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Interaction of foreign macrodroplets in a nematic liquid crystal
and induced supermolecular structures
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(Received 19 May 1998

The behavior of a system of macroscopic particles introduced in a nematic liquid crystal is studied theoreti-
cally. The energy of the pair interparticle interaction associated with the director elastic field deformation is
found. The interaction intensity and character are studied as functions of the distance, the geometric parameters
of foreign macroparticles, and the value of their anchoring to the mesophase. The interparticle interaction can
cause nontrivial collective behavior that results in the formation of new spatially modulated structures in the
macroparticle system. The periodic arrangement of chiral particles that induces a helical structure can give rise
to two incommensurable periods in the average orientation distribution of macroparticles.
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[. INTRODUCTION cluster; thus its interaction with another similar formation
may be described in terms of the director field deformation.
Colloid media formed by hard particles suspended in |iq-The validity of this treatment depends on whether we can
uids are a widely abundant important state of matter andmpose the boundary conditions on the director for such a
hence have attracted much interest in science, technolog§grmation. In this sense, the interaction of liquid colloid
and medicing1-3]. Dispersed liquid crystals, i.e., the me- droplets(neglecting of probable shape deformaji@iso is
[1,2], are a particular case of such systems. The physica{pesophase in which the;e droplt_ats are disso_lved. Ngglectmg
properties of such media are thoroughly studied in REE. other possible mechanisms of interdroplet interaction, we
which also reveals the unsolved problems in this researc hall consider the macroparticle interaction via the director
field. The macroparticles introduced in a liquid crystal con- Iel‘?hdeefOJT?)tslcem(.)ngﬂ:iss 'S;hgrr?g'?osg;{:euﬁgg EES isr;[tuedr;.ction
siderably influence the electro-optic properties of the latter purp IS pap ; e
. . energy of macroparticles introduced in the nematic liquid
one of the reasons being the formation of new supermolecu

. ) crystal that is associated with the director field deformation
lar structures induced by these partidlést,5. We meanthe  “ 4 e the dependence of the interaction intensity and

induced optical gyrotropy5,6] and production of threadlike 5 acter on the distance and geometrical and physical pa-
structures consisting of colloid particl¢$,7]. To describe  ameters of foreign macroparticles. The physical factors are
the formation conditions and behavioral properties of the;ssumed to be the macroparticle shape and the director an-
macroparticle-induced structures implies taking into accoungnoring to the macroparticle surface; the latter is determined
their interaction both associated with physical propertiegyy the nature of the interaction with mesophase molecules.
(charge, dipole moment, efcand caused by the director Which of the two limiting cases occurs, i.e., eith@r the
elastic field deformation. An interaction produced by the di-director distribution on the given macroparticle surface is
rector deformation was considered by many authy8,9. determined by the total self-consistent effect of all other
The physical mechanism of this interaction is that the foreignmacroparticles ofii) the director distribution in the region
macroparticle distorts the director distribution that can oc-circumjacent to the macroparticle is determined by this very
cupy a region much greater than its dimensions and thumacropatrticle, depends on the value of the director anchoring
provides an effective interaction with another similar micro-to the macroparticle surface and the concentration of the lat-
particle via mediation of the elastic field deformation. Theter. In cas€ii), the director anchoring to the macroparticle is
physical criterion of this description follows from the obser- regarded as the boundary condition that governs the director
vation that for the director field deformation treatment to bedeformation field to be found. The problem concerning the
adequate, the macroparticle size must be greater than tleteraction of spherical macroparticles via the director field
mesophase molecule dimensions but much smaller than thieformation, formulated in this manner, was solved8h
distance between the macroparticles. The macroparticle magase(i), when the director distribution on each cluster sur-
also be regarded as a microparticle surrounded by a “solvatiace is determined by the self-consistent interaction of all
shell” provided the interaction between such a particle andnacroparticles, was considered[®1. In particular, Lopatni-
the mesophase molecules is much more intense than the ikev and Namiot[9] have calculated the interaction energy
termolecular interaction responsible for the mesophase foifor cylindrically symmetric particles. However, the general
mation. The solvate formation may be regarded as a macrgroblem of how to calculate the macroparticle interaction
energy as a function of cluster geometric parameters and
anchoring has not been either formulated or solved. In the
*Electronic address: lev@iop.kiev.ua present paper we have managed to find the self-consistent
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pair interaction energy for macroparticles of arbitrary shapes, In Sec. Il we formulate the problem of how to find the
for any dependence of anchoring on the macroparticle suiinteraction energy for the macroparticles introduced in the
face coordinate and for different Frank elastic constantsnematic liquid crystal and describe the approximations em-
from the general premises. Our approximation infers the selfployed. The general expression for the interaction energy is
consistence of the director field on an individual macroparderived for different Frank constants and arbitrary particle
ticle surface and the director produced by all other macrosShapes. In the Sec. lll the expression obtained is analyzed for
particles. The self-consistent molecular field approximatiorSPecific geometrical shapes of particles and used to calculate
for macroparticles implies that the field distribution on theth® pair interaction energy for spherical, cylindrical, etc.,
surface of an individual particle is determined by the jointMacroparticles with regard to the anchoring dependence on
effect of all other cluster&@nd is equal to the distribution on M€ Surface coordinate of the foreign macroparticle. The ex-
the cluster boundary in the case when their would be n ressions are compared to the previous results of other au-

particle. Then the interaction of the individual particle with hors. Section [V describes ihe thermocynamical behavior of

the director field deformation produced by the other macro@" adgregate of macroparticles introduced in the nematic lig-
id crystal, taking into account their interaction via the di-

particles is determined by the anchoring on the surface of 9 o
this particle. It is analogous to the molecular field approxi-reCtor deformation field. The conditions are found for a tem-

mation and is correct for deriving the pair interaction energyperature and concentration phase transition accompanied by

produced by the collective behavior of foreign macropar—the formathn of a spatially inhomogeneous macrpparucle
istribution in the mesophase. In Sec. V we describe a su-

ticles. In the opposite case we would have to consider strong lecular structure that X A ¢ chiral
deformations of the director field and it would be impossible ermolecufar structure that can appear in a system ot chira
macroparticles introduced in the nematic liquid crystal. The

