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Large-scale optimization of neuron arbors
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At the global as well as local scales, some of the geometry of types of neuron arbors—both dendrites and
axons—appears to be self-organizing: Their morphogenesis behaves like flowing water, that is, fluid dynami-
cally; waterflow in branching networks in turn acts like a tree composed of cords under tension, that is, vector
mechanically. Branch diameters and angles and junction sites conform significantly to this model. The result is
that such neuron tree samples globally minimize their total volume—rather than, for example, surface area or
branch length. In addition, the arbors perform well at generating the cheapest topology interconnecting their
terminals: their large-scale layouts are among the best of all such possible connecting patterns, approaching 5%
of optimum. This model also applies comparably to arterial and river netwBR€63-651X99)16205-6

PACS numbdrs): 87.19~j, 87.10+e

Brains do not grow like crystals. However, some of the(see, e.g., Ref[7]). The relevant classical version of the
architectures of a variety of types of neuron arbors seem tSteiner tree problem is the following: Given a set of fixed
be similarly self-structuring. This can be predicted by anodes, find the set of arcs or branch segments that intercon-
simple fluid-mechanical model, where the neural trees ar@ects all nodes and has the shortest total length. The resulting
represented in terms of a laminar flow of fluid through anetwork will always constitute a tree. When it is permitted to
corresponding tube network. The model applies well, for exhave branch junctions only at node sites, it isninimal
ample, to planar arbors of mammalian retinal ganglion andpanning treewhen branchings may also occur at loci that
amacrine cell dendrites, and _of bqth intrinsic and extrinsicyre not nodes, it constitutesSteiner tree The total length of
thalamic axons. Local branch-junction geometry conforms tq, sieiner tree for a set of nodes is equal to or less than the

a fluid-dynamical model, with branch diameters set to mini'length of the minimal spanning tree for the nodesth a
maximum possible improvement of about 1383). For ex-

mize the internal wall drag of the fluid flow, which in turn

sets branch angles. The complete tree structure thereby cop- : : -
forms to a fluid-static model, as if its hypothetical branchample’ Figs. (A) and 1B) show, respectively, a minimal

tubes were all “inflated,” with the resulting vector- spanning tree and a Steiner tree for five nodes on a plane; the

mechanical system behaving like a network under tensions.;teiner tree has threg internoda}l junctignand is about 4%
This fluid-mechanical model predicts that a given tree will beShorter than the minimal spanning tree.
stretched or embedded in the minimum-volume configura- Steiner tree is a combmatprlal optimization problem: The
tion connecting its terminals; neuroanatomical observationsgXact solution of a problem instance in general requiass
in fact, support this conclusion. Furthermore, among thedenerating all possible alternative connecting patterns, or to-
many alternative possible topologies, the actual topologies dpologies, among the given nodésee, e.g., Fig. 6 below
these arbors are close to the minimum-volume ones. and (b) for each topology, finding its minimum-cost embed-
The neuron arbors fit this large-scale model almost agling, that is, the best positioning of its internodal junctions.
well as nonliving tree structures such as river drainage netSteiner tree—unlike minimal spanning tree—has been
works, and also blood vessel anatof®ef.[1] reviewed the proven to be an NP-complete problem, indeed, NP hard
wide range of non-neural arborizations occurring in nature [9,10]. The concept of NP completene§mondeterministic
This “neural fluid mechanics” provides a first approxima- polynomial-time completenes$need not be defined here,
tion of an explanation of how a “save wire” generative rule but it is strongly conjectured to be linked with a problem
[2] for network wiring optimization in the brain is in fact peing intrinsically computationally intractable, i.e., not gen-
implemented for one aspect of neuroanatomy. Some of thgrally solvable without an exhaustive search of all possible

significance of such an account, for instance, concems hogp|ytions. Because the number of possibilities—topologies,
complex biological structure can emerge “for free” directly

from simple physical phenomendl-5]. Such self- A B
optimizing tree structures might provide an enriched milieu
for “neuromorphs”—artificial neuronlike signal processing
elementq 6]—that could grow their own networks.

STEINER TREE

The simplest forms_, of the core t_ree—optimization Conc_ept . FIG. 1. Two classical models of tree optimalityA) Minimal
here have been studied at least since Fermat and Torricellhanning tree, anéB) Steiner tree, for five nodes on a plane sur-

face. The Steiner tree has internodal junctignst is therefore
shorter than the minimal spanning tree, but much more computa-

