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Relativistic pondermotive Hamiltonian for electrons in an intense laser field

X. Li
Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543
(Received 2 November 1998

A Hamiltonian theory of the electron drift motion in an intense laser pulse is presented. The action-
variational Lie perturbation method is utilized to derive the relativistic pondermotive Hamiltonian in a rigorous
and systematic way. The results include: the electron drift motion in a linearly polarized pulse is slightly
anisotropic because of the finite pulse duration effects, and its drift in a circularly polarized pulse contains a
vortex component.S1063-651X99)11805-1

PACS numbeps): 52.20.Dq

The concept of a pondermotive force is one of the basid.ie perturbation methofi12,13. This method preserves the
tools of plasma physics because of its numerous applicationslamiltonian structure of the original system which is a pre-
It describes the slower drift motion of the particle oscillating requisite for all proper extension to the treatment of many-
center[1] after averaging over the fast quiver motion of the particle systems such as plasmas through the methods of
particle. It has been studied by several authors bef+d], statistical mechanics and kinetic theory. It provides a system-
where the electromagnetic fields are treated as a small peatic way of deriving the pondermotive Hamiltonian, in prin-
turbation to the particle’'s free motion. The correspondingcipal, to all orders. Unlike the nonrelativistic regime, in
averaged equation of motion for the electron is written which the pondermotive Hamiltonian is itself a second order
quantity, its relativistic counterpart is a zero order quantity
and its higher order corrections can be important for appli-
cations. For example, we will show that the first order pon-
dermotive Hamiltonian for a short linearly polarized laser

wherep is the electron momentum; e the electron charge, Pulse is dependent on its polarization direction, which is in
mthe electron mass, the laser frequency, arilithe electric ~ contrast to the zero order pondermotive Hamiltonian.
field, where the overbar denotes an average over the laser The interaction of electrons with an intense laser pulse
period. can be described by the following Hamiltonian in terms of
In the electromagnetic field of an ultraintense laggf  the canonical variablesy(p):
the electron motion becomes highly relativistic and the elec-
tromagnetic fields play a dominant role in electron dynamics h=Jm’c*+c’[p+elcA(q) ], 2
at the lowest order. Obviously the concept of pondermotive
force needs to be generalized and its validity domain exam&herec is the velocity of light andA(q) is the vector poten-
ined. Previous studig§—9] of this problem have provided a tial of the laser field. For a finite-length tightly focused laser
basic physical picture of the so-called relativistic pondermo-ulse, its vector potential has the following foii9i:
tive potential: the averaged electron motion is isotropic and e " e
electrons are expelled from the high-intensity regions. One, _ 2 _ 2 ick
undesirable char?acter of their met%ods is th{':tt tr?ey are not'~ & &€ &t O()=—mb(e1,,e2,08)8 ‘
systematic, therefore very difficult to use to derive higher 2
order results, w'hich are qualitatively different from the low- n e—bz(eri,ezz,a'g)emkf-i—0(62)+C.C., 3)
est order ones in the present case. e
In this paper, a different way of treating electron drift
motion in an intense laser pulse is adopted. It is well knowrihere {=t—z/c measures the distance behind the leading
that the motion of charged particles in a plane wave is exedge of the pulse anklis the laser wave vector in vacuum.
actly integrablg 10]. Meanwhile a tightly focused short laser Two smallness parameters= 1/kw, ando=/kcA 7, where
pulse can be accurately described as a traveling wave witWy is the beam waist at focus andr is the pulse duration,
slowly changing amplitude and phal@11]. These observa- have been introduced to explicitly show the ordering of dif-
tions suggest that an adiabatic perturbation theory is appliferent terms. Physical results will be obtained by setting
cable to particle motion in a laser pulse at least in soméhem to 1. Thes ando in front of the coordinates denote the
portion of particle phase space. As will be shown later, theorder of the terms produced by differentiation with corre-
Lagrangian describing the motion of nonresonant particlesponding coordinates. Because of the finite pulse duration
can be separated into a zero order, oscillation-free part andeffect, bothb, andb, are infinite power series in increasing
smaller part containing fast oscillation terms. After an aver-powers ofc. Note the smallness af is not essential in our
aging over the fast oscillation, the drift motion of the elec-treatment, since as long &sis a function that depends only
trons in terms of the “oscillation-center” variables can be on ¢, the electron equation of motion is exactly integrable.
described by the pondermotive Hamiltonian. This averagingrhereforeA can have any functional dependenceémand a
process can be most easily done using the action-variationgkerturbative analysis of one form or another is still appli-
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cable. In our calculation, the smallness ofis used to ex- When the radiation field is a plane wave, the following

