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Modulational instability in optical Bragg gratings with a quadratic nonlinearity is studied. The electric field
in such structures consists of forward and backward propagating components at the fundamental frequency and
its second harmonic. Analytic continuous wa@&V) solutions are obtained, and the intricate complexity of
their stability, due to the large number of equations and number of free parameters, is revealed. The stability
boundaries are rich in structures and often cannot be described by a simple relationship. In most cases, the CW
solutions are unstable. However, stable regions are found in the nonlinead®gerequation limit, and also
when the grating strength for the second harmonic is stronger than that of the first harmonic. Stable CW
solutions usually require a low intensity. The analysis is confirmed by directly simulating the governing
equations. The stable regions found have possible applications in second-harmonic generation and dark soli-
tons, while the unstable regions may be useful in the generation of ultrafast pulse trains at relatively low
intensities[S1063-651%99)03005-9

PACS numbeps): 42.65.Tg

I. INTRODUCTION which means that the formation distance of a simulton is
often longer than the length of available materials. This dif-
Optical parametric systems have attracted considerable giculty can be overcome by mixing diffraction into dispersion
tention in recent years. This is partly through obvious appli-bY tilting the wave fron{20], or by “writing” a Bragg grat-
cations to second-harmonic and subharmonic generation, aif@@ into the material, to create a “gap simulton.” The re-

also because they support a large range of multidimension%}orted _ex]f)erlmer;ttrtlakes the_ﬁr;sﬁ approe[gﬂ]. Hower\]/er, hich
solitary wave solutions or “simultons,” of both topological € main Tocus ot this paper IS heé second approach, whic

. . . ~ not only offers the opportunity of engineering the dispersion,
R;‘gegogtc;?rﬁtol?cﬁagggtl;'{iggraf Tgesg}i&:éor{ ?slﬁtireer;%irtc):ee 0Put also supports solitons with new physics. For example,
. ) i ype : . . ~gap simultons can propagate at a speed much lower than the
nonlinearity. The nonlinear effect in forming a simulton is

; X : ) > speed of light(even zero speedUsing Bragg gratings to
rooted in the parametric process in which two waves of dif-. o4te strong dispersion is well known in Kerr systdg,

ferent frequencies interact strongly through #& nonlin- byt applying this technique to parametric systems has only
earity, while that of a Kerr soliton is due to the nonlinear peen studied recentf22—25. We term the parametric sys-
refractive index. The different mechanism of providing non-tem with Bragg gratings a “parametric band-gap system”
linearity in parametric systems offers two key advantage$22,23. Encouragingly, theoretical studies have proven the
over Kerr systems. First, the parametric nonlinear effect caexistence of bright simultons in a parametric band-gap sys-
be much stronger than the Kerr effect. Thus a much lowetem not only in one dimensiof22—25 but also in two- and
input power is required to launch solitary waves. Secondthree dimension§22,23. In one dimension, dark simultons
solitary waves in more than one dimension do not usuallyare also found22-25.
exist in a nonsaturating Kerr system, but are supported in In this paper we study the modulational instabilityl ) of
parametric systems. continuous electromagnetic waves in the the parametric
These two advantages have a potential impact on both tHeand-gap system, for a number of reasons. The first of these
theory and applications of optical solitons. For example, inis that Ml in the closely related problem of a grating with a
guantum optics, a strong nonlinear effect translates to a larg€err nonlinearity has proven interesting, and has led to po-
effective binding energy between photons. It was showrtential applications of such structures as tunable pulse gen-
theoretically that a quantum simulton consisting of only twoerators[26]. Second, the absence of Ml is a necessary con-
photons can exisf17]. Combining the low power require- dition for the stable copropagation of second-harmonic and
ments and multidimensionality of simultons, a compact ul-subharmonic fields, and hence for the stability of dark simul-
trafast all-optical switching device which is not phase sensitons. Since these applications of our work are outside the
tive was recently proposdd8]. scope of this paper, our main objective here is to solve the
Much progress has been made on simulton experimentsane dimensional coupled parametric band-gap equations for
The existence of spatial simultons were experimentally coneontinuous wavéCW) solutions and to determine their sta-
firmed in 1995[19]. Recently, temporal simultons have also bility.
been observefR20]. The reason that temporal simultons were  Modulational instability of a parametric system without
observed later is that material dispersion is normally smallgratings has been studied previously Ré¢fst,27,28. Full
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metric oscillation(OPO cavity system, which has been ex-

A tensively studied in theory and experimd4,35. In the
/\A<m> case considered here, however, there is a continuum of lon-
SO z J\z' gitudinal modes, which must be treated using a set of
- . — coupled parametric band-gap equations. The detailed deriva-

tion of the equations in the shallow grating limit can be
FIG. 1. Schematic of the double band gap system, combinindound in Ref.[22]. A more rigorous derivation has extended

refractive-index modulation with a quadratic nonlinearity. the results to deep grating86]. Here we consider shallow
gratings only.
analytical results were reported [&8]. This system is de- For a quasimonochromatic electric field inside Bragg

scribed by a pair of coupled equations, whose modulationagratings, we can write the solutions to Maxwell's equation
instability is a function of only two parameters: the ratio of for fields aroundw; ,w, as[22]

dispersions at the fundamental and second harmonic and the

phase mismatch between the two waves. Ml in a Kerr system _ . +ijkyz—iwit

with gratings was studief®9,30, also leading to a set of two E j—EZ ; g4+ (zt)e rree, (2
coupled equations, but for the forward and backward propa-

gating modes. The stability of parametric simultons in theWheree; are unit vectors indicating polarization directions,
Kerr limit has also been studief88]. In contrast to this the sign= represents right or left propagation, ajd is the
work, a parametric band-gap system is described by fougffective wave number of the corresponding carrier field. As-
coupled equations whose modulation instability is a functionrsuming type-I phase matching, the Bragg grating structure is
of five parameters, that will be discussed below. The dougiven ase;(z) =¢€[1+A{(2)], whereg; is the spatial aver-
bling of the number of equation and the addition of extra freeage ofe;(z) andj=1 and 2. Note that, , (andA, ) differ
parameters greatly increase the level of complexity of the Miyye to material dispersion. We considg(z) to be the small
problem in the new system. Even solving the equations foparameter here because of the shallow grating assumption,
CW solutions is not trivial. Nevertheless, the modulationalang the results are expanded in terms of a small parameter
instability of a band-gap parametric system is treated here bX:Aj(z). Here the permittivitye;(2) is a periodic function

combining both analytical and numerical approaches. To tesfith a period ofd. We can expand; (2) in a Fourier series,
the results of modulational instability analysis, the full ih

coupled equations are simulated directly using two different
methodg31,32. )

