth rate ver
sus intensity for each given set of parameters. For the st
casesf r,0, we choosef 520.8, r v51, andg50. Two
different cases are discussed,r5100 and 10. The results ar

FIG. 3. Maximum instability growth rate vs intensity at positiv
phase mismatchr, and negativef. According to the NLS equation
the CW solution is now stable. Parameters used arer v51, f 5
20.8, g50, ~a! r5100 corresponding to large phase mismatc
and ~b! r510 corresponding to medium phase mismatch.
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FIG. 4. Instability growth rate vs intensity and perturbation wave numberq at positive phase mismatch and positivef. According to the
NLS equation, the CW solution is now unstable. Parameters used arer v51,f 50.5, andg50 and the following:~a! and ~c! r5100
corresponding to large phase mismatch;~b! and ~d! r510 corresponding to medium phase mismatch.~c! and ~d! a52. Solid lines follow
from Eq. ~5.2!, and dashed lines from Eq.~4.11!.
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shown in Figs. 3~a! and 3~b!, respectively, in which the
maximum instability growth rates versus intensity are pl
ted. These figures show that CW solutions are stable w
the intensity is low. In Fig. 3~a!, r5100, so that the equatio
is well within the NLS limit. This figure shows a stable re
gion for the intensity smaller than 70 consistent with the
analysis of the NLS equation. For intensities larger than
the full system is unstable. This cannot be accounted for
the NLS because the intensity is too high for the NLS to
valid. By contrast, in Fig. 3~b! (r510), we observe unstabl
regions even at low intensities. The instability growth ra
grows dramatically as the intensity increases. This canno
explained by the NLS treatment sincer is not sufficiently
large.

To illustrate the unstable cases for whichf r.0, we take
f 50.5, r v51, andg50. The instability growth rates versu
q and intensity are shown in Figs. 4~a! and 4~b!, correspond-
ing to r5100 and 10 respectively. The topology of the i
stability demonstrates the familiar ‘‘butterfly’’ patterns in th
MI of the NLS whenr is large, as shown in Fig. 4~a!. In Fig.
4~b!, we find a new pattern emerging beside the main fea
of the NLS type MI. This is not surprising since the CW
solution is moving out of the NLS limit. The new instabilit
-
en

I
,
y

e

be

re

is relatively small and, therefore, the maximum instability
still determined by the NLS type instability. In Figs. 4~c! and
4~d!, we plot the instability growth rate predicted by E
~5.2! using a solid line, and that predicted by the 838 matrix
@Eq. ~4.11!# using a dashed line. We takea52 for these two
figures, leaving other parameters unchanged. The fig
show again that the NLS analysis agrees with the full ma
very well at a large phase mismatch. The difference betw
both results become apparent only for small phase misma
as expected.

B. Case:f 251

In the EMA limit of f 561, the problem reduces to
study of coupled, nonrelativistic massive particles. This f
lows since the dispersion relation for each field is then id
tical to that of the Schro¨dinger equation, for polariton mode
near the upper and lower band-gap boundaries. This c
gives a simplified two-mode equation~for two coupled po-
lariton modes!, that is equivalent to the known problem o
modulational stability of coupled FH and SH waves in
uniform nonlinear waveguide, as described by the o
dimensional parametric equation. This reduction is qu
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analogous to the well-known reduction of the two-mo
~coupled! nonlinear Schro¨dinger equation to the single-mod
nonlinear Schro¨dinger equation, already described.

