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Dense fluid transport for inelastic hard spheres

V. Garzó* and J. W. Dufty
Department of Physics, University of Florida, Gainesville, Florida 32611

~Received 21 December 1998!

The revised Enskog theory for inelastic hard spheres is considered as a model for rapid flow granular media
at finite densities. A normal solution is obtained via the Chapman-Enskog method for states near the local
homogeneous cooling state. The analysis is performed to first order in the spatial gradients, allowing identifi-
cation of the Navier-Stokes order transport coefficients associated with the heat and momentum fluxes. In
addition, the cooling rate is calculated to first order in the gradients and expressed in terms of the transport
coefficients. The transport coefficients are determined from linear integral equations analogous to those for
elastic collisions. The solubility conditions for these equations are confirmed and the transport coefficients are
calculated as explicit functions of the density and restitution coefficient using a Sonine polynomial expansion.
The results are not limited to small dissipation. Finally, the analysis is repeated using a simpler kinetic model.
Excellent agreement is obtained with the results from the revised Enskog equation.@S1063-651X~99!14405-2#

PACS number~s!: 81.05.Rm, 05.20.Dd, 51.10.1y, 47.20.2k
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I. INTRODUCTION

The analysis of granular media under rapid flow fr
quently exploits a hydrodynamic description. The essen
difference from that for normal fluids is the absence of e
ergy conservation, leading to both obvious and subtle mo
fications of the usual Navier-Stokes equations for states w
small spatial gradients of the hydrodynamic fields. The j
tification for a hydrodynamic description and a detailed de
vation of the form of the transport coefficients remains
topic of interest and controversy. For a low density syst
these problems have been addressed using the Boltzm
kinetic equation modified to account for inelastic binary c
lisions. Recently, the Chapman-Enskog solution to the B
zmann equation, familiar from transport theory for norm
gases, has been extended to the inelastic case to obtai
Navier-Stokes equations and detailed expressions for
transport coefficients as functions of the restitution coe
cient @1#. The case considered was an idealized gas
smooth, spherical hard spheres with inelastic binary co
sions. Preliminary comparisons with direct Monte Ca
simulation of the Boltzmann equation indicate the results
quite accurate, even for strong dissipation@2#. The objective
here is to extend this analysis to the revised Enskog kin
theory ~RET! for a description of hydrodynamics and tran
port at higher densities.

The RET for elastic collisions@3# is known to be an ac-
curate kinetic theory over the entire fluid domain. In fact
describes the crystal phase as well, which may sugges
relevance for granular media undergoing cluster formati
Its generalization to inelastic collisions is straightforwa
~see, for example, Ref.@4#! and the Chapman-Ensko
method can be applied to obtain the Navier-Stokes hydro
namic equations and the associated transport coefficie
Similar attempts to apply the Boltzmann and Enskog kine
equations to derive transport coefficients began fifteen y

*Permanent address: Departamento de Fı´sica, Universidad de Ex-
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ago @5–8#, but the technical difficulties of the analysis e
tailed approximations that limited their accuracy@1#. The
analysis here provides formally exact results for the distri
tion function and transport coefficients in terms of the so
tions to linear integral equations. In this respect it parall
closely the analysis for elastic collisions. As in the latt
case, a first Sonine polynomial approximation is used to
tain practical results from this formulation. The approxim
tion technique is known to be accurate for elastic collisio
and is expected to have comparable accuracy here as
The results apply to all degrees of dissipation and over
entire fluid density range. Consequently, it provides the ba
for an unambiguous basis for the application of hydrodyna
ics to granular flow under realistic conditions.

There are several motivations for this study. First, a qu
titative test of the hydrodynamic description within the co
text of kinetic theory is possible by comparing predict
transport properties with those obtained directly from t
RET via Monte Carlo simulation. Such simulation metho
have been developed and applied in recent years@9# and the
results obtained here provide the basis for a test of the s
dard method for derivation of hydrodynamics. Second,
extending the Boltzmann analysis to high densities comp
sons with molecular dynamics simulations become practi
For example, a comparison of the calculated viscosity dep
dence on both the density and restitution coefficient with t
from molecular dynamics would determine the validity~and
any limitations! of the kinetic theory and the hydrodynam
descriptions for granular flow. Such a test is essential to
dress the frequently made speculation that a hydrodyna
and/or kinetic theory description of granular flow is limite
to weak dissipation. None of the analysis here supports
latter view, beyond complications of the well-known hydr
dynamic instability of the reference cooling state. Final
accurate predictions from the RET allow tests of simp
kinetic models that have been proposed@10,11# for applica-
tion to more complex boundary driven states. In summa
the results presented here provide the basis for both prac
quantitative applications and fundamental benchmark tes

The RET and associated macroscopic conservation l
5895 ©1999 The American Physical Society
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5896 PRE 59V. GARZÓ AND J.W. DUFTY
are reviewed in the next section. An overview of t
Chapman-Enskog method for solving this equation is giv
in Sec. III. The results for the distribution function, heat flu
and momentum flux to first order in the spatial gradients
provided, with the details of the calculation appearing in
series of Appendixes. As in the case of elastic collisio
these properties are expressed in terms of solutions to a s
linear inhomogeneous integral equations. It is shown exp
itly that the necessary solubility conditions are satisfied.
Sec. IV these equations are solved using a lowest order
pansion in Sonine polynomials. Explicit expressions for
distribution function and transport coefficients are given a
compared to the elastic limit as a function of density a
restitution coefficient. In Sec. V the corresponding resu
from a simple kinetic model are obtained and compared w
those from the RET. Excellent agreement is found for a w
range of densities and restitution coefficients. This analys
summarized and discussed in the last section.

II. RET AND CONSERVATION LAWS

In this section a brief review of the RET kinetic equatio
and associated conservation laws are presented. The
particle distribution functionf (r ,v,t) is determined from@4#

S ]

]t
1v1•“1D f ~r1 ,v1 ,t,!5JE@r1 ,v1u f ~ t !#, ~1!

whereJE is the Enskog collision operator

JE@r1 ,v1u f ~ t !#[s2E dv2E dŝ Q~ŝ•g!~ŝ•g!

3$a22f (2)~r1 ,r12s,v18 ,v28 ,t !