to employ the continuum theory of the elastic director field ) A : .
ploy y spatially periodic distribution of these particles, along with

deformation that involves expansion in small gradients. inducing th i iod that is i
The self-consistent approach provides a possibility tghaucing the gyrotropy, can cause a new perio at1s In-

avoid the above difficulties, so we have managed to find thgommensurate with the spiral lead in the average orientation

energy of the pair interaction of macroparticles introduced ind|str|but|on of macroparticles. In Sec. VI, we analyze the

the nematic liquid crystal. The problem is formally split into condltlonls'(.)f the above-mentioned structure formation and
two separate problems: to find the director field distributionthe possibilities to observe them experimentally.
and to find the interation energy with regard to physical and
geometrical properties of macropatrticles. [l. FORMULATION OF THE PROBLEM
The director distribution in the vicinity of a macrodroplet
introduced in a nematic liquid crystal was considered in
many paperge.g., sed4,5,11,1Q, which followed the pio-
neering paper by Brochar and de Genfhgs]. In [11], in
particular, the director distribution was obtained in the one- E :Ef dF{K (divn)2
. . . k . f 22!
constant approximation in terms of the multipole expansion. 2
However, the expansion coefficients were not associated s s, - -,
with the physical and geometrical parameters of macropar- +Kag(nrot n)“+Kz(nXxrotn)<}, 1)
ticles.
In the present paper the director distribution is derived forwhereK;; are the elastic Frank constants ands the direc-
the general case of different elastic Frank constants andor. The integration extends over the whole crystal volume.
moreover, the multipole expansion parameters are found in Being introduced in the nematic liquid crystal, the macro-
terms of geometric and physical characteristics of macropamdroplets produce relevant deformation of the director elastic
ticles. Thus both the behavior and the value of the pair infield. A droplet is treated as a macroscopic one in the sense
teraction energy are described with no additional restrictionsthat the energy of its interaction with the nematic liquid crys-
Having found the interparticle interaction energy, we cantal can be obtained from the known director distribution on
study the thermodynamic behavior of an aggregate of sucthe macroparticle surface. For the sake of brevity, in what
macroparticles and describe the conditions for the creation dbllows such macroparticles will be referred to as clusters.
new supermolecular structures. The character and intensity The energy of the cluster—nematic-liquid crystal interac-
of the interparticle interaction in the system of foreign mac-tion may be written as
roparticles in a nematic liquid crystal can be such that a
temperature and concentration phase transition can occur in - s
the system and produce a spatially inhomogeneous distribu- Ee=2 3g ds W »(s)Xn(s)]*, (2)
tion. In this paper the conditions are found under which the !
macroparticles arrange in a spatially periodic manner and the o ) )
effect of such an arrangement on the resultant orientationd¥heren(s) is the director value at the poistof the cluster
supermolecular structure is studied. If macroparticles possessirface,v(s) is the normal to the surface at this point, which
chiral properties, then their aggregate may be regarded asc&termines the easy direction, a{ is the director anchor-
kind of lyotropic cholesteric liquid crystal with induced gy- ing to the surface which depends on the surface point in the
rotropy. The spatially modulated arrangement of macropargeneral case. The integral in EQ) extends over the closed
ticles with helical orientation structure gives rise to a newsurfaceS; of each cluster. All the cluster$abeled with the
period of the particle average orientation distribution that issubscriptj) are assumed to be identical; their number in the
incommensurate with the spiral lead. volume under consideration Is.

The phenomenological free energy of a deformed nematic
liquid crystal is determined by the Frank energy
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Due to the surface energi2), the director field is de-
formed near each cluster. The mutual influence of deforma-
tion fields produced by various clusters causes an elastic de-
formation interaction of the latter in the liquid crystal. Our
first task is to find the intensity and character of this interac-
tion.

For various values of anchoring/s and cluster concen-
tration, two physical situations can occua) For relatively
low values ofW; and large cluster concentrations, the direc-
tor distribution on the given cluster surface is determined
mainly by the sum of contributions of all other clusters,

while the contribution of the given cluster iﬁ(s) is negli-
gible; (b) for relatively high values ofV,, the director dis-
tribution on the cluster surface is mainly determined just by FIG. 1. Vectors which describe the space allocation ofjthe
this cluster. In cas¢a) we can employ the approach analo- cluster and its surface.

gous to the molecular field approximation. Formally, the di-

rector distribution may be regarded as given in the whole |n order to derive an equation f(ﬁni(a) from the mini-
space including the volume occupied by the clusters. Withirmum condition for the sum of energi¢s) and (2), we first

the given cluster volume, the director distribution is assumeghave to transform the expressi6®) with regard to Eq(4).

to be similar to that in the absence of the cluster. Then wero do this we choose some arbitrary point for the coordinate

can employ the Fourier representation for the director in the,iqin and take the radius vectots;) from this point to the
whole space and thus the problem is considerably S|mpl|f|edgiven point on the th cluster surfacésee Fig. 1 Moreover,

Henceforth we shall consider ca&®. . - . .
& we take the radius vectar; from the same point to thgth

The director distribution can be found from the minimum
condition for the sum of energig¢s) and(2). We assume that cluster centefthe latter may be assumed to be, say, the clus-
ter center of magsThen we have

the director change due to the clusters is small, i.e.,

n(ry=ny+éon(r), |on|<1. (3) (s)=F +5. ©
Heren, is the director value in the absence of droplets. The

initial nematic statgwithout clusters is assumed to be ho- Hereﬁzﬁ(sj) is the radius vector from the cluster center to
mogeneous.

In the Fourier representation we have

1
(2m)®

SA(F) = f Bhexp—ig-Her@). @

The normalization condition for the director nié=1. Then,
to within (sn)? we have
on-ne=0. (5)

We substitute the Fourier expansi6f) in the Frank en-
ergy (1) to obtain

11
2 (2m)®

+Kag[nXq]- 8n(q)|?+Kad (e @) on(q)|3}. (6)

= f d3q{K14/q- on(q)|?

To simplify the expressiof6), we choose the special basis

- (duXng) - A - -

91:;, ezz_la €3=Ny, Q,=NgXd. (7)
a. a.