press the results in simple form. The explicit form®@¢e?) generating functioW(r,P) will bring the Hamiltonian to a

terms in the vector potential will only be needed when weform free of oscillating terms:

calculate the pondermotive potential to the ordeiOgk®),

and is therefore not needed for present purposes. 1 (¢ R S
Hamiltonian equations of motion can be obtained from W=r-P+ J_f P -a,dé +ﬁf {ai}d¢’, (10

the variation of the action ‘ ‘

where {a?}=b?e?¢+c.c. denotes the oscillating part of

6S= 5f (p-dr—hdt)=0 (4) af . This suggests that the following phase-space coordinate
transformations are helpful in separating the drift motion
which can also be put in the form from the quiver motion:
1 ¢
8S= 5f [p,-dr, +(p,—h/c)dz—h(dt—dz/c)]. (5) r=R,— J—f a (R,&)d¢’,
z

Equation(5) can be interpreted as an equation similar to Eq. 1 re 1 re
4 in which g:t—z_/c plays the role of tmeh is the H{;\_rml- 7=7+ _2f P .a (R,&)dé + _zf {af(R,g’)}dg’,
tonian andp,— h/c is the momentum conjugate mWriting J 23

i,=p,+ €a,—h/c and eliminatingp, gives

z

jz_ 1+(p.+a,)? P.=Pu.

h=—-=

2 2j, ' ©

j2=32, (11

where we have taken the units=c=e=1. The purpose of I .

this transformation is that the new momentum ,j,) are where R,,Z,P,,J;) are the oscillation-center variables at
L0z the lowest order. For a plane wave propagating in vacuum,

constants of motion for the “unperturbed” Hamiltonian, they are the exact canonical momentum and coordinates of
(1) with A being the v r ntial of a plan . S : : .
namely, Eq(1) wit being the vector potential of a plane the particle oscillation center which has a uniform drift mo-

wave, which is convenient for a perturbation analysis of the

A . I ' . ‘g tion with velocity dR, /dé=—P, /J,, dZ/dé=—1/2+(1
ticle motion (when it licabl listic | L 1/
gﬁ[s'g c g}gl"t’;(‘l’z"qf’é‘_' 's applicablpin a realistic laser "0, 75 - 12)/(232). In the laser field given by E43), they

The covariance of the variational formulation under an&€ Not canonical conjugate variables anymore, and the par-

arbitrary phase space coordinate transformation is manifestd{§/€ dynamics is much more complicated. For_future use, we
more clearly by considering the fundamental one-form ofd€fineé the  oscillation  radius vectorp=p, +p.&,

PoincareCartan = (1/ngf§aL(R,§')d§’ +[(LED) [P, -a,(R,£)d¢’ +(1/
_ 232 [¥a?(R,¢')}d¢ Te,+c.c.
y=v,dz*=p,-r, +j,dz—ea,dz—hd¢, (7) Before we determine the fundamental one-fdtragrang-

o . _ian) in the noncanonical coordinateR(,Z,P,,J,), it is ap-
wherez"=t, yo=—h. Under the coordinate transformation propriate to discuss which part of particle phase space the

?:?(z,g) we then have perturbation methods are applicable to. As far as the particle
o motion is concerned, a realistic pulse of E8). can be con-
y=v,dz*=y,dz", (8)  sidered “slightly” different from the plane wave only when

L . the particle oscillation amplitude is much smaller than the
wherey, = v,dz%/9z*. The variation ofy yields the Euler- characteristic scale lengths of the laser envelogeich are

Lagrange equation infinity for a plane wavg i.e., during one oscillation period,
the particle experiences an almost uniform field. This is
dz’ equivalent to the requirement that the particle oscillation am-
wf”d_g_o' ©) plitude changes very little during a single fast oscillation.