2 f (2)~r1 ,r11s,v1 ,v2 ,t !%, ~2!

f (2)~r1 ,r2 ,v1 ,v2 ,t ![x„r1 ,r2un~ t !…f ~r1 ,v1 ,t,! f ~r2 ,v2 ,t !.
~3!

Here,s is the hard sphere diameter,s5sŝ, ŝ being a unit
vector,Q is the Heaviside step function, andg5v12v2. The
primes on the velocities denote the initial values$v18 ,v28% that
lead to $v1 ,v2% following a binary collision,v185v12 1

2 (1

1a21)(ŝ•g)ŝ, v285v21 1
2 (11a21)(ŝ•g)ŝ. The param-

etera is the coefficient of restitution with 0,a<1. Finally,
x@r ,r1sun(t)# is the equilibrium pair correlation function
at contact as a functional of the nonequilibrium density fi
n(r ,t) defined byn(r ,t)5*dvf (r ,v,t).

The macroscopic balance equations for densityn, momen-
tum mU, and energy3

2 nkBT follow directly from Eq.~1! by
multiplying with 1, mv1, andmv1

2/2 and integrating overv1,

Dtn1n“•U50, ~4!

DtUi1~mn!21] j Pi j 50, ~5!

DtT1
2

3nkB
~Pi j ] jUi1“•q!52Tz, ~6!

whereDt5] t1U•“ is the material derivative,m is the mass
of a particle,kB is the Boltzmann’s constant,T(r ,t) is the
n

e
a
s
t of
-

n
x-

e
d
d
s
h
e
is

ne-

temperature, andU(r ,t) is the flow velocity. The cooling rate
z is proportional to (12a2) and is due to dissipative colli
sions. The pressure tensorP(r ,t) and the heat fluxq(r ,t)
have both ‘‘kinetic’’ and ‘‘collisional transfer’’ contribu-
tions, i.e.,P5Pk1Pc andq5qk1qc. The kinetic contribu-
tions are given by

Pk5E dv mVV f ~r ,v,t !, qk5E dv
1

2
mV2V f ~r ,v,t !,

~7!

and the collisional transfer contributions are@4#

Pc5
11a

4
ms3E dv1E dv2E dŝ Q~ŝ•g!

3~ŝ•g!2ŝŝE
0

1

dl f (2)@r2~12l!s,r1ls,v1 ,v2 ,t#,

~8!

qc5
11a

4
ms3E dv1E dv2E dŝ Q~ŝ•g!~ŝ•g!2

3~G•ŝ!ŝE
0

1

dl f (2)@r2~12l!s,r1ls,v1 ,v2 ,t#.

~9!

Here, V5v2U(r ,t) is the peculiar velocity andG5 1
2 (V1

1V2) is the velocity of center of mass. Finally, the coolin
rate in Eq.~6! is given by

z5~12a2!
bms2

12n E dv1E dv2E dŝ Q~ŝ•g!

3~ŝ•g!3f (2)~r ,r1s,v1 ,v2 ,t !, ~10!

with b[1/(kBT).
The macroscopic balance equations~4!–~6! are exact con-

sequences of the RET and provide the basis for developi
hydrodynamic description. The latter follows from a repr
sentation ofP(r ,t), q(r ,t), andz(r ,t) as explicit functionals
of the hydrodynamic fields and their gradients. The result
closed set of equations constitutes the hydrodynamics for
RET. SinceP(r ,t), q(r ,t), and z(r ,t) are given above as
explicit functionals off (r ,v,t) such a representation can b
obtained if a corresponding solution to the RET can be
tained as a function of the fields and their gradients. This
done in the next section using the Chapman-Enskog met

III. CHAPMAN-ENSKOG EXPANSION

The Chapman-Enskog method@12# assumes the existenc
of a ‘‘normal’’ solution such that all space and time depe
dence of the distribution function occurs through the hyd
dynamic fields

f ~r ,v,t !5 f @vun~ t !,T~ t !,U~ t !#. ~11!

The notation on the right side indicates a functional dep
dence on the density, temperature, and flow velocity. Wh
this form is substituted into the RET all space and time
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PRE 59 5897DENSE FLUID TRANSPORT FOR INELASTIC HARD SPHERES
rivatives occur through the corresponding derivatives of
hydrodynamic fields. The time derivatives can be expres
in terms of space derivatives using the macroscopic bala
equations~4!–~6!. In this way the RET becomes an equati
to determine the functional dependence
f @vun(t),T(t),U(t)# on the fields which are then determine
self-consistently from the macroscopic balance equatio
This procedure becomes more practical for states with sm
spatial gradients. Then the functional dependence can
made local by an expansion of the fields in terms of th
gradients, with the distribution function determined perturb
tively. To implement this expansion it is convenient to intr
duce a formal expansion parametere referred to as the uni
formity parameter. It measures the dependence on sp
gradients~e.g., a term of ordere is of first order in a hydro-
dynamic gradient,e2 is either a product of two first orde
hydrodynamic gradients or one second degree hydrodyna
gradient!. Accordingly the distribution function, collision op
erator, and time derivative are given by the representatio

f 5 f (0)1e f (1)1•••, JE5J(0)1eJ(1)1•••,

] t5] t
(0)1e] t

(1)1•••. ~12!

The coefficients in the time derivative expansion are ide
fied by a representation of the fluxes and the cooling rat
the macroscopic balance equations as a similar series thr
their definitions as functionals off.

To zeroth order ine the RET becomes

] t
(0)f (0)5J(0)@ f (0), f (0)#, ~13!

J(0)@ f (0), f (0)#[xs2E dv2E dŝ Q~ŝ•g!~ŝ•g!

3$a22f (0)~v18! f (0)~v28!2 f (0)~v1! f (0)~v2!%.

~14!

Herex5x@r ,r1sun(t)#un5n(r ,t) is the pair functional evalu-
ated with all density fields at the local pointr . The collision
operator~14! can be recognized as the Boltzmann opera
for inelastic collisions multiplied by this factorx. The mac-
roscopic balance equations to this order read

] t
(0)n50, ] t

(0)U50, T21] t
(0)T52z (0), ~15!

where the cooling ratez (0) is determined by Eq.~10! to
zeroth order

z (0)5~12a2!
xbmps2

24n E dv1E dv2

3 f (0)~v1! f (0)~v2!uv12v2u3. ~16!

