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Interaction of foreign macrodroplets in a nematic liquid crystal
and induced supermolecular structures

B. I. Lev* and P. M. Tomchuk
Institute of Physics, National Academy of Sciences of Ukraine, prospect Nauki 46, Kiev 252022, Ukraine

~Received 19 May 1998!

The behavior of a system of macroscopic particles introduced in a nematic liquid crystal is studied theoreti-
cally. The energy of the pair interparticle interaction associated with the director elastic field deformation is
found. The interaction intensity and character are studied as functions of the distance, the geometric parameters
of foreign macroparticles, and the value of their anchoring to the mesophase. The interparticle interaction can
cause nontrivial collective behavior that results in the formation of new spatially modulated structures in the
macroparticle system. The periodic arrangement of chiral particles that induces a helical structure can give rise
to two incommensurable periods in the average orientation distribution of macroparticles.
@S1063-651X~99!12701-6#

PACS number~s!: 61.66.2f, 42.50.2p
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I. INTRODUCTION

Colloid media formed by hard particles suspended in
uids are a widely abundant important state of matter
hence have attracted much interest in science, technol
and medicine@1–3#. Dispersed liquid crystals, i.e., the me
sophase with macroscopic inclusions of a foreign substa
@1,2#, are a particular case of such systems. The phys
properties of such media are thoroughly studied in Ref.@1#,
which also reveals the unsolved problems in this resea
field. The macroparticles introduced in a liquid crystal co
siderably influence the electro-optic properties of the lat
one of the reasons being the formation of new supermole
lar structures induced by these particles@1,4,5#. We mean the
induced optical gyrotropy@5,6# and production of threadlike
structures consisting of colloid particles@1,7#. To describe
the formation conditions and behavioral properties of
macroparticle-induced structures implies taking into acco
their interaction both associated with physical propert
~charge, dipole moment, etc.! and caused by the directo
elastic field deformation. An interaction produced by the
rector deformation was considered by many authors@1,8,9#.
The physical mechanism of this interaction is that the fore
macroparticle distorts the director distribution that can
cupy a region much greater than its dimensions and t
provides an effective interaction with another similar micr
particle via mediation of the elastic field deformation. T
physical criterion of this description follows from the obse
vation that for the director field deformation treatment to
adequate, the macroparticle size must be greater than
mesophase molecule dimensions but much smaller than
distance between the macroparticles. The macroparticle
also be regarded as a microparticle surrounded by a ‘‘sol
shell’’ provided the interaction between such a particle a
the mesophase molecules is much more intense than th
termolecular interaction responsible for the mesophase
mation. The solvate formation may be regarded as a ma
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cluster; thus its interaction with another similar formatio
may be described in terms of the director field deformati
The validity of this treatment depends on whether we c
impose the boundary conditions on the director for suc
formation. In this sense, the interaction of liquid collo
droplets~neglecting of probable shape deformation! also is
associated with the director elastic field deformation in
mesophase in which these droplets are dissolved. Neglec
other possible mechanisms of interdroplet interaction,
shall consider the macroparticle interaction via the direc
field deformation. This is the main subject of this study.

The purpose of this paper is to calculate the interact
energy of macroparticles introduced in the nematic liqu
crystal that is associated with the director field deformat
to describe the dependence of the interaction intensity
character on the distance and geometrical and physical
rameters of foreign macroparticles. The physical factors
assumed to be the macroparticle shape and the directo
choring to the macroparticle surface; the latter is determi
by the nature of the interaction with mesophase molecu
Which of the two limiting cases occurs, i.e., either~i! the
director distribution on the given macroparticle surface
determined by the total self-consistent effect of all oth
macroparticles or~ii ! the director distribution in the region
circumjacent to the macroparticle is determined by this v
macroparticle, depends on the value of the director ancho
to the macroparticle surface and the concentration of the
ter. In case~ii !, the director anchoring to the macroparticle
regarded as the boundary condition that governs the dire
deformation field to be found. The problem concerning t
interaction of spherical macroparticles via the director fie
deformation, formulated in this manner, was solved in@8#.
Case~i!, when the director distribution on each cluster su
face is determined by the self-consistent interaction of
macroparticles, was considered in@9#. In particular, Lopatni-
kov and Namiot@9# have calculated the interaction energ
for cylindrically symmetric particles. However, the gener
problem of how to calculate the macroparticle interacti
energy as a function of cluster geometric parameters
anchoring has not been either formulated or solved. In
present paper we have managed to find the self-consis
591 ©1999 The American Physical Society
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592 PRE 59B. I. LEV AND P. M. TOMCHUK
pair interaction energy for macroparticles of arbitrary shap
for any dependence of anchoring on the macroparticle
face coordinate and for different Frank elastic consta
from the general premises. Our approximation infers the s
consistence of the director field on an individual macrop
ticle surface and the director produced by all other mac
particles. The self-consistent molecular field approximat
for macroparticles implies that the field distribution on t
surface of an individual particle is determined by the jo
effect of all other clusters~and is equal to the distribution o
the cluster boundary in the case when their would be
particle!. Then the interaction of the individual particle wit
the director field deformation produced by the other mac
particles is determined by the anchoring on the surface
this particle. It is analogous to the molecular field appro
mation and is correct for deriving the pair interaction ene
produced by the collective behavior of foreign macrop
ticles. In the opposite case we would have to consider str
deformations of the director field and it would be impossib
to employ the continuum theory of the elastic director fie
deformation that involves expansion in small gradients.

The self-consistent approach provides a possibility
avoid the above difficulties, so we have managed to find
energy of the pair interaction of macroparticles introduced
the nematic liquid crystal. The problem is formally split in
two separate problems: to find the director field distribut
and to find the interation energy with regard to physical a
geometrical properties of macroparticles.

The director distribution in the vicinity of a macrodropl
introduced in a nematic liquid crystal was considered
many papers~e.g., see@4,5,11,10#, which followed the pio-
neering paper by Brochar and de Gennes@11#. In @11#, in
particular, the director distribution was obtained in the on
constant approximation in terms of the multipole expansi
However, the expansion coefficients were not associa
with the physical and geometrical parameters of macrop
ticles.