The paper is organized as follows: we introduce the AJ(Z):2 Ajexp2ilk;2)+c.c., 2.2
coupled parametric band-gap equations in Sec. Il. The four

coupled equations are then solved for CW solutions in SeGyhere Aj are in general complex coefficients, ard
lll. Details of MI analysis are given in Sec. IV. Physical =7/d. Note that we have chosen the carrier wavenumber of

interpretations using approximate techniques, together witthe FH to be the same as that of the grating. The carrier

numer!cal rgsults,_ are given in Sec. V. Finally, methods Offrequency s, =k, / Mo?l, and the carrier wave number of
numerical simulations and results are presented in Sec. VI. =

the SH iSk2:2 Mo€2W1. We deﬁne5k:k2_2k1< klv the
phase mismatch due to material dispersion.
Il. COUPLED PARAMETRIC BAND-GAP EQUATIONS With the above definitions, a parametric band-gap system

A parametric band-gap system is indicated schematicall;l/S described by the following coupled equatidag)

in Fig. 1, which shows a nonlinear waveguide with modu-

lated refractive index, and two sets of counterpropagating

fields. We consider a degenerate parametric process. Two

waves of different frequencies are involved: the first har-

monic or the fundamental harmoni{&H) and the second 11 4 9 . .

harmonic(SH). We denote the carrier frequencies of the FH =3 51~ 77| A T 1AL+ xeAl A2 =0,

and SH byw; and w,, respectively, where,=2w,. Each g

has two possible propagation directions; we just consider { 23
i

Arst kA xeAl A =0,

== =+ =
Lg) at = oz

one-dimensional waveguides without additional transverse . 19 0 2
. . . ) ) — =+ = + 6k + _+ =0,
effects. Devices of this type have been fabricated in experi- | (2 ot 9z Az O Ag i Frp -+ Xe Al
ments for efficient second-harmonic generati@8]. For
simplicity, we take the waveguide to be infinitely long. We { 1 0 9
i [ —

thus do not need to consider boundary conditions, which
play important roles in bistability and other effects. Of
course, though any actual system is finite, the results of such ~ ok 2 k(@)
analysis still give valuable insighi87]. In practice one may Wwhere g = w3x?/(k;c?), x?& X7 &&= x7-eer  gngd
only need to introduce one of the four fields as inputs toxj=jkiA;;/2. To simplify the equations, we can always
obtain a steady state, as either fundamental field can generateoose the phases ef so thatye is real. We neglect group
photons in the other three modes. velocity dispersion of the medium, as this is usually much
The system is similar to the doubly resonant optical parasmaller than the grating dispersion. However, we have in-
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cluded the difference in material group velocities between

the two carriers, as this is not always negligible. 0 £<0 \/
To reduce the number of free parameters, it is convenient (=p+7)/2

to normalize Egs(2.3). Generally speaking, the phase dif- (=p=7)/2--
ference between both gratings can be arbitrary. This means PR

that bothx; and x, are complex. Here we only consider ﬁm V2N
cases in which the gratings are either in phase or out of £>0

phase. Thus botlk,; and x, can be made real by choosing —_—

the origin of the coordinate correctly. In fact, we chose the Q

origin such thatk, is real and positive. With these choices,

we introduce the relations

(1)
Vg

K1
=—\/—Vi+
(2) " ="
Ug

Ay =
! XE

Ay ==Ly
2x= Voo
(2.9
§= K12,
T:U(gl)Klt.

Substituting these definitions into Eq®.3) gives the nor-
malized equations

d d
_+_

i o7 ag V1++V1,+VI+V2+:O,

o 9
|<E__(9_§)V1_+V1++V>{_V2_:o,

(2.5
| d p) ,
| E_‘I‘rva_f V2++pV2++’yV2,+V1+:0,
| P )
| E__rva_g V2,+pV2,+'}’V2++V17:O,

wherer,=vP/v{) is the ratio of group velocity of the FH

FIG. 2. Band gaps at the Fifeft-hand sid¢ and SH(right-hand
side. Shown is the local frequendy vs the local wave numbe®
at the two gaps. In our normalized parameters, the fundamental gap
has a width of 2, whereas the second harmonic gap has a width of
2|vy| and an offset of- p. The horizontal long-dashed lines indicate
a fundamental frequendyeft-hand sidg and its second harmonic
(right-hand sidg Note thaty is taken to be positive.

From Eq.(2.5), one notices that i&;.. are solutions, then
ajie”‘", where 6 is a constant phase factor, are also solu-
tions. This symmetry indicates that we can always chabse
such that one 0§, is real. Takinga;, to be real together
with Eq. (3.2), one can show tha,_ is also real unless a
very specific relationship amona, , ,v,Q,Q and the real
part ofa,_ is satisfied. Thus, for a given set of parameters, it
can only occur for a specified intensity. We do not consider
such nongeneric behavior here. Once we have takento
be real, it is trivial to deduce from E¢B.2) thata,.. are also
real.

To understand the physical meaning of the various param-
eters, we consider the linear version of E82). That is Eq.
(3.2 without the nonlinear terms. Two uncoupled linear dis-
persion relationships can be obtained from the linear equa-
tion. For clarity, the two dispersion relationships are shown
in Fig. 2 forr,=1. It shows the local frequendy versus the
local wave numberQ at the fundamental gagleft-hand
side), and the second-harmonic géapght-hand sidg In our
normalized parameters, the fundamental gap has a width of
two units, whereas the second harmonic gap has a width of
2|y|, and has an offset of p. The horizontal long-dashed

and the SHp=r,5k/«, is a normalized phase mismatch, jines indicate a fundamental frequenggft-hand sidg and
and y=r,k,/k, is the ratio of the grating strengths at SH jts second harmonitright-hand sidg
and FH. The number of free parameters of our equations Tq gbtain nonlinear CW solutions, we still need to solve

hence reduces to three.

Ill. CW SOLUTIONS

CW solutions to Egs(2.5) can be written in the general

form

Vji:ajie_ijﬂr+ijQ§1 j:1!2| (31)

wherea, . are complex amplitudes) is the frequency, and

Q is the wave number of the CW solution. Substituting the

above ansatz into Eq€2.5), we have
a1 (Q—Q)+aj a, +a; =0,
alf(Q+Q)+a’I,a2,+a1+:O,
(3.2
(20-2r,Q+p)ay, +ya,_+aj, =0,

(2Q+2r,Q+p)a,_+ya,, +a:_=0.
1

the full Eq. (3.2. CW solutions are usually classified into
two categories{1) degenerate solutions aii@) nondegener-
ate solutions. We discuss each type of solution separately.

