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Percolation transition and the onset of nonexponential relaxation in fully frustrated models
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We numerically study the dynamical properties of fully frustrated models in two and three dimensions. The
results obtained support the hypothesis that the percolation transition of the Kasteleyn-Fortuin clusters corre-
sponds to the onset of stretched exponential autocorrelation functions in systems without disorder. This dy-
namical behavior may be due to the ‘‘large scale’’ effects of frustration, present below the percolation thresh-
old. Moreover, these results are consistent with the picture suggested by Campbellet al. @J. Phys. C20, L47
~1987!# in the space of configurations.@S1063-651X~98!07412-1#

PACS number~s!: 05.50.1q
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I. INTRODUCTION

At low temperature, spin glasses~SG’s! undergo a transi-
tion characterized by the divergence of the nonlinear sus
tibility. Moreover, the relaxation functions of the system b
come nonexponential at temperatures higher than
transition temperatureTsg . This behavior has been observe
in canonical metallic and insulating spin glasses, investiga
by neutron and hyperfine techniques@1#.

In the Ising SG model, studied with spin-flip Monte Car
dynamics, both in two@2# and three dimensions@3#, nonex-
ponential relaxation functions have been observed be
some temperatureT* higher thanTsg . Moreover in the
three-dimensional~3D! system Ogielski@3# observed that the
long time regime of the relaxation functions is well appro
mated by the following function:

f ~ t !5 f 0t2xexp@2~ t/t!b#. ~1!

Fitting the data with this function, he obtained that the on
of nonexponential relaxation is consistent with the Griffit
temperatureTG , that coincides with the critical temperatu
of the ferromagnetic model.

This result supports the argument suggested in Ref.@4#,
recently verified by more rigorous analysis in Ref.@5#, and
by numerical simulations on a generalization of the S
model in Refs.@7,8#. According to these analyses, in the S
the onsetT* of the nonexponential relaxation should b
greater than or equal to the Griffiths temperatureTG . This
behavior is caused by the existence of unfrustra
ferromagnetic-type clusters of interactions, the same as th
responsible for the Griffiths singularity@6#. The presence o
nonexponential relaxation in this approach is therefore a
rect consequence of the quenched disorder.

Another mechanism leading to nonexponential relaxat
in frustrated systems, such as SG’s, has been suggeste
several authors@9–11#. According to these arguments th
onset T* of nonexponential relaxation is greater than
equal to the percolation transitionTp of the Kasteleyn-
Fortuin and Coniglio-Klein~KFCK! clusters@12,13#. How-
PRE 591063-651X/99/59~1!/60~7!/$15.00
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ever, in frustrated systems with disorder,Tp is less than but
close to TG ; therefore its eventual effects are hidden
those related toTG .

A way to verify if percolation mechanisms can play a ro
in the dynamical transition of frustrated systems is to co
sider frustrated models without disorder, where the Griffi
phase does not exist. In particular, we have considered f
frustrated~FF! spin systems@14#, where ferromagnetic and
antiferromagnetic interactions are distributed in a regu
way on the lattice, in such a way that no unfrustrated reg
~no Griffiths phase! exists, but the percolation temperature
KFCK clusters is still defined.

In a previous paper@7# we studied the 2D FF Ising mode
We found numerically that the model exhibits a nonexpon
tial relaxation below the percolation temperatureTp of the
KFCK clusters. Moreover the long time regime of the
functions is well approximated by a Kohlrausch-William
Watts function, also known as the ‘‘stretched exponentia

f ~ t !5 f 0exp@2~ t/t!b#. ~2!

In this paper we analyze, with conventional spin flip, t
dynamical behavior of the FF Ising model in three and t
dimensions using better statistics, finding thatT* is numeri-
cally consistent withTp .

To clarify the role of percolation we study also the 3
q-bond FF percolation model. Forq52 this model is ob-
tained applying the KFCK cluster formalism to the FF Isin
model ~see Sec. II!. We simulate it using the ‘‘bond flip’’
dynamics@7#. In this way the percolation properties of th
model are stressed, and the appearance of nonexpone
relaxation functions atTp are more evident.

