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Charge optimization leads to favorable electrostatic binding free energy
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Variational optimization of molecular electrostatic charge distributions is a tool for the study of association
reactions of molecules in solution. In principle, this method can be used in drug design and protein folding to
analyze and improve molecular interactions and to provide electrostatic templates for molecular design. This
optimization problem reduces to an inverse source problem in classical electrostatics, where the sources are
determined by a combination of external and self-polarization potentials. In this paper, we show that the
electrostatic portion of the free energy of association for electrostatically optimized molecules has an upper
bound of zero in many situations of physical interest. That is, variational optimization provides a ligand-charge
distribution that contributes favorably to the energetics of binding, even in a strongly polar medium. This
stabilizing effect on association reactions is contrary to the usual role of electrostatics in aqueous complexes,
in which desolvation effects generally dominate. We also show the existence and nonuniqueness of the varia-
tional solution and make a connection to the electrostatic image charge problem.
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PACS numbd(s): 87.15.Nn, 41.20.Cv, 82.60.Hc

Electrostatics play an important role in the association ofjistributions are everywhere zerdG% can be obtained in
molecules in solvent. Complementary electrostatic interacthe continuum electrostatic approximation, wherein the sol-
tions are determinants of specificity—4], but are currently  yent is treated as a dielectric continuu, the molecules
_believed to contribute unfavorably to the free energy of bind-(i) as rigid dielectric cavities,, with embedded charge dis-
ing near room temperatursee[5], and references therein  iputionsQ,(x), and the system obeys the Poisson equation.
Recent work has shown that a carefully designed charge dig4ere we restrict the molecular cavities to closed, bounded
tribution for one reactant can lead to an electrostatic Contriregionsvi with regular bounding surfaced (note thatV,
bution to the binding free energy that is optimal and favor-may contain continuum-solvent cavities bounded by regular
abl_e(r_wegative} _[5_—8]._Whi|e some theoretical deta_lils of this surfaces Denoting byG;(x,y) the Green function for the
variational optimization process have been elucidé®ed,  pgisson equation satisfying the boundary conditions for mo-
many properties of the resulting charge distributions, includygcylar cavity {) alone in solvent, the electrostatic free en-
ing their implicit utility for molecular design, remain unad- ergy of molecule () is £ fdx dy Q;(X)Gi(x.y)Q:(y) [11,12.

dressed. In particular, no theoretical bound has been placegdz0 s the difference in the electrostatic free energies of the
on the electrostatic binding free energy of the optimum.

Herei S groduct and reactants,

erein we demonstrate that optimization leads to a favorabl

electrostatic contribution to binding; that is, variational opti- 1

mization guarantees successful electrostatic charge distribu- AG‘,’eszzf dx dy{Q,(X)[ Gc(%,Y) — G, (X,¥)1Q,(y)
tions for use in molecular design. We also demonstrate the

existence and nonuniqueness of optimal charge distributions +20Q,(X)Ge(X,y)Q(y)
and make a connection between variational optimization and
the method of electrostatic images. +QI(X)[Gc(XY) = Gi(X,Y)]Qi(Y)}- (1)

The molecular coordinate systems have been chosen, without
THEORETICAL BACKGROUND loss of generality, such that the charge distribution and cav-
ity of the complex is the superposition of the charge distri-
Figure 1 depicts an example of an association reaction in
which two reactant molecules, a ligafid and receptorr), Receptor Ligand Complex
associate rigidly to form a complexc). The free energy
change of the solution due to binding in the standard state
can be separated into electrostaticG%,, and nonpolar,
AG%p, contributiond9,10|, whereA G?m represents the stan-