As discussed in Sec. III B, CW solutions for this case c
be obtained by the EMA transformation. One might exp
that the MI in the case can also be obtained from the EM
transformation. However, the EMA is not valid for larg
wave numbers. Therefore, stability obtained from solving
full 8 38 matrix may contradict those from the EMA. Non
theless, we find that consideration of the EMA mode co
plings helps explain some of the physics of the full analys
Thus the EMA theory~in certain cases! allows the reduction
of the present problem to the well-understood case of a
form quadratically nonlinear medium. In this simpler case
necessary~but not sufficient! condition for stability is that
the dispersion of the two modes have opposite si
@12,27,28#. Hence we do not expect stability if the domina
coupling is between linear eigenmodes that are both abov
both below their respective band gaps. This follows beca
the effective dispersion is anomalous above a band gap,
normal below a band gap. Thus, from Fig. 2, we can see t
unless the excitation frequency is near a band gap, both
coupled modes have the same sign of dispersion. This is
likely to give stable behavior.

In the present case, withf 251, the FH is excited just a
the edge of its band gap~the bottom edge iff 51, and the top
edge if f 521). Therefore, this argument would indica
modulationally unstable behavior if the corresponding
mode is excited below or above the band gap, respectiv
However, the excitation frequency of the SH relative to
band gap depends on both the size of the band gap (ugu), and
the relative phase mismatch parameter (r). For example,
from Fig. 2, it is clear that the top of the bands are aligned
frequency ifr2ugu522, which should be unstable for a
f 521 excitation. Similarly, the bottom of the bands align
r1ugu52, which gives an instability for anf 51 excitation.

The EMA analysis also shows that the couplings of
modes depends on the sign ofg. If g.0, the preferential
coupling is to SH modesbelow the band gap. Ifg,0, the
preferential coupling is to SH modesabove the band gap.
Thus we can expect different types of instability depend
on the sign ofg. The sign ofg depends on the relativ
Fourier coefficients of the refractive-index modulation, a
hence on the details of the fabrication of the gratings.

Since we took the CW solutions to be real, we dedu
from Eq. ~3.8! that they must satisfy either (V1 f ).0,(2V
1g1r).0, or (V1 f ),0,(2V1g1r),0. Apart from the
signs of f and g, these two cases lead to the same resu
there is a symmetry obtained from simultaneously revers
the signs off , g, V, and r, consistent with our genera
finding in the paragraph below Eq.~4.11!. We therefore only
show results for the first situation. We varyV from 2 f or
2(g1r)/2, whichever is larger, up to 10 andr from 210
up to 10. Thus a three-dimensional plot of maximum ins
bility growth rate is obtained for each set ofr v andg. Gen-
erally most CW solutions are unstable. Nevertheless, a
stable solutions are found when the intensity is low, wher
is around zero andg is large. This small stable regio
shrinks asg decreases. CW solutions are unstable for h
intensity and larger.
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A series of plots is given in Figs. 5 forf 521 ~above the
fundamental band gap! and 6 forf 51 ~below the fundamen-
tal bandgap!. We taker v51 in both cases for definitenes
andg510,4, and 1, as representative examples, as show
~a!, ~b!, and ~c!, respectively. The strongest coupling b
tween the quasimodes is here expected to be to the
modesbelow the bandgap, sinceg is positive, as mentioned
above.

In Fig. 5~a!, g510 and f 521, the stable area is th
largest of all figures. This is not completely unexpecte
since the fundamental excitation is just above the band g
giving anomalous dispersion, whereas the nonlinear coup
is predominantly to SH modes~below! the band gap, which
have normal dispersion. Therefore, the quasi modes tha
coupled have opposite signs of dispersion—a necessary
dition for stability in the EMA limit. Note that the sign of the
phase mismatch clearly is important as well.

Wheng52 @Fig. 5~b!#, we notice that the previous singl
large stable region atg510 separates into a number of muc
smaller stable regions. Atg51 @Fig. 5~c!#, the size of all
stable regions shrink even further to disappear. Only t
stable regions still survive atr'21. We note that the stable
region at larger and small intensity in Fig. 5~c! corresponds
to the NLS limit.