In both these cases we find that the relaxation functi
exhibit an exponential long time behavior at high tempe
tures. Below the percolation temperatureTp of the KFCK
clusters, which is higher than the transition temperatureTc of
the model, the long time regime of the relaxation functio
becomes nonexponential and is well approximated by
stretched exponential. Our results are consistent with the
ture suggested by Campbellet al. @9# in the space of configu-
60 ©1999 The American Physical Society



ze

’
o

io

d

en
nc
l

lue
n

in
n

r

in
n-
o
th

of

g

of

an

ted
on-
-
or

y
ith

-

ice,

the

s
f

the

ics
re

tion

nti-

ht

PRE 59 61PERCOLATION TRANSITION AND THE ONSET OF . . .
rations, and can be interpreted considering thatTp corre-
sponds to a thermodynamic transition in a generali
frustrated model@8#.

In Sec. II we present the ‘‘q-bond frustrated percolation’
model, and in Sec. III we study the percolation properties
this model on a FF cubic lattice. We find that the percolat
transition is in the same universality class of theq/2-state
ferromagnetic Potts model, confirming the results obtaine
the disordered version of the model in 2D@8#. In Sec. IV we
study the FF Ising model dynamical properties with conv
tional spin flip, and in Sec. V we present the relaxation fu
tions obtained simulating the FFq-bond percolation mode
for q52, with the ‘‘bond flip’’ dynamics. In Sec. VI we
show the connection with the Campbell scenario@9#, and in
Sec. VII we give conclusions.

II. ‘‘ q-BOND FRUSTRATED PERCOLATION’’ MODEL

The FF Ising spin model is defined by the Hamiltonian

H52J(̂
i j &

~e i j SiSj21!, ~3!

wheree i j are quenched variables which assume the va
61. The ferromagnetic and antiferromagnetic interactio
are distributed in a regular way on the lattice~see Fig. 1!.

Using the KFCK cluster formalism for frustrated sp
Hamiltonians@15#, it is possible to show that the partitio
function of the model Hamiltonian in Eq.~3! is given by

Z5(
C

* emn~C!/kBTqN~C!, ~4!

whereq52 is the multiplicity of the spins,kB is the Boltz-
mann constant,m5kBT ln(eqJ/kBT21), andn(C) and N(C),
respectively, are the number of bonds and the numbe
clusters in the bond configurationC. The summation(C*
extends over all the bond configurations that do not conta
‘‘frustrated loop,’’ that is, a closed path of bonds which co
tains an odd number of antiferromagnetic interactions. N
that there is only one parameter in the model, namely,
temperatureT, ranging from 0 tò . The parameterm, that
can assume positive or negative values, plays the role
chemical potential.

FIG. 1. Distribution of interactions for the FF model. Straig
lines and wavy lines correspond, respectively, toe i j 51 and21.
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Varying q, we obtain an entire class of models differin
by the ‘‘multiplicity’’ of the spins, which we call theq-bond
FF percolation model. More precisely, for a general value
q, the model can be obtained from a Hamiltonian@16#

H52sJ(̂
i j &

@~e i j SiSj11!ds is j
22#, ~5!

in which every site carries two types of spin, namely,
Ising spin and a Potts spins i51, . . . ,s with s5q/2. For q
51 the factorqN(C) disappears from Eq.~4!, and we obtain
a simpler model in which the bonds are randomly distribu
under the conditions that the bond configurations do not c
tain a frustrated loop. Forq→0 we recover the tree percola
tion, in which all loops are forbidden, be they frustrated
not @17#.

When all the interactions are positive~i.e., e i j 51) the
sum in Eq.~4! contains all bond configurations without an
restriction. In this case the partition function coincides w
the partition function of the ferromagneticq-state Potts
model, which in the limitq51 gives the random bond per
colation @17#.

From renormalization group@18#, mean field@19# and nu-
merical results@8,20#, we expect that the model in Eq.~5!
exhibits two critical points: the first at a temperatureTp(q),
corresponding to the percolation of the bonds on the latt
in the same universality class of the ferromagneticq/2-state
Potts model; the other at a lower temperatureTc(q), in the
same universality class as the FF Ising model.