*Electronic address: CHERNIAK@umail.umd.edu tionally costly to construct. The Steiner tree concept in fact applies
TElectronic address: CHANGIZI@cs.ucc.ie to neuron arbors, but with the cost measure as the total tree volume,
*Electronic address: DUWON@Ilexsolutions.com rather than the total tree length.
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FIG. 2. Optimization analysis of a five-terminal subtree from the dendritic arbor efganglion cell in rabbit retinalA) A quadrant of
the original camera lucida drawing containing the subtegeer Ref.[13], p. 29; soma is in the upper right corner. “Leaf terminals” of the
analysis are boxethote that one of them is not a branch terminafidhe “root terminal” is at soma(B) Wireframe representation of the
actual tree, with branch segments straightened between loci of terminals and internodal junctions. The labels give the diameters assigned to
the branch segments via the power law for the laminar-flow valee3.00 (with correction for branch bend in; see textC) Optimal
(relembedding of the topology of the actual tree, with respect to the total volume cost, via the STRETCH algorithm. This minimum-volume
embedding of the actual topology is 1.06% cheaper than the volume of the actual(®ge() Optimal embedding of the optimal topology
for the given terminal loci, with respect to volume cost. It can be seen to differ from the actual topolG@y—6F). It is 2.64% cheaper in
volume than the actual topology in its actual embeddin(Bin (E) Optimal embedding of the optimal topology, with respect instead to the
total tree surface area. The actual vs optimal error is now 27.22%, much gi@&t@ptimal embedding of the optimal topology, with
respect to the total tree length. The actual vs optimal error is now 60.58%, even di®amae. junction sites ) and(F) are identical with
terminal sites. Thus this dendritic arbor best fits a minimum-volume model.

in the Steiner tree case—combinatorially explodes as the sizgbly these particular axons also are laid out by similarly
of a problem-instance grow®.g., a ten-node tree has over intrinsic processes.
two million Steiner topologies such brute-force searches  Because optimization of two-dimensional arbors is much
are extremely computationally costly. The largest unconbetter understood than that of three-dimensional ones, the
strained classical Steiner tree problems solvable at the end @nalysis below concentrates on the former. The dendrite and
the last decade had only 30 nodé4], and today have about axon trees selected as data for analysis are of highly regular
100. types, with relatively straight branches, and no branch cross-
The basic question of the goodness of fit of the SteinePVersi(e.g., the bough of Fig.(2), as opposed to the tree
tree concept to actual neuroanatomy is the following: DocONSisting of that bough with the bough to its righOne

dendrites or axons form optimized Steiner trees interconnec@PServation regarding network optimization is immediately

ing the cell body with a set of synaptic lod, 12]? However, salient: A classical theorem for minimal spanning trees states

a typical dendritic or axonic arbor has thousands of synapse%hat no pranph junction can have an angle of less than 6.0 ’
) . . rom which it follows that no node can have more than six
a node set of unfeasible size. Instead, the analysis belo

Branches. If the soma of planar neuron arbor types such as
treats the hierarchically next-highest-level arbor element P yp

Sretinal ganglion cells is treated as such a node, and examples

the branch terminations, as the “leaf nodes” to be economiz, g sejected with approximately symmetrical dendritic arbors
cally interconnected with each other, and the “root node” or

Y ) and with boughs of approximately equal size, this “six-
origin (e.g., the cell body for example, Fig. BA) shows one  pyranch rule” can be tested. Peichl, Ott, and Boyddis]
“bough” portion of the dendritic arbor of am ganglion cell  jycjudes relevantr ganglion cells of 13 mammalian species;
in rabbit retina[13] with three such branch-termination 3| somata receive six or less dendrite branches, with mean
leaves. It should be noted that the fluid-mechanical accoury 15 (+0.80. The six-branch rule was similarly confirmed
here implies that the leaf nodes are not target sites fixed ijithout exception by ther ganglion cells from rabbit retina
advance; rather, as the system is “inflated,” positions of thepy pejchl, Buhl, and Boycoft13].

branch terminations shift into vector-mechanical equilib-

rium. The optimization thesis is that the re_sultlng grbor is a LOCAL Y TREES

Steiner tree. The account here is thus consistent with conven-

tional conceptions of dendritic arbor structure as mainly “in-  Fluid dynamics The classical Steiner tree concept cannot
trinsically” driven [14]—yielding, in effect, the most eco- be applied further to natural tree structures because, while
nomical “synapse rack” to receive connections. In contrastthe usual Steiner tree formalism treats all segments as equal,
according to the conventional conception, typical axons arg¢ypically trunks of natural trees—Iiving and nonliving—have
more “extrinsically” driven as their growth tips home on greater diameter than their branches. The conceptwaria
their synapse targefd5]. It is interesting, therefore, that the ably weightedSteiner tree is therefore required, where seg-
fluid-mechanical account here turns out to apply equally welments need not have uniform cost per unit length. We begin
to some types of axofe.g., of the reticular formatignpos-  with the local analysis of single internodal junction “Y
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Qualitatively, this law expresses that the greater the exponent
value, the less the required trunk diameter, relative to branch
diameters. For the greater flow rates and pipe diameters of
the turbulent flow regimep can be derived as 2.33, again
with empirical confirmation[19]. Although constructed
originally for diverging flow at a branching, the model also
can approximate the case of converging flow. For turbulent
flow in the open channels of river drainage systeamain,
both fan-out and fan-inthe power law(1) is derivable, with
_ simplifying assumptions, fop=2.17[20].
10um Flow phenomena have long been observed in both den-