For this basis we havéz(qi,o,qu) and sn=(dn,,én,,0)

and Eq.(6) reduces to

1
(2m)®

. .
B3 2 > f dafKiia? + Kaaf}oni(a)l®. (8)

the given point on the surfacg.

Now let us expandi(s))=n(r;+p) in a Taylor series in
5. Having done this, we obtain an expression for the director
value on thgth cluster surface in terms of the director value
in the jth cluster center and its derivatives. We remind the
reader that, according to the molecular field idea, the director
value within the volume occupied by théh cluster is taken
to be equal to the value with no cluster.

With an accuracy of second derivatives, we then have

n(s;)=n(r;+p)=Ne+dn(r;)+(p-V)én(r;)

1 ... ..
+§(p'V)25n(rj). (10

We restrict ourselves to the linear approximation with re-
spect todn in the quantity »(s;) X n(s;)]? contained in Eq.
(2). Then we obtain
[v(s)Xn(s)1*=1-[w(s))-n(5))*~1—[¥(s))- No]?
—2[v(s))-Nol[ ¥(s))- on(r))]
+2[u(s;) - Nol(p- V[ w(s))- Sn(r})]
~[¥(s)-Nol(p- V)L w(sy) - n(r)].
(13)
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The next step is to substitute the expansibh) in Eq.(2)  (5n(q)«]) that enters Eq(12) in terms of the basi$7) to
taking into account Eq4). When doing this we write all the  gptain
scalar products in the local based («), k) associated with

each cluster. For example, e s S,
an(a)- = 25 [&- on(a)] (e wy)

v(s)-oN(rp)= 2, [v(s))- kI[oN(7))- ] =qi{6n1(&>[<alxﬁo>-E|]+5nz(d>(di~2|>}-
1

= 3, w(on-x). (19
o Thus we can write the minimum condition for the total en-
ergy, i.e.,
As a result we have
)
= {EvE=0, (16)
E=3 3§ ds W{1—(5(s)-fip)2} ni(@)

This condition yields

1 ..
+ 5 32 Jd3qexq—iq~rj) 5
(2m™ ) S K@+ K 0 () = — ——E,, (A7)
R, 2 (2m)® oni(q)
Xt =2 a(No- k[ IN(A) - K]
ki whence we find
i 2 Bam(Nor ki)[N(A) - k1 1(d kim) ) 2(2m)? ( 5 )
o n(q)=——————| =—E 18
nl(q) KIIqE+K33qﬁ 5ni S ( )

+ 20 YamnlNor <[ ON(G) - k1]( ko) (A4 |- .
mn An expression fof 6/ 5n;(q) JE can be easily found from
(12 Eq. (12 within the context of Eq.(15). Substituting this

expression in Eq.18) yields an explicit expression for

The expressioni12) contains cluster characteristics given in oNi(d). Then we substitute this expression #m;(q) again
the local coordinate system, i.e., in Eq. (12) and thus obtain

Es=> ¢ dsW[1-[u(s) nel?]
=2 35 ds Wori(s) w(s), ] é °
2

(277-)3 J’EJ/ % A|A|/f d3q eXF[—I(i(FJ—I?Jr)]

l[E{«alxﬁo)][f?f’-(&lxﬁo]
X 2 2 2
i (Kyai +Ksj)

+
Brim=2 % ds Wew(S) 1(S) p(S),

Yiimn= fﬁ ds Wri(S) v1(S) pm(S) pn(S). (13

N (<]-q) (k] -q,) } 9

2 2 2
a7 (K07 +Kasqp)
These quantities depend on the cluster shape and density of - - H
the anchoring energyV; they are similar for all clusters Tq simplify the notation in Eq(19), we introduce the opera-
(inasmuch as the clusters are assumed to be identical tors
It is convenient for the analysis that follows to take the
local basis to be the one in which the tensgy takes the 3
diagonal form, i.e., A= ay(no: Eﬂ)*‘E Brim(No* ED( ’:]m' —»>
I k k,m &rJ
Gfk|:ak5k|. (14) R .. .. J . d
+ 2 YamdNo- k)| kb —= || k=, (20)
k,m,n (9|’j &rj
The anchoring12) is written in the local basis, whereas the
volume energy(8) is written in the special basi§). In order  when deriving Eq(20), use was made of the obvious iden-
to carry out variations ion;(q) we write the scalar product tity
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(k] a)exd —iq(r;—rj)]

. d
K=
o,

Integrating over in Eqg. (19) is an easy task in the coordi-
nate system with the basis

exd —iq(r;—r;)]

. RXn, . R . .
r{= R r2=R—l, rs=np, (21

The basig21) is turned with respect to the or{&) at some
anglee about the axi§o=é3= F3. The quantitieg), andq
are similar in both based) and (21).

Since in the new basis

rj]=exp—igR)
=exp{—i[q. R, cose+qRy]}

exd —iq(r;—

and the denominators of the fractions in E49) do not
depend on the angle, it is not difficult to carry out integra-
tion over¢. For example,

Jdgqexq—i&r}—ﬂ,)](&."ﬁu(Eff-i)
qf (K297 +Kagf)
oc w exp(—iqR)
= d%QJ dgy————-
Jo )T (K g Kt
2n  exp(—iq, R, cose)(]-q,)(x}-q,)
X do >
0 °n

- fo dq, d,{Q) Jo(AR)+ Q. Jo(ALR )}

X fﬁxqu

exp(—quRH)

: (23
Ko + Ksscﬁ

whereJ,(q, R,) is the Bessel function of the relevant order.