A. Degenerate solutions

Degenerate CW solutions are solutions that have vanish-
ing components. In practical terms, we can either allow the
second-harmonic field or the subharmonic field to vanish.
However, no stable solution that is nontrivial results when
the second-harmonic field vanishes. In order to see this, we
notice that if we assume that,. =0, then we can deduce
that a;. =0 immediately from Eq.(3.2). This gives the
vacuum state

aj-=0. 3.3

If we assume thaé;. =0 anda,. #0, we find that only
the last two of Eqs(3.2) need to be satisfied. In other words,
for a vanishing subharmonic field, the solutions to Maxwell's
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equations only involve the usual linear behavior in a Bragg TABLE I. Summary of CW solutions to the parametric band-
grating. There are solutions both above and below band gagap system. Shown here is one degenerate solution and a nonde-
and any of the usual band-gap CW modes can be excite@enerate solution witli?=1. The vacuum state and more general
This allows us to choose any two €6%,Q,a,, , anda,_ as CW solutions withf2# 1 are not listed for simplicity.

free parameters. If we choo$@ and a,_, we obtain the

relationships Mode Degenerate solutions Nondegenerate solutions
= a1+ 0 =J(Q+1)(2Q+ y+p)
a;+=0,
a— 0 fal+

I\/4erz+y2——p s azf(—ZQI’+\./4Q2r2+y2)/'y —-Q—f

Q= 2 ) (3.4 ar arbitrary —Q—f
— / 2.2 2

2 =a2_( 2Qr=NaQ7 T+ v ] We therefore consider the cabe =1 separately. For clar-
: Y ity, both degenerate and nondegenerate CW solutions are

. . , , summarized in Table I.
In this solution, only the second harmonic exists—some of

these degenerate solutions can be unstable against spontane- fz a1
ous down-conversion. These stability properties will be ana- ] ] o
lyzed in Sec. 1l B. Using an effective mass approximatiéBMA) [22,23,

we have proven previously that the parametric band-gap
equations(2.3), which apply to second order nonlinear sys-
tems without a grating, have soliton solutions; key aspects of
To obtain the general nondegenerate CW solutions in anahis work are reviewed in Appendix B. The idea is that so-
lytic form, we use the parametrizations introduced by dejutions to the parametric equatiof1), can be transformed

B. Nondegenerate CW solutions

Sterke[29]: approximately to solutions to the parametric band-gap equa-
tions. Such a transformation is general and not limited just to
A= a solitonlike solutions, provided that the EMA is valid. The
RN requirement of the EMA to be valid is th@<1. The EMA

(3.5 transformation gives exact CW solutions to the parametric
band-gap equations wh&=0, i.e., whenf =+ 1. Note that

. the EMA can also give approximate CW solutions for small

fe+1 Q. However, we do not discuss such cases here.

) ) ) ) ) CW solutions to parametric equatiofB1) can easily be

These equations imply thaj, +aj_=a® anda; /a;;  optained[13,2§. The EMA transformation between the

=f. Using Egs.(3.5) and rearranging the last two equations parametric equations and the parametric bandgap equation is

of Eqs(32), we have given as
a,=—f+Q-1Q,
2t Q Vi =01ViSgn(«y),
(3.9
a,_=—f1-Q-Q.
. . Vi-=-01Visy,
The meaning off can be understood as determining the 3.7

position of the FH component of the CW solution. For ex-

ample, takingf==+1 and substituting Eq(3.6) into Eq. Vo =02V,81,
(3.2, we find that
V,_=0,V,S,

20Q(2fr,+20r — y+ p+2Q0)=0. 2-=02V2%
Therefore,f==1 corresponds t@Q=0, indicating that the Where(l) Vl(j)i 2a, Vy=sgn(s;h), and @
FH components of the matching CW solutions are at the=|k2vg /(k1vg )| X|2— (281|k1|v1+ kovo+ Skuo)/h|, h
edges of the fundamental band gap. Sirgevas taken to be = —v1k1(Q+1), g1=\[Kk102/(2K.01)||N[€"* (k1v4),
positive, in the linear limitf <1 indicates an anomalous dis- andg,= [hllez'QT/(Klv 1)- . _ _
persion and tuning above the band gap, whefea$ gives Simplifying the above relationships, one arrives at
normal dispersion below the band gap, as shown in Fig. 2. A
detailed discussion of theparameter can be found in Ref. a,,=*(Q+H 20+ y+p),
[29]. A new feature in the double-band-gap case treated here 3.9
is that the fundamental and second-harmonic band gaps can '
have different widths, indicated by, as well as different A=~ f,

locations, indicated by (see Fig. 1

The most general CW solutions can be found in closecanda;_=a;, f according to Eq(3.5). The above solutions
form and are discussed in Appendix A. However, wiign are the same as the solutions obtained by solving E38).
=0, and thud = =1, the CW solutions take a simpler form. directly.
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IV. MODULATION INSTABILITY ANALYSIS A. Degenerate case

Following the standard procedui&7], we now add small We start with the degenerate case for whigh =0, so
perturbations to the CW solutions and study their evolutionthat Egs.(4.2) decouple. Therefore, we introduce
We thus set , _
- 81+ =01(7)€'%+g5(7)e™'%,
Vji:[ajt‘l'5jt(§v7')]e_”97+”Q§- (4.1 ) ) 4.3
- o . : 81-=gp(7)e+gi(ne "9
Substituting this into Eq(2.5 and neglecting terms involv-
ing &7, gives Substituting the above equations into E4;2) and collecting
same exponential terms gives

| a J
I a_7+a_§ O14+ 81 (Q—Q)+ 8, + 67 8 Ta, 854 d
0 id_Tgl+(Q_Q_Q)91+92+az+93:0,
[d d * ii+Q++)++ =0
! 2T 01-+61-(2+Q)+ 14+ 7 a,-+a;_ 6, dr 92 (2+Q+a)g+91+3,-0,=0,
(4.9
:0, . d
4.2 'd_Tgs_(Q_Q+Q)93_94_a2+91:0,
9 d
I E_-I—rva—g)52++52+(ZQ—2I’UQ+p)+y52 . d
28 6. =0 1 5794 (2+Q—0)9s— g3~ a-9,=0.
1+ 1+ 7 Y
[ a 9 The above ordinary differential equations have fundamental
'(ﬂ—T—rva—g) 02—+ 6,-(2Q+2r,Q+p)+ ¥z solutions which are linear combinations of terms that are of
the form
+2a1,51720,

gj(r) =€, 4.5
Below, we discuss the modulational instability of degenerate
CW solutions and nondegenerate CW solutions separatelywhere thew are the eigenvalues of the matrix