III. STATIC PROPERTIES

In this section we analyze the percolation properties of
model defined by Eq.~5! for q52, on a FF cubic lattice.
After preliminary runs with spin-flip dynamics on system
with lattice sizesL510 and 20, and with statistics o
53103 thermalization steps and 53106 acquisition steps, we
found that the percolation transition occurs well above
critical temperatureTc51.35 @21# ~in the following the tem-
peratures will be given inJ/kB units!. Then we simulated the
model forL530– 80, by Swendsen-Wang cluster dynam
@22#, that turns out to be very efficient for the temperatu
regime of interest, allowing one to consider only 53104 ac-
quisition steps. At every step we evaluated the percola
probability

P512(
s

sns , ~6!

and the mean cluster size

S5(
s

s2ns , ~7!

wherens is the density of finite clusters of sizes.
Around the percolation temperature, the averaged qua

ties P(T) andS(T), for different values of the lattice sizeL,
should obey to the finite size scalings@23#

P~T!5L2b/nFP@L1/n~T2Tp!#, ~8a!

S~T!5Lg/nFS@L1/n~T2Tp!#, ~8b!
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where b, g, and n are critical exponents, andFP(x) and
FS(x) are universal functions of an adimensional quantityx.
Standard scaling analysis results are summarized in Fig
We obtainedTp53.81760.005, n50.8860.06, b/n50.46
60.04, andg/n52.0360.03. The values of the critical ex
ponents coincide, within the errors, with the random bo
percolation exponents@23#. As we expect, theq52 bond
frustrated percolation model is in the same universality cl
of the q/251 state ferromagnetic Potts model.

IV. RELAXATION FUNCTIONS OF THE FULLY
FRUSTRATED ISING SPIN MODEL

In this section we present our results in the study of
FF Ising model, defined by the Hamiltonian in Eq.~5! for
q52, simulated by spin-flip dynamics. For each temperat
T, 16 different runs were made, varying the random num
generator seed, on a FF cubic lattice of sizeL530. We took
about 104 steps for thermalization, and about 105 steps for
acquisition, calculating at each step the energyE(t). The
relaxation function of the energy is defined as

f ~ t !5
^dE~ t !dE~0!&

^~dE!2&
, ~9!

wheredE(t)5E(t)2^E&. For each value ofT, we averaged
the 16 functions calculated and evaluated the error as a s

FIG. 2. Finite size scaling of~a! P(T) and ~b! S(T), for the q
52 model, and for lattice sizesL530, 40, 50, 60, 70, and 80.
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dard deviation of the mean. Here a unit of time is conside
to be one Monte Carlo step, that isLd single spin update
trials.

In Fig. 3 we show the results forT54.0, 3.5, 3.0, 2.0, and
1.5. We also observe a two step decay for high temperatu
For all the temperatures we fit the long time tail of the r
laxation functions with the empirical formula proposed
Eq. ~1! by Ogielski.

The temperature dependence of exponentsb(T) is pre-
sented in Fig. 4. Note thatb(T) increases as function ofT
from the valueb50.5860.03 for T51.5 to the valueb
51 for T53.7 and 4.0. We do not observe any regular b
havior in the temperature dependence of exponentx(T). We
estimated the errors on parameters as the range wher
obtain a good fit of the relaxation function. As we can see
Fig. 4, these results are consistent, within the errors, with

FIG. 3. Relaxation functionsf (t) of energy as a function of time
t for the d53 FF Ising model, with spin flip dynamics and lattic
size L530, for temperatures~from left to right! T54.0, 3.5, 3.0,
2.0, and 1.5.

FIG. 4. Stretching exponentsb(T) as a function ofT/Tp , the
ratio of temperature over percolation temperature, for thed53 FF
Ising model, with spin flip dynamics and lattice sizeL530.
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scenario in which the onset of the stretched exponential
laxation coincides with the percolation temperatureTp
53.81760.005~see Sec. III!.

We also simulated the FF Ising model on a square lat
of sizeL560. We calculated the relaxation functions of t
energy. Averages were made over 16 different random g
erator seeds, and between 105 and 106 steps for acquisition
were taken, after about 104 steps for thermalization.

In Fig. 5 we show the relaxation functions obtained f
T52.5, 2.0, 1.8, 1.5, and 1.0. For all temperatures we fit
long time tail of the relaxation functions with Eq.~1!.

The temperature dependence of exponentsb(T) is shown
in Fig. 6. Note thatb(T) increases as function ofT from
the valueb50.6160.05 for T50.8 to the valueb51 for
T>2.0. As we can see in Fig. 6, our estimate of the onse
the stretched exponential relaxation is also consistent, wi
the errors, with the percolation temperatureTp51.701 @7#.
Within the errors, the exponentx(T) increases as function o
T from the valuex50.460.2 for T50.8 to the valuex
51.660.4 for T52.5.