In the present paper the director distribution is derived
the general case of different elastic Frank constants a
moreover, the multipole expansion parameters are foun
terms of geometric and physical characteristics of macro
ticles. Thus both the behavior and the value of the pair
teraction energy are described with no additional restrictio

Having found the interparticle interaction energy, we c
study the thermodynamic behavior of an aggregate of s
macroparticles and describe the conditions for the creatio
new supermolecular structures. The character and inten
of the interparticle interaction in the system of foreign ma
roparticles in a nematic liquid crystal can be such tha
temperature and concentration phase transition can occ
the system and produce a spatially inhomogeneous distr
tion. In this paper the conditions are found under which
macroparticles arrange in a spatially periodic manner and
effect of such an arrangement on the resultant orientatio
supermolecular structure is studied. If macroparticles pos
chiral properties, then their aggregate may be regarded
kind of lyotropic cholesteric liquid crystal with induced gy
rotropy. The spatially modulated arrangement of macrop
ticles with helical orientation structure gives rise to a n
period of the particle average orientation distribution tha
incommensurate with the spiral lead.
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In Sec. II we formulate the problem of how to find th
interaction energy for the macroparticles introduced in
nematic liquid crystal and describe the approximations e
ployed. The general expression for the interaction energ
derived for different Frank constants and arbitrary parti
shapes. In the Sec. III the expression obtained is analyzed
specific geometrical shapes of particles and used to calcu
the pair interaction energy for spherical, cylindrical, et
macroparticles with regard to the anchoring dependence
the surface coordinate of the foreign macroparticle. The
pressions are compared to the previous results of other
thors. Section IV describes the thermodynamical behavio
an aggregate of macroparticles introduced in the nematic
uid crystal, taking into account their interaction via the d
rector deformation field. The conditions are found for a te
perature and concentration phase transition accompanie
the formation of a spatially inhomogeneous macroparti
distribution in the mesophase. In Sec. V we describe a
permolecular structure that can appear in a system of ch
macroparticles introduced in the nematic liquid crystal. T
spatially periodic distribution of these particles, along w
inducing the gyrotropy, can cause a new period that is
commensurate with the spiral lead in the average orienta
distribution of macroparticles. In Sec. VI, we analyze t
conditions of the above-mentioned structure formation a
the possibilities to observe them experimentally.

II. FORMULATION OF THE PROBLEM

The phenomenological free energy of a deformed nem
liquid crystal is determined by the Frank energy

Ef5
1

2E drW$K22~div nW !2

1K22~nW rot nW !21K33~nW 3rotnW !2%, ~1!

whereKii are the elastic Frank constants andnW is the direc-
tor. The integration extends over the whole crystal volum

Being introduced in the nematic liquid crystal, the macr
droplets produce relevant deformation of the director ela
field. A droplet is treated as a macroscopic one in the se
that the energy of its interaction with the nematic liquid cry
tal can be obtained from the known director distribution
the macroparticle surface. For the sake of brevity, in w
follows such macroparticles will be referred to as cluster

The energy of the cluster–nematic-liquid crystal intera
tion may be written as

Es5(
ı̂

R ds Ws@nW ~s!3nW ~s!#2, ~2!

wherenW (sW) is the director value at the points of the cluster
surface,nW (s) is the normal to the surface at this point, whic
determines the easy direction, andWs is the director anchor-
ing to the surface which depends on the surface point in
general case. The integral in Eq.~2! extends over the close
surfaceSj of each cluster. All the clusters~labeled with the
subscriptj ) are assumed to be identical; their number in t
volume under consideration isN.
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Due to the surface energy~2!, the director field is de-
formed near each cluster. The mutual influence of deform
tion fields produced by various clusters causes an elastic
formation interaction of the latter in the liquid crystal. O
first task is to find the intensity and character of this inter
tion.

For various values of anchoringWs and cluster concen
tration, two physical situations can occur:~a! For relatively
low values ofWs and large cluster concentrations, the dire
tor distribution on the given cluster surface is determin
mainly by the sum of contributions of all other cluster
while the contribution of the given cluster innW (s) is negli-
gible; ~b! for relatively high values ofWs , the director dis-
tribution on the cluster surface is mainly determined just
this cluster. In case~a! we can employ the approach anal
gous to the molecular field approximation. Formally, the
rector distribution may be regarded as given in the wh
space including the volume occupied by the clusters. Wit
the given cluster volume, the director distribution is assum
to be similar to that in the absence of the cluster. Then
can employ the Fourier representation for the director in
whole space and thus the problem is considerably simplifi
Henceforth we shall consider case~a!.

The director distribution can be found from the minimu
condition for the sum of energies~1! and~2!. We assume tha
the director change due to the clusters is small, i.e.,

nW ~rW !5nW 01dnW ~rW !, udnW u!1. ~3!

HerenW 0 is the director value in the absence of droplets. T
initial nematic state~without clusters! is assumed to be ho
mogeneous.

In the Fourier representation we have

dnW ~rW !5
1

~2p!3E d3qW exp~2 iqW •rW !dnW ~qW !. ~4!

The normalization condition for the director isnW 251. Then,
to within (dnW )2 we have

dnW •nW 050. ~5!

We substitute the Fourier expansion~4! in the Frank en-
ergy ~1! to obtain

Ef5
1

2

1

~2p!3E d3q$K11uqW •dnW ~qW !u2

1K22u@nW 3qW #•dnW ~qW !u21K33u~nW 0•qW !dnW ~qW !u2%. ~6!

To simplify the expression~6!, we choose the special basi

eW15
~qW'3nW 0!

q'

, eW25
qW'

q'

, eW35nW 0 , qW'5nW 03qW . ~7!

For this basis we haveqW 5(q',0,qi) and dnW 5(dn1 ,dn2,0)
and Eq.~6! reduces to

Ef5
1

2

1

~2p!3 (
i
E d3q$Kii q'

2 1K33qi
2%udni~qW !u2. ~8!
a-
e-

-

-
d
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In order to derive an equation fordni(qW ) from the mini-
mum condition for the sum of energies~1! and ~2!, we first
have to transform the expression~2! with regard to Eq.~4!.
To do this we choose some arbitrary point for the coordin
origin and take the radius vectorrW(sj ) from this point to the
given point on thej th cluster surface~see Fig. 1!. Moreover,
we take the radius vectorrW j from the same point to thej th
cluster center~the latter may be assumed to be, say, the cl
ter center of mass!. Then we have

rW~sj !5rW j1rW . ~9!

HererW 5rW (sj ) is the radius vector from the cluster center
the given point on the surfacesj .

Now let us expandnW (sj )[nW (rW j1rW ) in a Taylor series in
rW . Having done this, we obtain an expression for the direc
value on thej th cluster surface in terms of the director valu
in the j th cluster center and its derivatives. We remind t
reader that, according to the molecular field idea, the dire
value within the volume occupied by thej th cluster is taken
to be equal to the value with no cluster.

With an accuracy of second derivatives, we then have

nW ~sj !5nW ~rW j1rW !'nW 01dnW ~rW j !1~rW •¹W !dnW ~rW j !

1
1

2
~rW •¹W !2dnW ~rW j !. ~10!

