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Percolation transition and the onset of nonexponential relaxation in fully frustrated models
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We numerically study the dynamical properties of fully frustrated models in two and three dimensions. The
results obtained support the hypothesis that the percolation transition of the Kasteleyn-Fortuin clusters corre-
sponds to the onset of stretched exponential autocorrelation functions in systems without disorder. This dy-
namical behavior may be due to the “large scale” effects of frustration, present below the percolation thresh-
old. Moreover, these results are consistent with the picture suggested by Caetgiell. Phys. C20, L47
(1987] in the space of configurationsS1063-651X98)07412-1

PACS numbsdrs): 05.50+q

[. INTRODUCTION ever, in frustrated systems with disord@y, is less than but
close toTg; therefore its eventual effects are hidden by
At low temperature, spin glass€SG’s) undergo a transi- those related td .
tion characterized by the divergence of the nonlinear suscep- A way to verify if percolation mechanisms can play a role
tibility. Moreover, the relaxation functions of the system be-in the dynamical transition of frustrated systems is to con-
come nonexponential at temperatures higher than thsider frustrated models without disorder, where the Griffiths
transition temperaturégy. This behavior has been observed phase does not exist. In particular, we have considered fully
in canonical metallic and insulating spin glasses, investigatettustrated(FF) spin systemg14], where ferromagnetic and
by neutron and hyperfine techniqués. antiferromagnetic interactions are distributed in a regular
In the Ising SG model, studied with spin-flip Monte Carlo way on the lattice, in such a way that no unfrustrated region
dynamics, both in twd2] and three dimension8], nonex-  (no Griffiths phasgexists, but the percolation temperature of
ponential relaxation functions have been observed belowKFCK clusters is still defined.
some temperaturd™ higher thanTsy. Moreover in the In a previous pap€di7] we studied the 2D FF Ising model.
three-dimensiondBD) system Ogielski3] observed that the We found numerically that the model exhibits a nonexponen-
long time regime of the relaxation functions is well approxi- tial relaxation below the percolation temperatdrg of the
mated by the following function: KFCK clusters. Moreover the long time regime of these
functions is well approximated by a Kohlrausch-Williams-
Watts function, also known as the “stretched exponential”
f(t)="fot Xexd — (t/7)#]. )

f(t)="foexd — (t/7)”]. 2
Fitting the data with this function, he obtained that the onset
of nonexponential relaxation is consistent with the Griffiths
temperaturel ¢, that coincides with the critical temperature In this paper we analyze, with conventional spin flip, the
of the ferromagnetic model. dynamical behavior of the FF Ising model in three and two
This result supports the argument suggested in R@f. dimensions using better statistics, finding tféatis numeri-
recently verified by more rigorous analysis in RE§], and  cally consistent withT .
by numerical simulations on a generalization of the SG To clarify the role of percolation we study also the 3D
model in Refs[7,8]. According to these analyses, in the SG g-bond FF percolation model. Faj=2 this model is ob-
the onsetT* of the nonexponential relaxation should be tained applying the KFCK cluster formalism to the FF Ising
greater than or equal to the Griffiths temperatlige. This  model (see Sec. )| We simulate it using the “bond flip”
behavior is caused by the existence of unfrustratedlynamics[7]. In this way the percolation properties of the
ferromagnetic-type clusters of interactions, the same as thoseodel are stressed, and the appearance of nonexponential
responsible for the Griffiths singularifs]. The presence of relaxation functions al, are more evident.
nonexponential relaxation in this approach is therefore a di- In both these cases we find that the relaxation functions
rect consequence of the quenched disorder. exhibit an exponential long time behavior at high tempera-
Another mechanism leading to nonexponential relaxatiortures. Below the percolation temperatufg of the KFCK
in frustrated systems, such as SG’s, has been suggested dysters, which is higher than the transition temperaliref
several authorg9—-11]. According to these arguments the the model, the long time regime of the relaxation functions
onset T* of nonexponential relaxation is greater than orbecomes nonexponential and is well approximated by a
equal to the percolation transitiom, of the Kasteleyn- stretched exponential. Our results are consistent with the pic-
Fortuin and Coniglio-Klein(KFCK) clusters[12,13. How-  ture suggested by Campbell al.[9] in the space of configu-
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Varying g, we obtain an entire class of models differing
by the “multiplicity” of the spins, which we call the-bond
FF percolation model. More precisely, for a general value of
g, the model can be obtained from a Hamilton[d6]

H=—SJ<Z> [(€SS+1)8,,,,—2], (5
1]

in which every site carries two types of spin, namely, an

Ising spin and a Potts spim;=1, ... s with s=q/2. Forq

=1 the factorqN(®) disappears from Eq4), and we obtain

a simpler model in which the bonds are randomly distributed

under the conditions that the bond configurations do not con-

tain a frustrated loop. Fay— 0 we recover the tree percola-
FIG. 1. Distribution of interactions for the FF model. Straight tion, in which all loops are forbidden, be they frustrated or

lines and wavy lines correspond, respectivelygte=1 and—1. not [17].