FIG. 5. Relaxation functionsf (t) of energy as a function of time
t for the d52 FF Ising model, with spin flip dynamics and lattic
size L560, for temperatures~from left to right! T52.5, 2.0, 1.8,
1.5, and 1.0.

FIG. 6. Stretching exponentsb(T) as a function ofT/Tp , the
ratio of temperature over percolation temperature, for thed52 FF
Ising model, with spin flip dynamics and lattice sizeL560.
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V. RELAXATION FUNCTIONS OF THE ‘‘ q-BOND
FRUSTRATED PERCOLATION’’ MODEL

In this section we analyze the dynamical behavior of
model defined by Eq.~4! with q52, simulated by the bond
flip dynamics@7#. The dynamics is carried out in the follow
ing way: at each step we choose at random a particular e
on the lattice; we calculate the probabilityP of changing its
state, that is, of creating a bond if the edge is empty, and
destroying the bond if the edge is occupied; and, finally,
change the state of the edge with probabilityP.

For each temperatureT, 16 different runs were made
varying the random number generator seed, on a FF c
lattice of sizeL530. We took about 103 steps for thermali-
zation, and between 104 and 105 steps for acquisition, calcu
lating at each step the density of bondsr(t). The relaxation
function of the density of bonds is defined as

f ~ t !5
^dr~ t !dr~0!&

^~dr!2&
, ~10!

wheredr(t)5r(t)2^r&. For each value ofT, we averaged
the 16 functions calculated and evaluated the error as a s
dard deviation of the mean. We consider a unit of time
consist ofG^r&21 single update trials, whereG53L3 is the
number of edges on the lattice.

In Fig. 7 we show the results obtained for temperatu
T54.0, 3.5, 3.0, and 2.5. ForT54.0 and 3.5 we fitted the
calculated points with the function in Eq.~1!.

The value ofb extracted from the fit is equal to on
within the error, and the value ofx is zero. Thus for these
temperatures the relaxation is purely exponential.

For T,3.5 we observe a two step decay, and only
long time regime of the relaxation functions could be fitt
by Eq. ~1!. The value ofb extracted is less than 1, showin
that stretched exponential relaxation has appeared for t
temperatures. In Fig. 8 the values ofb(T) as function of the
ratio T/Tp are shown, with errors estimation. The expone

FIG. 7. Relaxation functionsf (t) of bond density as function o
time t, for theq52 FF bond percolation model, on ad53 lattice of
size L530, for temperatures~from left to right! T54.0, 3.5, 3.0,
and 2.5.
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x(T) becomes nonzero only forT52.5, for this value of
temperature we obtainx51.160.1. As we can see in Fig. 8
our estimate of the onset of stretched exponential relaxa
is consistent, within the errors, with the percolation tempe
ture Tp53.81760.005 of the KFCK clusters.

VI. CONNECTION WITH THE RANDOM WALK PICTURE

In this section we make a connection between our mo
and the random walk picture of Campbellet al. @9#, which
we will briefly illustrate. Consider an hypercube in
D-dimensional space. Each summit is occupied with a pr
ability p. On such a dilute lattice, a random walker is a
lowed to diffuse, like the ‘‘ant’’ on a percolating cluster i
the de Gennes picture. The mean square displacement a
time t is given by

r 2~ t ![

K (
i 51

D

„xi~ t !2xi~0!…2L
D

, ~11!

whereD is the hypercube dimension,x is a D-dimensional
vector of components 0 and 1 that identify the hypercubeD

summits, andx(t) indicates the ‘‘ant’’ position at the timet.
Campbellet al. suggested in the Ising SG model that

accessible region in the space of configurations, compa
high temperature, becomes ramified at a temperatureT* , and
that a complex space of configurations is responsible for
appearing of nonexponential relaxation. They also suppo
that this temperatureT* is the percolation temperature of th
KFCK clusters. The idea is that the diffusive ant mimi
quite well the evolution in the space of configurations in t
SG model.