Sincef (0) has the form~11! the time derivative can be evalu
ated as

] t
(0)f (0)52z (0)T]Tf (0)5

1

2
z (0)

“v–~V f (0)!, ~17!

where“v5]/]v. The second equality follows from dimen
sional analysis which requires that the temperature dep
dence off (0) must occur in the form
e
d

ce

f

s.
ll

be
ir
-

ial

ic

s

i-
in
gh

r

n-

f (0)5nv0
23f~V/v0!, v05A2kBT~r ,t !/m. ~18!

The dependence on the magnitude ofV follows from the
requirement that to zeroth order in the gradients the distri
tion function must be isotropic with respect to the pecul
velocity. The RET to this order is therefore the solution t

1

2
z (0)

“v–~V f (0)!5J(0)@ f (0), f (0)#. ~19!

To date an exact solution has not been found. Howeve
very good approximation can be obtained from an expans
in Sonine polynomials@13#. In all of the following it is pre-
sumed thatf (0) is known. Since the distribution function i
isotropic the zeroth order pressure tensor and heat flux
found from Eqs.~7!–~10! to be

Pi j
(0)5pd i j , q(0)50, ~20!

wherep is the hydrostatic pressure

p5nkBT1
11a

12
ms3xE dv1E dv2 f (0)~V1! f (0)~V2!

3E dŝ Q~ŝ•g!~ŝ•g!2

5nkBTS 11
11a

3
pn* x D . ~21!

The dimensionless densityn* 5ns3 has been introduced.
The analysis is similar to first order ine, although tech-

nically more complex. Only the results are presented in t
section with the details given in the appendixes. The R
equation to first order is found to be

~] t
(0)1L! f (1)1

1

2
z (1,1)~ f (1)!Q“v•~V f (0)!

5A~V!•“ ln T1B~V!•“ ln n1Ci j ~V!

3
1

2 S ] jUi1] iU j2
2

3
d i j“•UD1D~V!“•U,

~22!

whereL is the linearized collision operator

L~X![2Q~J(0)@ f (0),X#1J(0)@X, f (0)# !. ~23!

HereQ512P, whereP is the projection operator onto th
space spanned by 1,V, andV2 @see Eq.~A3! of Appendix
A#. The velocity dependence on the right side of Eq.~22! is

A~Vun,U,T!5S 5

2
f (0)1

1

2
V•“v f (0)DV

2
p

pk
@V f (0)1~bm!21

“v f (0)#

1
1

2
K@“v•~V f (0)!#, ~24!
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B~Vun,U,T!52
p

pk S 11n]n ln
p

pkD @V f (0)1~bm!21
“v f (0)#

2S 11
1

2
n]n ln x DK@ f (0)#, ~25!

Ci j ~Vun,U,T!5Vi~“v j
f (0)!1Ki@“v j

f (0)#, ~26!

D~V!5
1

3
Ki@“v i

f (0)#1
p2pk

3pk
~223a!Q“v•~V f (0)!.

~27!

Here,“v i
5]/]v i , pk5nkBT and the linear operatorK@X#

is defined by

K@X#5Qxs2E dv2E dŝ Q~ŝ•g!

3~ŝ•g!s $a22f (0)~v18!X~v28!1 f (0)~v1!X~v2!%.

~28!

The functional z (1,1)( f (1)) is related toz (1) by @see, Eq.
~A23!#

z (1)52~12a!
p2pk

pk
“•U1z (1,1)~ f (1)!, ~29!

z (1,1)~ f (1)![~12a2!
bmps2x

12n E dV1E dV2

3 f (0)~V1! f (1)~V2!g3. ~30!

The solution to Eq.~22! is of the form

f (1)5A•¹ ln T1B•“ ln n

1Ci j

1

2 S ] jUi1] iU j2
2

3
d i j“•UD1D“•U. ~31!

Substitution of this into Eq.~22! gives the integral equation
to determineA(V), B(V), Ci j (V), andD(V)

S 2z (0)T]T1L2
z (0)

2 DA5A, ~32!

~2z (0)T]T1L!B5@B1~11n]n ln x!z (0)A#, ~33!

~2z (0)T]T1L!Ci j 5Ci j , ~34!

~2z (0)T]T1L!D1
1

2
z (1,1)~D!Q“v•~V f (0)!5D. ~35!

Use has been made of the fact thatz (1,1)( f (1)) is a scalar and
therefore couples only toD. The lowest order distribution
f (0) is a functional of the exact nonequilibrium fields. Co
sequently, its moments with respect to 1,V, andV2 are the
same as those for the exact distribution, i.e.,Pf (0)5Pf . This
implies that f (1) lies entirely in the orthogonal subspace
acceptable solutions to Eqs.~32!–~34! must obey
PSABCi j

D
D 50. ~36!

There are additional necessary conditions for the solution
these equations to exist, the Fredholm alternative@14#. These
‘‘solubility conditions’’ are proved in Appendix B.

With the distribution functionf (1) determined, the hea
and momentum fluxes can be calculated to first order in
spatial gradients from Eqs.~7!–~9!. The details of the calcu-
lations are given in Appendixes C and D with the results

Pi j
(1)52hS ] jUi1] iU j2

2

3
d i j“•UD2gd i j“•U,

q(1)52k“T2m“n, ~37!

whereh is the shear viscosity,g is the bulk viscosity,k is
the thermal conductivity, andm is an additional transpor
coefficient not present for elastic collisions

h5hkF11
2pn* x~11a!

15 G1
3

5
g, ~38!

g5
pmn* nxsv0~11a!

18
I g~a!, ~39!

k5kkF11
pn* x~11a!

5 G1
pmn* xnsv0

3~11a!

48T
I k~a!,

~40!

m5mkF11
pn* x~11a!

5 G . ~41!

Here the superscriptk denotes the contributions from th
kinetic parts of the fluxes. The kinetic parts of the transp
coefficients in these results are expressed in terms of
solution to the integral equations as

hk52
1

10E dV Di j ~V!Ci j ~V!, gk50, ~42!

kk52
1

3TE dV S~V!•A~V!,

mk52
1

3nE dV S~V!•B~V!, ~43!

whereDi j (V) andS(V) are

Di j ~V!5mS ViVj2
1

3
V2d i j D , S~V!5VS 1

2
mV22

5

2
kBTD .