When all the interactions are positiee., €;=1) the
rations, and can be interpreted considering thatcorre-  sum in Eq.(4) contains all bond configurations without any
sponds to a thermodynamic transition in a generalizedestriction. In this case the partition function coincides with
frustrated mode]8]. the partition function of the ferromagnetig-state Potts

In Sec. Il we present thed-bond frustrated percolation” model, which in the limitg=1 gives the random bond per-
model, and in Sec. Il we study the percolation properties ofolation[17].
this model on a FF cubic lattice. We find that the percolation From renormalization groufd8], mean field 19] and nu-
transition is in the same universality class of #p2-state  merical resultd8,20], we expect that the model in E)
ferromagnetic Potts model, confirming the results obtained irexhibits two critical points: the first at a temperatdrg(q),
the disordered version of the model in 28). In Sec. IVwe  corresponding to the percolation of the bonds on the lattice,
study the FF Ising model dynamical properties with conven4in the same universality class of the ferromagngie-state
tional spin flip, and in Sec. V we present the relaxation func-Potts model; the other at a lower temperatligéq), in the
tions obtained simulating the F§-bond percolation model same universality class as the FF Ising model.
for q=2, with the “bond flip” dynamics. In Sec. VI we
show the connection with the Campbell scendfif and in Il. STATIC PROPERTIES
Sec. VIl we give conclusions.

In this section we analyze the percolation properties of the
model defined by Eq(5) for g=2, on a FF cubic lattice.
After preliminary runs with spin-flip dynamics on systems

The FF Ising spin model is defined by the Hamiltonian with lattice sizesL=10 and 20, and with statistics of

5x 10° thermalization steps and610° acquisition steps, we
1 —JZ (eSS —1) 3 fo_u_nd that the percolation transi_tion occurs _WeII above the
- & €ij i) ' critical temperaturd .= 1.35[21] (in the following the tem-
peratures will be given id/kg units). Then we simulated the
where ¢;; are quenched variables which assume the valuegiodel forL =30-80, by Swendsen-Wang cluster dynamics
+1. The ferromagnetic and antiferromagnetic interactiong22], that turns out to be very efficient for the temperature
are distributed in a regular way on the latticeee Fig. 1 regime of interest, allowing one to consider onlyx %0* ac-

Using the KFCK cluster formalism for frustrated spin quisition steps. At every step we evaluated the percolation
Hamiltonians[15], it is possible to show that the partition probability
function of the model Hamiltonian in Eq3) is given by

II. “ g-BOND FRUSTRATED PERCOLATION” MODEL

P=1—§ sng, (6)

Zzz*eﬂn(C)/kBTqN(C)7 (4)
C

and the mean cluster size

whereg=2 is the multiplicity of the spinskg is the Boltz- )

mann constantu=kgT In(e€?™*e"—1), andn(C) and N(C), S=2 s%ng, (7)
respectively, are the number of bonds and the number of S

clusters in the bond configuratio@. The summationS g wheren, is the density of finite clusters of size

extends over all the bond configurations that do not contain a around the percolation temperature, the averaged quanti-

“frustrated loop,” that is, a closed path of bonds which con-tjes p(T) andS(T), for different values of the lattice side,
tains an odd number of antiferromagnetic interactions. Notgoyid obey to the finite size scalinf3]

that there is only one parameter in the model, namely, the
temperaturerl, ranging from 0 tox. The parameteg, that P(T)=L‘B’”Fp[Ll”’(T—Tp)], (8a)
can assume positive or negative values, plays the role of a
chemical potential. S(T)=L""FLY(T-T))], (8b)
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ﬁ FIG. 3. Relaxation functiong(t) of energy as a function of time
o08r t for the d=3 FF Ising model, with spin flip dynamics and lattice
O =80 AE, size L=230, for temperaturegfrom left to right T=4.0, 3.5, 3.0,
004k A [=70 & " 2.0, and 1.5.
o =60 j
& [=50 * - o .
ool ¥ L=40 * . dard deviation of the mean. Here a unit of time is considered
* L=30 @ﬁ to be one Monte Carlo step, that li§' single spin update
Ak trials.
ok K ojzo B T R R T Wsy'g In Fig. 3 we show the results far=4.0, 3.5, 3.0, 2.0, and
(b) (T-Tp)L 1.5. We also observe a two step decay for high temperatures.