Besides that we have introduced the notation

*)

||/—("1 K|)(r1 K::) ("2 K|)(r2 Kf/)

To integrate over, andq;, we make use of the relations

o K22 1/2
J e "HK—) qui}

and
o K22 1/2
fdQLQLeXp[_<K_) R|qL}Jn(qLRL)
0 33

™

EXIi— Iq”RH) _
Kzﬂf+Ksﬁf

4. K Kzs

:{/1+72_,y}n YZ(K_ZZ)l/Zﬁ
RD/lﬂLyz ’ Kas) R’
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We skip the details and write the final expressionHgr It is
given by

Ef? jg ds W{L1—[(s)-noJ?%}

1
AA

+ - ?; .E "

Q|| +(—1)H
\/K33R2+K LR

Q”, (VKaaR? +K,,, Rf = VK, ,R?)?
"R VKaRT +K R

(29)

Once more, we recall that are the unit vectors of the local
basis associated with thith cluster andR=r;—r,/,R;
—(noR) andRL n0><R

It is not difficult to show by substituting Eq18) in Eq.
(8) that expressions foEg and E; in Eq. (24) are similar
except for the first term. The first term in E(R4) corre-
sponds to the total energy of individual clustdwsith no
account of their elastic interactinn

lll. ENERGY OF THE PAIR DEFORMATION
INTERACTION OF CLUSTERS

The terms with fixed subscripisandj’ entering the sum
of energiesE; + E describe the energy of elastic interaction

of clusterg andj’. We denote this energy ly;;, . Then we
have
1 o 1 Q'
U”’_E§ AJA"% \/KM[ VKaRZ+K,,R?
+(_1)MQ[|, VKaRETKZ RE+ K2, ]
R? VK3R? +K2 RT
(25

The elastic energy of the cluster pair interaction is obtained
for arbitrary(but fixed cluster orientations both with respect
to each other and with respect to the director.

If one or a few clusters occur in the system, then the
angles that determine cluster orientations with respect to the
director and each cluster orientation with respect to the other
can be found from the minimum condition for the energy
E;+Eg. This is the usual way of considering such situations
(e.g., sed9,5]).

If, however, many clusters occur in the system, which is
the case under consideration in this paper, one has to intro-
duce the cluster velocity and center-of-mass distributions and
employ the averaged quantities. We shall discuss this aspect
in detail later.

Now let us analyze the structure of the formula that de-
scribes the cluster elastic interaction enefgy). As follows
from Eqgs.(25) and(20), the expression for the cluster elastic
interaction energy is actually the series expansion in terms of
the reciprocal intercluster distance. The first term in @6),
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associated witha,,}, determines the term of E(R5) whose
decrease is the slowest when the distance between the clus-
ters under consideration is increased. This term decreases as
1/R. In addtion, the term whose decrease with increaBing

the fastest is determined by the last term in E2§).

It is not difficult to verify that the contribution of the term
with {ay} in the energy(25) vanishes when the director is
oriented along any vector of the local basis given by the
condition (14). Moreover, the torque produced by the liquid
crystal with respect to the cluster is equal to zero too. If none
of the cluster basis vectors are oriented along the director,
then the contribution of the term withy,} is dominant in
the energy(25). That is why in what follows we assume that
the orientational transition has already occurred and the con-
tribution of { )} in the elastic energy is no longer signifi-
cant. o . FIG. 2. Example of how the coordinate dependence of the an-
_ If some vector of the local basis is parallel to the directorcnoringw influences the structure of the energy of the cluster pair
Ny, then two other basis vectors lie in the plane perpendicudeformation interaction.
lar tony. The unit vectors; andr, lie in the same plane, so

we denoteFl- ,;{' and then find from Eq(24) that this basis, i.e., it must satisfy the conditi¢td). Moreover,
we require that the basis should be such that

= =cog W+ V). (26)
Qu W a,=a,=a;z. (29
Though the contribution ofa,,} in the energy25) is insig-
nificant for some cluster orientations, there remains the confhese requirements provide an unambiguous choice of the
tribution determined by the terms that contdify,,} and local basis. At the same time, the parameterg},{Bxim}

{Yiimnt - and{ yimn} do not depend on the subscript &&8§the clus-
Now we specify the cluster shape and calculate the energier numbey and are unambiguous characteristics of the clus-
of cluster pair interaction. ters. They are determined by the cluster geometry and the
(a) Spherical clustersiW;=W=const. According to Eq. density of anchorinVs.
(13) we have To illustrate how the coordinate dependence of the an-
choring W influences the structure of the energy of cluster
8w pair deformation interaction, we consider an example. We
aik=aii Ok, an=an=agk=—>"Wrg,  Bun=0, consider a spherical cluster with the anchoring dengity
=const whose surface contains two “spots” with the an-
A choring energyW,=const(but W;#W,). We assume that

Ykimn= 75 Wr3( S Omnt SkmOnt Skndim)s (27 the location of the spots with enerdfy, is determined by the
angles € @o<e@=<gq;m2— 0<0<w/2+6,) and (/2
wherer, is the radius of the spherical cluster. Assuming for ~ $0=$0="/2+ ¢o; 72— o= < m/2— ;). The anglee
the sake of simplicity thalK ;=K ,,=K33=K, we find from is relative to the unit vectok, and the anglé is relative to
Eq. (25), taking into account Eq.27), that the unit vectorle (see Fig. 2
With the spot positions being as given above, we find

2
U“,=%(i—757Wré (3—30cog6+35cod), from Eg. (13) that
8 2
R alk:?WHofskﬁAakla (30
cosf= —-. (28)
R
In the case of spherical clusters and=const, the interac- Aaj=Aay= 8(W2_W1)T(Z)CP0[ sinf,— Esirﬁeo] ,
tion energy is determined by the last term of the expansion 3
(20).
Let us discuss the choice of the local basi$ (<), kb). If 16 ,
the clusters are spherical ald,=const, then the choice of ‘133:§(W2_W1)r0¢’0 S 31

the local basis £} ,«},«%) is unimportant. If, howeverw,

#const or the clusters are asymmetric, then the set of paramy| other elementsi a;, vanish.

eters{ e}, { Buim}{ Yuimnt depends on the specified local ba-  \we see that, for the above spot positions and basis, the
sis. In order to provide an unambiguous of the parametefensora, is diagonal and the requiremeg9) is satisfied
choice we take the set of unit vectors)(«},«}) inawayto  provided W,=W,. For the basis being chosen in such a
ensure that the tensar,, should take the diagonal form in manner, the nonvanishing componentsggf,,, are given by
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1 s st

== (!