Only then does the implicit assumption that the integrable
where w,,=dy,/dz*—dvy,13z" is the Lagrange tensor. It solution of the new system exists actually hold, which is
should be noted that the Euler-Lagrange equation is invariamiecessary for a perturbative treatment. This will effectively
under the gauge transformation— y+dS, for any scalar exclude the resonant particles, namely those with “very
function S on the extended phase space. small” j,. More precisely, the maximum excursion of the

Our purpose is to eliminate the fast oscillation of Ef).  particle from its oscillation center in the perpendicular direc-
through an averaging procedure. It is conceptually simpletion must satisfy the followingip, |=a, /(jk)<w,, and
and probably more physical to proceed through a number ahereforej, must satisfyj,>ea, . Note that the particle ex-
steps systematically. First, we look for a phase-space cootursion in thez direction is less important in determining the
dinate transformation and a gauge function that will elimi-validity domain of the perturbation analysis, because the
nate the fast quiver motion in the leading ordenafdenoted  characteristic length of the laser envelope inzhirection is
by yo), provided it is possible. We then include the smallerone order larger than the perpendicular characteristic length.
part of y and find another transformation that removes thelt is worth pointing out that under the above condition, Eq.
fast quiver motion, order by order, from it. (11) can be inverted order by order.
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Using Egs.(7) and (8), and adding a scalar functiof ,of
=(—11) P, -a (R,&')d¢" — (113,) f{{a? (R, £')}d¢’, we Ln2f=0n > (14
have
=yo+ ey, +0(€?), o Y Yy
[ n Ln?’:gn( azfj_g)d M:Ln07+5|—nl')’+62|—n271
¥o=P,-dR, +3,dZ+[J,/2+ (1+P? +2|a, |?)/(2J,)]d¢,
_ dy Iy LYy 97y
y1=a,/3,Vp G-dP, +2a,/3,0G/3J,-dJ,+V,G-dR, Ln07=(9ﬁa—g‘+gﬁa—£ dz—g! o dp—g! 7 dé,
—a,dZ+[(11)V (P, -a,)-p, +(1/23,)V (a)* p,
d 3y,
+a,13,0G19¢]d¢, (12 Loiy=g dezu—g; My dr.,

andG=— (1/3,) [4(P, - a, + 1/2{a?})d¢. In the above calcu-

lation, we have expanded the vector potential appearing in ,9Yu L9y

the Hamiltonian as(R+ p)=a(R) + edal/dR, - p, + O(€?), Ln2y=0n—, 42"~ 0 ~dz (19
which is only possible for nonresonant particles. We see

once more the difference between resonant and nonresonewﬁeregﬂ is the generator of Lie transform.

particle dynamics. The motion of a resonant particle cannot On trnme other hand, under the transformatinthe one
be separated into a quiver part and a drift part that can bﬁ)rm + becomes '

described by a Lagrangian free of oscillation terms. For a

nonresonant particle, though, this separation can clearly be I'=Ty+dS (16
done; the drift motion is well described by the pondermotive '

Hamiltonian and the oscillation motion can be obtained fromWheres represents a gauge transformation in bhase Space
a coordinate transformation. p gaug p pace.

Because of the adiabatic ordering, we must take the varial—Jpon expandingd”,y,S, andT in powers ofe, we have

tion of bothyy and y; to determine the momentum equation

correct to ordere. Therefore the negative of the time com- T'o= 70, (17)
ponent ofyy cannot yet be interpreted as the relativistic pon-

dermotive potential at the lowest order in the sense of Eq. 95 95

(1). Only when there exists a coordinate transformation that I'1=v1— LYo+ %dp“L 0—§d§, (18)

will eliminate all the terms iny; except fory,; exists, can

— 7o¢ be interpreted as the lowest order relativistic ponder- IS
motive potential for the corresponding transformed coordi- T',=1vy,—L,qy;—(Ly;— 1/2|_§0+ 1/2L 50) o +T1 -dr,
nates. 1