The parameters in Fig. 6 are identical to those in Fig
except thatf 51. Thusg510, 2, and 1 in Figs. 6~a!, 6~b!,
and 6~c!, respectively. Note that the stable regions in the
figures are almost entirely isolated from the vacuum stat
CW solution’s intensity thus needs to exceed a threshold
be stable. We also find that compared to Fig. 6~a!, the extent
of stable regions reduce dramatically in Fig. 6~b! and vanish
in Fig. 6~c!. Again, the NLS limit can be seen at the large
values of the phase mismatchr in Fig. 6~c!. Forg,1, stable
regions are found mainly at larger, which again correspond
to the NLS limit. However, we do not show these resu
here. We note that the stable region in Fig. 6~a! has a low-
intensity boundary atr512. According to Fig. 2, and with
the parameters chosen, the lower edge of the FH gap
lines up with the upper edge of the SH gap. However,
cording to the EMA theory, the effective nonlinear couplin
between the FH and SH vanishes in this case@22,24,25#, so
that, within this approximation, the system behaves as
were linear. Hence the EMA appears to be applicable h
and the stability atr512 is not surprising. A similar argu
ment applies tog52 in Fig. 6~b!, where the stable region
occurs at the low-intensity value ofr56. We cannot draw
similar conclusions atg51 since the stable region in Fig
6~c! does not extend to low intensities. We also note that t
argument does not appear to apply to Figs. 5.

Our results indicate that a relative large grating stren
for the SH@largeg; see Eq.~2.5!# tends to stabilize the CW
solutions. We also studied the effect of group velocity m
match r v . Varying r v , we repeated the calculations di
cussed above. The results show thatr v also plays an impor-
tant role in determining the MI. When we taker v50.5, the
stable area expands atg510, whereas ifr v52, the stable
area shrinks. Takingg51, we find that small deviations o
r v from unity reduce stable regions. However, we do n
show these results here.
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FIG. 5. Maximum instability for different grating strength ratiosg and negativef. Plotted here is growth rate vs phase mismatchr and
intensity. Parameters used arer v51, f521, ~a! g510, ~b! g52, and~c! g51. Note that all axes are scaled differently.
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C. Case:f 2Þ1

Here there is no physically similar model which is ava
able to help interpret the results, and we are forced to
solely on numerical solutions of the eigenvalue problem.
scan parameter values, thus taking a similar strategy to
previous section. Gradually movingu f u away from 1, we
compute the maximum instability in theV, r space for each
different value ofg. In general, we find that CW solution
can be stable only at low intensity. As the value ofu f u de-
creases, the area of stable regions reduces. Atu f u50.1, stable
regions, if any, are all too small to locate whenuru is not too
large such that the system is not in the NLS limit.

For reasons of brevity we show only results forf 5
60.5 in Figs. 7 and 8. The ratio of the grating strength,g, is
chosen to be 10, 2, and 1 in Figs. 7~a!, 7~b!, and 7~c!, re-
spectively, whereas in Fig. 8g510 only. Compared tou f u
51, the stable regions are much smaller here. The inten
of CW solutions also need to be much lower to be stab
Again, the stable regions shrink asg decreases. In Fig. 7~a!,
where f 520.5, andg510, we see a relatively large stab
region compared with other cases with similar parame
but smallerg. This stable region is smaller than that forf
521. We note that the growth rates are modest, makin
ly
e
he

ity
.

rs

it

unlikely that they can be observed in experiments in wh
the instability grows from noise. In Fig. 8,f 50.5, r v51.0,
andg510, and we see that this case still retain some featu
of Fig. 6~a!. The instability growth rate dips atr50, result-
ing in a ‘‘valley.’’ However, unlike Fig. 6~a!, the valley in
Fig. 8 is never deep enough to reach zero. No stable reg
are found forg52 and 1.