FIG. 3. Bifurcating junction in a neuron arbdr:trunk; b, and  drites and axonf21], particularly during their development,
b,, branchesj, internodal junction;g, internal branch angle. The although of course they have highly complex internal struc-
“Y”-tree diagram is superimposed upon a simplified outline of a ture, not an unobstructed lumen. We evaluated the goodness
junction in the data set from the dendritic arbor of ganglion cell of fit of the power law for the trunk and branch diameters of
in cat retina. The neuron arbor junction trunk and branch diameterghe 217 neuron arbor junctions reported by CherfigkThe
conform to the power law?=b?+bj, with p=3; this is a fluid-  heyronal “tubes” are of 1-1Qsm diameter range; hence the

dynamic model for the minimum internal wall drag of pumped flow 1, o jita exponent value for the power law would be the
under a laminar regime through a pipe junction. In turn, the |nternaF

branch angles of the neuron junctions conform to the “triangle of amlr?ar reglm_ep—3.00. AS Flg 4 ShO\_NS’ the datsa ars Ingfact
forces” law cosf=(W2—WE;—WE,)/2Wp Wpy, With weightsw,, cor- consistent with that prediction. Wlth me_arb1(+ b2)/_t
responding to cross-section areas of respective trunk and branches;1.12 (+0.46), the neuron branch-junction data fit the
this vector-mechanical model yields minimum volume of a Y-treelaminar power law almost as well as the mouse cortex 10—
junction. 100-um-diameter arteriole branch-junction data of Wang
et al.[22], where meanif$+b3)/t*=1.08 (+0.05). In ad-
trees,” the components of complex trees. First, a model otlition, the neuron data consistently conform to the power
the relation of branch costs to their trunk cost is necessaryaw better forp=3.00 than forp=1.50; the latter is in fact
One promisingly general candidate can be drawn from fluiddentical with the “¢ rule” for motor neuron dendrite trunk
dynamics: Originating with Murray’$17] work on vascular  and branch diameters, derived from an electrotonus model
arbors, the “cube law” states that, for diverging flow from [23]. The power law shows a lower error with=3.00 than
trunk to branches at an arterial junction, tube-wall drag of th&yith p=1.50 for each of 17 of the 20 dendrite-junction
moving fluid is minimized if inside diameters of the trunk groups of Cherniak1], which is significant p<<0.01) by a
and branches fit a relationship that the cube of trunk d|amete°rign test.(The three groups that are exceptions fall into no

equals the sum of cubed diameters of all brandses Fig.  naricylar pattern, but it should be noted that none of the 20
3). This derivation holds for laminar flow, that is, typically, groups consisted of spinal motor neuron denditdthe

fluid moving smoothly in tubes of one millimeter diameter or |3 minar value ofp=3.00 also outperforms a “conservation

less, at velocities low enough not to induce eddy distur-¢ ross-section area” value af=2.00[24] for 16 of the 20
bances[18]. In general, it has been well confirmgd9]. groups <0.02)

Murray’s law generalizes to a power law Fluid statics. Without reference to a fluid-mechanical
model, a general local optimization law can be derived that

_ Pt P . .
tP=bi+bh 2<p=<3. (D) relates weights of a trunk and its two branches to the
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FIG. 4. Best fit of the fluid-dynamic model for dendrite and axon Y trees. The fluid-dynamic power law relating branch diameters to trunk
diameter, for minimal wall drag of pumped flow at a junctiontfis- b} + b5 (for the laminar flow regimep=3.00). The histograms are for
the frequency distribution of values of the best-fit exponpntor 217 neuron junctions(A) The raw data are skewedB) The
log,gtransformed data better approximate a normal distribufanconfirmed by linear regression analysis dp-&Q normality tes}); the
inverse of the mean of log-transformed best-fit exponents is 31961), which approaches the laminar regime valugoofor the 173
dendrite junctions of the total data spt=2.96 (+1.54).(The neuron junction data were described in R&f.)
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FIG. 5. (A) Combined “fluid dynamic and static model” applied to isolated dendrite Y tfgewctions from Ref[1], p. 500. (1) The
fluid dynamic power law relating branch and trunk diameters for minimization of the wall drag of pumped #®wki§+ b? (see Fig. 4.
(2) The fluid-static law for the minimal tree cost is o@s(vvtz—vvzbl—wzbz)/ZWblwbz, with w,, the cost per unit length of a branch or trunk;
this is equivalent to the triangle of forces law of vector mechanics. The combid@d: ‘tos ' model employs observed branch diameters
at a junction to derive the predicted trunk diameter, then uses those three values to derive the optimal branch angle. In the above plot, there
is a minimum-volume-cost point within the interpretable 2.00-3.00 range; for a=¢oktme assumption, the best-fit value of the
combined model for 173 dendrite junctions ispat 2.70. At the best fip, the mean errofof 0.209 between actual observed vs predicted
optimal branch angles is in fact slightly less than the mean error of the fluid-static model alone using directly observed trunk diameters
(0.509. (B) The same combined model, extended to dendrite “triads” of three interconnected Y(seeJ able), via the STRETCH
embedding-optimizer algorithm. For cestolume, the best-fit value for five dendrite sample groups with 72 triads totalpis- 2t90, with
a mean actual topology error of 4.50% between the actual triad volume and minimal triad volume. The model for triads includes a correction
for the observed bend-in of branches of each tfthe model for Y trees did nptSee text for branch and trunk costing procedures.