0-Q—q 1 a,, 0
1 Q+Q+q 0 ar_
(4.6)
—a,, 0 -Q+Q—q -1
0 —ay_ -1 -0-Q+q

This matrix is real and nonsymmetric, so its eigenvalues arevhere R=1+Q?+qg?—a3_, and A=(g?+1)Q%—a3_g>.
real or appear in c_omplex conjugate pairs. CW _SO|U“0nS argo have a stable CW solutiom must be real for alf. It is
stable only if all eigenvalues are real. For brevity, we onlythys necessary that>0. Thus,Q?>aZ_. Next we notice
considerQ=0. This corresponds physically to a second—,[hat R-2JA>0 at large g%. However, if this quantity

harmonic band-gap mode either at the top edge or the bOttO%anges sign at any positive valueggt then the CW solu-

edge of the second-harmonic band gap. : . 5
- . o tion must be unstable. Solvirg—2A=0 for g° gives two
SubstitutingQ=0 into Egs.(3.4) divides the CW solu solutionsqy, whereg2=02—(a, +1)2. The conditiong

tions into two different classesa,,=a,_, and a,,= e . -
N <0 must also be satisfied for a stable CW solution, giving
8. In analogy to the parametéfrom Eq. (3.5, we can 02<(a,_—1)2. Combining this with the previous require-

also introduce a parametés which is the ratio ofa,, and . .
a,_ [cf. Eq.(3.5]. Together with the sign ot,, f, tglls us ment, 0*>a3_, we find tha'_[ the amplitude ai, cannot be
the position of the SH component of the solution. x§ too large, and we must satisfy the overall requirement that
>0, a,, =a,_ corresponds to the lower edge of the band-

gap sincef,=1, whereasa,, = —a,_ corresponds to the a§,<min(1/4,02). 4.9
upper edge of the band-gap since=—1 [29].

If a,, =a,_, the eigenvalues of the matrix can be written ) ) )
in the form Therefore, CW solutions of this type are always unstable if

0 =0, and otherwise have a limited range of stability up to a

0=*\R+2/A, (4.7 critical value ofa3_.
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In order to understand the physics behind this, we notice The physical reason for this result is that an antisymmet-
that the down-conversion process requires both energy comic second-harmonic mode can only couple to two subhar-
servation and a symmetry requirement that the cross sectianonic modes of the opposite symmetgne above and one
is nonzero. Although this is rather complex at high intensi-below the band gap If the second harmonic is excited at
ties, it becomes relatively simple to understand at low intenfow amplitudes, this is only energy-conserving in a region
sities. If we refer to the Fig. 2, we notice that a symmetricalmost in the center of the band gap of the subharmonic,
mode must couple to two subharmonic modes of the samehich is just the opposite of the previous case. Thus, we
symmetry(either both above or both below the band gap expect stable behavior at low intensities for any valué)of
This is impossible if the second harmonic is excited at low# 0, which is, again, precisely the result given by the eigen-
amplitudes in a region whose energy is locabedweerthe  value analysis at low intensity.
upper and lower band gaps of the subharmonic. Thus, we
expect stable behavior at low intensities for any valuélof
satisfyingQ)2<1, which is precisely the result given by the
eigenvalue analysis at low intensity. In this general case, we take the perturbations to be of the

The eigenvalues of the matrix for the second case, forms[37]
=—a,_, can be written in the same form,

0=*\R= /A, 4.9

where R=1+Q?+g?—a3_, and A=(g?+1)(Q%—a3_).
Note thatA now takes a different form. Again, to guarantee
A>0, we must haved?>a3_. Solving R—JA=0 for g?
gives only one solution. This indicates tHat- /A is either ) )
greater or smaller than 0 regardless the valug a$ long as 8, =0g4(7)€'9+ g5 (7)€%,

0%>a3_ is satisfied. Takingy=0, we findR— VA =[(Q?

—aj_)!?~1]% Therefore, CW solutions of this type are  Similar to Sec. IV A, we have;(r)=e'®". The eigenval-

B. Nondegenerate case

81+ =0y(7)e%+ gz (r)e ',

8- =0gy(7)e" U+ gE (m)e 9,
(4.10
824 =03(7)€+ g% (1) 19,

stable wher)?>>a3_. uesw are determined by the matrix
|
Ay 1 a. O as. 0 0 0
1 Ao 0 a- a,_ 0 0
2a;, 0 Ap vy 0 0 0 0
0 2a,_ y Ay 0 0 0
Al L. 0 0 0 A -1 -a, 0 | 413
0 -a,_ 0 0 -1 Ass 0 -a;_
0 0 0 0 -—2a, 0 A =
0 0 0 o0 0 —2a;. -y  Ag

where A;;=—q—Q+Q, Ap=9+Q+Q, Azx=-qr, mum of Im(w) at this stage is smaller than 1%) we further
—2Qr,+p+2Q, Ay=0r,+2Qr,+p+20, Ags=—¢q increase the range af and reduce the step size and repeat
+Q—-0, Ase=0—-Q—Q, Ap=—qr,+2Qr,—p—24Q, the calculation. We consider a CW solution to be stable if the
and Agg=qr,—2Qr,—p—2Q. We note that changing the maximum of Im (@) is smaller than 108.
signs off, y, Q, andp, and swapping the sign in the so-  The main difficulty with proceeding further is that there
lution of the quadratic Eq(A2), effectively changing the are five degrees of freedom in choosing the parameters
sign of Q, the determinant of the 88 matrix (4.11), isun- r,, f, v, p, and Q. Nevertheless, we can narrow our
changed. We therefore only need to consider cases with possearch by considering the physical significance of the five
tive y. parameters(l) r,, the ratio of material group velocities at
As in Sec. IV A, a stable CW solution requires all eigen-the FH and the SH. For most materials, this ratio is around
values of the above matrix to be real. Eigenvalues of the thisinity. Three valuesr,=0.5, 1.0, and 2.0, were chosen to
8x 8 matrix are not usually available in simple analytic represent a large range of possible situati¢Bsf gives the
form. We hence obtain the eigenvalues numerically. We usposition of a CW solution with respect to the fundamental
aFORTRAN77subroutine pGeev from theLINPACK, to evalu-  band-gap. Typical values éfiref=+0.1, 0.5, and+=1.0.
ate the eigenvalues. To determine the stability of a given CWNote thatf and 1f are equivalent, the only difference being
solution, we compute the instability growth rate lm)(by  the direction of propagatiof29]. (3) y represents the rela-
varying q from 0 to 20 with a step size of 0.01. If the maxi- tive strengths of the gratings at the FH and the SH. The
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valuesy=0.1, 0.5, 1, 2, and 10 cover a large range of situ- (@)
ations(recall that* y lead to the same resulig4) p is the
phase mismatch between the FH and the SH due to material
dispersion(5) () relates to the intensity,

aZ, +as_+a5_+a3,, (4.12

Im(©) e

of a CW solution. In experimentg and () can be varied [
continuously, and there are no typical values. We therefore I
treat them as “free,” and scap, and () space for Ml at 50 100
given values of ,, f, andvy. Intensity