~44!

The dimensionless integralsI g(a) and I k(a) in Eqs. ~39!
and ~40! are
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I g~a!5
1

n2v0
E dV1E dV2 f (0)~V1! f (0)~V2!g, ~45!

I k~a!5
1

n2v0
3E dV1E dV2 f (0)~V1! f (0)~V2!

3Fg21~g•G!21gG21
3

2
g~g•G!1

1

4
g3G .

~46!

In addition to the fluxes, the cooling ratez can be calculated
to first order in the gradients from Eqs.~29! and ~30!

z (1)5~12a!
p2pk

pk F211
bm

4n2s
E dV1E dV2

3 f (0)~V1!D~V2!g3G“•U. ~47!

This completes the results of the Chapman-Enskog s
tion to first order in the spatial gradients. The distributi
function f 5 f (0)1 f (1) with f (0) given by the solution to Eq
~19! and f (1) given by Eq.~31! is exact to this order in the
gradients, as are the fluxes~37!. These results require solu
tion to the linear equations~32!–~34!. An approximate solu-
tion, known to be accurate for elastic collisions, is given
the next section. For that purpose it is convenient to use
equivalent exact expression for the kinetic parts of the tra
port coefficients~see Appendix C!

hk5
n

b S nh2
1

2
z (0)D 21F12

1

15
~11a!~123a!pn* xG ,

~48!

kk5
5nkB

2bm
~nk22z (0)!21

3H 11
1

2 S 11
p

pkD c* 1
1

10
pn* x~11a!2

3F2a211S 1

2
~11a!2

5

3~11a! D c* G J , ~49!

mk5
15

2b2m
~2nm23z (0)!21H ~11n]n ln x!z (0)~kk/k0!

1
p

3pk S 11n]n ln
p

pkD c* 2
2

15
pn* x~11a!

3S 11
1

2
n]n ln x D Fa~12a!1

1

4 S a~12a!

1
4

3D c* G J , ~50!

with the definitions
u-

n
s-

nh5

E dVDi j ~V!LCi j ~V!

E dVDi j ~V!Ci j ~V!

,

nk5

E dV S~V!•LA~V!

E dV S~V!•A~V!

, nm5

E dV S~V!•LB~V!

E dV S~V!•B~V!

.

~51!

Further, k0515kBh0/4m and h055m1/2/16s2(pb)1/2 are
the low density values of the thermal conductivity and t
shear viscosity in the elastic limit, respectively. The const
c* (a) is related to the fourth moment off (0) by

c* ~a!5
8

15F S mb

2 D 2 1

nE dV f (0)~V!V42
15

4 G . ~52!

It is seen thatc* (a) vanishes iff (0) is replaced by the Max-
wellian distribution, and hence it is a measure of the dev
tion of the reference state from that for a gas with elas
collisions.

IV. SONINE POLYNOMIAL APPROXIMATION

More explicit results require determination off (0) and the
solutionsA , B, and Ci j to the linear integral equation
~32!–~34!. It is useful to represent these quantities as an
pansion in a complete set of polynomials and generate
proximations by truncating the expansion. In practice
leading term in these expansions provides a very accu
description over the full range of dissipation and dens
The determination off (0) to leading order in the Sonine
polynomial expansion has been discussed elsewhere@13# so
only the result is quoted here

f (0)~V!5 f M~V!F11
1

4
c* E~V!G , ~53!

E~V!5S 1

2
bmV2D 2

2
5

2
bmV21

15

4
. ~54!

The constantc* is the same as that of Eq.~52!. It is deter-
mined by substituting Eq.~53! into the lowest order RET
equation~19! and retaining linear terms in the first Sonin
polynomial to get

c* ~a!5
32~12a!~122a2!

81217a130a2~12a!
. ~55!

Comparison of this prediction with direct Monte Carlo sim
lation of the kinetic equation shows a very good agreem
even for relatively large dissipation@15#. The tensorial prop-
erties ofA , B, Ci j , andD are obvious and traditionally the
scalar magnitudes have been expanded in terms of So
polynomials. For elastic collisions truncation of the series
the leading first Sonine polynomial approximation, taki
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into account the requirement~36!, gives very good results
~accurate to within a few percent!. In the present case thi
approximation is

SA~V!

B~V!

Ci j ~V!

D~V!

D→ f M~V!S cAS~V!

cBS~V!

cCDi j ~V!

cDE~V!

D ,

f M~V!5nS v0
2

p D 3/2

e2(V/v0)2
. ~56!

The factorf M(V) occurs since these polynomials are defin
relative to a Gaussian scalar product. The coefficients are
projections ofA , B, Ci j , andD alongS(V), Di j (V), and
E(V)

S cA

cB
D 5

2mb3

15n E dVSA~V!•S~V!

B~V!•S~V!
D 5S 2

2mb2

5nkB
kk

2
2mnb3

5n
mk
D ,

~57!

cC5
b2

10nE dVCi j ~V!Di j ~V!52
b2

n
hk, ~58!

cD5
2

15nE dVD~V!E~V!, ~59!

where use has been made of the definitions~42! and ~43!.
The distribution functionf (1) in this approximation is ob-
tained from Eq.~31!

f (1)→2 f MF2mb3

5n
~kk

“T1mk
“n!•S~V!

1
b2

n
hk

1

2 S ] iU j1] jUi2
2

3
d i j“•UDDi j ~V!

2cDE~V!“•UG . ~60!

To evaluate the kinetic parts of the transport coefficie
the forms ~48!–~50! can be used, with the frequencie
nh(a), nk(a), and nm(a) determined from Eq.~51! using
the approximation~56!

nh5

E dVDi jLf MDi j

E dV f MDi j Di j

, nk5nm5

E dV S•Lf MS

E dV f MS•S
.

~61!

The calculation of all properties now has been reduced
quadratures. An outline of the integrations involved a
given in Appendix E while the contributions to the coolin
rate are obtained in Appendix F. The results are summar
in Table I. The transport coefficients have been reduced
h0 and k0. The cooling ratez and the frequenciesnh and
d
he

s

to
e

ed
y

nk5nm have been reduced by the characteristic collision f
quencyn05pk/h0. The resulting dimensionless variables a

h* 5h/h0 , g* 5g/h0 , k* 5k/k0 , m* 5nm/Tk0 ,
~62!

p* 5p/pk, z* 5z/n0 , nh* 5nh /n0 , nk* 5nm* 5nk /n0 .
~63!