o ) For all the temperatures we fit the long time tail of the re-
FIG. 2. Finite size scaling ofe) P(T) and(b) S(T), for theq | 5yation functions with the empirical formula proposed in
=2 model, and for lattice sizds= 30, 40, 50, 60, 70, and 80. Eq. (1) by Ogielski.

The temperature dependence of expong(t§) is pre-
where 8, y, and v are critical exponents, anBp(x) and  sented in Fig. 4. Note tha8(T) increases as function Gf
Fs(x) are universal functions of an adimensional quantity from the value3=0.58+0.03 for T=1.5 to the valuep
Standard scaling analysis results are summarized in Fig. 2-1 for T=3.7 and 4.0. We do not observe any regular be-
We obtainedT,=3.817£0.005, »=0.88+0.06, 8/»=0.46  havior in the temperature dependence of expor€n). We
+0.04, andy/»=2.03+0.03. The values of the critical ex- estimated the errors on parameters as the range where we
ponents coincide, within the errors, with the random bondobtain a good fit of the relaxation function. As we can see in
percolation exponentf23]. As we expect, thej=2 bond  Fig. 4, these results are consistent, within the errors, with the
frustrated percolation model is in the same universality class
of the g/2=1 state ferromagnetic Potts model. 13

~—

«

12 F
IV. RELAXATION FUNCTIONS OF THE FULLY [
FRUSTRATED ISING SPIN MODEL 11 L

In this section we present our results in the study of the I | ‘
FF Ising model, defined by the Hamiltonian in E&) for T ‘ T
g=2, simulated by spin-flip dynamics. For each temperature I ‘

T, 16 different runs were made, varying the random number 09
generator seed, on a FF cubic lattice of dize30. We took I
about 10 steps for thermalization, and about®1§teps for 08 ¢
acquisition, calculating at each step the eneEfy). The o7 L |
relaxation function of the energy is defined as Tl
06 f } |
(SE(t) SE(0)) [
(O=——"% ©) 0203 04 05 66 07 08 09 1 Ti iz

FIG. 4. Stretching exponeni8(T) as a function ofT/T,, the
where SE(t) =E(t) — (E). For each value of, we averaged ratio of temperature over percolation temperature, fordhe8 FF
the 16 functions calculated and evaluated the error as a starsing model, with spin flip dynamics and lattice size= 30.
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FIG. 5. Relaxation function§(t) of energy as a function of time
t for the d=2 FF Ising model, with spin flip dynamics and lattice
size L=60, for temperaturegfrom left to righty T=2.5, 2.0, 1.8,
1.5, and 1.0.

. . . FIG. 7. Relaxation function§(t) of bond density as function of
scenario in which the onset of the stretched exponential rez .+ o, theq=2 FF bond percolation model, orda- 3 lattice of

laxation coincides with the percolation temperatufg size L=30, for temperaturegfrom left to righy T=4.0, 3.5, 3.0,
=3.817+0.005(see Sec. I\ and 2.5.

We also simulated the FF Ising model on a square lattice
of sizeL =60. We calculated the relaxation functions of the \/ RELAXATION FUNCTIONS OF THE * g-BOND

energy. Averages were made over 16 different random gen- FRUSTRATED PERCOLATION” MODEL
erator seeds, and betweer? Hhd 16 steps for acquisition _ _ _ _
were taken, after about 1@teps for thermalization. In this section we analyze the dynamical behavior of the

In Fig. 5 we show the relaxation functions obtained for model defined by Eq4) with q=2, simulated by the bond
T=25,2.0, 1.8, 1.5, and 1.0. For all temperatures we fit thdlip dynamics[7]. The dynamics is carried out in the follow-
long time tail of the relaxation functions with E€). ing way: at each step we choose at random a particular edge