. Uii=5-x % mEm, BaimBairm (K- K|)
(32

1
Sinfy— 1 sin 44,

Ba13= Baos= (W, —Wy)r3 singg

(k- R) (k! -R)— (- kl)R?
X R5

According to Eq.(25), in the case of spherical clusters with

spots and forx||«} [Ny, the elastic interaction energy is
described by the expression

(38

_ . o SO
If ¢ is the angle betweer) and«) , then we haved, - «}

2 3K R? = kb k) =cose, «l-K) =cos+m/2)=—sing, etc.
_B313 KMM J wp| - = N L CW R
Ujjr=— Wlthlr_l th(_a context of the equatiory, - R= (k- k1) (k1
33 -R)+(;_<£n- xb) (k- Ry) (for m=1,2), the formula38) can
be easily reduced to
We note that in the case of clusters shaped as ellipsoids of
revolution with the axes alon§‘3 and with the spots posi-
tioned in the same range of angles as given above, the paithus, in the case under consideration the energy of interclus-

interaction energy is also described by an expression similagr elastic interaction is given by the expression derived by

to Eg. (33). The only difference is the expression for the Goossen$12] to describe the interaction of cholesteric mol-

parametelBs;3. In this case the formulé33) reproduces the ecules.

result obtained in Ref9]. We remind the reader that our term “cluster” implies
(b) Cylindrical clusters:W;=W=const. Suppose?3 is  macrodroplets for which the droplet—nematic-liquid crystal

directed along the cylinder axis. If the cylinder radius is veryanchoring is given by Eq2). We have already mentioned in

small (a needle-shaped clusteso that endface contributions the Introduction that an interaction of foreign molecules with

T F {KeaR2 K, R2| KyR2 +K R

Uj;» =A(R)cos 2p+ B(R)sin 2¢. (39)

in the anchoring may be disregarded, then we have those of the nematic liquid crystal is much stronger than the
energy of intermolecular interaction in the nematic liquid
a11= a=27WpglL. (34)  crystal. In this case a kind of solvate shell is formed around

each foreign droplet. The microscopic droplet surrounded by
Here p, is the cylinder diameter and is its length. All  a solvate shell may be regarded as a cluster in our sense.
elementsy,, other than those given by E¢34) vanish. The
nonzero elements dfB,m} are given by IV. SYSTEM OF MACRODROPLETS
IN A LIQUID CRYSTAL

= Baos= mWpoL 2. 35 : I
P113=Baag= mWpo @9 To describe the peculiarities of the macrodroplet system

tgahavior in the mesophase implies taking into account their
interaction via the director elastic field. We have already
shown that a foreign macrodroplet produces liquid crystal
pé'stortion in a region much greater than the droplet dimen-
ions and thus leads to an effective interaction with another
Similar macrodroplet via the director field deformation. The
> interdroplet interaction via the director elastic field is of the
T, . L . . )
B311= Bas=— WrS. (36)  type given by Eq(25); it is physically obvious that for rea
3 sons analogous to those[iti3], the macrodroplet distribution
within a limited liquid crystal sample can be inhomogeneous.
In the case when the above-mentioned asymmetric cylinThe purpose of this section is to show that a spinodal decay
ders are parallel to each other and to the directgr the  can occur in a system of macrodroplets introduced in a liquid
energy of the pair interaction of such clusters is described bygrystal, which results in a spatial modulation of droplet dis-

If the cylinder is assumed to be asymmetric and to possess
not very small radiuga finger-shaped clusterthen other
elements ofB,,,, are not equal to zero along with E(5).
For example, for a cylinder whose endfaces are a hemisphe
of radiusr, and a plane, the other two nonzero elements ar

the expression tribution. It should be emphasized that this distribution is

associated with the type of interdroplet interaction and physi-

B21s Kuu J 3KW,RE cally reflects the instability of the “gaseous” phase of mac-

Ujjr=—+ > PN > 5—1¢. rodroplets introduced in the crystal. It is clear that the mac-
T {KaaRT KR l KaaRT + KR rodroplet arrangement in the mesophase depends on both the

37) spatial positions and relative orientations of individual mac-
. . . rodroplets. In order to demonstrate the mechanism and char-
In the previous sections we considered some examples @fcter of the phase transition accompanied by the formation of
clusters of given shapes. Now we do not specify the clustegpqulated macrodroplets distribution we consider a system
shape and discuss one more example that is of interest bgs spherical foreign macrodroplets in the nematic me-
cause the pair interaction energy can be obtained in the forgophase. In this case, the interdroplet interaction energy is
described by Goossefi2]. We assume first thd€1;=Ky,  described by Eq(28) and we need not consider their relative
=K33=K and second that only the skew symmetric elementgyientation. Thus we can regard the system of foreign mac-
Baz1@nd B, do not vanish. If the clusters are oriented in arodroplets in the mesophase as the Ising model lattice gas
way thatxb| <} [Ing, then their interaction energy reduces to without fixing the basis of the initial arbitrary lattice. This
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treatment is completely analogous to the model of substitusee that the minimum of the function@l?2) realizes a spa-
tion or interstitial solid solutiof14] and we shall employ the tially inhomogeneous macrodroplet distribution only pro-
approach proposed in this paper. vided the signs satisfy some relations and the values of co-
The free energy of a solution of macrodroplets in a liquidefficients determined by the interdroplet interaction potential
crystal in the self-consistent field and the binary interactiorare given by Eq(43). In order to reveal the conditions under

approximation may be written in the form which the homogeneous macrodroplet distribution becomes
1 unstable, we have to calculate all the coefficients. This can
_ NI always be done; however, for the sake of simplicity and
F 2 Fé, UR=ROTRIT(R') clearness we consider a cylindrical sample with the base ra-
' dius L and heightd, the boundary condition being that the
3 3 director is normal to the cylinder base. Then, for the interac-
* kT; HR)INf(R) tion energy given by Eq.28), we find that in the cylindrical