In the study of the random walk on a randomly occup
hypercube, they found that forp<p* the functionr 2(t) be-
comes nonexponential and is well approximated by
stretched exponential. But it is not possible to associat
value of temperature with this probability.

FIG. 8. Stretching exponentsb(T) as a function ofT/Tp , the
ratio of temperature over percolation temperature, for theq52 FF
bond percolation model, on ad53 lattice of sizeL530.
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To make the connection between the bond frustrated
colation formalism and the random walk picture we intr
duce the local bond density autocorrelation functionf (t),

f ~ t !5

(
i 51

G

^bi~ t !bi~0!&2^bi~ t !&2

(
i 51

G

^bi~ t !&2^bi~ t !&2

, ~12!

whereG5dLd is the number of lattice edges,d is the lattice
dimension andbi50 if the ith bond is missing andbi51 if
the ith bond is present. The variablesbi(t) are the coordi-
nates in the space of configurations of theq-bond FF perco-
lation model, which evolve by bond flip dynamics. In ana
ogy with the picture proposed by Campbellet al., these
variables can be interpreted as the coordinates of a walk
the summits of aG-dimensional hypercube. For a fixed valu
of the temperature the walk will be confined in the subsp
with density of bonds corresponding to that temperatu
~The walk in such subspace is not random, since each
has a weight, which is a function of the cluster number var
tion. If we consider theq51 bond frustrated percolation
model, the walk would be random.!

Due to frustration not all configurations are allowed, a
therefore the walk occurs on a dilute space. By changing
temperature the space of configurations where the wal
confined changes, and therefore the density of allowed s
in such a region of the space of configurations also chan
This is realized in an artificial way in the picture proposed
Campbellet al., occupying randomly the hypercube summ
~that represent the accessible states in the space of con
rations!. By changing the temperature, one may theref
reach a percolation threshold in the space of configuratio
This would correspond to a breaking of the ergodicity.
higher temperature, however, the space of configurati
may become ramified and stretched exponentials start to
pear. Equation~12! can be related to the distance traveled
the random walkr (t), via the relationr 2(t)52„^r&2 f (t)….

We have simulated, by bond flip dynamics, theq52 bond
FF percolation model on a square lattice of sizeL560. We
have calculated the temperature dependence of the auto
relation function in Eq.~12!. We find an exponential relax
ation at high temperatures, while forT,T* the long time
behavior of relaxation functions becomes nonexponen
and is well approximated by a stretched exponential.

TABLE I. Fit parameters for the autocorrelation functionsf (t)
calculated with bond flip dynamics for theq52 bond FF percola-
tion model.

T b tb

5.0 0.9960.02 0.1660.01
3.5 1.0060.02 0.1960.01
2.5 0.9860.02 0.2460.01
2.0 0.9860.02 0.2960.01
1.7 0.9460.02 0.4460.01
1.3 0.7560.02 1.160.2
0.7 0.5160.02 2.860.2
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In Table I we show the fit parameters. Our estimate of
onset of stretched exponential relaxation functions is a
consistent, within the errors, with the percolation tempe
ture Tp51.701. In Fig. 9 we show the functionsf (t) for
temperaturesT53.5, 2.0, 1.7, and 1.3, and in Fig. 10 th
temperature dependence of the exponentsb(T) as a function
of T/Tp .

We conclude that it is possible to apply the picture p
posed by Campbellet al. to theq-bond frustrated percolation
model. Furthermore our results are consistent with the
pothesis that the onset of nonexponential relaxation func
coincides withTp . Note that we cannot exclude numerical
that stretched exponentials are present even at tempera
higher than the percolation transition, with an extrem
small amplitude. This is also consistent with Campbell p
ture, where the crossover from compact to ramified struc
in the space of configurations is not sharp.

VII. CONCLUSIONS

In fully frustrated models we have numerically found
exponential relaxation above the percolation temperatureTp ,
while for T,Tp the long time tail of the relaxation function
can be fitted with a stretched exponential in both 2D@7# and
3D systems. These results suggest that the percolation

FIG. 9. Autocorrelation functionsf (t) as a function of timet for
the q52 FF bond percolation model, on ad52 lattice of sizeL
560, for temperatures~from left to right! T53.5, 2.0, 1.7, and 1.3
gn
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sition may play a role in the dynamical transition of fru
trated systems without disorder. In particular, the role can
understood considering the physical meaning of the perc
tion transition in a generalization of the SG model~the
q-state Potts SG@8#!. We suggest that the percolation trans
tion marks the appearing of the ‘‘large scale’’ effects of fru
tration. Below the percolation temperature, because of
presence of a spanning cluster, bond loops of any dimen
may be closed, and therefore global effects of frustration
observed.