Also shown in this table is the Carnahan-Starling approxim
tion for x as a function ofn* . It is easy to check that al
results presented in Table I have the correct elastic limit
a51 @12#.

TABLE I. Summary of the main results of the paper.

f5fMH11
1
4c*E~V!2

2mb3

5n
~kk

“T1mk
“n!•S~V!

2
b2

n
hk 1

2 ~] iU j1] jUi2
2
3 d i j“–U!Di j ~V!1cDE~V!“–UJ ,

h* 5hk* @11
2

15pn* x(11a)#1
3
5 g* ,

hk* 5(nh* 2
1
2 z (0)* )21@12

1
15(11a)(123a)pn* x#,

g* 5
32
45pn* 2x(11a)(12

1
32c* ),

k* 5kk* @11
1
5 pn* x(11a)#1

64
225pn* 2x(11a)(11

7
32c* ),

kk*5
2
3(nk*22z(0)* )21X11

1
2 (11p* )c* 1

1
10pn* x(11a)2

3H 2a211F 1
2 (11a)2

5

3(11a)Gc* J C ,

m* 5mk* @11
1
5 pn* x(11a)#,

mk*52~2nm*23z(0)* !21H~11n]n ln x!z(0)*kk*1
p*

3
~11n]n lnp* !c*

2
2

15pn* x~11
1
2 n]n ln x!~11a!$a~12a!1 1

4†
4
3 1a~1

2a!‡c* %J ,

cD5
1

n0
F 1

2 z (0)* 1ng* 1
5c*

64
~11

3
64c* !x~12a2!G21

3@
2

45lpn* x1~p* 21!~
2
3 2a!c* # ,

p* 511
11a

3
pn* x, x5(12

1
12pn* )(12

1
6 pn* )23,

z* 5z (0)* 1z (1)* , z (0)* 5
5

12x(12a2)(11
3

32c* ),

z(1)*5F2 1

n0
~12a!~p*21!1 5

32~12a2!~11
3
64c* !xcDG“•U,

c* 532(12a)(122a2)@81217a130a2(12a)#21,

l5
3
8F~12a!~5a214a21!1

c*

12
~159a13a2219a215a3!G

3~11a!,
nh* 5x@12

1
4 (12a)2#@12

1
64c* #,

nk*5nm*5
1
3~11a!xF11

33
16~12a!1

1923a

1024
c* G ,

ng* 5
11a

48
xF128296a115a2215a3

1
c*

64
~15a3215a21498a2434!G .
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The transport coefficients for granular flow of dens
weakly inelastic hard spheres were studied by Lunet al. @5#
by using an approximate moment method to solve the
skog kinetic equation. However, the method does not incl
all contributions to leading order in (12a), and neglects
completely those fromz* (a) and c* (a). It also gives
m(a)50 in contrast to the finite result found here. In ge
eral, Lun’s results show important quantitative discrepanc
with those derived here. For example, ata50.6 andn*
50.2, the discrepancies are;11% for the reduced shea
viscosityh* and;73% for the reduced thermal conducti
ity k* . Figure 1 showsh* (a,n* 50), k* (a,n* 50), and
m* (a,n* 50) as functions ofa in the low density limit.
These are the same as those given in Ref.@1#. Recent Monte
Carlo simulations of the dilute shear viscosity confirm t
accuracy of this calculation@2#. Figures 2–4 show
h* (a,n* )/h* (a,0), k* (a,n* )/k* (a,0), and
m* (a,n* )/m* (a,0) as functions of the density fora51,
0.8, and 0.6. Also shown in Figs. 2–4 are the results from
kinetic model discussed in Sec. V@16#. In general, all trans-

FIG. 1. Plot of the low density transport coefficients as a fu
tion of the restitution coefficienta: shear viscosityh* (a,0) ~solid
line!, thermal conductivityk* (a,0) ~dashed line!, and m* (a,0)
~dotted line!.

FIG. 2. Plot of the reduced shear viscosityh* (a,n* )/h* (a,0)
as a function of the reduced densityn* as obtained from the Sonin
expansion of the RET. From the top to the bottom, we have c
sidered the values of the restitution coefficienta51, 0.8, and 0.6.
,

-
e

-
s

e

port coefficients are increasing functions of the density
sufficiently largea, whose slopes decrease with decreas
a ~i.e., greater dissipation!.

V. KINETIC MODEL

The Chapman-Enskog solution to the RET described h
for states with small spatial gradients is technically diffic
but straightforward. For more complex states driven far fro
equilibrium the RET becomes intractable. In these cases
useful to have kinetic models with the same qualitative f
tures as the RET but with a mathematically simpler structu
The prototype example for this approach is the Bhatnag
Gross-Krook~BGK! kinetic model for the Boltzmann equa
tion @17#. Generalizations to the RET for both elastic@18#
and inelastic@4,10,11# cases have been discussed recen
and applied with excellent success to shear flow far fr
equilibrium. The objective is to test the most sophisticated
these models@11# for the prediction of the transport prope

-

-

FIG. 3. Plot of the reduced thermal conductivi
k* (a,n* )/k* (a,0) as a function of the reduced densityn* as ob-
tained from the Sonine expansion of the RET~solid line! and from
the kinetic model equation discussed in Sec. V~dashed line!. From
the top to the bottom,a51, 0.8, and 0.6.

FIG. 4. Plot of the reduced transport coefficie
m* (a,n* )/m* (a,0) as a function of the reduced densityn* as
obtained from the Sonine expansion of the RET~solid line! and
from the kinetic model equation~dashed line!. From the top to the
bottom,a50.8 and 0.6.
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ties calculated from the RET in the previous sections. T
detailed analysis leading to the model kinetic equation can
found in Ref.@11# and will not be repeated here. The mod
kinetic equation is

S ]

]t
1v•“ D f 5PJE@ f #1QF2n~ f 2 f (0)!1~X•S

1Yi j Di j ! f (0)1
1

2
z“v•~V f !G . ~64!