minimum-cost angle between the branches for connecting bined model in Fig. 6A); the combined modegb value falls

the trunk origin to the branch termination sites: virtually in the middle between the 3.00 laminar regime
s 5 5 value and the 2.33 turbulent value. One explanation of the

Wi = Wp, =Wy, lower p value of the combined model is branch bend-in: As
coso= 20y Wy, (2 discussed below, almost all types of naturally generated tree

structures show some inward curvature of branches as they
(See Fig. 3. An immediate question is, what is the weight leave the immediate junction zone. Branch angles of the
w—the cost per unit of length—to be minimized? As dis- Cherniak{1] data were measured at approximately one trunk
cussed in Refl1], the hypothesis that the total volume of Y diameter from the junction zone, and so reflect some amount
junctions is minimized, rather than the surface area or lengtbf branch bend-in; observed angles will therefore be some-
of the tree structures, is strongly confirmed for a variety ofwhat lower than the most immediately local ones. As indi-
dendrites and axons. The cosine 182 is identical to the cated above, the best fitwill correspondingly be decreased.
“triangle of forces” law of vector mechanics, expressing the An estimate of the extent of branch bend-in for the Cherniak
least-energy state of three cords fastened together at a cofii:] data, derived from the “true” local 2.96 value directly
mon junction, with actual weights pulling each of them. If a based on the power law alone, and the Zp7@Galue of the
Y tree is interpreted as a fluid-static system of flexible butcombined model, is 7.1°, which is consistent with the much
relatively inelastic-walled tubes “inflated” at an arbitrary greater bend-in observed for branches at ranges further from
pressure, then the forces exerted on the cross-sectional distke junction.
of each tube will in fact drive the junction to an energy-
minimization angle that is identical with the angle for mini-
mization of volume(but not of surface area or of length
Thus, via a tug of war process, fluid statics provides a The Y trees of the above analysis can be viewed as com-
mechanism for the local optimization of arbor volume. ponents of more complex trees, such as “triads” consisting
Since tree volume is a function of branch and trunk diam-of three interconnected Y trees. However, local optimization
eters, the fluid-dynamic power law and the fluid-static cosinedoes not entail global optimization. In particular, the termi-
law can be linked in a single fluid-mechanical model. Innal set of a Y tree has only one possible topology, while
effect, a “dP & cos @’ local model accepts the two branch larger terminal sets have an exponentially growing number
diameters at a junction and outputs the trunk diameter andf alternative topologietsee Ref7], Table 1.). The cosine
the volume-minimizing branch angle. The combined modelaw above expresses only the minimum-cost local embed-
also implies, qualitatively, that the smaller tpevalue, the ding or “stretching” of the Y-tree topology. First, the em-
smaller the branch angle Figure §A) shows that the com- bedding concept must be generalized to the global topologies
bined model performs at least as well at predicting dendritef more complex trees, with branches of varying weight, or
junction angles as the cosine law aldneported in Ref[1]), cost per unit length.
with quite low mean errors. A discrepancy may be perceived Embedding a topologyOptimization of large-scale em-
between the best fip=2.96 of the power law to the den- bedding can again be conceived of in terms of the idea of a
drites (Fig. 4), versus the best-fit valug=2.70 of the com- tree as a system of laminar-regime tubes in a vector-