We can now use Lie transformation whose application S, S,
had been discussed in detail in Rdf$2] and[13] to elimi- + ﬁ—dp+ a—dg, (19
nate the fast “time”¢ dependence frony,. Lie transforma- P ¢

tion provides a systematic and elegant way to carry out the o .

averaging procedure to higher order, though here we stop 4¢here for simplicity we takes,=0. The perturbation calcu-
first order, which already produces some nontrivial resultslation consists of finding the transformation order by order
We seek a transformation from R(,Z,P,,J,) to Dy specifyingS, andgy in a way that simplifies’,,. A

(Ezﬁjz) where we use an overbar to indicate the fastsecond expansion in powers @fwill be used in each order

time-averaged phase-space coordinates. to express the results in simple terms.

The Lie coordinate transform can be formally written as Now we are ready Fo consider the givgen by Eq.(12).
We do not transform “time”¢, so we takey;=0. From Egs.

ZH=Tz*, (13) (15 and(18), we have
where T=ex{d —[“d\L(\,¢)]. L is the Lie operator with F1=(VLG—g?)dRL+(—aZ— giz)dz
L(N,€)=3\""1L,(€),L (€)=Lpo+ €L+ €L, Based on
the ordering for the laser envelope, the Lie operator acts on +(Vp S+ gTiJraZ/JZVplG)dPL

scalarf and one-forny as
+(8S,/9d,+ 95+ 2a,13,0G153,)dJ,

L f=g%dfl9z" =L of + €L 1 f+ €L pof, o ;
+{9S1/9é—9,"-P, 13,— g}
of

of
Ln0f=gga—p+gga—§, X[1/2—(1+P.*+2[a[)/(23)]+ y14dé. (20

In the above equation, we can cho&eandgj such that all
—q'L Jf I'y, vanish excepl’;. Also, by requiring that there be no
Lof=glt=—, 1,, vanish except's,. Also, by requiring
ar, fast oscillating term iy, we obtain
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1 1 pondermotive Hamiltonian. For a short linearly polarized la-
Fie=(y1e)= J—VL(Pl‘aL)-pL— ?az(Pl-ai) . ser pulsep, =b, ¢, the leading term ofH, disappears and
z z
(21
Using the factV-a=0 so thata,=[¢(V, -a,)dé+O(€?) _ 1 9 = )
=-J,V,-p, +0(€), we can express the result as H1= k232 a;( Pydlb,[*¢).
[ye= 10,9, -([(P.-a)p. 1)
1 ¢ We see thaH; has a weak dependen@a the order ofeo)
== J_ZVJ_< (PL'aL)j aL(R,§')d§’}>- (22)  on the pulse polarization direction. The electron drift veloci-

z ties in the perpendicular plane are given by

For the same reason as before, in order to derive the momen-
tum equation correct to order, we need to finds, and g4

to eliminate all the components gf, excepty,;. This can

be done by following the same procedure as atjd&. For

our purposes, it is probably more important to know that
such a coordinate transformation exists than to explicitly

write it. = - = . .

Upon adding Egs(17) and (22) we sete=1 ando=1, vDy:dY/dg:._PV/‘]Z’ which _mamfestly show that_ be-
and obtain the fundamental one form. which describes th§24Se of the finite pulse duration effects, electron drift mo-
particle motion in fast-time avéraged coordinateston is slightly anisotropic. To elaborate on the discussion of
(ﬁ ) j) in the electromagnetic fields of a tightly fo- isotropy, let us examine the electron perpendicular drift mo-
Lt Loz tion in cylindrical coordinatesR,®,Z). The angular drift

cused short pulse: Lo
velocity is given by

_ __ 1 4
— — 2
vpx=dX/dé= P, /3~ T =(4lb, [%96),

=P, -dR, +J,dZ—Hd¢, (23)
whereH is the relativistic pondermotive Hamiltonian Pe sin(20) ¢
dO/dé=— —_2+ — ——(6’|bi|2/0"§).
H=Ho+H,, J,R kRJ; JR

