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Relativistic pondermotive Hamiltonian for electrons in an intense laser field

X. Li
Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543

~Received 2 November 1998!

A Hamiltonian theory of the electron drift motion in an intense laser pulse is presented. The action-
variational Lie perturbation method is utilized to derive the relativistic pondermotive Hamiltonian in a rigorous
and systematic way. The results include: the electron drift motion in a linearly polarized pulse is slightly
anisotropic because of the finite pulse duration effects, and its drift in a circularly polarized pulse contains a
vortex component.@S1063-651X~99!11805-1#

PACS number~s!: 52.20.Dq
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The concept of a pondermotive force is one of the ba
tools of plasma physics because of its numerous applicati
It describes the slower drift motion of the particle oscillati
center@1# after averaging over the fast quiver motion of t
particle. It has been studied by several authors before@2–4#,
where the electromagnetic fields are treated as a small
turbation to the particle’s free motion. The correspond
averaged equation of motion for the electron is written

dp̄

dt
52“Fp52

e2

2mv2
“uĒu2, ~1!

wherep is the electron momentum,2e the electron charge
m the electron mass,v the laser frequency, andE the electric
field, where the overbar denotes an average over the l
period.

In the electromagnetic field of an ultraintense laser@5#,
the electron motion becomes highly relativistic and the el
tromagnetic fields play a dominant role in electron dynam
at the lowest order. Obviously the concept of pondermot
force needs to be generalized and its validity domain ex
ined. Previous studies@6–9# of this problem have provided
basic physical picture of the so-called relativistic ponderm
tive potential: the averaged electron motion is isotropic a
electrons are expelled from the high-intensity regions. O
undesirable character of their methods is that they are
systematic, therefore very difficult to use to derive high
order results, which are qualitatively different from the low
est order ones in the present case.

In this paper, a different way of treating electron dr
motion in an intense laser pulse is adopted. It is well kno
that the motion of charged particles in a plane wave is
actly integrable@10#. Meanwhile a tightly focused short lase
pulse can be accurately described as a traveling wave
slowly changing amplitude and phase@9,11#. These observa
tions suggest that an adiabatic perturbation theory is ap
cable to particle motion in a laser pulse at least in so
portion of particle phase space. As will be shown later,
Lagrangian describing the motion of nonresonant partic
can be separated into a zero order, oscillation-free part a
smaller part containing fast oscillation terms. After an av
aging over the fast oscillation, the drift motion of the ele
trons in terms of the ‘‘oscillation-center’’ variables can b
described by the pondermotive Hamiltonian. This averag
process can be most easily done using the action-variati
PRE 591063-651X/99/59~5!/6048~5!/$15.00
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Lie perturbation method@12,13#. This method preserves th
Hamiltonian structure of the original system which is a p
requisite for all proper extension to the treatment of ma
particle systems such as plasmas through the method
statistical mechanics and kinetic theory. It provides a syste
atic way of deriving the pondermotive Hamiltonian, in prin
cipal, to all orders. Unlike the nonrelativistic regime,
which the pondermotive Hamiltonian is itself a second ord
quantity, its relativistic counterpart is a zero order quant
and its higher order corrections can be important for ap
cations. For example, we will show that the first order po
dermotive Hamiltonian for a short linearly polarized las
pulse is dependent on its polarization direction, which is
contrast to the zero order pondermotive Hamiltonian.