MULTIJUNCTION TREES
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mechanical tug of war. Vector-mechanical treatment of tree At p=3.00, the observed embeddings of the 104 actual
networks of weight-loaded cords with as many as five interneuron triads have a mean volume cost that is 5.40%
nodal junctions appeared in work by Varignf2b]. Huang (*=3.80 greater than the minimum cost of the optimal em-
and Kahng 26] developed for us an algorithm to derive the beddings of their actual topologi€d.he axon error of 5.78%
minimum-total-cost embedding of a variably weighted (+=4.56) runs somewhat greater than the dendrite error of
Steiner tree, with affinities to a concept by Gilbg27]. We  5.05% (*=3.07).] For p instead set at the turbulent-flow-
employed this algorithm in a tree embedder, STRETCH: Aregime value of 2.33, the mean neuron error rises to 6.31%
tree such as in Fig.(B) is represented as an input file, speci- (+4.96). This difference is small but consistent: The error at
fying its topology (i.e., the connections among node and3.00 runs below the error at 2.33 for seven of the eight neu-
junction site$, with coordinates of the root and leaves, andron groups; of the 104 individual triads, 68 show less error at
of the observed internodal junctions, and weights of eacl8.00 than at 2.33, a highly significant effeq<<0.001,r,
branch. STRETCH proceeds from junction-linked leaf pairs>0.31). For comparison, the corresponding mean embed-
inward. Using the cosine law above, STRETCH finds theding error is similar, 4.42%, for eight triads from artificially
minimum-cost site of the internodal junction for each leafgenerated streanj28] and eight triads from the Mississippi
pair. It then in turn treats these internodal junctions asRiver delta[29], with p at the 2.17 value derived for turbu-
second-order leaves, and finds the minimum-cost junctiotent flow in open channels, as explained earlier. Vjitht the
sites for these new “leaves.” The algorithm continues back2.33 turbulent value, 24 human coronary artery trif8i3|
in this way, also testing junction mergings, until it reaches(having a 2.45-mm mean trunk diametshow a mean em-
the root. The output is the optimal embedding of the treepedding error of 4.49%; 20 of 24 better fit the turbulent than
represented as loci of the internodal junctions; Figg)2e-  laminar p value, which is again significantp&0.01). As
picts a typical minimum-cost embedding, for volume. noted by Chernia1] for local junction geometry, these
STRETCH can be set to minimize the total volume, surfacecomparable errors are consistent with the hypothesis that the
area, or branch length of a tree. global neuron arbors, like the fluid networks, are created by
Neuron arbor data were scanned from published Golgsimple fluid-mechanical processes.
and HRP camera lucida drawings. The span of complete ar- Table | shows the mean best-fit valuepfor each arbor
bors ranges well above 1Q@m; since branch diameters are class, that is, th@ value (with correction for mean branch
below 10um, these images rarely include accurate represerbend-in at which the embedding volume error of the topolo-
tations of branch diametdsee, e.g., Fig. (&)]. Given the gies of the set of actual arbo($VL error” ) is minimized.
good confirmation described above of the laminar power lawThe first observation is that every triad group, living and
for the neuron Y trees, we instead employed it to estimat@onliving, has a best-fit valug, 2<p<4; that is, there ex-
diameter costs of triad branches. Like STRETCH, theists a minimum-volume cost point above 2.00 and below
““coster” algorithm proceeds from the leaves inward: Branch4.00 (for the dendrite group, see Fig).5The mean embed-
tips are assigned a uniform cost of 1; at their junctions, thaling error for neurons drops some to 4.80%, with the mean
power law is used to assign cost to the trunks. Thuspfet  best-fit valuep at 2.92—agreeing well with the fluid-
at 3.00, the assigned trunk cost is not 2, but 1.26. The costingechanical hypothesis that the neuron arbors behave like
procedure progresses iteratively back to the root node. laminar-flow-regime pipe networks. Furthermore, the lami-
Observed branch bend-in was also incorporated into thear behavior is consistent: as can be seen, the mean best-fit
model: For naturally occurring trees, if branch angles arevalue p is closer to 3.00 than 2.33 for seven of the eight
measured at the maximum distance from the junction site—aeuron groups. Finally, the volume-cost hypothesis outper-
that is, with each branch defined by the segment from théorms both the surface area and the length hypotheses for all
junction out to its terminatiorteither at a leaf site or a next eight neuron groups. Similarly, for 95 of the 104 triads, their
outermost junctiofp—the angles are consistently less thanindividual best-fit minimum-error values for volume costing
angles measured as close as feasible to the junction poirdre lower than the best-fit error values for surface area or for
While branches vary in sinuosity, such bend-in appears virlength.
tually as ubiquitous among dendrites and axons, living and To provide measures of variance, corresponding means
nonliving natural trees, as conformance to the power law ofor the pooled individual triad data are: for the 72 dendrites,
the cosine law: We have observed it for arteries and veinsa best-fit valuep of 3.38 (=1.39), with a volume error of
plant arbors, river drainage networkisoth fan-in and fan- 3.58%(=*2.82); for the 32 axons, a best-fit value pbf 3.20
out), and electric discharge tree patterns. The mean branaoh-1.17), with a volume error of 3.97%+3.33; and for all
bend-in for the 72 dendrite triads analyzed here is 24.3%04 neuron arbors, a best-fit valuembf 3.33(*=1.33), with
(%£19.3; for the 32 axon triads, it is 12.9(+24.4. (One  a volume error of 3.70%*+2.99. While the variance here is
possible general explanation for all of these cases is in termsppreciable, conformance to the laminar over the turbulent
of a constant modulus of elasticity for branch wallSince  model is consistent; independent lines of evidence converge
the power and cosine laws only apply locally, in the imme-in supporting the laminar model—in particular, both local
diate junction neighborhood, the observed mean bend-in foand direct measurements of branch diameters at junctions
each class of dendrites and axons was used to correct—i.€Fig. 4), as well as the global arbor analysis here.
decrease—the lamings value of 3.00 for predicting the Searching topologieskinding the minimum-cost large-
angle of the full length of the branchgghe labels in Fig. scale embedding of a given tree connecting a node set does
2(B) show the assigned branch costs to a triad, with correcnot suffice for finding the optimal tree for the node set. The
tion of p=3.00 by the mean branch bend-in of 25.9° for thebest embedding of the given tree topology may in effect
class of rabbitz ganglion dendrite$. constitute only a local minimum trap on the optimization
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TABLE |. Global optimization of neuronal and non-neuronal arbors. Each arbor sample is a “triad,” a tree with three internodal
junctions; see Fig. 2. The mean percent error of a triad group is in terms of the cost of each actual tree compared with its corresponding
optimized tredexpressed as (Actual-Optima)/Optimal”]. All actual vs optimal tree errors are for the best-fit value of expopéntthe
fluid-dynamic power-law model relating branch and trunk diameters at junctions: that [sy#tee at which the mean embedding errors of
the actual trees, for the volume cost, are lowest. That best-fit valpewith a correction for the observed branch bend-in angle, is given
for each triad group. Next listed is the mean percent error of each triad’s actual topology in its actual embedding, vs the actual topology in
its cheapest volume-cost embedding. In addition, the performance of actual trees relative to the corresponding minimum-cost topology is
evaluated for the hypotheses that minimized cost is equal to total vaMine surface are&SA), and length of arbofLG). To find optimal
tree topologies, all 15 possible triad topologisse Fig.  were searched: The mean volume cost-rank of the actual tree’s topology when
the optimally embeddedTopol rank, in comparison with the volume costs of every other topology optimally embedded is given. All
samples conform best to a volume-minimization model. River network triads also minimize volume comparably, which is consistent with the
idea that both neurons and water networks achieve such optimization by fluid-mechanical processes. In addition, optimization of the
topology gains little, compared with optimization of the embedding.