We restrict ourselves to the linear approximation with
spect todnW in the quantity@nW (sj )3nW (sj )#2 contained in Eq.
~2!. Then we obtain

@nW ~sj !3nW ~sj !#
2512@nW ~sj !•nW ~sj !#

2'12@nW ~sj !•nW 0#2

22@nW ~sj !•nW 0#@nW ~sj !•dnW ~r j !#

12@nW ~sj !•nW 0#~rW •¹W !@nW ~sj !•dnW ~rW j !#

2@nW ~sj !•nW 0#~rW •¹W !2@nW ~sj !•dnW ~rW j !#.

~11!

FIG. 1. Vectors which describe the space allocation of thejth
cluster and its surface.
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594 PRE 59B. I. LEV AND P. M. TOMCHUK
The next step is to substitute the expansion~11! in Eq. ~2!
taking into account Eq.~4!. When doing this we write all the
scalar products in the local bases (kW 1

j ,kW 2
j ,kW 3

j ) associated with
each cluster. For example,

nW ~sj !•dnW ~rW j !5 (
l 51,2,3

@nW ~sj !•kW l #@dnW ~rW j !•kW l #

5 (
l 51,2,3

n l~dnW •kW l !.

As a result we have

Es5(
j

R ds Ws$12~nW ~s!•nW 0!2%

1
1

~2p!3 (
j
E d3q exp~2 iqW •rW j !

3H 2(
k,l

akl~nW 0•kW k!@dnW ~qW !•kW l #

1 i (
k,l ,m

bklm~nW 0•kW k!@dnW ~qW !•kW l #~qW •kW m!

1 (
k,l ,m,n

gklmn~nW 0•kW k!@dnW ~qW !•kW l #~qW •kW m!~qW •kW n!J .

~12!

The expression~12! contains cluster characteristics given
the local coordinate system, i.e.,

akl52 R ds Wsnk~s!n l~s!,

bklm52 R ds Wsnk~s!n l~s!rm~s!,

gklmn5 R ds Wsnk~s!n l~s!rm~s!rn~s!. ~13!

These quantities depend on the cluster shape and dens
the anchoring energyWs ; they are similar for all clusters
~inasmuch as the clusters are assumed to be identical!.

It is convenient for the analysis that follows to take t
local basis to be the one in which the tensorakl takes the
diagonal form, i.e.,

akl5akdkl . ~14!

The anchoring~12! is written in the local basis, whereas th
volume energy~8! is written in the special basis~7!. In order
to carry out variations indni(qW ) we write the scalar produc
of

(dW n(qW )kW l
j ) that enters Eq.~12! in terms of the basis~7! to

obtain

dnW ~qW !•kW l5(
i

@eW i•dnW ~qW !#~eW i•kW l !

5
1

q'
$dn1~qW !@~qW'3nW 0!•kW l #1dn2~qW !~qW'•kW l !%.

~15!

Thus we can write the minimum condition for the total e
ergy, i.e.,

d

dni~qW !
$Ef1ES%50. ~16!

This condition yields

1

2

1

~2p!3
$Kii q'

2 1K33qi
2%dni* ~qW !52

d

dni~qW !
Es , ~17!

whence we find

dni~qW !52
2~2p!3

Kii q'
2 1K33qi

2S d

dni
EsD *

. ~18!

An expression for@d/dni(qW )#Es can be easily found from
Eq. ~12! within the context of Eq.~15!. Substituting this
expression in Eq.~18! yields an explicit expression fo
dni(qW ). Then we substitute this expression fordni(qW ) again
in Eq. ~12! and thus obtain

Es5(
j

R ds Ws@12@nW ~s!•nW 0#2#

1
2

~2p!3 (
j , j 8

(
l ,l 8

AlAl 8E d3q exp@2 iqW •~rW j2rW j 8!#

3H @kW l
j
•~qW'3nW 0!#@kW l

j 8
•~qW'3nW 0#

q'
2 ~K11q'

2 1K33qi
2!

1
~kW l

j
•qW'!~kW l

j 8
•qW'!

q'
2 ~K22q'

2 1K33qi
2!
J . ~19!

To simplify the notation in Eq.~19!, we introduce the opera
tors

A
l

j5(
k

akl~nW 0•kW k
j !1(

k,m
bklm~nW 0•kW k

j !S kW m
j
•

]

]rW j
D

1 (
k,m,n

gklmn~nW 0•kW k
j !S kW m

j
•

]

]rW j
D S kW n

j
•

]

]rW j
D . ~20!

When deriving Eq.~20!, use was made of the obvious ide
tity
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~kW l
j
•qW !exp@2 iqW ~rW j2rW j 8!#

52 i F S kW l
j
•

]

]rW j
D Gexp@2 iqW ~rW j2rW j 8!#

Integrating overq in Eq. ~19! is an easy task in the coord
nate system with the basis

rW15
RW'3nW 0

R'

, rW25
RW'

R'

, rW35nW 0 , ~21!

RW 5rW j2rW j 8 , RW'5nW 03RW . ~22!

The basis~21! is turned with respect to the one~7! at some
anglew about the axisnW 05eW35rW3 . The quantitiesq' andqi
are similar in both bases~7! and ~21!.

Since in the new basis

exp@2 iqW ~rW j2rW j 8#[exp~2 iqW RW !

5exp$2 i @q'R'cosw1qiRi#%

and the denominators of the fractions in Eq.~19! do not
depend on the anglew, it is not difficult to carry out integra-
tion overw. For example,

E d3q
exp@2 iqW ~rW j2rW j 8!#~kW l

j
•qW'!~kW l 8

j 8
•qW'!

q'
2 ~K22q'

2 1K33qi
2!

5E
0

`

dq'q'E
2`

`

dqi
exp~2 iqW RW !

~K22q'
2 1K33qi

2!

3E
0

2p

dw
exp~2 iq'R'cosw!~kW l

j
•qW'!~kW l 8

j 8
•qW'!

q'
2

5pE
0

`

dq'q'$Ql ,l 8
1 J0~q'R'!1Ql ,l 8

2 J2~q'R'!%

3E
2`

`

dqi
exp~2 iq iRi!

K22q'
2 1K33qi

2
, ~23!

whereJn(q'R') is the Bessel function of the relevant orde
Besides that we have introduced the notation

Ql ,l 8
~6 !

5~rW1•kW l
j !~rW1•kW l 8

j 8!6~rW2•kW l
j !~rW2•kW l 8

j 8!.

To integrate overq' andqi , we make use of the relations

E
2`

`

dqi
exp~2 iq iRi!

K22q'
2 1K33qi

2
5

p

q'AK22K33

expH 2S K22

K33
D 1/2

Riq'J
and

E
0

`

dq'q'expH 2S K22

K33
D 1/2

Riq'J Jn~q'R'!