The interaction of electrons with an intense laser pu
can be described by the following Hamiltonian in terms
the canonical variables (q,p):

h5Am2c41c2@p1e/cA~q!#2, ~2!

wherec is the velocity of light andA(q) is the vector poten-
tial of the laser field. For a finite-length tightly focused las
pulse, its vector potential has the following form@9#:

A5
mc2

e
a'1e

mc2

e
az1O~e2!5

mc2

e
b'~er',e2z,sj!eickj

1e
mc2

e
bz~er',e2z,sj!eickj1O~e2!1c.c., ~3!

where j5t2z/c measures the distance behind the lead
edge of the pulse andk is the laser wave vector in vacuum
Two smallness parameters,e51/kw0 ands5/kcDt, where
w0 is the beam waist at focus andDt is the pulse duration,
have been introduced to explicitly show the ordering of d
ferent terms. Physical results will be obtained by sett
them to 1. Thee ands in front of the coordinates denote th
order of the terms produced by differentiation with corr
sponding coordinates. Because of the finite pulse dura
effect, bothb' andbz are infinite power series in increasin
powers ofs. Note the smallness ofs is not essential in our
treatment, since as long asA is a function that depends onl
on j, the electron equation of motion is exactly integrab
ThereforeA can have any functional dependence onj, and a
perturbative analysis of one form or another is still app
6048 ©1999 The American Physical Society
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cable. In our calculation, the smallness ofs is used to ex-
press the results in simple form. The explicit form ofO(e2)
terms in the vector potential will only be needed when
calculate the pondermotive potential to the order ofO(e3),
and is therefore not needed for present purposes.

Hamiltonian equations of motion can be obtained fro
the variation of the action

dS5dE ~p•dr2hdt!50 ~4!

which can also be put in the form

dS5dE @p'–dr'1~pz2h/c!dz2h~dt2dz/c!#. ~5!

Equation~5! can be interpreted as an equation similar to E
~4! in which j5t2z/c plays the role of time,h is the Hamil-
tonian andpz2h/c is the momentum conjugate toz. Writing
j z5pz1eaz2h/c and eliminatingpz gives

h52
j z

2
2

11~p'1a'!2

2 j z
, ~6!

where we have taken the unitsm5c5e51. The purpose of
this transformation is that the new momentum (p', j z) are
constants of motion for the ‘‘unperturbed’’ Hamiltonian
namely, Eq.~1! with A being the vector potential of a plan
wave, which is convenient for a perturbation analysis of
particle motion~when it is applicable! in a realistic laser
pulse similar to Eq.~3!.

The covariance of the variational formulation under
arbitrary phase space coordinate transformation is manife
more clearly by considering the fundamental one-form
Poincare´-Cartan

g5gmdzm5p'•r'1 j zdz2eazdz2hdj, ~7!

wherez05t, g052h. Under the coordinate transformatio
z̄5 z̄(z,j) we then have

g5gmdzm5ḡmdz̄m, ~8!

whereḡm5gs]zs/] z̄m. The variation ofg yields the Euler-
Lagrange equation

vmn

dzn

dj
50, ~9!

wherevmn5]gn /]zm2]gm /]zn is the Lagrange tensor. I
should be noted that the Euler-Lagrange equation is invar
under the gauge transformationg→g1dS, for any scalar
function S on the extended phase space.

Our purpose is to eliminate the fast oscillation of Eq.~7!
through an averaging procedure. It is conceptually simp
and probably more physical to proceed through a numbe
steps systematically. First, we look for a phase-space c
dinate transformation and a gauge function that will elim
nate the fast quiver motion in the leading order ofg ~denoted
by g0), provided it is possible. We then include the smal
part of g and find another transformation that removes
fast quiver motion, order by order, from it.
.
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When the radiation field is a plane wave, the followin
generating functionW(r,P) will bring the Hamiltonian to a
form free of oscillating terms:

W5r–P1
1

Jz
E j

P'–a'dj81
1

2Jz
E j

$a'
2 %dj8, ~10!

where $a'
2 %5b'

2 e2ikj1c.c. denotes the oscillating part o
a'

2 . This suggests that the following phase-space coordin
transformations are helpful in separating the drift moti
from the quiver motion:

r'5R'2
1

Jz
E j

a'„R,j8)dj8,

z5Z1
1

Jz
2E j

P'–a'„R,j8)dj81
1

2Jz
2E j

$a'
2 ~R,j8!%dj8,

p'5P',

j z5Jz , ~11!