Equation~64! has the same form as Eq.~1! except that the
RET collision operator has been replaced by the terms on
right side of Eq.~64!. The first term is the exact projection o
the collision operator into the subspace spanned by 1,V, and
V2 @see Eq.~A2! of Appendix A#. The second term represe
an approximation to the collision operator in the orthogo
subspace,Q512P. It differs from the corresponding ki
netic model for elastic collisions@18# only by the last term of
the brackets which accounts for the cooling. The functio
S(V) andDi j (V) are given by Eq.~44! while X andYi j are
defined by

X5

E dVSJE@ f (0)#

E dV f (0)S–S
, Yi j 5

E dV Di j JE@ f (0)#

E dV f (0)Dkl Dkl

. ~65!

The Chapman-Enskog solution to the kinetic model eq
tion proceeds in the same way as described in Sec. III.
lowest order in the gradientsf (0) is again the solution, and
f (1) is determined from Eq.~22! with only the replacement

Lf (1)→n f (1)2
z (0)

2
¹v•~V f (1)!. ~66!

All results of Table I are the same except now

nh* 5n* 1z (0)* ~67!

and

nk* 5nm* 5n* 1
3

2
z (0)* , ~68!

with n* [n/n0. Since the kinetic model has only one fre
parametern* only one of these frequencies can be rep
duced exactly by the model. For example, the choicen*
equal tonh* 2z (0)* will yield the exact shear and bulk vis
cosities, but the thermal conductivity andm will be approxi-
mate~the Prandtl number at low density is 1 instead of 2/
This limitation of the one parameter kinetic model is w
known and occurs for the case of elastic collisions as wel
is remarkable that the kinetic model reproduces exactly
other features of transport, both the dependence on diss
tion and on the density. This dependence is shown in F
2–4 for different values of the restitution coefficient. Exce
lent agreement with the Enskog results is found over a w
range of values forn* anda.
e
e

l

he

l
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VI. DISCUSSION

The RET kinetic theory for hard spheres with elastic c
lisions provides the basis for an accurate description of tra
port over a wide range of densities, as confirmed by b
Monte Carlo and molecular dynamics simulations. The o
jective of the present work has been to extend the applica
of this equation, with appropriate modifications, to the ca
of inelastic collisions. The transport processes considered
those for a fluid with small spatial gradients of the hydrod
namic fields. The macroscopic balance equations for m
momentum, and energy@or, equivalently, for number den
sity, flow velocity, and temperature, as given in Eqs.~4!–~6!#
follow directly from moments of the RET with respect t
1, v, andv2. These equations include the unknown press
tensor, heat flux, and cooling rate which are given as fu
tionals of the distribution functionf. The closed set of hydro
dynamic equations are obtained when a solution to the R
is known as a functional of the hydrodynamic fields. He
this solution is obtained perturbatively for small spatial g
dients using the Chapman-Enskog method well known fr
the case of elastic collisions. The distribution function h
been calculated through first order in the gradients. Use
this in the functionals for the pressure tensor, heat flux,
cooling rate provides a representation of these as linear c
binations of the gradients. The coefficients in these exp
sions are the transport coefficients which are functions of
density and restitution coefficient. Use of these first ord
results in the macroscopic balance equations provides
hydrodynamic equations which are the basis for a fluid
namics description of granular flow. This work extends
recent corresponding analysis for a low density granular
@1#. The following comments are offered for context an
clarification.

The distribution functionf is given in terms of a referenc
function f (0) which is the solution to Eq.~19!. While the
exact solution to this equation has not been obtained to d
it is easy to verify that it differs from the Maxwellian fo
elastic collisions. This reference function depends on sp
and time only through the hydrodynamic fields. In particul
for both elastic and inelastic cases, the reference state is
dependent. However, for the inelastic case the time scale
the temperature is set by the cooling ratez (0) rather than the
spatial gradients. This means that within the hydrodynam
description there can be two well-separated time scales
weak gradients and strong dissipation. This should not
confused with the separation ofboth hydrodynamic time
scales from the shorter kinetic excitations in the solution
RET. Investigations to date@11# suggest that the kinetic ex
citations remain isolated from the hydrodynamic excitatio
so that the later dominate on sufficiently large time sca
just as in the elastic case.

The deviations off from f (0) are proportional to spatia
gradients of the temperature, density, and flow velocity. T
coefficients of each gradient are functions of the veloc
which are determined from linear inhomogeneous integ
equations. In the elastic case these coefficients are non
only for the temperature gradient and the traceless part of
velocity gradient. For inelastic collisions there are two ad
tional terms, one proportional to the density gradient and
proportional to the divergence of the velocity field. Th
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former gives rise to an additional term in the heat flux, wh
the latter provides an additional term in the cooling rate. T
latter provides a correction to the results of Ref.@7#. The
additional term of the heat flux due to the density gradi
has been recognized in earlier work.

The form of f (0) and the solutions to the linear integr
equations to determinef and the transport coefficients we
determined approximately using a first Sonine polynom
approximation. This is known to be accurate in the elas
limit and to give an excellent approximation forf (0). Pre-
liminary comparisons of the resulting viscosity with Mon
Carlo simulations at low density also confirm the accuracy
this method@2#. The method does not make anya priori
limitation on the degree of dissipation so it is expected t
the dependence of the shear viscosity, bulk viscosity, ther
conductivity,m, and cooling rate on bothn* anda is well
described.

A primary outcome of these calculations is a form for t
hydrodynamic equations with all parameters given explici
The heat and momentum fluxes are determined to first o
in the gradients. Since these occur as divergences in the
drodynamic equations their contributions are of second o
in the gradients. In contrast, the cooling rate is determi
only to first order, showing a contribution proportional
¹•U and given byz (1)* in Table I. The second term in th
brackets of that expression does not appear to have pred
before. In principle, the Navier-Stokes order hydrodynam
for inelastic collisions requires going one order further in t
Chapman-Enskog expansion~Burnett order! to obtain the
cooling rate to second order. This has been done in the
density limit where it is found that the corrections are ve
small @1#. Consequently, it is likely that the hydrodynami
determined here provides a good basis for applications
fluid dynamics to granular flows.