V. RESULTS AND INTERPRETATION (b)

As the number of variables is large, it is difficult to obtain
much physical intuition from the equations as they stand,
even though they do give an exact solution for the stability
properties of the CW solutions to the parametric band-gap
problem. We know that only those combinations of CW am-
plitudes that satisfy the steady-state equations, and have
stable eigenvalues, are able to exist as stable, translationally : . . o]
invariant, coupled fields inside the grating. To obtain more 2 4 6 8
physical insight, it is useful to consider various limits that
allow the problem to become more analytically tractable, and
more closely comparable to similar band-gap problems that FIG. 3. Maximum instability growth rate vs intensity at positive
have been treated previously. In particular, we consider thehase mismatcp, and negativé. According to the NLS equation,
nonlinear Schrdinger(NLS) equation limit, where the prob- the CW solution is now stable. Parameters usedrgrel, f=
lem essentially reduces to the usual nonlinear refractive in=0.8, y=0, (8) p=100 corresponding to large phase mismatch,
dex case, as one limit that has been extensively studied pr@nd(b) p=10 corresponding to medium phase mismatch.
viously. Another limit of interest, is the case whér =1,
so that the Bragg-grating polariton modes behave essentialljnit [29,38,39. Thus the four coupled parametric band-gap
identically to low-velocity massive particles. equations are now approximated by the NLS equation,

0.15

IM(@) max

0 005 01

Intensity

2
A. Nonlinear Schrodinger equation limit i(?_u_ % "(Q_L;+A|u|2u:o (5.1
J J ’ '
In the NLS limit, the SH can be adiabatically eliminated, T ¢
leaving just the lower-frequency field. This means that the, hore 7= —8/(f+f1)3 is the dispersion, A=—(f2
problem reduces to the usual problem of a Bragg grating, '
with a nonlinear refractive index. A further simplification,

discussed below, is possible in some cases. This reduces t & and anomalous whez0. The sign of the nonlinearity
entire problem to a single nonlinear Schinger equation for is determined by. MI of the NLS has been solved previ-

a single polariton mode of the lower-frequency Bragg grat'ously[37]. It is well known that stable CW solutions require
ing. The approximation is somewhat analogous to the reduc-

. S i A . . normal dispersion and positive nonlinearity or anomalous
tion of a relativistic nonlinear field theorgwhich contains dispersi d i i it 0). CW soluti
particle and antiparticlesto a simpler nonrelativistic field persion and negative non inearitipt=0). solutions
theory. As in the relativistic case, the approximate theory.are. unstable. othermsef,ﬁ}O). More accurately, the stabil-
contains only slowly moving particles of one type, in the ity is determined by the eigenvalues

appropriate physical regime. — 41O 2_.2
This limit requires two conditions: low intensity o==3|0"[gvq*~qg, (5.2

f-2)/[p(f+f~1)?] is the effective nonlinear coefficient,
nd|u|?=a3, +a7_=a2. The dispersion is normal when

aj, +a’_+a3_ +as, <1 where g3=(f2+f~2)(f+f 1)a?(2p). The solutions are
real for all g if fp<0, so the CW solutions can be stable
and large phase mismatch. The second condition implies against small perturbations for smalf. By contrast, the
solutions are imaginary ifp>0 and|g|<(gg, and CW solu-
v<p, tions are thus unstable.

To compare the above predictions with results obtained
so that the linear coupling terms in the last two of E@s5)  from solving the full matrix Eq. (4.11)], we vary the value
can be neglected. Thus these equations can be written apf p while keepinga relatively small. The intensity is varied
proximately asV,.. = —V3,/p [4], and the first two of Eqs. by changing(). We thus plot the instability growth rate ver-
(2.5 that remain reduce to evolution equations similar tosus intensity for each given set of parameters. For the stable
those for a grating with a Kerr nonlinearity. In turn, these casesfp<0, we choosef=-0.8, r,=1, andy=0. Two
equations reduce to the NLS equation in the low-intensitydifferent cases are discusseds 100 and 10. The results are
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FIG. 4. Instability growth rate vs intensity and perturbation wave numtserpositive phase mismatch and positfvéccording to the
NLS equation, the CW solution is now unstable. Parameters used,a&®,f=0.5, andy=0 and the following:(a) and (c) p=100
corresponding to large phase mismat@h);and(d) p=10 corresponding to medium phase mismatch.and(d) a=2. Solid lines follow
from Eq. (5.2), and dashed lines from E¢4.11).

shown in Figs. 8) and 3b), respectively, in which the is relatively small and, therefore, the maximum instability is

maximum instability growth rates versus intensity are plot-still determined by the NLS type instability. In Figgic#tand

ted. These figures show that CW solutions are stable whe#(d), we plot the instability growth rate predicted by Eq.

the intensity is low. In Fig. &), p= 100, so that the equation (5.2) using a solid line, and that predicted by th& 8 matrix

is well within the NLS limit. This figure shows a stable re- [Eq. (4.11)] using a dashed line. We take=2 for these two

gion for the intensity smaller than 70 consistent with the Mlfigures, leaving other parameters unchanged. The figures

analysis of the NLS equation. For intensities larger than 70show again that the NLS analysis agrees with the full matrix

the full system is unstable. This cannot be accounted for byery well at a large phase mismatch. The difference between

the NLS because the intensity is too high for the NLS to beboth results become apparent only for small phase mismatch,

valid. By contrast, in Fig. ®) (p=10), we observe unstable as expected.

regions even at low intensities. The instability growth rate

grows dramatically as the intensity increases. This cannot be

explained by the NLS treatment singeis not sufficiently

large. In the EMA limit of f=%x1, the problem reduces to a
To illustrate the unstable cases for whith™>0, we take  study of coupled, nonrelativistic massive particles. This fol-

f=0.5, r,=1, andy=0. The instability growth rates versus lows since the dispersion relation for each field is then iden-

g and intensity are shown in Figs(a&} and 4b), correspond- tical to that of the Schidinger equation, for polariton modes

ing to p=100 and 10 respectively. The topology of the in- near the upper and lower band-gap boundaries. This case

stability demonstrates the familiar “butterfly” patterns in the gives a simplified two-mode equatidfor two coupled po-

MI of the NLS whenp is large, as shown in Fig(d). In Fig.  lariton modeg that is equivalent to the known problem of

4(b), we find a new pattern emerging beside the main featurenodulational stability of coupled FH and SH waves in a

of the NLS type MI. This is not surprising since the CW uniform nonlinear waveguide, as described by the one-

solution is moving out of the NLS limit. The new instability dimensional parametric equation. This reduction is quite