where (R',Z,P',Jz) are the oscillation-center variables
the lowest order. For a plane wave propagating in vacu
they are the exact canonical momentum and coordinate
the particle oscillation center which has a uniform drift m
tion with velocity dR' /dj52P' /Jz , dZ/dj521/21(1
1P'

2 12ua'u2)/(2Jz
2). In the laser field given by Eq.~3!, they

are not canonical conjugate variables anymore, and the
ticle dynamics is much more complicated. For future use,
define the oscillation radius vector r5r'1rzez
52(1/Jz)*ja'(R,j8)dj81@(1/Jz

2)*jP'–a'(R,j8)dj81(1/
2Jz

2)*j$a'
2 (R,j8)%dj8#ez1c.c.

Before we determine the fundamental one-form~Lagrang-
ian! in the noncanonical coordinates (R',Z,P',Jz), it is ap-
propriate to discuss which part of particle phase space
perturbation methods are applicable to. As far as the part
motion is concerned, a realistic pulse of Eq.~3! can be con-
sidered ‘‘slightly’’ different from the plane wave only whe
the particle oscillation amplitude is much smaller than t
characteristic scale lengths of the laser envelope~which are
infinity for a plane wave!, i.e., during one oscillation period
the particle experiences an almost uniform field. This
equivalent to the requirement that the particle oscillation a
plitude changes very little during a single fast oscillatio
Only then does the implicit assumption that the integra
solution of the new system exists actually hold, which
necessary for a perturbative treatment. This will effective
exclude the resonant particles, namely those with ‘‘ve
small’’ j z . More precisely, the maximum excursion of th
particle from its oscillation center in the perpendicular dire
tion must satisfy the following:ur'u.a' /( j zk)!w0, and
thereforej z must satisfyj z@ea' . Note that the particle ex-
cursion in thez direction is less important in determining th
validity domain of the perturbation analysis, because
characteristic length of the laser envelope in thez direction is
one order larger than the perpendicular characteristic len
It is worth pointing out that under the above condition, E
~11! can be inverted order by order.
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Using Eqs.~7! and ~8!, and adding a scalar functionS
5(21/Jz)*jP'–a'„R,j8)dj82(1/Jz)*j$a'

2 (R,j8)%dj8, we
have

g5g01eg11O~e2!,

g05P'•dR'1JzdZ1@Jz/21~11P'
2 12ua'u2!/~2Jz!#dj,

g15az /Jz“P'
G•dP'12az /Jz]G/]Jz•dJz1“'G•dR'

2azdZ1@~1/Jz!“'~P'•a'!•r'1~1/2Jz!“'~a'!2
•r'

1az /Jz]G/]j#dj, ~12!

andG52(1/Jz)*j(P'•a'11/2$a'
2 %)dj. In the above calcu-

lation, we have expanded the vector potential appearin
the Hamiltonian asa(R1r)5a(R)1e]a/]R'•r'1O(e2),
which is only possible for nonresonant particles. We s
once more the difference between resonant and nonreso
particle dynamics. The motion of a resonant particle can
be separated into a quiver part and a drift part that can
described by a Lagrangian free of oscillation terms. Fo
nonresonant particle, though, this separation can clearly
done; the drift motion is well described by the pondermot
Hamiltonian and the oscillation motion can be obtained fr
a coordinate transformation.

Because of the adiabatic ordering, we must take the va
tion of bothg0 andg1 to determine the momentum equatio
correct to ordere. Therefore the negative of the time com
ponent ofg0 cannot yet be interpreted as the relativistic po
dermotive potential at the lowest order in the sense of
~1!. Only when there exists a coordinate transformation t
will eliminate all the terms ing1 except forg1j exists, can
2g0j be interpreted as the lowest order relativistic pond
motive potential for the corresponding transformed coor
nates.