Ho=—J/2—(1+P,2+2|b,|3/(23,), . .
Of interest is the second term: It causes the electrons to move

¢ towards thex axis, which is the laser polarization direction-
(E'aﬁf aL(ﬁif')df’D ,during the arising edge of the pulse, and vice versa during
the falling edge but with a smaller amount since then the
electron is in the relatively lower intensity region. So the net
_ iV [1/(ik)(P, -b,)b* — 1/(ik) (P, -b*)b effect on the electron drift motion is that while electron is
2t o L moving towards lower intensity region, it also slightly rotate
_ _ towards the laser polarization axis. However, the amount of
—1(K?)(P, -b,)db}/a&—1I(k*) (P, -bY¥)db, /& this anisotropy is too small to explain the observed strong
anisotropy of electron scattering from laser pulse in the re-

1
H]_:_J—_ZVJ_

z

z

+0(a?)]. (4) cent experimenf14].
The smallness of has been used in expressirg in simple For a circularly polarized pulsdy, =b, (&+ig), Hi=
terms. —(2kI[(P. XV, |b,|?)-e]+O(er),  vp=—P./J,
The Euler-Lagrange equations resulting from the variation_(z/kjg)vix|bi|ZeZ_ We see that the electron drift con-
of Eq. (23) are tains a vortex component in this case.

This formalism can be easily extended to study the elec-
tron drift motion in vacuum beat wave configuratiphs].
Here two beams with slightly different frequency propagate

dR/dé=dHgy/ P+ dH,/IP+O(€?),

dP, /dé=—dHo/dR, — dH1 /IR, +O(e%), at small angles of) and — 6 with respect to the axis. The
_ essential requirement for our treatment to be valid is that the
dJ,/dé=—dHoldZ— dH,/9Z+O(e*). (25  variation of the vector potential in all but one of the coordi-

. . _ . hates is slow. This is obviously satisfied by vacuum beat
HereHy is the lowest order relativistic pondermotive Hamil- |\ .../« configuration. In fact, a pondermotive Hamiltonian of

tonign. It gives the .main featurgs of relativi_st.ic.electron driﬂthe same form as Eq24) can be derived, with the properly
motion[6-9]: for a linearly polarized pulse, it is independent chosenb
|-

of the laser polarization direction, and the electrons are ex-
pelled from the high-density regions. X. Li gratefully acknowledges useful comments from
H, represents the first order correction to the relativisticGennady Shvets after his reading of the manuscript.



6052 X.

[1] R. L. Dewar, J. Plasma Phyg, 267 (1972.

[2] T. W. B. Kibble, Phys. Rev150 1060(1966.

[3] J. R. Cary and A. N. Kaufman, Phys. Fluigd, 1238(1981).

[4] B. Weyssow and R. Balescu, J. Plasma PRys.467 (1987).

[5] G. Mourou and D. Umstadter, Phys. Fluids4B2315(1992.

[6] G. Schmidt and T. Wilcox, Phys. Rev. Le&1, 1380(1973.

[7] D. Bauer, P. Mulser, and W. H. Steeb, Phys. Rev. LeX.
4622(1995.

[8] E. A. Startsev and C. J. McKinstrie, Phys. Rev5g 7527
(1997.

[9] Brice Quesnel and Patrick Mora, Phys. Rev.5B, 3719
(1998.

LI PRE 59

[10] L. D. Landau and E. M. Lifshitz,The Classical Theory of
Fields (Pergamon, Oxford, 1980

[11] E. Esarey, P. Sprangle, M. Pilloff, and J. Krall, J. Opt. Soc.
Am. B 12, 1695(1995.

[12] R. G. Littlejohn, J. Math. Phy23, 742 (1982.

[13] J. R. Cary and R. G. Littlejohn, Ann. PhyéN.Y.) 151, 1
(1983.

[14] G. Malka, E. Lefebvre, and J. L. Miquel, Phys. Rev. L&@®,
3314(1997.

[15] E. Esarey, P. Sprangle, and J. Krall, Phys. Re\62=5443
(1995.