B. Case:f?=1
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analogous to the well-known reduction of the two-mode A series of plots is given in Figs. 5 fdr= —1 (above the
(coupled nonlinear Schrdinger equation to the single-mode fundamental band gaand 6 forf =1 (below the fundamen-
nonlinear Schrdinger equation, already described. tal bandgap We taker,=1 in both cases for definiteness,

As discussed in Sec. Il B, CW solutions for this case canand y= 10,4, and 1, as representative examples, as shown in
be obtained by the EMA transformation. One might expect(a), (b), and (c), respectively. The strongest coupling be-
that the MI in the case can also be obtained from the EMAtween the quasimodes is here expected to be to the SH
transformation. However, the EMA is not valid for large modesbelowthe bandgap, since is positive, as mentioned
wave numbers. Therefore, stability obtained from solving theabove.
full 8 X8 matrix may contradict those from the EMA. None-  In Fig. 5a), y=10 andf=—1, the stable area is the
theless, we find that consideration of the EMA mode coudargest of all figures. This is not completely unexpected,
plings helps explain some of the physics of the full analysissince the fundamental excitation is just above the band gap,
Thus the EMA theory(in certain casgsallows the reduction giving anomalous dispersion, whereas the nonlinear coupling
of the present problem to the well-understood case of a unis predominantly to SH modeg®elow) the band gap, which
form quadratically nonlinear medium. In this simpler case, éhave normal dispersion. Therefore, the quasi modes that are
necessarybut not sufficient condition for stability is that coupled have opposite signs of dispersion—a necessary con-
the dispersion of the two modes have opposite signglition for stability in the EMA limit. Note that the sign of the
[12,27,28. Hence we do not expect stability if the dominant phase mismatch clearly is important as well.
coupling is between linear eigenmodes that are both above or Wheny=2 [Fig. 5b)], we notice that the previous single
both below their respective band gaps. This follows becauskirge stable region at= 10 separates into a number of much
the effective dispersion is anomalous above a band gap, arginaller stable regions. Ay=1 [Fig. 5c)], the size of all
normal below a band gap. Thus, from Fig. 2, we can see thagtable regions shrink even further to disappear. Only tiny
unless the excitation frequency is near a band gap, both thaable regions still survive gt~ — 1. We note that the stable
coupled modes have the same sign of dispersion. This is n@égion at largep and small intensity in Fig. &) corresponds
likely to give stable behavior. to the NLS limit.

In the present case, witff=1, the FH is excited justat  The parameters in Fig. 6 are identical to those in Fig. 5
the edge of its band gaghe bottom edge if=1, and the top  except thatf=1. Thusy=10, 2, and 1 in Figs. @), 6(b),
edge if f=—1). Therefore, this argument would indicate and Gc), respectively. Note that the stable regions in these
modulationally unstable behavior if the corresponding SHfigures are almost entirely isolated from the vacuum state; a
mode is excited below or above the band gap, respectivelyz\y solution’s intensity thus needs to exceed a threshold to
However, the excitation frequen.cy of the SH relative to itSpe staple. We also find that compared to Fig) fthe extent
band gap depends on both the size of the band gap,@nd ot staple regions reduce dramatically in Figbgand vanish
the relative phase mismatch parametg).(For example, i rig g(c). Again, the NLS limit can be seen at the largest
ggmu;gé zi’ f't '_S|C||efr_tgat\;‘vr;ﬁctﬁiﬁgltﬁ§ B:nl?:s?;a:“%;esn'r\/alues of the phase mismatptin Fig. 6(c). For y<1, stable
f=q— 1 ezcitgtiony émila}l the bottom of the bands align if regions are found mainly atlarge which again corresponds

' Y: 9N 4o the NLS limit. However, we do not show these results

p+|v|=2, which gives an instability for ah=1 excitation. P )
The EMA analysis also shows that the couplings of the.here' We note that the stable region in Figa)thas a low

modes depends on the sign of If y>0, the preferential intensity boundary ap=12. According to Fig. 2, and with
coupling is to SH modeselowthe band gap. Ify<0, the the parameters chosen, the lower edge of the FH gap now

preferential coupling is to SH modesbovethe band gap. Ilnes_ up with the upper edge of the _SH gap. However,_ ac-
Thus we can expect different types of instability dependinggord'ng to the EMA theory, the effective nonlinear coupling
on the sign ofy. The sign ofy depends on the relative Petween the FH and SH vanishes in this cg224,23, so
Fourier coefficients of the refractive-index modulation, andthat, within this approximation, the system behaves as if it
hence on the details of the fabrication of the gratings. were linear. Hence the EMA appears to be applicable here,
Since we took the CW solutions to be real, we deduceand the stability ap=12 is not surprising. A similar argu-
from Eq. (3.8 that they must satisfy eithe€X+f)>0,(20  ment applies toy=2 in Fig. Gb), where the stable region
+y+p)>0, or (Q+)<0,(2Q+ y+p)<0. Apart from the  occurs at the low-intensity value @f=6. We cannot draw
signs off and vy, these two cases lead to the same resultssimilar conclusions aty=1 since the stable region in Fig.
there is a symmetry obtained from simultaneously reversin@(c) does not extend to low intensities. We also note that this
the signs off, v, Q, andp, consistent with our general argument does not appear to apply to Figs. 5.
finding in the paragraph below E@t.11). We therefore only Our results indicate that a relative large grating strength
show results for the first situation. We vafy from —f or for the SHJlarge y; see Eq(2.5)] tends to stabilize the CW
—(y+p)/2, whichever is larger, up to 10 andfrom —10  solutions. We also studied the effect of group velocity mis-
up to 10. Thus a three-dimensional plot of maximum instaimatchr,. Varying r,, we repeated the calculations dis-
bility growth rate is obtained for each setgf andy. Gen-  cussed above. The results show thagalso plays an impor-
erally most CW solutions are unstable. Nevertheless, a fewant role in determining the MIl. When we takg=0.5, the
stable solutions are found when the intensity is low, when stable area expands &= 10, whereas ifr,=2, the stable
is around zero andy is large. This small stable region area shrinks. Taking/=1, we find that small deviations of
shrinks asy decreases. CW solutions are unstable for highr, from unity reduce stable regions. However, we do not
intensity and large. show these results here.
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FIG. 5. Maximum instability for different grating strength ratipsand negativd. Plotted here is growth rate vs phase mismatand
intensity. Parameters used are=1, f=-1, (a) y=10, (b) y=2, and(c) y=1. Note that all axes are scaled differently.