dard binding free energy of the reactants when their charge ¢

FIG. 1. Example binding geometry showing rigid ligand and
* Author to whom correspondence should be addressed. Electronieceptor molecules associating in a unique arrangement to form a
address: tidor@mit.edu complex.
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butions and cavities of the reactant molecule&3,(x) trostatic potential throughout space and changing the free
=Q,(x) +Q,(x), when their unbound-state coordinate axesenergy of the system. However, a charge distribution placed
are aligned. Note that the cavity of the compMy is the in V, such that the potential in the region exterior o,
union of the ligand and receptor cavities, which have at mostlenotedV,, has the same form it did before the dielectric
a set of regular surface elements in comntio@., their vol-  constant was modified, is commonly referred to as an image
umes do not overlap in the bound spate charge distributior{11,17; the original charge distribution
We have shown in other wor6,7] that Eq.(1) can be jn v, is the inverse-image charge distribution. When &.
variationally extremized with respect ©Q,(x) for a fixed s satisfied, Q,(x) causes the potential iV, (where all
receptor-charge distributio@,(x). The resulting “comple-  charges external td, are locatelito be the same before and
mentary” ligand-charge distributiorQ°"™x), is given by a  after binding; however, the potential is not necessarily un-
solution to the Fredholm integral equation of the first kind changed inv, . In this case, we refer t®,(x) as a general-
ized image charge distribution f@7°™x), andQ;°™x) as
J dx Q(X)[Gc(X,Y) —Gi(X,y)]= —f dx Q,(X)G.(X,y) a generalized inverse-image charge distribution @(x).
Vi Vr The term “generalized” may be dropped in cases where the
(2 = .
potential inV is unaltered upon binding.
Vy e V| .
In the following sections we show that a complementary THE COMPLEMENTARY CHARGE DISTRIBUTION
ligand exists that represents a nonunique minimum to the IS NONUNIQUE
electrostatic binding free energy. The perhaps surprising re- ) )
sult of nonuniqueness arises from the fact that the optimiza- 't Suffices to demonstrate the existence of a nonzx(a)
tion condition (2) defines properties of the potential of the N the null space of Eq2), satisfying
complementary ligand, and a family of related charge distri-
butions can create the necessary potential. With this formal- f dx Q(X)[Ge(X,Y) —Gi(X,y)]=0 (5)
ism, we then demonstrate that the optimized electrostatic Vi
contribution to the binding free energy is favorable when thev

receptor and ligand do not both contain buried solvent cavi- yeV. .A .SOIu.t'Or], to Eq.(5) .shall be denqted_ a.“nu_ll
charge distribution.” Any spherically symmetric distribution

of zero total charge located entirely withwy produces a
0 zero potential exterior to itself by Gauss’s law and the con-
EXTREMIZATION OF - AG e vention that the potential vanish at infinitthe interior po-

For the extremum of E¢(2) to be a minimum, the ligand tential is entirely coulombic Any superposition of such
desolvation (dehydration penalty must always be non- charge distributions is a solution to E¢p), Q.E.D. This
negative. It represents the cost of changing the dielectric corflonuniqueness implies a family of solutions to Eg). In

stant frome; to e, in the regionV, adjacent to the unbound Practice, when solving Eq2) with a finite basis sete.g.,
ligand, point charges, multipoles, or chemical groupspresenting

Qi(x), the inherent degeneracy reduces to a space spanned
by at most a finite basis set, which defines a set of different
but useful optimized charge distributions.

ties. The implications are discussed in the conclusion.

1
AGM=3 J dx dy Q(X)[Ge(X,Y) — Gi(X,Y)1Qi(Y)
2 v,

—(€m—€)
= B—J dx E(x)- E|O(X), ®) THE COMPLEMENTARY CHARGE
T Vv, DISTRIBUTION EXISTS

whereEX(x) is the unbound ligand’s electric field afgi(x) We show the existence of@°™{x) for anyQ,(x) under
is the electric field after alteration of the dielectric constantthe condition that the receptor cavity is not totally encapsu-
[11,12. This can be approximated in terms of a sumnof lated by the ligand cavity. First, consider the set of functions

perturbations to the dielectric constant, D={[y,dxQi(X)[Gc(x,Y) ~ Gi(x.¥) ]} defined byQ,(x) tak-
se L ing on all possible valuesD is a closed space of harmonic
— e . ) . .
AGHYIL dx|El(x)[2, 4 functions onV, because its elements satisfy the Laplace
! 8w ,2 Vv, B0 @ equation, the set of alD,(x) is closed, and the integral over

. the Green functions is a continuous mapping from charge
whereE|(x) is the electric field around the ligand when the distributions to potentialgl3]. Next, consider the s¢f of alll
dielectric constant inV, is e;+jde and de=(€y,— €5)/n. harmonic functions onV, with the inner product
This approximation becomes increasingly exaat-as~ and (f(x)|g(x)>=f\,|dxf(x)g(x). This space is complete be-
shows that the desolvation penalty is non-negativeégr cause any Cauchy sequence fréfitonverges uniformly to
<es; therefore, the extremum minimizesG % for ex<es;  some functior[13] onV, and therefore also o8, ; addition-
and Q/°™x) binds the receptor with the most favorable ally, becauseV, is a closed region of space, the sequence
electrostatic binding free energyG%2™, for the stated ge- converges to a harmonic functi¢a4], an element off. It
ometry[7]. can further be shown tha is a Hilbert spac¢13].