Note that in a previous paper@7# we also studied a model
‘‘locally frustrated bond percolation,’’ in which only frus
trated loops whose length is equal to 4 are forbidden. T
model exhibits the same critical properties as the rand
bond percolation, showing that this kind of frustration
‘‘too local’’ to change the universality class of transition
Similarly, the relaxation functions in the long time regim
can always be fitted with an exponential function.

ACKNOWLEDGMENTS

We would like to thank Chris Hanley for helpful com
ments. This work was supported in part by the Eu
pean TMR Network–Fractals under Contract N
FMRXCT980183 and by MURST~PRIN-97!. Simulations
were done on the parallel Cray T3D at CINECA, Bologna

FIG. 10. Stretching exponentsb(T) as a function ofT/Tp , the
ratio of temperature over percolation temperature, for theq52 FF
bond percolation model, on ad52 lattice of sizeL560.
s.

J.
@1# See, for example, F. Mezei and A. P. Murani, J. Magn. Ma
Mater. 14, 211 ~1979!; C. Meyer, F. Hartmann-Boutron, Y
Gros, and I. A. Campbell,ibid. 46, 254 ~1985!.

@2# W. L. McMillan, Phys. Rev. B28, 5216~1983!.
@3# A. T. Ogielski, Phys. Rev. B32, 7384~1985!.
@4# M. Randeria, J. P. Sethna, and R. G. Palmer, Phys. Rev.

54, 1321~1985!.
.

tt.

@5# F. Cesi, C. Maes, and F. Martinelli, Commun. Math. Phy
188, 135 ~1997!.

@6# A. Fierro, A. de Candia, and A. Coniglio, Phys. Rev. E56,
4990 ~1997!.

@7# G. Franzese and A. Coniglio, Phys. Rev. E58, 2753~1998!.
@8# R. B. Griffiths, Phys. Rev. Lett.23, 17 ~1969!.
@9# I. A. Campbell, J. M. Flesselles, R. Jullien, and R. Botet,



s.

o,

66 PRE 59FIERRO, FRANZESE, de CANDIA, AND CONIGLIO
Phys. C20, L47 ~1987!; I. A. Campbell and L. W. Bernardi,
Phys. Rev. B50, 12 643 ~1994!; I. A. Campbell, J. M.
Flesselles, R. Jullien, and R. Botet,ibid. 37, 3825~1988!.

@10# S. Scarpetta, A. de Candia, and A. Coniglio, Phys. Rev. E55,
4943 ~1997!.

@11# S. C. Glotzer and A. Coniglio, Comput. Mater. Sci.4, 325
~1995!.

@12# C. M. Fortuin and P. W. Kasteleyn, Physica~Amsterdam! 57,
536 ~1972!.

@13# A. Coniglio and W. Klein, J. Phys. A12, 2775~1980!.
@14# J. Villain, J. Phys. C10, 1717~1977!.
@15# A. Coniglio, F. di Liberto, G. Monroy, and F. Peruggi, Phy

Rev. B44, 12 605~1991!.
@16# V. Cataudella, A. Coniglio, L. de Arcangelis, and F. di Libert
Physica A 192, 167 ~1993!; A. Coniglio, F. di Liberto, G.
Monroy, and F. Peruggi, J. Phys. A22, L837 ~1989!.

@17# F. Y. Wu, Rev. Mod. Phys.54, 235 ~1982!.
@18# U. Pezzella and A. Coniglio, Physica A237, 353 ~1997!.
@19# F. di Liberto and F. Peruggi, Physica A248, 273 ~1998!.
@20# A. de Candia, V. Cataudella, and A. Coniglio~unpublished!.
@21# H. T. Diep, P. Lallemand, and O. Nagai, J. Phys. C18, 1067

~1985!.
@22# R. H. Swendsen and J. S. Wang, Phys. Rev. Lett.58, 86

~1987!.
@23# D. Stauffer and A. Aharony,Introduction to Percolation

Theory~Taylor & Francis, London, 1994!.