The Chapman-Enskog method does not make explicit
of the form of the collision operator until a late stage in t
analysis. Therefore, the results can be extended in sev
directions without new conceptual difficulties. One genera
zation of importance for practical applications is to inclu
hard objects of different shapes, a degree of roughness, a
possible velocity dependence ofa. In the opposite direction
it is of interest to consider simpler collision operators th
allow access to solutions for more complex nonequilibriu
states far from equilibrium. One such example has been
plored in Sec. V. It is shown there that a simple kine
model has the capacity to reproduce most of then* and a
dependence of the transport coefficients, giving credibility
its application to more complex states. One example of
latter is a recent study of the rheology of a granular medi
under shear flow@19#. Good agreement with Monte Carl
simulations of the RET are obtained for a wide range ofn* ,
a, and the shear rate.

As noted in the Introduction there are concerns that
qualitative changes introduced by inelastic collisions m
invalidate the necessary conditions for a hydrodynamic
kinetic theory description. If the RET is a good descriptio
the validity of hydrodynamics can be tested by Monte Ca
simulation of the evolution of initial states with small spat
gradients to check then* anda dependence of the transpo
properties predicted here. Further, a test of the validity of
RET is possible using molecular dynamics simulations. T
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calculations here, appropriate at high densities, make c
parisons of transport properties in this manner as well. I
hoped that such simulations will be performed in the n
future.

ACKNOWLEDGMENTS

We are grateful to Dr. Andre´s Santos for a critical reading
of the manuscript. This research was supported by Natio
Science Foundation under Grant No. PHY 9722133, and
the Dirección General de Investigacio´n Cientı́fica y Técnica
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APPENDIX A: CHAPMAN-ENSKOG EXPANSION

To initiate the Chapman-Enskog expansion it is usefu
make a formal transformation of the RET to expose the
fects of cooling. First, define the operatorJE

8 @ f # by

JE
8 @ f #5JE@ f #2

1

2
z“v•~V f !, ~A1!

and decompose it according to

JE
8 @ f #→PJE

8 @ f #1QJE
8 @ f #, ~A2!

whereP is the projection operator onto an orthonormal s
constructed from$1,v2,v%:

Pg~v!5n21(
a

ca~v! f (0)~v!E dv8ca~v8!g~v8!,

~A3!

$ca~V!%5H 1,c21/2S mb

2
V22

3

2D ,~mb!1/2VJ . ~A4!

The normalization coefficient

c5n21E dvf (0)~v!S mb

2
V22

3

2D 2

5
3

2
1

15

8
c* , ~A5!

with c* given by Eq.~52!. AlsoQ5(12P) is the orthogo-
nal projection. The contributions fromPJE

8 @ f # can be calcu-
lated directly in terms of the collisional parts of the flux
and the RET equation becomes

~] t1v•“ ! f 2
1

2
z“v•~V f !

5QJE
8 @ f #2

b

n
f (0)FV“:Pc1

3

2c S mb

3
V221D

3~“•qc1Pc:“U!G . ~A6!

To zeroth order in the gradients this equation becomes

QFJ(0)@ f (0), f (0)#2
1

2
z (0)

“v•~V f (0)!G50, ~A7!

which is the same as Eq.~19! of Sec. III.
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To first order in the gradients~A6! becomes

] t
(0)f (1)5P

1

2
z (0)

“v•~V f (1)!1QJ(1)@ f #

2Q
1

2
z (1)

“v•~V f (0)!2F ~] t
(1)1v•“ ! f (0)

2
1

2
z (1)

“v•~V f (0)!G2
b

n
f (0)FV•“pc

1
3pc

2c S mb

3
V221D“•UG . ~A8!

The first term on the right side vanishes, i.e.,

P“v•~V f (1)!50, ~A9!

which follows from the conditionPf (1)50. The fourth term
is calculated using the form~18!

F ~] t
(1)1v•“ ! f (0)2

1

2
z (1)

“v~V f (0)!G
5 f (0)~] t

(1)1v•“ !ln n2~“v i
f (0)!~] t

(1)1v•“ !Ui

2
1

2
“v•~V f (0)!~] t

(1)1v•“ !ln T2
1

2
z (1)

“v•~V f (0)!.

~A10!

The macroscopic balance equations to first order in the
dients are

~] t
(1)1U•“ !n1n“•U50, ~A11!

~] t
(1)1U•“ !Ui1~mn!21] i p50, ~A12!

~] t
(1)1U•“ !T1

2p

3nkB
“•U52Tz (1). ~A13!

Use of these in Eq.~A10! gives finally

~] t
(1)1v•“ ! f (0)2

1

2
z (1)

“v•~V f (0)!

5 f (0)V•“ ln n1~mn!21~“v f (0)!•“p

2
1

2
@“v•~V f (0)!#V•“ ln T2~“v i

f (0)!~V•“ !Ui

2F f (0)2
p

3pk
“v•~V f (0)!G“•U. ~A14!

Finally, the collision operator must be expanded to first or
in the gradients. To do so the following results are need

x~r1 ,r16sun!→xS 16
1

2
n]n ln xs•“ ln nD , ~A15!
a-

r
:

f (0)~r16s,v2 ,t !

→ f (0)~r1 ,v2 ,t !H 16Fs•“ ln n2~“v i
ln f (0)!~s•“ !Ui

2
1

2
~31V•“vln f (0)!s•“ ln TG J , ~A16!

wherex is obtained from the functionalx(r1 ,r16s,un) by
evaluating all density fields atn(r1 ,t). The collision operator
to first order then becomes

QJE@ f #→QJ(0)@ f (0), f (0)#2Lf (1)

2S 11
1

2
n]n ln x DK@ f (0)#•“ ln n

1Kj@“v i
f (0)#] jUi1

1

2
K@“v•~V f (0)!#•“ ln T,

~A17!

J(0)@ f (0), f (0)#5xs2E dv2E dŝ Q~ŝ•g!~ŝ•g!

3$a22f (0)~v18! f (0)~v28!2 f (0)~v1! f (0)~v2!%,

~A18!

L~X![2Q~J(0)@ f (0),X#1J(0)@X, f (0)# !, ~A19!

K@X#5Qxs2E dv2E dŝ Q~ŝ•g!

3~ŝ•g!ŝ $a22f (0)~v18!X~v28!1 f (0)~v1!X~v2!%.

~A20!

Substitution of Eqs.~A14! and ~A17! into Eq. ~A8! gives

~] t
(0)1L! f (1)1Q

1

2
z (1)

“v•~V f (0)!