The temperature dependence of expon@(f) is shown ©On the lattice; we calculate the probabiliyof changing its
in Fig. 6. Note thatg(T) increases as function of from  State, thatis, of creating a bond if the edge is empty, and of
the value3=0.61+0.05 for T=0.8 to the valugg=1 for  destroying the bond if the edge is occupied; and, finally, we
T=2.0. As we can see in Fig. 6, our estimate of the onset ofhange the state of the edge with probabifty
the stretched exponential relaxation is also consistent, within FOr each temperaturg, 16 different runs were made,
the errors, with the percolation temperatdrg=1.701[7].  Varying the random number generator seed, on a FF cubic

Within the errors, the exponer(T) increases as function of lattice of sizel =30. We took about T0steps for thermali-
T from the valuex=04+02 for T=08 to the valuex  Z2ation, and between t@nd 18 steps for acquisition, calcu-

=1.6+0.4 forT=2.5. lating at each step the density of bonel¢). The relaxation
function of the density of bonds is defined as

~1.1
-
< | f)= <5p(t)5p(0)>, 10
1 | } ((8p)%)
I where 8p(t) =p(t) —{p). For each value oT, we averaged
0.9 the 16 functions calculated and evaluated the error as a stan-
I dard deviation of the mean. We consider a unit of time to
consist ofG(p)~?! single update trials, wherg=3L3 is the
08 number of edges on the lattice.
i In Fig. 7 we show the results obtained for temperatures
07 L T=4.0, 3.5, 3.0, and 2.5. FoF=4.0 and 3.5 we fitted the
i calculated points with the function in E¢L).
I The value of 8 extracted from the fit is equal to one
0.6 | within the error, and the value of is zero. Thus for these
I temperatures the relaxation is purely exponential.
ot e For T<3.5 we observe a two step decay, and only the

0.4 0.6 0.8 1 1.2 long time regime of the relaxation functions could be fitted
by Eq.(1). The value ofB extracted is less than 1, showing

FIG. 6. Stretching exponenis(T) as a function ofl/T,, the that stretched exponential relaxation has appeared for these
ratio of temperature over percolation temperature, fordke2 FF  temperatures. In Fig. 8 the values®fT) as function of the

Ising model, with spin flip dynamics and lattice size= 60. ratio T/T, are shown, with errors estimation. The exponent

T4
T/Tp
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g, | 1 TABLE |. Fit parameters for the autocorrelation functioi(s)
= ' ‘ calculated with bond flip dynamics for tlee=2 bond FF percola-
095 L + tion model.
I B
0.9 |- T B T
5.0 0.99-0.02 0.16:0.01
085 - 35 1.00£0.02 0.19:0.01
0s I 2.5 0.98£0.02 0.24-0.01
l 2.0 0.98:£0.02 0.23:0.01
075 |- 1.7 0.94+0.02 0.44r0.01
L 1.3 0.75-0.02 1.10.2
0.7 0.7 0.5x0.02 2.8:0.2
0.65 |
To make the connection between the bond frustrated per-
06 s 07 o8 os 1 T colation formalism and the random walk picture we intro-
T/Te duce the local bond density autocorrelation functfgt),
FIG. 8. Stretching exponenf(T) as a function ofT/T,, the G
ratio of temperature over percolation temperature, forghe?2 FF _ 2
bond percolation model, ona=3 lattice of sizel = 30. 2‘1 (bi()b;(0)) —(b; (1))

|
f(t)= G , (12
X(T) becomes nonzero only foF=2.5, for this value of s
temperature we obtaix=1.1+0.1. As we can see in Fig. 8, 21 (i) —(bi(1))
our estimate of the onset of stretched exponential relaxation
is consistent, within the errors, with the percolation temperaWhereg:de

is the number of lattice edged,is the lattice
ture T,=3.817+0.005 of the KFCK clusters.