VI. NUMERICAL SIMULATIONS

To confirm the results of the MI analysis, we also solv
the parametric band-gap equations~2.5! numerically. In do-
ing so, we initially take a CW solution inside the gratin
with appropriate phase and amplitude to allow a steady-s
solution to form, periodic boundary conditions to allow th
problem to be treated on a finite domain. If the CW soluti
is unstable, perturbations grow in time, directly revealing
presence of MI. We used two different numerical schem
an iterative semi-implicit integration scheme@40# with split-
step Fourier transform evaluation of the grating dispersi
at the FH and SH, and a method developed originally
gratings with a Kerr nonlinearity@32#, but adapted for qua-
dratic nonlinear effect. Both methods’ results agree. The fi
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FIG. 6. Maximum instability for different grating strength ratios,g and positivef. Plotted here is the growth rate vs phase mismatch
intensity. Parameters used arer v51, f51, ~a! g510, ~b! g52, and~c! g51. Note that all axes are scaled differently.
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method is general and and valid under a wide range of
rameters. The second method can only simulate cases
r v51 but is considerably faster than the first method.

The simulation procedure is as follows: CW solutions a
perturbed with Gaussian noises. The noise level is norm
1026–1027 of the amplitude of the CW solution. These pe
turbed CW solutions are used as initial conditions. For e
set of initial conditions, two independent simulations are p
formed using the same numerical method. The step siz
one simulation is half of that of the other. We compare
results of the two simulations at each time step. When
maximum absolute value of the difference is smaller th
1029, we accept the simulation results. Otherwise, the s
sizes are reduced by half, and simulations are perform
again. We note that this procedure is necessary because
cases in which the stability is marginal require a dense
merical grid. Using the above procedures, we propagate e
noisy CW solution for an amount of time such that the no
growth is still in the linear region. We then take one mode
two different times and perform a spatial Fourier transfo
into q, space and filter out the CW component. Finally, w
find the ratio of the spectra, and calculate the instabi
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growth rate accordingly. More precisely, we calculate t
instability growth rate spectrum using

1

2

ln~ uVj 6~q,t2!u2!2 ln~ uVj 6~q,t1!u2!

t22t1
. ~6.1!

The instability growth rate spectrum corresponds
Im„v(q)…, the largest imaginary part of the eigenvalues. W
have simulated a large number of cases. The instab
growth rate spectrum is plotted against the theoretical p
diction for unstable CW solutions. For example, the evo
tion of a noisy CW solution is shown in Fig. 9~a!. The
growth of MI is clearly seen from this figure. The corre
sponding instability growth rate spectrum is shown in Fig.
Dimensionless parameters used for this example arer v
51,f 521,r521,g51, andV51.2. The dotted curve fol-
lows from the MI analysis, while the solid curve is obtaine
from the direct numerical simulation. The curves agree w
confirming the validity of the MI analysis.

Another case worth mentioning is the degenerate CW
lutions whose FH components are zero. These solutions
erally become stable at low intensities. Such stable dege
ate solutions may appear surprising as one might expect
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FIG. 7. Maximum instability growth rate versus phase mismatch and intensity for negativef and different grating strength ratios,g.
Parameters used aref 520.5, r v51, ~a! g510; ~b! g52 ~c! g51.
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a single SH photon could lead to down-conversion. Ho
ever, certain symmetry laws may forbid such dow
conversion, and indeed numerical simulations have sho
that such stable solutions can propagate for a long time w
out noise growing. One of such stable cases isa2152a22

51, g51, andr v51. We first taker54, so that the stabil-
ity conditionV2.a22

2 is satisfied. In order to test the stab
ity, the initial CW solution is perturbed with a much strong
Gaussian noise whose amplitude is one percent of that o
CW solution instead of 1026 that we normally use for un
stable cases. With a propagating period of 100 and a wind
size of 20, the noise amplitude remains the same at all ti
By contrast, when we taker50 and thus the stability con
dition V2.a22

2 is not satisfied, the noise amplitude grow
quickly even just after a period of 5.