The desolvation penalty arises from a change in the di- Now, suppose that a receptor-charge distribut{@ix)
electric constant of a region, such ¥s, altering the elec- exists for which there is no solution to E@). Without loss
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of generality, we can additionally assume that the harmonievhereE?(x) is the total electric field for molecule X alone
function f(y)= —f\,rdx Q/(X)G.(x,y) overV, is in the or- in solvent before the perturbation.

thogonal complemenD~ of D because iff(y) e D then The first set of geometries for which we show that
there would be a solution to E¢R), andD is a closed subset AGQPS0 for finite €5 requires that the unbound receptor be

of F, soD@ D= F[13]. Then, due to the orthogonality of free of buried solvent regiorise., interior regions of solvent
f(y) to the elements ob, we must have entirely disconnected from exterior solvent by the receptor

cavity). Generally, unless a buried solvent cavity is very
large, any water molecules in the cavity are likely to be
f dxdy Q(X)[Ge(x,y) = Gi(x,y)]f(y)=0 (6)  ordered and might be treated as part of the low-dielectric
Vi receptor. The lack of buried solvent in the unbound receptor
VQ(x). Interpretingaf(y) as a ligand-charge distribution, implies that all bound-state solvent regions have common
wherea merely converts units of potential to units of charge surface elements with the ligand. L&t(x) = ® .(x) — P(x)
density, it is clear from Eq(6) that af(y) satisfies Eq(5)  be the difference in the total potentials of the bound complex
and is thus null and has a zero desolvation penalty. By Eqsind unbound complementary ligand states. Cleatlyx)
(3) and(4), the electric field inv, due toaf(y) inthe bound =0 VxeV, from Eg. (2). Therefore,®(x) and its normal
and unbound states must be zero and the potential a constaderivative are zero of$; because they are continuous across
Using the harmonic continuation theordd¥] in the bound S;. By the harmonic continuation theorgr], the potential

state coupled with the condition the} not be encapsulated ¢ (x) in VC is a harmonic continuation sb(x) in V, and so

by Vi, it can be shown that the potential W, due to the i 7610, This implies thab o(x)=®|(x) in V, and thatQ,(x)
ligand-charge d|str|but|on_ _ IS z;ro, SO and Qr°™x) are image and inverse-image charge distribu-
Jvdxat(X)[v,dy Ge(x.y) Qe(y) =0=—afy,dxT(x). Con- 5™ ospectively. The result of this is that the first two
Sequently,f(x):O becausef(x) is a harmonic funCtlon; integra's of Eq(?) parna”y CanceL |eaving

however, if this were actually so, th&(x) =0 would solve
Eq. (2), contradicting the supposition of nonexistence,

AAGY N&es
Q.E.D. Ces~ g . (®

| axesoor+ | axiefoor?
v, v,

which is negative for reducing the solvent dielectric constant.

Furthermore, reoptimizing the ligand-charge distribution af-

When e, the potential in each solvent region is con- ter the perturbation can only makeAG%; more negative.

stant; exterior to all molecules it is taken to be zero. Becaus&hus, AG%2" becomes monotonically more favorable @s
for the unbound receptor the conducting solven¥/jnmay is reduced. Together with the fact thAtG%‘s’p%O for e

be insulated from the exterior solvent, the potentialVin —o, we have thatAG%'gp%O for this set of geometries,
may be nonzero. However, grounding the solvent in this caveven with e finite.

ity zeros its potential, lowering the free energy of the un- The second set of geometries for which we show that
bound receptor. The potential &his now the same as it will  AG%2P<0 for finite €, requires that the ligand have no bur-
be in the bound state because the potentialSprfor a  jed solvent cavitiesalthough the receptor mayin this case
complementary ligand will be zero in both the bound andone could variationally optimize the receptor-charge distri-

unbound ligand states. Therefore, the potential at all ligandbution with respect to a particular ligand-charge distribution

receptor interfacial surface elements remains zero in thgy solving Eq.(9). Then, by the previous resultyG%o™

bound and grounded unbound states. The potentials acting Qfbuid be favorable; however, we really want to specify the

Qi(x) andQ,(x) are also unchanged due to the uniquenesgeceptor-charge distribution, not find it. So, if one can show
theorem for Dirichlet boundary conditiorf{d1,12, so the  nat the target receptor-charge distribution is complementary
change n f-ree energy foroblndlng t_he gro(L)motIed receptor 1@y some ligand-charge distribution, then the complementary
the ligand is zero and\GYP'<0 with AGGP being the  jigand-charge distribution must bind at least as well as this

(necessarily favorabjdree energy change for grounding the nonoptimal ligand-charge distribution amﬁ%gptwill be fa-

AG%P'<0 FOR e,—»

This reduces to showing that for a@y(x), there exists a
CASES WHEN AG%%P'<0 FOR €< generalized image charge distributi@p(x) satisfying