We can now use Lie transformation whose applicat
had been discussed in detail in Refs.@12# and @13# to elimi-
nate the fast ‘‘time’’j dependence fromg1. Lie transforma-
tion provides a systematic and elegant way to carry out
averaging procedure to higher order, though here we sto
first order, which already produces some nontrivial resu
We seek a transformation from (R',Z,P',Jz) to
(R̄',Z̄,P̄',J̄z), where we use an overbar to indicate the f
time-averaged phase-space coordinates.

The Lie coordinate transform can be formally written a

Zm5Tzm, ~13!

where T5exp@2*edlL(l,e)#. L is the Lie operator with
L(l,e)5(ln21Ln(e),Ln(e)5Ln01eLn11e2Ln2. Based on
the ordering for the laser envelope, the Lie operator acts
scalarf and one-formg as

Lnf 5gn
m] f /]zm5Ln0f 1eLn1f 1e2Ln2f ,

Ln0f 5gn
p ] f

]p
1gn

j
] f

]j
,

Ln1f 5gn
r'

] f

]r'

,
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e
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Ln2f 5gn
z ] f

]z
, ~14!

Lng5gn
nS ]gm

]zn
2

]gn

]zm D dzm5Ln0g1eLn1g1e2Ln2g,

Ln0g5S gn
p ]gm

]p
1gn

j
]gm

]j Ddzm2gn
n
]gn

]p
dp2gn

n
]gn

]j
dj,

Ln1g5gn
r'

]gm

]r'

dzm2gn
n
]gn

]r'

dr',

Ln2g5gn
z ]gm

]z
dzm2gn

n
]gn

]z
dz, ~15!

wheregn
m is the generator of Lie transform.

On the other hand, under the transformationT, the one
form g becomes

G5Tg1dS, ~16!

where S represents a gauge transformation in phase sp
Upon expandingG,g,S, andT in powers ofe, we have

G05g0 , ~17!

G15g12L10g01
]S1

]p
dp1

]S1

]j
dj, ~18!

G25g22L10g12~L1121/2L10
2 11/2L20!g0 1

]S1

]r'

•dr'

1
]S2

]p
dp1

]S2

]j
dj, ~19!

where for simplicity we takeS050. The perturbation calcu
lation consists of finding the transformation order by ord
by specifyingSn and gn

m in a way that simplifiesGm . A
second expansion in powers ofs will be used in each orde
to express the results in simple terms.

Now we are ready to consider theg given by Eq.~12!.
We do not transform ‘‘time’’j, so we takegn

j50. From Eqs.
~15! and ~18!, we have

G15~“'G2g1
P'!dR'1~2az2g1

Jz!dZ

1~“P'
S11g1

R'1az /Jz“P'
G!dP'

1~]S1 /]Jz1g1
Z12az /Jz]G/]Jz!dJz

1$]S1 /]j2g1
P'
•P' /Jz2g1

Jz

3@1/22~11P'
212ua'u2!/~2Jz!#1g1j%dj. ~20!

In the above equation, we can chooseS1 andg1
m such that all

G1m vanish exceptG1j . Also, by requiring that there be n
fast oscillating term inG1j , we obtain
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G1j5^g1j&5K 1

Jz
“'~P'–a'!•r'2

1

Jz
2

az~P'–a'!L .

~21!

Using the fact“•a50 so thataz5*j(“'•a')dj1O(e2)
52Jz“'•r'1O(e2), we can express the result as

G1j51/Jz“'•^@~P'–a'!r'#&

52
1

Jz
2
“'K F ~P'–a'!E j

a'~R,j8!dj8G L . ~22!

For the same reason as before, in order to derive the mom
tum equation correct to ordere2, we need to findS2 andg2

m

to eliminate all the components ofg2 exceptg2j . This can
be done by following the same procedure as above@13#. For
our purposes, it is probably more important to know th
such a coordinate transformation exists than to explic
write it.