coordinate system

b:f RLdRJd'%fd‘l’(Rf%Rﬁ)w

—[kf(@]ln[l—f(@]}—@ f(R), (40

where U(Ii— ﬁ’) is the interaction potentialf(ﬁ) is the

probability that the droplets fill in the initial arbitrary lattice, { Rﬁ Rﬁ 2]
u is the chemical potential, ant@l is the absolute tempera- X13-305—— — ,
ture. The minimum of Eq(40) corresponds to the self- 1 TR Ri+Rj
consistent field solution fof(ﬁ) ie., 1 A
2
) u U(F-é_F-i,) - -1 aHZ—Ef RLdRLfR\|dR||f d¢(R2+—R2)5/2
f(R)={1+exg - =+ >, ——f(R") . (41 LT
kT < kT 5 , (2
Each set of thermodynamic functions of state corresponds X [ 3- 3ORZT”R2 + 35( R2 +H RZ) ] '
to a solution that describes some phase of droplet arrange- L7 L7
ment. If their distribution can be inhomogeneous, then the
solution (41) serves to find the stable phase associated with a = — _f R3dR f dR f do
the interaction temperature and character. An efficient way to + 2) L | (R?+ Rﬁ)S’Z
obtain such a distribution was proposed id]. If the drop- 5
lets solution is disordered, then by definition the mean value RHZ RHZ
(f(r))=C,, whereCy is the relative macrodroplet concen- X13-30 2, 12 or] [ (44)
TN TN

tration. The concentration inhomogeneity gives rise to an

additional term f(r)=Cy+ 8C(r), where 5C(r) is the whereA= (6/7\K)[ (47/15)WR;]? is the coefficient in the

D B e e o e I enerqy of teracton between freign spherical macrocop-
> g . ~lets in the nematic liquid crystal is the macrodropl
ities are smooth and their scale is much longer than the m_ets the nematic liquid crystal ari, is the macrodroplet

: . - radius. After integration is carried out, we have
termolecular distance, the quant®Z (r) may be interpreted 9

as the change of macrodroplet composition in the relevant 2 2\ 2

. ; kT 27AdL d
physically small volume that contains many elementary cells b= - —1, (45)
of the initial lattice. When passing from a lattice to a con- Co(1=Co) L2(L2+d2)¥2 " L2

tinuum description, we can write the free energy increment o )
AF=F—F(C,) associated with the inhomogeneous macro-While the coefficientsy anda, are given by
droplet distribution in terms of the power series expansion in

5C(r), ie., g TAGLE [ (46)
. [ 3(L2+d?)52 L2
AF:EJ dr{bsc?(r)+ay(V,éc)*+a, (V, c)?}, and
(42)
where _ 3wAdL! L 4d?(5 d? A
T T AT R
s 1 - -
b= f dRU(R)+ coi=cy)’ A=~ EJ’ dRRTU(R), The critical temperature of the loss of stability of a homo-
0 0 geneous macrodroplet distribution is determined by the con-
1 ) R ) dition b=0 and in the case under consideration is described
a, =-— Ef dRR?U(R), R=r-—r’, (43) by the expression

2 2\ 2
andRf andR? are the components of the interdroplet dis- KTe 27AdL® [ d_) (48)

= 1
tance vector along and perpendicular to the director. Thus we Co(l—cCo) LAL2+ d2)1’2\ L?
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Thus, for a given macrodroplet concentrati@p in a cylin-  follows), show that the quasicrystalline phase formation is
drical liquid crystal sample, the homogeneous macrodroplequite realistic. That is why now we assume that the quasic-
distribution is unstable folf<T,. The wavelength of the rystalline phase of a cluster system is already formed and
induced modulated macrodroplet distribution may be esticonsider the probable consequences of this phase transition.
mated. As follows from Eq(47), the macrodroplet distribu- In the previous analysis, when considering the energy
tion is periodic along the director only ford3<L2. The (25) of binary deformation interaction between clusters, we
modulation period of the macrodroplet concentration alongmentioned the addends associated with the quapfiy,}-

the director\ = ya; /b is in our case equal to These terms are responsible for inducing the cholesteric
phase in the nematic liquid crystals. If the cluster system in
d? \/ T the nematic liquid crystal is regarded as a certain analog of
A= T\ V6(T.—-T) d. (49 the lyotropic liquid crystal, then the terms of the ty(89)
6( 1- T_) ¢ contained in the interaction energy can give rise to the cho-
Cc

lesteric twisting. In the general case, the asymmetric cluster

The instability of the homogeneous distribution along the@fientation is described by three basis unit vecforg. If,
cylindrical sample radius occurs for any proportion of di- however, the clusters are sufficiently elongated along some

mensions. Fod<R we have axis, then the preferable orientation of the unit vector asso-
ciated with this axis can be taken for the new diredtot in
3T, the “lyotropic” liquid crystal under consideration. The pres-
N=\57— L ence of other basis unit vectors can be approximately taken
2(Te—=T)

into account by introducing pseudoscalar terms in the cluster
Thus we draw a conclusion that the homogeneous distripdnteraction energy of the type9). Actually, this procedure
tion of macrodroplets introduced in a nematic liquid crystaliS €mployed in the treatment of traditional cholestefit3].
is unstable in a limited sample of mesophase and a spatialPnce the energy of binary cluster interaction including the
modulated distribution can be formed. The instability crite-PSeudoscalar terms of the ty(&9) is known, we can employ
rion b=0, given by the relatiorf48), may be interpreted as the molecular statistics approach to obtain the Frank energy
the condition for the formation of a spatially inhomogeneous2nd to calculate the Frank constaits and the cholesteric
macrodroplet distribution for a given temperature that defwisting periodq (see, €.9.[4,6]). _ _
pends on the foreign macrodroplet concentration in the liquid NOW we can formulate the main purpose of this section. It
crystal. For temperatures for which the mesophase existéS 10 reveal what happens if the cholesteric twisting in the
both the temperature and concentration phase transition c&#!Ster system occurs simultaneously with the spatial order-
occur, which results in the formation and rearrangement of 419 of the cluster center-of-mass distribution. We shall show

supermolecular structure. that the incommensurability effect can lead to the formation
of a new spatially periodic structure in the directordistri-