5
$A11g22g%n

R'A11g2
, g5S K22

K33
D 1/2 Ri

R'

.

We skip the details and write the final expression forEs . It is
given by

Es5(
j

R ds Ws$12@nW ~s!•nW 0#2%

1
1

4p (
j , j 8

(
l ,l 8

AlAl 8(
m

1

AKmm

3H Ql ,l 8
1

AK33R'
2 1KmmRi

2
1~21!m

3
Ql ,l 8

2

R'
2

~AK33R'
2 1KmmRi

22AKmmRi
2!2

AK33R'
2 1KmmRi

2 J . ~24!

Once more, we recall thatkW l
j are the unit vectors of the loca

basis associated with thej th cluster andRW 5rW j 2rW j 8 ,Ri

5(nW 0RW ), andRW'5nW 03RW .
It is not difficult to show by substituting Eq.~18! in Eq.

~8! that expressions forEs and Ef in Eq. ~24! are similar
except for the first term. The first term in Eq.~24! corre-
sponds to the total energy of individual clusters~with no
account of their elastic interaction!.

III. ENERGY OF THE PAIR DEFORMATION
INTERACTION OF CLUSTERS

The terms with fixed subscriptsj and j 8 entering the sum
of energiesEf1Es describe the energy of elastic interactio
of clustersj and j 8. We denote this energy byU j j 8 . Then we
have

U j j 85
1

2p (
l ,l 8

Al
jAl 8

j 8(
m

1

AKmm
H Ql ,l 8

1

AK33R'
2 1KmmRi

2

1~21!m
Ql ,l 8

2

R'
2

AK33R'
2 1Kmm

2 Ri
21AKmm

2 Ri
2

AK33R'
2 1Kmm

2 Ri
2 J .

~25!

The elastic energy of the cluster pair interaction is obtain
for arbitrary~but fixed! cluster orientations both with respe
to each other and with respect to the director.

If one or a few clusters occur in the system, then t
angles that determine cluster orientations with respect to
director and each cluster orientation with respect to the o
can be found from the minimum condition for the ener
Ef1Es . This is the usual way of considering such situatio
~e.g., see@9,5#!.

If, however, many clusters occur in the system, which
the case under consideration in this paper, one has to in
duce the cluster velocity and center-of-mass distributions
employ the averaged quantities. We shall discuss this as
in detail later.

Now let us analyze the structure of the formula that d
scribes the cluster elastic interaction energy~25!. As follows
from Eqs.~25! and~20!, the expression for the cluster elast
interaction energy is actually the series expansion in term
the reciprocal intercluster distance. The first term in Eq.~20!,
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596 PRE 59B. I. LEV AND P. M. TOMCHUK
associated with$akl%, determines the term of Eq.~25! whose
decrease is the slowest when the distance between the
ters under consideration is increased. This term decreas
1/R. In addtion, the term whose decrease with increasingR is
the fastest is determined by the last term in Eq.~20!.

It is not difficult to verify that the contribution of the term
with $akl% in the energy~25! vanishes when the director i
oriented along any vector of the local basis given by
condition ~14!. Moreover, the torque produced by the liqu
crystal with respect to the cluster is equal to zero too. If no
of the cluster basis vectors are oriented along the direc
then the contribution of the term with$akl% is dominant in
the energy~25!. That is why in what follows we assume th
the orientational transition has already occurred and the c
tribution of $akl% in the elastic energy is no longer signifi
cant.

If some vector of the local basis is parallel to the direc
nW 0 , then two other basis vectors lie in the plane perpend
lar to nW 0 . The unit vectorsrW1 andrW2 lie in the same plane, so
we denoterW1•kW l

j and then find from Eq.~24! that

Ql ,l 8
6

5cos~C l
j1C l 8

j 8!. ~26!

Though the contribution of$akl% in the energy~25! is insig-
nificant for some cluster orientations, there remains the c
tribution determined by the terms that contain$bklm% and
$gklmn%.

Now we specify the cluster shape and calculate the ene
of cluster pair interaction.

~a! Spherical clusters:Ws5W5const. According to Eq.
~13! we have

a ik5a i i d ik , a115a225a335
8p

3
Wr0

2 , bklm50,

gklmn5
4p

15
Wr0

4~dkldmn1dkmd ln1dknd lm!, ~27!

wherer 0 is the radius of the spherical cluster. Assuming
the sake of simplicity thatK115K225K335K, we find from
Eq. ~25!, taking into account Eq.~27!, that

U j j 85
6

pKS 4p

15
Wr0

4D 2

~3230 cos2u135 cos4u!,

cosu5
Ri

R
. ~28!

In the case of spherical clusters andWs5const, the interac-
tion energy is determined by the last term of the expans
~20!.

Let us discuss the choice of the local basis (kW 1
j ,kW 2

j ,kW 3
j ). If

the clusters are spherical andWs5const, then the choice o
the local basis (kW 1

j ,kW 2
j ,kW 3

j ) is unimportant. If, however,Ws

Þconst or the clusters are asymmetric, then the set of par
eters$akl%,$bklm%,$gklmn% depends on the specified local b
sis. In order to provide an unambiguous of the parame
choice we take the set of unit vectors (kW 1

j ,kW 2
j ,kW 3

j ) in a way to
ensure that the tensorakl should take the diagonal form i
us-
as

e

e
r,

n-

r
-

n-

gy

r

n

m-

er

this basis, i.e., it must satisfy the condition~14!. Moreover,
we require that the basis should be such that

a1>a2>a3 . ~29!

These requirements provide an unambiguous choice of
local basis. At the same time, the parameters$akl%,$bklm%,
and$gklmn% do not depend on the subscript &&84~the clus-
ter number! and are unambiguous characteristics of the cl
ters. They are determined by the cluster geometry and
density of anchoringWs .

To illustrate how the coordinate dependence of the
choringWs influences the structure of the energy of clus
pair deformation interaction, we consider an example.
consider a spherical cluster with the anchoring densityW1
5const whose surface contains two ‘‘spots’’ with the a
choring energyW25const ~but W1ÞW2). We assume tha
the location of the spots with energyW2 is determined by the
angles (2w0<w<w0 ;p/22u0<u<p/21u0) and (p/2
2w0<w0<p/21w0 ;p/22u0<u<p/22u0). The anglew

is relative to the unit vectorkW 1 and the angleu is relative to
the unit vectorkW 1 ~see Fig. 2!.

With the spot positions being as given above, we fi
from Eq. ~13! that

a lk5
8p

3
W1r 0

2dkl1Dakl , ~30!

Da115Da2258~W22W1!r 0
2w0H sinu02

1

3
sin3u0J ,

a335
16

3
~W22W1!r 0

2w0 sin3u0 . ~31!