Upon adding Eqs.~17! and ~22! we sete51 ands51,
and obtain the fundamental one form, which describes
particle motion in fast-time averaged coordinat
(R̄',Z̄,P̄',J̄z) in the electromagnetic fields of a tightly fo
cused short pulse:

G5P̄'•dR̄'1 J̄zdZ̄2Hdj, ~23!

whereH is the relativistic pondermotive Hamiltonian

H5H01H1 ,

H052 J̄z/22~11P̄'
212ub'u2!/~2J̄z!,

H152
1

J̄z
2
“'K F ~P̄'–a'!E j

a'~R̄,j8!dj8G L
5

1

J̄z
2
“'@1/~ ik !~P̄'–b'!b'

*21/~ ik !~P̄'–b'
* !b'

21/~k2!~P̄'–b'!]b'
* /]j21/~k2!~P̄'–b'

* !]b' /]j

1O~s2!#. ~24!

The smallness ofs has been used in expressingH1 in simple
terms.

The Euler-Lagrange equations resulting from the variat
of Eq. ~23! are

dR̄/dj5]H0 /]P̄1]H1 /]P̄1O~e2!,

dP̄' /dj52]H0 /]R̄'2]H1 /]R̄'1O~e3!,

dJ̄z /dj52]H0 /]Z2]H1 /]Z1O~e4!. ~25!

HereH0 is the lowest order relativistic pondermotive Ham
tonian. It gives the main features of relativistic electron d
motion@6–9#: for a linearly polarized pulse, it is independe
of the laser polarization direction, and the electrons are
pelled from the high-density regions.

H1 represents the first order correction to the relativis
n-

t
y

e

n

t

x-

c

pondermotive Hamiltonian. For a short linearly polarized
ser pulse,b'5b'ex , the leading term ofH1 disappears and

H152
1

k2J̄z
2

]

] x̄
~ P̄x]ub'u2]j!.

We see thatH1 has a weak dependence~of the order ofes)
on the pulse polarization direction. The electron drift velo
ties in the perpendicular plane are given by

vDx5dX̄/dj52 P̄x / J̄z2
1

k2J̄z
2

]

] x̄
~]ub'u2]j!,

vDy5dȲ/dj52 P̄y / J̄z , which manifestly show that be
cause of the finite pulse duration effects, electron drift m
tion is slightly anisotropic. To elaborate on the discussion
isotropy, let us examine the electron perpendicular drift m
tion in cylindrical coordinates (R,Q,Z). The angular drift
velocity is given by

dQ/dj52
PQ

JzR̄
2

1
sin~2Q!

kR̄Jz
2

]

]R̄
~]ub'u2/]j!.

Of interest is the second term: It causes the electrons to m
towards thex axis, which is the laser polarization direction
,during the arising edge of the pulse, and vice versa du
the falling edge but with a smaller amount since then
electron is in the relatively lower intensity region. So the n
effect on the electron drift motion is that while electron
moving towards lower intensity region, it also slightly rota
towards the laser polarization axis. However, the amoun
this anisotropy is too small to explain the observed stro
anisotropy of electron scattering from laser pulse in the
cent experiment@14#.

For a circularly polarized pulse,b'5b'(ex1 iey), H15

2(2/kJ̄z
2)@(P̄'3“'ub'u2)•ez#1O(es), vD52P̄' / J̄z

2(2/kJ̄z
2)“'3ub'u2ez . We see that the electron drift con

tains a vortex component in this case.
This formalism can be easily extended to study the el

tron drift motion in vacuum beat wave configuration@15#.
Here two beams with slightly different frequency propaga
at small angles ofu and2u with respect to thez axis. The
essential requirement for our treatment to be valid is that
variation of the vector potential in all but one of the coord
nates is slow. This is obviously satisfied by vacuum b
wave configuration. In fact, a pondermotive Hamiltonian
the same form as Eq.~24! can be derived, with the properl
chosenb'.
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