V. MACRODROPLET-INDUCED SUPERMOLECULAR bution. First of aII, we remind the reader that this situation is

STRUCTURES similar to the incommensurability effect in a spin system

considered in Refs[16,17]. Along with this analogy, we
In the preceding section we considered spatially inhomoconsider the mathematical substantiation of incommensura-
geneous structures in the gaseous phase of macrodropléfity in our case. To give such a substantiation means to
(clusters. As the cluster concentration becomes greater ounderstand the anchoring mechanism of the short-range or-
the cluster surface energy increases, a new quasicrystallitfer associated with the periodic cluster arrangement and the
phase can be formed. This phase includes not only the oriong-range order described by the field distribution of the
entational ordering of clusters but also the spatial ordering ofjiractorm. Before doing this, we remind the reader of some

the cluster center-of-mass arrangement. The spatial orderinghints |n the molecular statistics approach, the free energy
of the cluster system can again be caused by the deformatiQy pe obtained from the Gibbs distribution in the self-

repulsion of clusters. consistent field approximatiosee, e.g.[18,4]). The expres-

It is a very difficult problem to develop a consistent gjon for the Gibbs distribution contains the total energy of
theory of phase transitions from the gaseous to quasiCrystajjieracting particles, i.e., clusters in our case. In the self-

line phase in terms of the cluster interaction end@y. We  ngistent field approximation, it can be written as
shall not do it now. It should be just noted that the tempera-

ture of the transition to the quasicrystalline state in a cluster
system may be estimated in terms of the Ising model in the
self-consistent field approximatiofi5]. According to this
model, the phase transition temperatirg can be found
from the equation

H= > V(r,r,Q,9)fr,Q)fr Q). (51
a0

Herer andr’ give the positions of cluster centers while
kgT.=0oJ, (50 and()’ determine the angular orientation of the unit vectors
. . x andx’, which are parallel to the cluster long axes. In view
where gq is the number of nearest neighbors ahds the  gf the above reasoning we have
interaction constant.
The estimates for cluster concentrations that satisfy Eg. L .
(51) for T, say, equal to the room temperatisee in what m=m(r)={«). (52
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The angular brackets denote averaging over a physicallihe new variable$58) and expand the integrand of E6)
small volume that nevertheless contains many clusters. Thﬂ a power series OF]_ up to the second-order tern@see,
function f(r,Q) contained in Eq(52) determines the prob- e.g.,[18,20).
ability that a site of the periodic structure of the cluster sys- In the initial spatially homogeneous system,
tem is occupied. It may be written as
A . V(rr,Q,0)=V(r-r,Q,0)=V(r;0,Q").
f(r,Q)=o(x—n;a;) 6(y—nzaz) 8(z—nzaz) fo(mkx).
(53  Since

Here §(x—nja,) does not vanish and it is equal to one only X+ x! X — X!
for n;=0,+1,+2,...; thequantitiesa, ,a,, anda; deter- cog k;x;) +cogk;x/)=2 coski( 5 : )coski( > : )
mine the structure periods alomgy, andz, respectively. The

, ety , (57)
function fy(m,x) determines the angular arrangement of
cluster long axes. Within the context of E&4), expression it is clear that of all the terms contained in EG6), only
.(52) is p_er|0_d|c inx,y,z. In order to pass from ;ummatlon to ﬁ](F):rﬁ(FoJr %Fl) and rf]’zrﬁ(F’)=rﬁ(F0—%F1) must be
integration in Eq(52), we make use of the Poisson formula. s = , )

gxpanded in amr; series. In this sense, the procedure of

In the one-dimensional case, the Poisson formula for a peri="F< )
odic function®(x) is given by der_lvmg the Fran_k energy with regard to the clust_er centers
lattice does not differ from that of Refgl8,20. That is why
o0 we shall omit here the details of the calculation which are
> cp(xn):f dxD(X)+ D fdxcp(x)cos(—kx), given in[18,20.
n K a If the periodic terms are neglected while the pseudoinvari-
(54) ants associated with3y,} are taken into account, one ob-

tains the standard expression for the Frank energy of a cho-
lesteric, i.e.,

wherea is the period of the functiod (x).

We apply the transformation of E¢G5) to Eq. (52). The
terms originating from the first term on the right-hand side of 1
Eq. (55) provide no information about the periodic structure J= _J dro{K 15(div m)2+ Koo M rotm)?
and hence are associated with the spatially homogeneous dis- 2
tribution of cluster centers. Just this case was considered in

- - - -
Ref.[19] in terms of molecular statistics. Information on the +Kgd mxrotm]+K,(m-rotm)}. (58)
periodic structure is contained in the second term on the o )

right-hand side of the transformatidBs). Taking into account the terms of the tyf(®9) in Eq. (56),

Before discussing the role of periodic terms in our prob-One obtains, instead of E(0), a similar expression with an
lem, we remind the reader that an analogous procedure @Vvious substitution oK;; for K, whereKj is given by
passage from the discrete spectrum to the continuum in terms
of the Poisson formula has been successfully employed in Ik j L (0)
the study of de Haas—van Alfven effeee, e.g.[19)). In Kii=Ki +§j: AKiicoskix; ™ (59
this problem, the second term on the right-hand side of Eq.

(55) provides information on the discrete spectrum and giveMoreover, with the periodic terms being taken into account,

rise to magnetic moment oscillations with growing magnetick , is replaced by

field the (de Haas—van Alfven effectin a similar way, in

our problem the second term on the right-hand side of Eq. , j )

(55), when applied to Eq(52), provides information on the K=Kt 2 AKhcosk;x|”. (60

discrete periodic distribution of cluster centers. .
Thus, having transformed E¢52) with the use of Eq.

(55, we find that The explicit expressions for the amplitud&&’; andAK), in

terms of the cluster binary interaction energgr,;Q,Q’)

- . .. .. can be obtained from the relevant integral expressibg
H:J’ drdr’ dQdQ'Vv(r,r',Q,Q")fo(mk)fo(m’«") for and AK, by means of the formal substitution of
V(r1;Q,Q")coskxM/2) for V(ry;0,Q'). In this formula,
x{1+> cogkx)+ > cogkx/)+---. (55  x* arethe components of the vecty.
[ i Now we employ the general expression for the Frank en-

ergy with respect to the periodic terms to consider a special

Here case when the cholesteric twisting of the direatoloccurs
20 along thez, axis andm depends only on the coordinatg.
ki:?i’ X1=X, Xp=Y, Xg=Z. (56)  we takem to be given by
The formula(56) contains only the terms whose oscillations rﬁ={sin6cos<p,sinesingo,cos¢9}. (61

are the slowest. We restrict the consideration to these terms.
In order to obtain the Frank energy from E§6), we passto Then the expression for the Frank energy reduces to
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1 @ deo\?2 When deriving Eq.(70) we neglected the fast oscillating
J= EJ dzpKqq| 1+ K coskgzo)sinze(d—) term (AK/K)cosksz, in the factor] 1+ (AK/K)coskszy] be-
1 % fore the first term since this term is small and, moreover, it is
AK@ do )2 multiplied by the slowly varying quantity dy/dz,—ks)?
+Kyy 1+ K—22c05k3zo) (E) sing and hence is nearly zero due to averaging.