All other elementsDa lk vanish.
We see that, for the above spot positions and basis,

tensora lk is diagonal and the requirement~29! is satisfied
provided W2>W1 . For the basis being chosen in such
manner, the nonvanishing components ofbklm are given by

FIG. 2. Example of how the coordinate dependence of the
choringWs influences the structure of the energy of the cluster p
deformation interaction.
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b3135b3235~W22W1!r 0
3 sinw0H sinu02

1

4
sin 4u0J .

~32!

According to Eq.~25!, in the case of spherical clusters wi

spots and forkW 3
j ikW 3

j 8inW 0 , the elastic interaction energy i
described by the expression

U j j 85
b313

2

p (
m

Kmm

$K33R'
2 1KmmRi

2%3/2H 3KmmRi
2

K33R'
2 1KmmRi

2
21J .

~33!

We note that in the case of clusters shaped as ellipsoid
revolution with the axes alongkW 3

j and with the spots posi
tioned in the same range of angles as given above, the
interaction energy is also described by an expression sim
to Eq. ~33!. The only difference is the expression for th
parameterb313. In this case the formula~33! reproduces the
result obtained in Ref.@9#.

~b! Cylindrical clusters:Ws5W5const. SupposekW 3 is
directed along the cylinder axis. If the cylinder radius is ve
small ~a needle-shaped cluster!, so that endface contribution
in the anchoring may be disregarded, then we have

a115a2252pWr0L. ~34!

Here r0 is the cylinder diameter andL is its length. All
elementsakl other than those given by Eq.~34! vanish. The
nonzero elements of$bklm% are given by

b1135b2235pWr0L2. ~35!

If the cylinder is assumed to be asymmetric and to posse
not very small radius~a finger-shaped cluster!, then other
elements ofbklm are not equal to zero along with Eq.~35!.
For example, for a cylinder whose endfaces are a hemisp
of radiusr 0 and a plane, the other two nonzero elements

b3115b3225
2p

3
Wr0

3 . ~36!

In the case when the above-mentioned asymmetric cy
ders are parallel to each other and to the directornW 0 , the
energy of the pair interaction of such clusters is described
the expression

U j j 85
b313

2

p (
m

Kmm

$K33R'
2 1KmmRi

2%3/2H 3KmmR'
2

K33R'
2 1KmmRi

2
21J .

~37!

In the previous sections we considered some example
clusters of given shapes. Now we do not specify the clu
shape and discuss one more example that is of interes
cause the pair interaction energy can be obtained in the f
described by Goossens@12#. We assume first thatK115K22
5K335K and second that only the skew symmetric eleme
b321 andb312 do not vanish. If the clusters are oriented in

way thatkW 3
j ikW 3

j 8inW 0 , then their interaction energy reduces
of
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U j j 85
1

2pK (
l ,l 8

(
m,m8

b3lmb3l 8m8~kW l
j
•kW l 8

j 8!

3
3~kW m

j
•RW !~kW m8

j 8
•RW !2~kW l

j
•kW l 8

j 8!R2

R5
. ~38!

If w is the angle betweenkW 1
j andkW 1

j 8 , then we havekW 1
j
•kW 1

j 8

5kW 2
j
•kW 2

j 85cosw, kW1
j
•kW2

j85cos(w1p/2)52sinw, etc.

Within the context of the equationkW m
j 8
•RW 5(kW m

j 8
•kW 1

j )(kW 1
j

•RW )1(kW m
j 8
•kW 2

j )(kW m
j 8
•RW 2) ~for m51,2), the formula~38! can

be easily reduced to

U j j 85A~RW !cos 2w1B~RW !sin 2w. ~39!

Thus, in the case under consideration the energy of interc
ter elastic interaction is given by the expression derived
Goossens@12# to describe the interaction of cholesteric mo
ecules.

We remind the reader that our term ‘‘cluster’’ implie
macrodroplets for which the droplet–nematic-liquid crys
anchoring is given by Eq.~2!. We have already mentioned i
the Introduction that an interaction of foreign molecules w
those of the nematic liquid crystal is much stronger than
energy of intermolecular interaction in the nematic liqu
crystal. In this case a kind of solvate shell is formed arou
each foreign droplet. The microscopic droplet surrounded
a solvate shell may be regarded as a cluster in our sens

IV. SYSTEM OF MACRODROPLETS
IN A LIQUID CRYSTAL

To describe the peculiarities of the macrodroplet syst
behavior in the mesophase implies taking into account th
interaction via the director elastic field. We have alrea
shown that a foreign macrodroplet produces liquid crys
distortion in a region much greater than the droplet dim
sions and thus leads to an effective interaction with anot
similar macrodroplet via the director field deformation. T
interdroplet interaction via the director elastic field is of t
type given by Eq.~25!; it is physically obvious that for rea
sons analogous to those in@13#, the macrodroplet distribution
within a limited liquid crystal sample can be inhomogeneo
The purpose of this section is to show that a spinodal de
can occur in a system of macrodroplets introduced in a liq
crystal, which results in a spatial modulation of droplet d
tribution. It should be emphasized that this distribution
associated with the type of interdroplet interaction and phy
cally reflects the instability of the ‘‘gaseous’’ phase of ma
rodroplets introduced in the crystal. It is clear that the m
rodroplet arrangement in the mesophase depends on bot
spatial positions and relative orientations of individual ma
rodroplets. In order to demonstrate the mechanism and c
acter of the phase transition accompanied by the formatio
modulated macrodroplets distribution we consider a sys
of spherical foreign macrodroplets in the nematic m
sophase. In this case, the interdroplet interaction energ
described by Eq.~28! and we need not consider their relativ
orientation. Thus we can regard the system of foreign m
rodroplets in the mesophase as the Ising model lattice
without fixing the basis of the initial arbitrary lattice. Thi
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treatment is completely analogous to the model of subs
tion or interstitial solid solution@14# and we shall employ the
approach proposed in this paper.

The free energy of a solution of macrodroplets in a liqu
crystal in the self-consistent field and the binary interact
approximation may be written in the form

F5
1

2 (
R,R8

U~RW 2RW 8! f ~RW ! f ~RW 8!

1kT(
R

$ f ~RW !ln f ~RW !

2@12 f ~RW !# ln@12 f ~RW !#%2m(
R

f ~RW !, ~40!

where U(RW 2RW 8) is the interaction potential,f (RW ) is the
probability that the droplets fill in the initial arbitrary lattice
m is the chemical potential, andT is the absolute tempera
ture. The minimum of Eq.~40! corresponds to the self
consistent field solution forf (RW ) i.e.,

f ~RW !5H 11expF2
m

kT
1(

R

U~RW 2RW 8!

kT
f ~RW 8!G J 21

. ~41!