VII. DISCUSSION AND CONCLUSIONS

We have presented a study of MI in a parametric ba
gap system. Though this problem reduces to cases that
been studied previously in the NLS limit~see Sec. V A! and
the EMA limit ~see Sec. V B!, the parametric band-gap sy
tem is much richer than either of these. Of course this is
unexpected since in both these limiting cases there are
and two relevant modes, respectively, whereas in the m
-
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general situation considered here there are four. We note
in the study of MI in a periodic structure with a Kerr non
linearity @29# it was found that for a range of parameters t
solutions were unphysical, in that the MI gain did not vani
as uqu→`. It was noted in Ref.@29# that this is likely to be
associated with the fact that the dispersion relation of a g
ing is asymptotically straight. We have observed similar b

FIG. 8. Maximum instability growth rate vs phase mismatch a
intensity for f 50.5. Other parameters used arer v51, andg510.
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havior in the parametric band-gap system. However,
does not affect the conclusions reached here since, as
tioned in Sec. IV B, only finite values forq are considered.

As mentioned in Sec. IV B, in a large fraction of pha
space the CW solutions are unstable. Thus, just like the g
ing with a Kerr nonlinearity@26#, the parametric band ga
system could act as a tunable pulse generator. Since
parametric system the effective nonlinearity can be m
larger than that in a Kerr system, the required thresh
could be much smaller. Though a detailed consideration
this application is outside the scope of the present work,
straightforward to obtain a rough estimate for the requi
intensity. In order to detect the effects of MI in a nonline
crystal of lengthl, the time required for a light beam to pa
through the crystal should be sufficient for the noise to gro
Since the time required to propagate through the structur
at leastl /vg , we require the instability growth rate to excee
vg / l . In terms of the the dimensionless units introduced
Eq. ~2.4!, this can be written as Im(v)max.1/(lk1). We take
a 1-cm-long LiNbO3 nonlinear crystal as an example and u
the following typical values; average refractive indexn̄
52.5, x (2)511.9 pm/V, and input laser wavelength,l
51.06 mm. For a grating with 0.2% refractive index mod
lation, we find that k1'1.23104 m21, and xE'2.25

FIG. 9. Numerical demonstration of MI.~a! Evolution of a
Gaussian noised CW solution. Shown here is the intensity of
first mode,uV11u2. ~b! Comparison of MI analysis and numeric
simulations. Shown here is the instability growth rate vsq, the wave
number of noise. The dotted curve is from MI analysis, and
solid curve is from the numerical simulation calculated from E
~6.1!. Parameters used arer v51, f 521, r521, g51, and
V51.2.
is
en-

t-

a
h
ld
of
is
d
r

.
is

n

31025 V21. With these numbers we find Im(v)max
.0.008. If f 51, g51, r51, andr v51, at an intensity of
0.0012, Im(v)max has the required value. From Eq.~2.4!, the
total power required isP5(k1 /xE)2n̄2e0vg(a11

2 1a12
2

1a22
2 1a21

2 ) if we take r v51. We therefore find thatP
50.16 GW/cm2 for this case, which is more than an ord
of magnitude smaller than that required to observe MI in
Kerr system@26#.

We also found extended regions of stability, particula
when the SH gap is stronger than that at the FH. Note
this is not the generic situation: for shallow gratings the s
of the nth gap is proportional to the magnitude of thenth
Fourier component of the refractive index. Since these t
to decrease with increasingn, higher order gaps tend to b
smaller than lower order ones. Nonetheless, one can de
refractive index profiles in which this is reversed for the tw
lowest gaps. Though a detailed analysis of dark soluti
outside the scope of this paper, one may conclude tha
such systems the stability of dark soliton solutions is n
ruled out by an unstable background. It is interesting that
full problem needs to be analyzed to reach this conclusion
the EMA approximation fails ifuqu is too large.