C. Case:f?#1

Here there is no physically similar model which is avail-

unlikely that they can be observed in experiments in which
the instability grows from noise. In Fig. §=0.5,r,=1.0,

able to help interpret the results, and we are forced to reljndy=10, and we see that this case still retain some features
solely on numerical solutions of the eigenvalue problem. Wedf Fig. 6@). The instability growth rate dips at=0, result-
scan parameter values, thus taking a similar strategy to th@g in a “valley.” However, unlike Fig. 63), the valley in

previous section. Gradually movindg| away from 1, we
compute the maximum instability in tHe, p space for each
different value ofy. In general, we find that CW solutions
can be stable only at low intensity. As the value|bf de-
creases, the area of stable regions reducel|At0.1, stable
regions, if any, are all too small to locate whigih is not too
large such that the system is not in the NLS limit.

For reasons of brevity we show only results fbe
+0.5in Figs. 7 and 8. The ratio of the grating strengthis
chosen to be 10, 2, and 1 in Fig9a)y 7(b), and 7c), re-
spectively, whereas in Fig. =10 only. Compared tdf|

Fig. 8 is never deep enough to reach zero. No stable regions
are found fory=2 and 1.

VI. NUMERICAL SIMULATIONS

To confirm the results of the MI analysis, we also solved
the parametric band-gap equatidi2s5) numerically. In do-
ing so, we initially take a CW solution inside the grating,
with appropriate phase and amplitude to allow a steady-state
solution to form, periodic boundary conditions to allow the
problem to be treated on a finite domain. If the CW solution

=1, the stable regions are much smaller here. The intensitig unstable, perturbations grow in time, directly revealing the
of CW solutions also need to be much lower to be stablepresence of MI. We used two different numerical schemes:

Again, the stable regions shrink asdecreases. In Fig.(a),

an iterative semi-implicit integration scherf®0] with split-

wheref=—0.5, andy=10, we see a relatively large stable step Fourier transform evaluation of the grating dispersions
region compared with other cases with similar parameterat the FH and SH, and a method developed originally for

but smallery. This stable region is smaller than that foor

gratings with a Kerr nonlinearit{/32], but adapted for qua-

= —1. We note that the growth rates are modest, making itiratic nonlinear effect. Both methods’ results agree. The first
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FIG. 6. Maximum instability for different grating strength ratigsand positivef. Plotted here is the growth rate vs phase mismatch and
intensity. Parameters used are=1, f=1, (a) y=10, (b) y=2, and(c) y=1. Note that all axes are scaled differently.

method is general and and valid under a wide range of pagrowth rate accordingly. More precisely, we calculate the
rameters. The second method can only simulate cases withstability growth rate spectrum using
r,=1 but is considerably faster than the first method.

The simulation procedure is as follows: CW solutions are 1 In(]V;=(a,7)[*) = In(|Vj=(a, 7))
perturbed with Gaussian noises. The noise level is normally 2 To—T1 '
10 °-10 7 of the amplitude of the CW solution. These per- _ y
turbed CW solutions are used as initial conditions. For each The instability growth rate spectrum corresponds to
set of initial conditions, two independent simulations are per/M(@(a)), the largest imaginary part of the eigenvalues. We
formed using the same numerical method. The step size ¢fave simulated a large number of cases. The instability
one simulation is half of that of the other. We compare thedrOWth rate spectrum is plotted against the theoretical pre-
results of the two simulations at each time step. When thlf'Ctlon for unstable CW solutions. For example, the evolu-
maximum absolute value of the difference is smaller tharf'o" of a noisy CW solution is shown in Fig.(8. The

9 : . X rowth of Ml is clearly seen from this figure. The corre-
10", we accept the simulation results. Otherwise, the sie ponding instability growth rate spectrum is shown in Fig. 9.

size_s are reduced by. half, and s_imulations are performe imensionless parameters used for this example rgre
again. We note that this procedure is necessary because somg ¢_ _ ¢ p=—1,y=1, andQ =1.2. The dotted curve fol-
cases in which the stability is marginal require a dense Nu\ from the Mi analysis, while the solid curve is obtained
merical grid. Using the above procedures, we propagate eagfym the direct numerical simulation. The curves agree well,
noisy CW solution for an amount of time such that the noiseonfirming the validity of the MI analysis.

grOWth is still in the linear region. We then take one mode at Another case worth mentioning is the degenerate CW so-
two different times and perform a spatial Fourier transformjytions whose FH components are zero. These solutions gen-
into g, space and filter out the CW component. Finally, weerally become stable at low intensities. Such stable degener-
find the ratio of the spectra, and calculate the instabilityate solutions may appear surprising as one might expect that

(6.2)
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FIG. 7. Maximum instability growth rate versus phase mismatch and intensity for nedatie different grating strength ratios,
Parameters used afe= —0.5,r,=1, (a) y=10; (b) y=2 (¢) y=1.

a single SH photon could lead to down-conversion. How-general situation considered here there are four. We note that
ever, certain symmetry laws may forbid such down-in the study of Ml in a periodic structure with a Kerr non-
conversion, and indeed numerical simulations have showtinearity [29] it was found that for a range of parameters the
that such stable solutions can propagate for a long time withsolutions were unphysical, in that the Ml gain did not vanish
out noise growing. One of such stable casea,is=—a,_ as|qg|—¢°. It was noted in Ref{29] that this is likely to be

=1, y=1, andr,=1. We first takep=4, so that the stabil- associated with the fact that the dispersion relation of a grat-
ity condition Q2> ag, is satisfied. In order to test the stabil- ing is asymptotically straight. We have observed similar be-
ity, the initial CW solution is perturbed with a much stronger
Gaussian noise whose amplitude is one percent of that of the
CW solution instead of 1C° that we normally use for un-

stable cases. With a propagating period of 100 and a window ] 3 S5
size of 20, the noise amplitude remains the same at all time. , 4 o:,',::'; 5%
By contrast, when we take=0 and thus the stability con- \E \ ‘,;i,%; P
. . . g . . Sop
dltl_on Qz>a§, is not satlsflgd, the noise amplitude grows 8 "k\ &%WWW%
quickly even just after a period of 5. £ 3 WWW% %
0g N Wy 2%
J 205750\
VII. DISCUSSION AND CONCLUSIONS 0 e\l
0 S

-
We have presented a study of Ml in a parametric band- >
gap system. Though this problem reduces to cases that hav:
been studied previously in the NLS lin{see Sec. V Aand -~
the EMA limit (see Sec. V B the parametric band-gap sys-
tem is much richer than either of these. Of course this is not
unexpected since in both these limiting cases there are one FIG. 8. Maximum instability growth rate vs phase mismatch and
and two relevant modes, respectively, whereas in the mositensity forf=0.5. Other parameters used are=1, andy=10.
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x10°° V71 With these numbers we find 1 mqx
>0.008. Iff=1, y=1, p=1, andr,=1, at an intensity of
0.0012, Imw) max has the required value. From E@.4), the
total power required isP=(x;/xg)’n%eqvq(al, +a7_
+a5_+a3,) if we taker,=1. We therefore find thaP
=0.16 GWr/cn for this case, which is more than an order
of magnitude smaller than that required to observe Ml in a
Kerr system 26].