Each set of thermodynamic functions of state correspo
to a solution that describes some phase of droplet arra
ment. If their distribution can be inhomogeneous, then
solution ~41! serves to find the stable phase associated w
the interaction temperature and character. An efficient wa
obtain such a distribution was proposed in@14#. If the drop-
lets solution is disordered, then by definition the mean va
^ f (r )&5C0 , whereC0 is the relative macrodroplet concen
tration. The concentration inhomogeneity gives rise to
additional term f (r )5C01dC(r ), where dC(r ) is the
change of the probability that an arbitrary site of the init
Ising lattice is occupied. If the concentration inhomogen
ities are smooth and their scale is much longer than the
termolecular distance, the quantitydC(r ) may be interpreted
as the change of macrodroplet composition in the relev
physically small volume that contains many elementary c
of the initial lattice. When passing from a lattice to a co
tinuum description, we can write the free energy increm
DF5F2F(C0) associated with the inhomogeneous mac
droplet distribution in terms of the power series expansion
dC(r ), i.e.,

DF5
1

2E drW$bdc2~r !1ai~¹zdc!21a'~¹'dc!2%,

~42!

where

b5E dRW U~RW !1
kT

c0~12c0!
, ai52

1

2E dRW Ri
2U~RW !,

a'52
1

2E dRW R'
2 U~RW !, RW 5r 2r 8, ~43!

and Ri
2 and R'

2 are the components of the interdroplet d
tance vector along and perpendicular to the director. Thus
-

n

s
e-
e
th
to

e

n

l
-
n-

nt
ls
-
t
-
n

e

see that the minimum of the functional~42! realizes a spa-
tially inhomogeneous macrodroplet distribution only pr
vided the signs satisfy some relations and the values of
efficients determined by the interdroplet interaction poten
are given by Eq.~43!. In order to reveal the conditions unde
which the homogeneous macrodroplet distribution becom
unstable, we have to calculate all the coefficients. This
always be done; however, for the sake of simplicity a
clearness we consider a cylindrical sample with the base
dius L and heightd, the boundary condition being that th
director is normal to the cylinder base. Then, for the inter
tion energy given by Eq.~28!, we find that in the cylindrical
coordinate system

b5E R'dR'E dRi E df
A

~R'
2 1Ri

2!5/2

3H 3230
Ri

2

R'
2 1Ri

2
135S Ri

2

R'
2 1Ri

2D 2J ,

ai52
1

2E R'dR'E Ri
2dRi E df

A

~R'
2 1Ri

2!5/2

3H 3230
Ri

2

R'
2 1Ri

2
135S Ri

2

R'
2 1Ri

2D 2J ,

a'52
1

2E R'
3 dR'E dRi E df

A

~R'
2 1Ri

2!5/2

3H 3230
Ri

2

R'
2 1Ri

2
135S Ri

2

R'
2 1Ri

2D 2J , ~44!

whereA[(6/pAK)@(4p/15)WR0
4#2 is the coefficient in the

energy of interaction between foreign spherical macrodr
lets in the nematic liquid crystal andR0 is the macrodroplet
radius. After integration is carried out, we have

b5
kT

c0~12c0!
2

2pAdL2

L2~L21d2!1/2S 12
d2

L2D 2

, ~45!

while the coefficientsai anda' are given by

ai5
pAd3L2

3~L21d2!5/2S 122
d2

L2D ~46!

and

a'5
3pAdL4

~L21d2!5/2F11
4

9

d2

L2S 5

2
1

d2

L2D G . ~47!

The critical temperature of the loss of stability of a hom
geneous macrodroplet distribution is determined by the c
dition b50 and in the case under consideration is descri
by the expression

kTc

c0~12c0!
5

2pAdL2

L4~L21d2!1/2S 12
d2

L2D 2

. ~48!
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Thus, for a given macrodroplet concentrationC0 in a cylin-
drical liquid crystal sample, the homogeneous macrodro
distribution is unstable forT,T0 . The wavelength of the
induced modulated macrodroplet distribution may be e
mated. As follows from Eq.~47!, the macrodroplet distribu
tion is periodic along the director only for 2d2!L2. The
modulation period of the macrodroplet concentration alo
the directorl i5Aai /b is in our case equal to

l i.A d2

6S 12
T

Tc
D.A Tc

6~Tc2T!
d. ~49!

The instability of the homogeneous distribution along t
cylindrical sample radius occurs for any proportion of d
mensions. Ford,R we have

l'.A 3Tc

2~Tc2T!
L.

Thus we draw a conclusion that the homogeneous distr
tion of macrodroplets introduced in a nematic liquid crys
is unstable in a limited sample of mesophase and a spat
modulated distribution can be formed. The instability cri
rion b50, given by the relation~48!, may be interpreted a
the condition for the formation of a spatially inhomogeneo
macrodroplet distribution for a given temperature that
pends on the foreign macrodroplet concentration in the liq
crystal. For temperatures for which the mesophase ex
both the temperature and concentration phase transition
occur, which results in the formation and rearrangement
supermolecular structure.

V. MACRODROPLET-INDUCED SUPERMOLECULAR
STRUCTURES

In the preceding section we considered spatially inhom
geneous structures in the gaseous phase of macrodro
~clusters!. As the cluster concentration becomes greater
the cluster surface energy increases, a new quasicrysta
phase can be formed. This phase includes not only the
entational ordering of clusters but also the spatial ordering
the cluster center-of-mass arrangement. The spatial orde
of the cluster system can again be caused by the deforma
repulsion of clusters.

It is a very difficult problem to develop a consiste
theory of phase transitions from the gaseous to quasicry
line phase in terms of the cluster interaction energy~25!. We
shall not do it now. It should be just noted that the tempe
ture of the transition to the quasicrystalline state in a clus
system may be estimated in terms of the Ising model in
self-consistent field approximation@15#. According to this
model, the phase transition temperatureTc can be found
from the equation

kBTc5g0J, ~50!

where g0 is the number of nearest neighbors andJ is the
interaction constant.