Consider the change ihG%when the solvent dielectric J 3 _ _J
constant is perturbed by the quantify,. This is given by Vrdx QrOOLGe(xy) = Gr(xy)1= Vldx Q(x)Ge(xy)
the change in solvation free energy of the complex minus the (9)

change in solvation free energy of the two solute molecules. , .
Because the perturbation is infinitesimal, E8). can be ap- VyeV,. The existence proof proceeds similarly to that for

proximated by the first term in the sum, so the total change ithe complementary charge distribution. We first note that the

the binding free energy is seté‘:{—f\,ldx Qi(X)Gc(x,y)}, defined asQ,(x), takes on
e all values, is a closed space of harmonic functions &er

AAG%S~ S[ J; dx| Eg(x)|2— J,dXIEP(X)IZ and we assume the existence dpdx) such that there is no

87 | Jv, Vi solution Q|(x) to Eg. (9). Without loss of generality, we

assume thag(y) = fv dx Q/(X)[Ge(x,y) —Gi(X,y)] over V,
. (7) is in the orthogonal complemeng: of & implying

- f_dx|59<x)|2

Vi
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fV|deV dy g(y)Ge(y,X)Q;(X)=0 VQ,(x). As before, nonunique image and inverse-image charge distributions ex-

ag(y) is treated as a receptor-charge distribution. BecausE"
the b_ouqd—state potential i, due to ag(y) is zero, the CONCLUSION
electric field there must also be zero. Generalizing E8p.
and (4) for the receptor, we find that its desolvation penalty ~We have shown that charge optimization leads to a favor-
is zero and that the electric field and potentiaMpin the  able electrostatic contribution to the binding free energy for
unbound state must also be zero. Because the potentgl in many cases of biophysical interest. The current proof is lim-
is zero in both states, application of the electrostatic boundlf€d to cases in which the receptor and ligand do not both
ary conditions implies that the potential throughout space if1ave buried solvent cavities and to cases in which the solvent
the same before and after desolvation. Thug(y) is null,  1onic strength is negligible. Generalizations to other cases
satisfying may be possmle. _
Inclusion of other effects not considered here leads to
further enhancements to binding electrostatics. For example,
f dx ag(X)[ G:(X,Y) — G (X,y)]=0 (10 if the ligand and receptor cavities overlap in the bound state,
Ve then the optimal electrostatic binding free energy will be
even more favorable. Likewise, inclusion of conformational
change in the complex will improve the free energy of bind-
ing if it is the unbound configurations that are modeled, as all
relaxation must be favorable. Note that if the molecular sur-
faces are defined through use of a solvent probe molecule,
the complex cavity may be larger than the union of the
azf dxdy g(xX)[Gc(X,Y) — G (x,¥)]1Q,(y)#0, (11) ligand and receptor cavities and these theorems will not
Vr strictly hold. However, when the additional volume is not
large or is distant from regions of high charge density, the
binding free energy is expected to remain favorable.
In natural complexesAGOesis usually unfavorabléposi-
tive), suggesting that nature may not generally employ elec-
trostatics to enhance binding affinitgee[5], and references

MUTUAL COMPLEMENTARITY therein. However, because optimization providasz%o"

The ligand- and receptor-charge distributions are mutually<0, €lectrostatics could, in principle, be used to improve
complementary whe®,(x) is null or whene.— and nei-  affinity. In fact, it seems that significant gains in binding free
ther the unbound receptor nor the unbound ligand have buenergy may be obtained through the application of electro-
ied solvent cavities. In these cases the potential in the solvestatic charge optimizatiofb,7,8,15.
is always zero and i/ it is the same in both the bound and
unbound complementary ligand states. Uniqueness and

boundary conditions indicate that the potentiaMpis also This work was funded in part by the National Institutes of
the same, s®,(x) and Q/°"™(x) satisfy Eq.(9), implying  Health(Grant Nos. GM55758 and GM5655E.K. was sup-
that Q,(x) is complementary t®;°"™x). In this case, both ported by the National Science Foundation. We thank K. J.
the receptor- and complementary ligand-charge distributions. Hanf, M. Kardar, L.-P. Lee, I. Oppenheim, and R. J.
are images and inverse images of each ome%gpao, and  Silbey for helpful discussions.

VyeV,. Assuming thatxg(x) # 0 [for if it were zero, then
Q,(x)=0 would be a solution to Eq9)], we must have
a”[y dxg*(x)#0 becausg(x) is a harmonic function. This

implies that

contradicting Eq(10). Therefore, the existence of the gener-
alized image charge distribution is assured a@°%P'<0
for these geometries as well.
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