Actual topology Optimal topology
Triad Best- VL Topol VL SA LG
set fit p? error rank error error error
Neutron arbors
Dendrites
Alpha ganglion,
rabbit (n=23) [13] 2.58 4.22 3.39 4.92 22.68 52.57
SD +2.96 +2.54 +3.30 +12.52 +26.61
Alpha ganglion,
cat (n=12) [32] 2.83 6.09 3.58 7.64 17.64 36.15
SD +3.94 +2.71 +3.84 +6.62 +17.00
Delta ganglion,
cat (n=8) [32] 2.94 5.86 2.88 7.36 16.31 33.30
SD +3.72 +2.42 +4.00 +7.05 +14.54
Parasol,
human 6=21) [33] 3.33 4.45 1.43 4.59 7.25 12.42
SD +2.86 +0.81 +3.03 +5.51 +8.10
Starburst amacrine,
rabbit (n=28) [34] 2.72 1.68 3.63 1.86 24.13 63.70
SD +1.03 +1.92 +0.93 +11.77 +28.02
Dendrite group meanaE 72) 2.90 4.50 2.82 5.21 16.79 37.22
Axons
Intrinsic, thalamus,
mouse (1= 8) 3.65 5.18 1.63 5.88 8.27 12.58
SD +3.02 +1.77 +4.48 +5.87 +11.12
Extrinsic, thalamus,
mouse
Cortical (n=19) 2.72 511 211 5.40 11.63 19.87
SD +4.48 +1.79 +4.45 +7.41 +11.87
Ascending RF (=5) [35] 2.88 7.29 1.60 7.92 15.84 31.17
SD +5.58 +0.55 +5.40 +8.04 +17.52
Axon group meansr(=32) 2.98 5.47 1.91 5.92 11.45 19.81
Neuron group meannE 104) 2.92 4.80 2.54 5.43 15.15 31.86
Non-neutron arbors
Human coronary arteries
(n=24) [30] 2.44 4.55 2.00 4.85 21.45 52.93
SD +3.54 +1.41 +3.51 +9.83 +22.15
River drainage network,
artificial (n=8) [28] 2.54 3.87 1.38 3.94 12.19 28.85
SD +2.568 +0.52 +2.58 +6.57 +12.34
River delta,
Mississippi (1=8) [29] 2.12 3.41 4.25 3.55 27.15 69.86
SD +3.77 +1.83 +3.82 +11.37 +25.42
Weight-table network
(n=24) 3.00 0.06 1.25 0.21 3.53 17.34
SD +0.04 +0.85 +0.21 +1.29 +7.03

aSince each triad groupis the best-fit value for that arbor group, thgsealues have no SD. Dendrite, axon, and neyealue means are
weighted averages of the bestjfitvalues of their respective grougsee text for means of pooled individual data
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FIG. 6. The 15 alternative possible topologies, or connectingar formation, mouse thalamusfrom Ref. [35]). (A) Wireframe
patterns, for a “triad,” a five-terminal tree with three internodal representation of the observed arbor. The actual topology, with the
junctions. Steiner tree optimization of an arbor requires not(@st observed embedding of that topology, appears in broken lines. The
the best embedding of the arbor’s actual topolfigy., the lowest- optimal embedding with respect to volume minimization of the ac-
cost positioning of its internodal junctions, as in FigCRvs 2B)],  tual topology is superimposed in solid lingBranch costing is via
but (b) an exhaustive search of all possible topologies connectingh€ power law, witlp set at the best-fit valu@vith a branch bend-in

the terminals to find the one that is cheapest when best embeddé&@rrection for this arbor group in Table ).The cost in volume of
[as in Fig. ZD) vs ZAC)]. the actual arbor exceeds that of the optimal embedding of its topol-