The estimates for cluster concentrations that satisfy
~51! for Tc , say, equal to the room temperature~see in what
et
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follows!, show that the quasicrystalline phase formation
quite realistic. That is why now we assume that the qua
rystalline phase of a cluster system is already formed
consider the probable consequences of this phase trans

In the previous analysis, when considering the ene
~25! of binary deformation interaction between clusters,
mentioned the addends associated with the quantity$bklm%.
These terms are responsible for inducing the cholest
phase in the nematic liquid crystals. If the cluster system
the nematic liquid crystal is regarded as a certain analog
the lyotropic liquid crystal, then the terms of the type~39!
contained in the interaction energy can give rise to the c
lesteric twisting. In the general case, the asymmetric clu
orientation is described by three basis unit vectors$kW i%. If,
however, the clusters are sufficiently elongated along so
axis, then the preferable orientation of the unit vector as
ciated with this axis can be taken for the new director$mW % in
the ‘‘lyotropic’’ liquid crystal under consideration. The pres
ence of other basis unit vectors can be approximately ta
into account by introducing pseudoscalar terms in the clu
interaction energy of the type~39!. Actually, this procedure
is employed in the treatment of traditional cholesterics@12#.
Once the energy of binary cluster interaction including t
pseudoscalar terms of the type~39! is known, we can employ
the molecular statistics approach to obtain the Frank ene
and to calculate the Frank constantsKii and the cholesteric
twisting periodq ~see, e.g.,@4,6#!.

Now we can formulate the main purpose of this section
is to reveal what happens if the cholesteric twisting in t
cluster system occurs simultaneously with the spatial ord
ing of the cluster center-of-mass distribution. We shall sh
that the incommensurability effect can lead to the format
of a new spatially periodic structure in the directormW distri-
bution. First of all, we remind the reader that this situation
similar to the incommensurability effect in a spin syste
considered in Refs.@16,17#. Along with this analogy, we
consider the mathematical substantiation of incommens
bility in our case. To give such a substantiation means
understand the anchoring mechanism of the short-range
der associated with the periodic cluster arrangement and
long-range order described by the field distribution of t
directormW . Before doing this, we remind the reader of som
points. In the molecular statistics approach, the free ene
can be obtained from the Gibbs distribution in the se
consistent field approximation~see, e.g.,@18,4#!. The expres-
sion for the Gibbs distribution contains the total energy
interacting particles, i.e., clusters in our case. In the s
consistent field approximation, it can be written as

H5 (
rWrW8V,V8

V~rW,rW8,V,V8! f ~rW,V! f ~rW8,V8!. ~51!

Here rW and rW8 give the positions of cluster centers whileV
andV8 determine the angular orientation of the unit vecto
kW andkW 8, which are parallel to the cluster long axes. In vie
of the above reasoning we have

mW 5mW ~r !5^kW &. ~52!



a
T
-
ys

ly

o

o
a.
e

o
re
d

d
e
th

b
e
rm

d

E
ve
ti

E

ns
rm

of
ers

re

ari-
-
ho-

nt,

f

en-
cial

600 PRE 59B. I. LEV AND P. M. TOMCHUK
The angular brackets denote averaging over a physic
small volume that nevertheless contains many clusters.
function f (rW,V) contained in Eq.~52! determines the prob
ability that a site of the periodic structure of the cluster s
tem is occupied. It may be written as

f ~rW,V!5d~x2n1a1!d~y2n2a2!d~z2n3a3! f 0~mW kW !.
~53!

Hered(x2n1a1) does not vanish and it is equal to one on
for n150,61,62, . . . ; thequantitiesa1 ,a2 , anda3 deter-
mine the structure periods alongx, y, andz, respectively. The
function f 0(mW ,kW ) determines the angular arrangement
cluster long axes. Within the context of Eq.~54!, expression
~52! is periodic inx,y,z. In order to pass from summation t
integration in Eq.~52!, we make use of the Poisson formul
In the one-dimensional case, the Poisson formula for a p
odic functionF(x) is given by

(
n

F~xn!5E dx F~x!1(
k
E dx F~x!cosS 2p

a
kxD ,

~54!

wherea is the period of the functionF(x).
We apply the transformation of Eq.~55! to Eq. ~52!. The

terms originating from the first term on the right-hand side
Eq. ~55! provide no information about the periodic structu
and hence are associated with the spatially homogeneous
tribution of cluster centers. Just this case was considere
Ref. @19# in terms of molecular statistics. Information on th
periodic structure is contained in the second term on
right-hand side of the transformation~55!.

Before discussing the role of periodic terms in our pro
lem, we remind the reader that an analogous procedur
passage from the discrete spectrum to the continuum in te
of the Poisson formula has been successfully employe
the study of de Haas–van Alfven effect~see, e.g.,@19#!. In
this problem, the second term on the right-hand side of
~55! provides information on the discrete spectrum and gi
rise to magnetic moment oscillations with growing magne
field the ~de Haas–van Alfven effect!. In a similar way, in
our problem the second term on the right-hand side of
~55!, when applied to Eq.~52!, provides information on the
discrete periodic distribution of cluster centers.

Thus, having transformed Eq.~52! with the use of Eq.
~55!, we find that

H5E drW drW8 dVdV8V~rW,rW8,V,V8! f 0~mW kW ! f 0~mW 8kW 8!

3H 11(
i

cos~kixi !1(
i

cos~kixi8!1•••J . ~55!

Here

ki5
2p

ai
, x15x, x25y, x35z. ~56!

The formula~56! contains only the terms whose oscillatio
are the slowest. We restrict the consideration to these te
In order to obtain the Frank energy from Eq.~56!, we pass to
lly
he
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f

ri-
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s
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q.

s.

the new variables~58! and expand the integrand of Eq.~56!

in a power series ofrW1 up to the second-order terms~see,
e.g.,@18,20#!.

In the initial spatially homogeneous system,

V~rW,rW8,V,V8!5V~rW2rW8,V,V8!5V~r 1
W ;V,V8!.

Since

cos~kixi !1cos~kixi8!52 coski S xi1xi8

2 D coski S xi2xi8

2 D ,

~57!

it is clear that of all the terms contained in Eq.~56!, only
mW (rW)5mW (rW01 1

2 rW1) and mW 8[mW (rW8)5mW (rW02 1
2 rW1) must be

expanded in anrW1 series. In this sense, the procedure
deriving the Frank energy with regard to the cluster cent
lattice does not differ from that of Refs.@18,20#. That is why
we shall omit here the details of the calculation which a
given in @18,20#.

If the periodic terms are neglected while the pseudoinv
ants associated with$bklm% are taken into account, one ob
tains the standard expression for the Frank energy of a c
lesteric, i.e.,

I5
1

2E drW0$K11~div mW !21K22~mW 3rotmW !2

1K33@mW 3rotmW #21K2~mW •rotmW !%. ~58!

Taking into account the terms of the type~59! in Eq. ~56!,
one obtains, instead of Eq.~60!, a similar expression with an
obvious substitution ofKii8 for Kii , whereKii8 is given by

Kii8 5Kii 1(
j

DKii
j coskjxj

~0! . ~59!

Moreover, with the periodic terms being taken into accou
K2 is replaced by

K285K21(
j

DK2
j coskjxj

~0!. ~60!