We also found extended regions of stability, particularly
when the SH gap is stronger than that at the FH. Note that
this is not the generic situation: for shallow gratings the size
of the nth gap is proportional to the magnitude of théh
Fourier component of the refractive index. Since these tend
to decrease with increasing higher order gaps tend to be
smaller than lower order ones. Nonetheless, one can design
refractive index profiles in which this is reversed for the two
lowest gaps. Though a detailed analysis of dark solutions
outside the scope of this paper, one may conclude that in
such systems the stability of dark soliton solutions is not
ruled out by an unstable background. It is interesting that the
full problem needs to be analyzed to reach this conclusion, as
the EMA approximation fails ifqg| is too large.

R T S The key restriction to our work is that we assume type |
0 1 2 3 phase matching, in which the FH is linearly polarized.

q Though, in principle, it would be straightforward to general-
ize to type Il phase matching, in which the FH consists of
two distinct linearly polarized components, in practice it

FIG. 9. Numerical demonstration of Mia) Evolution of a  would be complicated. First of all, Eq§2.3) would be re-
Gaussian noised CW solution. Shown here is the intensity of theplaced by six coupled equations, rather than four, leading to
first mode,|V,.|2. (b) Comparison of Ml analysis and numerical the need to evaluate a ¥2A2 matrix, rather than the 88
simulations. Shown here is the instability growth ratejvthe wave  matrix (4.11). Moreover, the available phase space would be
number of noise. The dotted curve is from MI analysis, and themych larger, making global searches of the solutions increas-
solid curve is from the numerical simulation calculated from Eq-ingly time-consuming.

(6.1). Parameters used are,=1,f=-1,p=-1y=1, and In conclusion, we studied Ml in a type | phase matched
=12 parametric band-gap system. We find the expected behavior
in the NLS limit. We have not studied the EMA approxima-

tion in detail here, because even though the EMA approxi-

havior in the parametric bgnd-gap system. quever, thl?nation can apply to the CW solution, the instabilities may be
does not affect the conclusions reached here since, as men-

tioned in Sec. IV B, only finite values fay are considered. too rapidly varying for the EMA to hold. Indeed, the results

As mentioned in Sec. IV B, in a large fraction of phaseare dominated by the existence of large regions of modula-

space the CW solutions are unstable. Thus, just like the grag_onal instability, which could find applications in low inten-

. . ; X . ity short-pulse generation. In spite of this, the work pre-
ing with a Kerr nonlinearity{26], the parametric banq 93P cented here also shows substantial stable regions for some
system could act as a tunable pulse generator. Since mj}a

g g . ; arameter values, in which steady-state solutions can occur.

parametric system the effective nonlinearity can be muc . . . : )
. . n these regions, the existence of dark soliton solutions is not

larger than that in a Kerr system, the required threshol 1 ed out
could be much smaller. Though a detailed consideration of '
this application is outside the scope of the present work, it is
straightforward to obtain a rough estimate for the required ACKNOWLEDGMENTS
intensity. In order to detect the effects of Ml in a nonlinear _ _
crystal of lengthl, the time required for a light beam to pass ~ B.A.M. acknowledges support from the University of
through the crystal should be sufficient for the noise to growNew South Wales. The authors thank Iver Cairns for a useful
Since the time required to propagate through the structure idiscussion. M. H. acknowledges support from the Australian
at least /vy, we require the instability growth rate to exceed Research Council.
vg/l. In terms of the the dimensionless units introduced in
Eq. (2.4), this can be written as Ina() > 1/(1 1) . We take
a 1-cm-long LiNbQ nonlinear crystal as an example and use

the following typical values; average refractive index In this section, we consider general nondegenerate CW
=25, x¥=11.9 pm/V, and input laser wavelength, solutions. Movinga,. to the right side of Eq(3.2 and
=1.06 um. For a grating with 0.2% refractive index modu- dividing them, together with the expressionaf. , we ar-
lation, we find that x;~1.2x10* m™!, and yg~2.25 rive at

APPENDIX A: GENERAL CW SOLUTIONS
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(2Q+2r,Q+p)(—f 1-Q-Q)+y(~f+Q-Q)

- f2, (A1)
(20-2r,Q+p)(—f+Q-Q)+y(—f 1-Q-Q)

which does not depend an Let () andf be the free parameters, one can then solve the above equati@n R@arranging,
we obtain a quadratic equation fQx

AQ’+BQ+C=0 (A2)
where
A=2r,(f?2-1),
(14 (y—p—20)—2r,(1+ '+ Q+12Q)
= . '
—1+f)[p (L+F2+fQ)+Q (2+2 2+ (y+2Q
C:( )[p( )f ( (y )] (A3)
|
OnceQ has been determined from E@\2), adding Egs. g ik} 8 iy
(3.2 gives an equation foa, which reads, (E+ - Ez—iﬁ) ¢o= ?df‘{, (B1b)

2_ -1 _ -1

=20+ py) (74 20) +2r, Q= F+17742Q). wherek]' is the dispersion at thgth frequency, i.e., the de-
(A4) rivative d’k/dw® calculated at the poink=k;. Here g

=k{P—2k{M wherek{" andk{?) are wave numbers of the

For a given set of and(}, one can work ouQ by solving st and second harmonics, while the nonlineayitis given
Eq. (A2); both solutions forQ need to be considered. Sub- 44

stituting Q into Eq.(A4), one obtainga. CW solutions can be
found subsequently from Eq€3.5) and(3.6) . eox PkW [ #K(D) 12
i [ j d2x(u V()2 (U@ (x))*,
1 2

APPENDIX B: PARAMETRIC EQUATIONS (B2)

The parametric equation first appeared in Ref. It has  \yhere ul)(x) refers to normalized transverse-mode func-
been extensively studied recent-16]. Based on the pub- {ions. The fieldse, and ¢, are, respectively, the complex
lished mode[4], we rewrite the one-dimensional parametric anyelopes of the first and second harmonics, in units defined
equation describing the cascadgld parametric waveguide gg that] ¢;|? is the photon flux of thgth field. In this equa-

in the forms tion, it is assumed that the group velocitigs= dw/dk of the
g iK' 2 two fields match at the carrier frequency, to optimize simul-
(_+ _1_2) br=ixdrd* (Blg ton formation. Under the EMA, the parametric band-gap

gz 2 ot equation(2.3 can be approximated by EqB1), with the

parameters taking different definitioh22,23.
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