The functional(70), to within a constant, reduces to the

(3) standard form

33

cosk3zo) cogd

+Kagl 1+
% Kas K g dy . 2 )
d6\2 [ do\2 j—gJ’ 21l gz K| ~ {(cosy—1) ¢, (69)
¢ .
X d_ + d_ S|nz6'
% % where Z=qg?(AK/K—AK,/K)).

AK(Zs) de The functional(71) is widely employed in the studies of
1+—cosk3zo)—sin20. (62) incommensurability effectg¢see, e.g.[21,27). The extre-

K2 dzy mum of the functional(71) is realized in the solutions of the
Euler-Lagrange equation

_KZ

A usual step in the theory of cholesterics is to take
_ _ d?y
K2=0aKz, ¢=0z. (63) d—22—§s|n¢=o, (70)
Moreover, to illustrate the appearance of the incommensura- _
bility effect in our case we restrict the consideration to thewhich may be written af21,22
one-constant approximation, i.e., we assume that

fzp dy’ 7D
p— — p— Z: —,
K11=Kzo=Kgz=K, 0 \Jc—2¢ cosy’
AK{Y=AKE =AK =AK. (64)  where C is the first integral of motion of Eq(72). This

o o _ solution describes the periodic arrangement of solitons in the
Taking into account these restrictions, we find from Eq.director distribution through thedependence of, which is

(64) that related toy in terms of Eq.(69). We have

K AK do 2 4r

J= Ef dzgy | 1+ TCOSkg,ZO daz IZEK(T)’ (72
(3)
+q? Ak _ AKz )coskazosinZBJ (650  WhereK(7) is the elliptic function of the argument
K K, ’
4

We transform the factor in the second term to obtain T= c+2r (73

SinceK(7)—In[4/(1—7?)] as 7—1, we see from Eq(74)
that long-period structures can appear in the system. This is a
1 1 manifestation of the incommensurability effect. The details
=~ cOoSKaZn— = COS 20+ Kaz of this phenomenon are considered in Réf6,17,2] in

2 30 4 g 320) terms of the functional71). Thus, in the presence of the

1 Lifshitz pseudoinvariant, the periodic arrangement of centers
— Zcog260—kszp). (66)  of clusters(foreign droplets induces gyrotropy and, more-

4 over, produces one more incommensurable period in the dis-
tribution of the mean macrodroplet orientations.

1
coskszy sif 9= 5 Cosk3zo(1—Cos)

The last term on the right-hand side of E§8) is the one
with the slowest oscillations. Inasmuch as we are interested

. . . . VI. CONCLUSIONS
in studying the formation of long-wavelength structures in

Eq. (67), we retain in Eq(67) only the last term contained In this paper the Frank energy and the surface energy of
on the right-hand side of E{68). macroclusters introduced in a nematic are used to derive a
We introduce a new “slow” variable given by general expression for the energy of the cluster deformation
interaction. The cluster shape and the coordinate dependence

h=K3zo—20 (67)  of the cluster anchoring are arbitrary. The energy of binary

elastic interaction of clusters depends on cluster orientations

and thus obtain from Eq67) and intercluster distances. Explicit expressions for the con-
) stants entering the energy of the pair cluster interaction are
y= EJ d d_‘ﬁ_k _ o[AK AK; cosy obtained for some cases of specified cluster shapes and an-

8 % dz, 3 1K K, ' choring distributions. It is shown that for certain cluster

(68 shapes and surface energies, the interaction energy can con-
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tain a pseudoscalar that is responsible for the cholesteriag W~ 10 2dyn/s nf and macrodroplet dimensionR,
twisting effect. o _ . - ~300 A, that such structures can occur in a usual sample of
The system of deformation-interacting clusters is considsjze 10 um for relative concentration§,~10~3. For con-
ered in both gaseous and crystalline approximations. In thgentrations an order of magnitude greater and for chiral drop-
gaseous approximation, which corresponds to relativelyet interaction energies such thit (B311/ 7K) (1KR)3), the
small cluster concentrations, instability criteria are found forfgrmula (51) yields the value of critical temperature that is
a spatially homogeneous cluster distribution in a nematic ligequal to the mesophase existence temperature. The formation
uid crystal. o . . of adistorted supermolecular structure with two incommen-
The crystalline approximation is associated with highersyraple periods in the distribution of macrodroplet mean ori-
cluster concentrations. In this state, a preferable orientatiogntations is a finer effect since it depends as well on the
of cluster long axes occurs; cluster centers are spatially Omesophase characteristics. It can be observed, however, by
dered and form a lattice. It is shown that if a Lifshitz pseudo—optica| method$23].
invariant responsible for the gyrotropy occurs in the system, ' Thys we have solid grounds to state that a system of mac-
then, in the crystalline phase, one more incommensurablgydroplets introduced in a liquid crystal can produce, due to
long-period structure appears in the distribution of mean orithe interaction via the deformation of the director elastic
entations of cluster long axes. A mechanism of supermolecufie|d, new supermolecular structures that possess necessary

lar structure formation is proposed. electric and optical properties of an effective medium.
The above considered behavior of a system of macrodrop-

lets introduced in the mesophase should be observed experi-
mentally. Let us estimate the conditions under which these
effects can occur.

Having assumed that a spatially homogeneous arrange- We are grateful to V.M. Pergametshchik for numerous
ment of macrodroplets occurs for temperatures of mesophasad useful discussions and acknowledge financial support by
existence, i.eT~300 K, we find from Eq(48), for anchor- the CRDF through Grant No. UE1-310.
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