ogy by 2.20%(B) “Best of all possible topologies” connecting the
landscapégcompare, for example, Figs(@) and ZD)]. Un-  given terminal loci: the optimal topology with respect to volume,
der the standard conception, a topology is the structure thaiptimally embedded. The cost in volume of the actual arbor ex-
remains invariant under continuous stretching transformaceeds that of the optimal topology by 2.47%. Only ten of the 10 395
tions (i.e., without tearing or joining two topologies are Possible alternative topologies have lower total volume costs, when
distinct if one cannot be converted into the other by anyoptimally embedded, than the actual topology.
embedding operation. Therefore, to find the global mini-
mum, every possible alternative topology interconnecting thembedded, relative to all other topologies appears to be in-
node set must be generated and then embedded. Figurevériant across the three cost measures: the mean relative rank
shows the 15 possible topologies for the node set of a triacbf the actual triad topology varies only slightly for the dif-
(The triad data of Table | were sampled across all the maifierent cost measurd®.84 for volume, 2.55 for surface area,
types of topologies. and 2.62 for length Finally, their similar actual topology

We constructed a “TG-Coster-STRETCH” package: ranks in Table | suggest that neuron arbors are not
First, TG is given a tree input file like that described for “smarter” than the nonliving river networks at finding the
STRETCH, and generates each possible alternative full tocheapest-volume topology, this despite the well-known re-
pology for the given node set. Once TG has created a pamodeling processes acting upon many types of dendrites and
ticular such connecting pattern, the Coster program deaxons, such as synapse and branch pruning.
scribed above assigns branch weights according to a BenchmarksThus neuron triads minimize their volume to
specified exponent setting of the power law. The resulting
tree file is then sent to STRETCH to find its optimal embed-
ding. Statistics are accumulated on both optimal and “pessi-
mal” optimally embedded topologies, that is, the cheapest
and costliest topologies after their embeddings have been
minimized.

Performance of the optimal topologies closely parallels
that of the actual topologies. Again, for every neuron group,
the volume-cost error is always considerably less than sur- 10 |
face area-cost error, which in turn is always less than length-
cost error; the neurons still appear to be minimizing volume. o L
As can be seen in Table I, the mean volume efadrthe 2325 2385 2465 2535 2605
best-fit valuep) for actual neuron topologies of 4.80% only Volume cost
increases to 5.43% for the optimal topolodgZorrespond-
ingly, means for pooled individual neuron triad data show

ﬂle same patte.m’ increasing from 3'70%2_'99) t0 4.53% mouse thalamugfrom Ref.[35]). The histogram shows the usual
(£3.62] Th_at 1S, pe_rfectlng the e_mbeddlng of the aCtualpattern for natural arbors, living and nonliving: the more costly
topology gains considerably more in volume cost than pery,,o|ogies are more common, the cheapest ones are the rarest. Con-
fecting the topology itself. While there are only 15 alterna-gequently, the good topology selection of the natural arbors cannot
tive tree topologies for a five-node set, the same “unimporesyit merely from a confound that the least costly layouts occur
tance” of topology selection relative to embedding alsomost frequently. The histogram was compiled from an exhaustive
applies for larger node sets with much greater numbers ofearch of all 135135 alternative topologies for a nine-terminal
alternative topologies—e.g., for eight-node sets, which hav&teiner tree, requiring about five days on a P6 400-MHz computer.
10395 alternative topologies; and nine-node sets, whiclThe most costly optimally embedded “pessimal” layouts have only
have 135 135 topologiesee, e.g., Figs. 7 and.8n addi-  about 12% greater volume than the cheapest one; in this sense, for
tion, performance of the actual neuron topology, optimallyoptimization, “topology does not matter.”

40x10°

w
o

Frequency
]
(=]

FIG. 8. Distribution of volume costs of all possible topologies,
each optimally embedded, of a nine-terminal extrinsic axon arbor,
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within about 5% of the corresponding optimal trees. For sojunction costing atp=3.00 (corrected for the observed
ciological comparison, rectilinear Steiner trees for verybranch bend-ip each cost about twice as much in volume as
large-scale integrated microcircuit chip layout are regardedhe corresponding actual neuron triad. Even such an informal
in the industry today as well minimized if they come within approach indicates how much embedding, unlike topology,
10% of optimum length(see, e.g., Refl7], pp. 221-24p  can matter.

We have also noted that river networks typically are a couple Finally, is the optimization behavior of larger-sized neu-
of percent closer to optimum than the neurons; since th&on trees similar to that of triads, i.e., five-node trees?. The
river branch data ranges above 1-km scale, while the neurcfiz€ limit of currently feasible topology searches is nine
data are at the 1sm scale, simple measurement error may pghodes; a ten-node tree has 2027 025 alternative topologies.

responsible for the somewhat greater neuron optimizatior?‘s fortriads, volume minimization d_ominates for larger trees
error. Table | includes a benchmark: data for a set of weight§Tean optimal topology errors for nine-node neuron trees are

and pulleys tree networks constructed with interconnected0-28% volume, 14.86% surface area, and 23.07% length
force tables. In effect, these triads are “pure” vector- As for triads, an optimal topology gains re_latlvely little im-
mechanical trees, as in Varignd@5|—a type of analog provement over the actual topolodfpr the nine-node trees,

computing device for the embedding problem. Their branci{€ actual topology volume error is 8.19%, only slightly less
loadings were set for “volume” minimization, withp than the optimal-topology errprLarger trees do show a pair