The explicit expressions for the amplitudesDKii
j andDK2

j in

terms of the cluster binary interaction energyV(rW1 ;V,V8)
can be obtained from the relevant integral expressionsDKii
for and DK2 by means of the formal substitution o
V(rW1 ;V,V8)cos(kjxj

(1)/2) for V(rW1 ;V,V8). In this formula,

xj
(1) are the components of the vectorzW1 .

Now we employ the general expression for the Frank
ergy with respect to the periodic terms to consider a spe
case when the cholesteric twisting of the directormW occurs
along thez0 axis andmW depends only on the coordinatez0 .
We takemW to be given by

mW 5$sinu cosw,sinu sinw,cosu%. ~61!

Then the expression for the Frank energy reduces to
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I5
1

2E dz0K11S 11
DK11

~3!

K11
cosk3z0D sin2uS du

dz0
D 2

1K22S 11
DK22

~3!

K22
cosk3z0D S dw

dz0
D 2

sin4u

1K33S 11
DK33

~3!

K33
cosk3z0D cos2u

3F S du

dz0
D 2

1S dw

dz0
D 2

sin2uG
2K2S 11

DK2
~3!

K2
cosk3z0D dw

dz0
sin2u. ~62!

A usual step in the theory of cholesterics is to take

K25qK22, w5qz0 . ~63!

Moreover, to illustrate the appearance of the incommens
bility effect in our case we restrict the consideration to t
one-constant approximation, i.e., we assume that

K115K225K335K,

DK11
~3!5DK22

~3!5DK33
~3!5DK. ~64!

Taking into account these restrictions, we find from E
~64! that

I5
K

2E dz0H S 11
DK

K
cosk3z0D S du

dz0
D 2

1q2S DK

K
2

DK2
~3!

K2
D cosk3z0sin2uJ . ~65!

We transform the factor in the second term to obtain

cosk3z0 sin2u5
1

2
cosk3z0~12cosu!

5
1

2
cosk3z02

1

4
cos~2u1k3z0!

2
1

4
cos~2u2k3z0!. ~66!

The last term on the right-hand side of Eq.~68! is the one
with the slowest oscillations. Inasmuch as we are interes
in studying the formation of long-wavelength structures
Eq. ~67!, we retain in Eq.~67! only the last term contained
on the right-hand side of Eq.~68!.

We introduce a new ‘‘slow’’ variable given by

c5k3z022u ~67!

and thus obtain from Eq.~67!

I5
K

8E dz0H S dc

dz0
2k3D 2

2q2S DK

K
2

DK2

K2
D coscJ .

~68!
a-

.

d

When deriving Eq.~70! we neglected the fast oscillatin
term (DK/K)cosk3z0 in the factor@11(DK/K)cosk3z0# be-
fore the first term since this term is small and, moreover, i
multiplied by the slowly varying quantity (dc/dz02k3)2

and hence is nearly zero due to averaging.
The functional~70!, to within a constant, reduces to th

standard form

I5
K

8E dzH S dc

dz
2k3D 2

22z~cosc21!J , ~69!

where 2z5q2(DK/K2DK2 /K2).
The functional~71! is widely employed in the studies o

incommensurability effects~see, e.g.,@21,22#!. The extre-
mum of the functional~71! is realized in the solutions of the
Euler-Lagrange equation

d2c

dz2
2z sinc50, ~70!

which may be written as@21,22#

z5E
0

c dc8

Ac22z cosc8
, ~71!

where C is the first integral of motion of Eq.~72!. This
solution describes the periodic arrangement of solitons in
director distribution through thez dependence ofu, which is
related toc in terms of Eq.~69!. We have

l 5
4t

Az
K~t!, ~72!

whereK(t) is the elliptic function of the argument

t5A 4z

c12z
. ~73!

SinceK(t)→ ln@4/(12t2)# as t→1, we see from Eq.~74!
that long-period structures can appear in the system. This
manifestation of the incommensurability effect. The deta
of this phenomenon are considered in Refs.@16,17,21# in
terms of the functional~71!. Thus, in the presence of th
Lifshitz pseudoinvariant, the periodic arrangement of cent
of clusters~foreign droplets! induces gyrotropy and, more
over, produces one more incommensurable period in the
tribution of the mean macrodroplet orientations.

VI. CONCLUSIONS

In this paper the Frank energy and the surface energ
macroclusters introduced in a nematic are used to deriv
general expression for the energy of the cluster deforma
interaction. The cluster shape and the coordinate depend
of the cluster anchoring are arbitrary. The energy of bin
elastic interaction of clusters depends on cluster orientat
and intercluster distances. Explicit expressions for the c
stants entering the energy of the pair cluster interaction
obtained for some cases of specified cluster shapes and
choring distributions. It is shown that for certain clust
shapes and surface energies, the interaction energy can
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tain a pseudoscalar that is responsible for the choles
twisting effect.

The system of deformation-interacting clusters is cons
ered in both gaseous and crystalline approximations. In
gaseous approximation, which corresponds to relativ
small cluster concentrations, instability criteria are found
a spatially homogeneous cluster distribution in a nematic
uid crystal.

The crystalline approximation is associated with high
cluster concentrations. In this state, a preferable orienta
of cluster long axes occurs; cluster centers are spatially
dered and form a lattice. It is shown that if a Lifshitz pseud
invariant responsible for the gyrotropy occurs in the syste
then, in the crystalline phase, one more incommensur
long-period structure appears in the distribution of mean
entations of cluster long axes. A mechanism of supermole
lar structure formation is proposed.

The above considered behavior of a system of macrod
lets introduced in the mesophase should be observed ex
mentally. Let us estimate the conditions under which th
effects can occur.

Having assumed that a spatially homogeneous arra
ment of macrodroplets occurs for temperatures of mesop
existence, i.e.,T;300 K, we find from Eq.~48!, for anchor-
ce

e

v,
ric

-
e

ly
r
-

r
n
r-
-
,
le
i-
u-

p-
ri-
e

e-
se

ing W;1022dyn/s m2 and macrodroplet dimensionsR0

;300 Å, that such structures can occur in a usual sampl
size 10 mm for relative concentrationsC0;1023. For con-
centrations an order of magnitude greater and for chiral dr
let interaction energies such thatJ5(b311/pK)(1/̂ R&3), the
formula ~51! yields the value of critical temperature that
equal to the mesophase existence temperature. The form
of a distorted supermolecular structure with two incomme
surable periods in the distribution of macrodroplet mean o
entations is a finer effect since it depends as well on
mesophase characteristics. It can be observed, howeve
optical methods@23#.

Thus we have solid grounds to state that a system of m
rodroplets introduced in a liquid crystal can produce, due
the interaction via the deformation of the director elas
field, new supermolecular structures that possess neces
electric and optical properties of an effective medium.
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