The key restriction to our work is that we assume typ
phase matching, in which the FH is linearly polarize
Though, in principle, it would be straightforward to genera
ize to type II phase matching, in which the FH consists
two distinct linearly polarized components, in practice
would be complicated. First of all, Eqs.~2.3! would be re-
placed by six coupled equations, rather than four, leading
the need to evaluate a 12312 matrix, rather than the 838
matrix ~4.11!. Moreover, the available phase space would
much larger, making global searches of the solutions incre
ingly time-consuming.

In conclusion, we studied MI in a type I phase match
parametric band-gap system. We find the expected beha
in the NLS limit. We have not studied the EMA approxim
tion in detail here, because even though the EMA appro
mation can apply to the CW solution, the instabilities may
too rapidly varying for the EMA to hold. Indeed, the resu
are dominated by the existence of large regions of mod
tional instability, which could find applications in low inten
sity short-pulse generation. In spite of this, the work p
sented here also shows substantial stable regions for s
parameter values, in which steady-state solutions can oc
In these regions, the existence of dark soliton solutions is
ruled out.
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APPENDIX A: GENERAL CW SOLUTIONS

In this section, we consider general nondegenerate
solutions. Movinga16 to the right side of Eq.~3.2! and
dividing them, together with the expression ofa26 , we ar-
rive at

e

e
.



PRE 59 6077THEORY OF MODULATIONAL INSTABILITY IN BRAGG . . .
~2V12r vQ1r!~2 f 212Q2V!1g~2 f 1Q2V!

~2V22r vQ1r!~2 f 1Q2V!1g~2 f 212Q2V!
5 f 2, ~A1!

which does not depend ona. Let V and f be the free parameters, one can then solve the above equation forQ. Rearranging,
we obtain a quadratic equation forQ:

AQ21BQ1C50 ~A2!

where

A52r v~ f 221!,

B5
f ~11 f 2! ~g2r22 V!22r v~11 f 41 f V1 f 3 V!

f
,

C5
~211 f 2! @r ~11 f 21 f V!1V ~212 f 21 f ~g12 V!!#

f
~A3!
-

-
ric

-

c-
x
ned

ul-
ap
OnceQ has been determined from Eq.~A2!, adding Eqs.
~3.2! gives an equation fora, which reads,

a25~2V1r1g!~ f 1 f 2112V!12r vQ~2 f 1 f 2112Q!.

~A4!

For a given set off andV, one can work outQ by solving
Eq. ~A2!; both solutions forQ need to be considered. Sub
stitutingQ into Eq.~A4!, one obtainsa. CW solutions can be
found subsequently from Eqs.~3.5! and ~3.6! .

APPENDIX B: PARAMETRIC EQUATIONS

The parametric equation first appeared in Ref.@1#. It has
been extensively studied recently@3–16#. Based on the pub
lished model@4#, we rewrite the one-dimensional paramet
equation describing the cascadedx (2) parametric waveguide
in the forms

S ]

]z
1

ik19

2

]2

]t2Df15 ixf2f1* , ~B1a!
or

B

S ]

]z
1

ik29

2

]2

]t2 2 ib Df25
ix

2
f1

2 , ~B1b!

wherekj9 is the dispersion at thej th frequency, i.e., the de
rivative d2k/dv2 calculated at the pointk5kj . Here b
5k0

(2)22k0
(1) wherek0

(1) and k0
(2) are wave numbers of the

first and second harmonics, while the nonlinearityx is given
as

x5
e0x~2!k0

~1!

e1
S \k0

~2!

2e2
D 1/2E d2x~u~1!~x!!2~u~2!~x!!* ,

~B2!

where u( j )(x) refers to normalized transverse-mode fun
tions. The fieldsf1 and f2 are, respectively, the comple
envelopes of the first and second harmonics, in units defi
so thatuf j u2 is the photon flux of thej th field. In this equa-
tion, it is assumed that the group velocitiesv j5dv/dk of the
two fields match at the carrier frequency, to optimize sim
ton formation. Under the EMA, the parametric band-g
equation~2.3! can be approximated by Eq.~B1!, with the
parameters taking different definitions@22,23#.
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