=3.00 for the power law relating branch and trunk costs: the salient differences from triads: The embedding volume-
loci of the internodal junctions were than “read out.” A minimization error tends consistently to increase with node-

variety of topologies and leaf loadings were sampled. The€t Size, from 4.80% for triads t&-8% for the nine-node
optimal-topology volume error drops by an order of magni-arbors' Conversely, the topology rank error of the actual tree

tude, to 0.21%:; however, the topology rank improves On|ydrops sharply, from the top 10.93% for triads to 1.02% for

moderately over some neuron and river groups. the rr:met;nOQe ar.borﬁ. has b o , o
The force-table triads also serve as a calibration of the 1n€ basic point here has been that major neuron arbor

optimization assessment procedures here. The begt-fit structure appears to be_ self-org_aniz_ing, wit_h both dendrite
value for their internodal junction loci does indeed turn out@d @xon morphogenesis behaving like flowing water. Neu-
to be at 3.00; also, surface area and length errors come o[fN &rbor anatomy fits a global volume-minimization model
much greater than the volume-cost error. In addition founearly as well as nonliving tree structures such as river drain-
triads of conventional minimum-length Steiner treémm  29€ networks. Rammy Cajal observed that a developing

Refs.[9,11]) were scanned in and evaluated with the TG-2X0n tends to grow in a straight line, as long as it does not
STRETCH package. For the optimal topology, the meargncounter interfering environmental mf_luen({é§,3]]. The_
length error for the actual triads was 0.22%, about the sam@cCount of neuron arbor morphogenesis here can be viewed
as the force-table error. In addition, these “near-perfeCt”aS a generalization of this idea: The default. axodendnpc ar-
minimum-length trees each showed markedly worse volum&©r Pattern, when external cues do not intervene, is the
and surface area erroffor example, ap=23.00, the respec- volume-minimizing embedding. This optimal-volume struc-
tive mean errors were 7.42% and, 1.5)6%hué the proce- ture 'S cor_meived to be a basic ground planuaarbor_ often .
dures here did in fact detect that these test samples we odified in _Comp'?x lvve;y_s—_for_ exam_plel, as manifested in
minimizing length, not volume or surface area. Another cali-t eTtrc])rtuqsnTs typica Ioﬂ |nctjr|n5|c r?ortllca” %xons:b d ab
bration strategy is to generate the “perfect’” minimum sur- € Simpie “neural fluid mechanics - describéd above

face area tree for the nodes of some actual triad. then in turBenerates this default arbor structure, in particular, branch
’ jameters, branch angles, and junction sites. Since river net-

test the assessment procedures on this optimum actual tree N :
orks perform as well at topology optimization as dendrites

an input. For one such minimum surface area dendrite trel! q h A-based hani q b
(at p=3.00, with 16° bend-in the optimal-topology surface 2nd axons here, DNA-based mechanisms do not seem to be

area error was indeed only 0.000005%, while the volume(equ"ed'. The significa_nt rple of basic properties pf micron-
error was 1.61%, and the length error was 0.92%. scale.flwd flow .behawor in neuron arbor formatlon drayvs
In judging how good is “good,” benchmarks from the attention to the idea that modulators of the fde-mechanlcaI

o gﬂlieu of the nervous system may govern aspects of its nor-

embedding of the “pessimal” topology for neuron triads— mal development.. Modification of such properties as viscos-
ity or surface tension therefore may be worth investigation—

the topology that is costliest when minimum—costf e t d i " th aft
embedded—costs only 1.81% more than the corresponding’ €*@mPpi€, toward promoting connection regrowth after

actual topologies in their actual embeddings, while the optil" /4"y
mal embedding of the optimal topology costs 5.43% less. So,
again, topology makes little difference. For larger node sets, We thank Jen-Hsin Huang and Andrew Kahng for indis-
for example, nine-node trees, a histogram shows the distripensible assistance in the conceptual development of the
bution of costs of all 135135 topologies, optimally embed-STRETCH embedding algorithm. Athanassios Dimas de-
ded (see Fig. & The cheapest vs costliest topologies differ rived the fluid-dynamic models for turbulent flow in open
by only ~13%, a strikingly narrow range over so many al- channels. Dennis Dacey, Edward Famiglietti, Robert Marks,
ternative topologies. A next question concerns how much iRobert Rodieck, and Arnold Scheibel gave valuable neu-
at stake instead with embedding. Bad embeddings of fouroanatomical advice. In addition, we are grateful for the help
neuron triad node sets were constructed “by hand,” undepof Carl Rovainen and Stanley Schumm, and Kelly Changizi,
the constraints of no branch crossovers and no internodallichael Gurevich, Nancy Hall, and Sara Volmer. The work
junctions outside the convex hull of the terminals, with awas supported by NIMH Grant No. MH49867.
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