dimension and; =0 if the ith bond is missing ant;=1 if
the ith bond is present. The variablég(t) are the coordi-
VI. CONNECTION WITH THE RANDOM WALK PICTURE nates in the space of configurations of tieond FF perco-
) ) ) lation model, which evolve by bond flip dynamics. In anal-
In this section we ma_ke a connection between our modeg)gy with the picture proposed by Campbei al, these
and the random walk picture of Campbell al. [9], which | ariables can be interpreted as the coordinates of a walk on
we will briefly illustrate. Consider an hypercube in a tha symmits of a-dimensional hypercube. For a fixed value
D-dimensional space. Each summit is occupied with & probyf the temperature the walk will be confined in the subspace
ability p. On such a dilute lattice, a random walker is al-\yith density of bonds corresponding to that temperature.
lowed to dlffuse,_llke the “ant” on a percol_atlng cluster in (The walk in such subspace is not random, since each step
the de Gennes picture. The mean square displacement aftepgs 5 weight, which is a function of the cluster number varia-
time t is given by tion. If we consider theq=1 bond frustrated percolation
model, the walk would be randoin.
D 5 Due to frustration not all configurations are allowed, and
2 (xi(t) —x;(0)) therefore the walk occurs on a dilute space. By changing the
, (11  temperature the space of configurations where the walk is
D confined changes, and therefore the density of allowed sites
in such a region of the space of configurations also changes.
whereD is the hypercube dimension,is a D-dimensional This is realized in an artificial way in the picture proposed by
vector of components 0 and 1 that identify the hypercube 2 Campbellet al, occupying randomly the hypercube summits
summits, and(t) indicates the “ant” position at the time  (that represent the accessible states in the space of configu-
Campbellet al. suggested in the Ising SG model that anrationg. By changing the temperature, one may therefore
accessible region in the space of configurations, compact atach a percolation threshold in the space of configurations.
high temperature, becomes ramified at a temperattirand  This would correspond to a breaking of the ergodicity. At
that a complex space of configurations is responsible for thhigher temperature, however, the space of configurations
appearing of nonexponential relaxation. They also supposetiay become ramified and stretched exponentials start to ap-
that this temperatur&* is the percolation temperature of the pear. Equatiori12) can be related to the distance traveled by
KFCK clusters. The idea is that the diffusive ant mimicsthe random walk (t), via the relatiorr2(t) =2({p) — f(t)).
quite well the evolution in the space of configurations in the We have simulated, by bond flip dynamics, the 2 bond
SG model. FF percolation model on a square lattice of dize 60. We
In the study of the random walk on a randomly occupiedhave calculated the temperature dependence of the autocor-
hypercube, they found that far<p* the functionr?(t) be-  relation function in Eq(12). We find an exponential relax-
comes nonexponential and is well approximated by aation at high temperatures, while far<T* the long time
stretched exponential. But it is not possible to associate hehavior of relaxation functions becomes nonexponential
value of temperature with this probability. and is well approximated by a stretched exponential.

r’(t)=
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FIG. 9. Autocorrelation functioni(t) as a function of timé for FIG. 10. Stretching exponenf(T) as a function ofT/T,, the
the q=2 FF bond percolation model, onds=2 lattice of sizeL ratio of temperature over percolation temperature, forqghe?2 FF
=60, for temperature@rom left to righy T=3.5, 2.0, 1.7, and 1.3. bond percolation model, on@=2 lattice of sizeL = 60.

In Table | we show the fit parameters. Our estimate of the{s't'on may play a role n the dy”am'c?" transition of frus-
. . . : rated systems without disorder. In particular, the role can be
onset of stretched exponential relaxation functions is also

consistent, within the errors, with the percolation tempera—underStOOd considering the physical meaning of the percola-

; : tion transition in a generalization of the SG modéhe
ture T,=1.701. In Fig. 9 we show the functiont) for . .
P - -
temperaturest =3.5, 2.0, 1.7, and 1.3, and in Fig. 10 the g-state Potts SE8]). We suggest that the percolation transi

: tion marks the appearing of the “large scale” effects of frus-
girq_7$rature dependence of the expon@{) as a function tration. Below the percolation temperature, because of the
o

We "conclude that it is possible to apply the picture pro_presence of a spanning cluster, bond loops of any dimension

posed by Campbedt al. to theg-bond frustrated percolation ?biye ::)Veeglosed, and therefore global effects of frustration are
model. Furthermore our results are consistent with the hy- Note tHat in a previous papEf] we also studied a model
pothesis that the onset of nonexponential relaxation functionIOCaIIy frustrated bond percolation,” in which only frus—y

coincides withT,. Note that we cannot exclude numerically trated loops whose length is equal to 4 are forbidden. The

that stretched exponentialls are present even at temperaturel o oy hipits the same critical properties as the random
higher than the percolation transition, with an extremelybond percolation, showing that this kind of frustration is

small amplitude. This is also consistent with C_a_mpbell pic'“too local” to change the universality class of transition.
ture, where the crossover from compact to ramified structur%im"aﬂy’ the relaxation functions in the long time regime

in the space of configurations is not sharp. can always be fitted with an exponential function.
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