52H p

pk S 11n]n ln
p

pkD @ f (0)V1~bm!21~“v f (0)!#

1S 11
1

2
n]n ln x DK@ f (0)#J •“ ln n

1H 2@ f (0)V1~bm!21~“v f (0)!#
p

pk
1 f (0)V

1
1

2
“v•~V f (0)!V1

1

2
K@“v•~V f (0)!#J •“ ln T

1H ~Vj“v i
f (0)!2

1

3
d i j V•“v f (0)1Kj@“v i

f (0)#

2d i j

p2pk

3pk
Q“v•~V f (0)!J ] jUi . ~A21!

In the last line use has been made of the identity
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P“v•~V f (0)!52 f (0)
12

415c*
S mb

3
V221D . ~A22!

To expose the functional dependence ofz (1) on f (1) Eq. ~10! is evaluated directly to first order in the gradients

z5~12a2!
bms2x

12n E dV1E dV2 f (0)~V1! f (0)~V2!E dŝ Q~ŝ•g!~ŝ•g!3

1~12a2!
bms2x

12n E dV1E dV2 f (0)~V1! f (0)~V2!E dŝ Q~ŝ•g!~ŝ•g!3~“v2i
ln f (0)!~s•“ !Ui

1~12a2!
bms2x

12n E dV1E dV2@ f (0)~V1! f (1)~V2!1 f (1)~V1! f (0)~V2!#E dŝ Q~ŝ•g!~ŝ•g!3

5~12a2!
bmps2x

24n E dV1 E dV2 f (0)~V1! f (0)~V2!g32~12a2!
bmps2x

18n E dV1E dV2f (0)~V1! f (0)~V2!g2
“•U

1~12a2!
bmps2x

12n E dV1E dV2 f (0)~V1! f (1)~V2!g3

5z (0)2
1

3
~12a2!pn* x“•U1z (1,1)~ f (1)!, ~A23!

z (0)[~12a2!
bmps2x

24n E dV1E dV2 f (0)~V1! f (0)~V2!g3, ~A24!

z (1,1)~ f (1)![~12a2!
bmps2x

12n E dV1E dV2 f (0)~V1! f (1)~V2!g3. ~A25!

With these results~A21! becomes

~] t
(0)1L! f (1)1z (1,1)~ f (1)!Q

1

2
“v•~V f (0)!

52H p

pk S 11n]n ln
p

pkD @ f (0)V1~bm!21~“v f (0)!#1S 11
1

2
n]n ln x DK@ f (0)#J •“ ln n

1H 2@ f (0)V1~bm!21~“v f (0)!#
p

pk
1 f (0)V1

1

2
“v–~V f (0)!V1

1

2
K@“v•~V f (0)!#J •“ ln T

1$~Vj“v i
f (0)!1Kj@“v i

f (0)#%
1

2 S ] jUi1] iU j2
2

3
d i j“•UD

1H 1

3
Ki@“v i

f (0)#1
p2pk

3pk
~223a!Q“v•~V f (0)!J“•U. ~A26!

This is the result~22! used in the text.
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APPENDIX B: SOLUBILITY CONDITIONS

The solubility conditions~Fredholm alternative@14#! for
Eqs. ~32!–~35! can be identified by using the property~36!
and the definitions~32!–~35! to write these equations in th
equivalent form

QS 2z (0)T]T1L2
z (0)

2 DA5A, ~B1!

Q~2z (0)T]T1L!B5@B1~11n]n ln x!z (0)A#, ~B2!

Q~2z (0)T]T1L!Ci j 5Ci j , ~B3!

Q~2z (0)T]T1L!D1
1

2
z (1,1)~D!Q“v•~V f (0)!5D.

~B4!

Use has been made of the property

QT]TSABCi j

D
D 52Q

1

2
“v•VSABCi j

D
D 5T]TSABCi j

D
D ~B5!

as follows from Eq.~A9!. Since the left side of these equ
tions lies in the orthogonal subspace it is necessary that
right sides must as well, or equivalently

PS A

B

Ci j

D

D 50. ~B6!

These are the solubility conditions. It is straightforward
verify that they are satisfied by direct integration using
definitions~24!–~27! and Eq.~A3!.

APPENDIX C: KINETIC CONTRIBUTIONS

Equations~48!–~50! for the kinetic contributions to the
transport coefficients follow directly from the integral equ
tions. Consider the viscosity. Multiply Eq.~34! by Di j and
integrate over the velocity to get

~2z (0)T]T1nh!hk52
1

10E dVDi j ~V!Ci j , ~C1!

wherenh is defined by Eq.~51!. From dimensional analysi
hk}T1/2 so
he

e

hk52
1

10@nh2~1/2!z (0)#
E dVDi j ~V!Ci j ~V!. ~C2!

The integral on the right side can be performed using
definition ~26!

1

10E dVDi j ~V!Ci j ~V!

5
1

10E dVmS ViVj2
1

3
V2d i j DVi~“v j

f (0)!

1
1

10E dVDi j ~V!Ki@“v j
f (0)#

52pk1
1

10E dVDi j ~V!Ki@“v j
f (0)#, ~C3!

and Eq.~C2! becomes

hk5
pk

nh2
1

2
z (0)

F12
1

10pkE dVDi j ~V!Ki@“v j
f (0)#G .

~C4!

The remaining integral is performed using the definition
K in Eq. ~28!

E dVDi j ~V!Ki@“v j
f (0)#

5xs2E dV1Di j ~V1!QE dV2E dŝ Q~ŝ•g!

3~ŝ•g!s i$a
22f (0)~V18!“v2 j8 f (0)~V28!

1 f (0)~V1!“v2 j
f (0)~V2!%. ~C5!

The projection operatorQ can be replaced by the identit
operator becauseDi j (V1) is traceless. The scattering law fo
V18 and V28 is given in Sec. II. However, a simpler form i
obtained by changing variables to integrate overV18 andV28
instead ofV1 andV2 in the first term of Eq.~C5!. The Jaco-
bian of the transformation isa and ŝ•g52aŝ•g8. Also,
V1(V18 ,V28)[V195V12 1

2 (11a)ŝ(ŝ•g). The integral then
becomes
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E dVDi jKi@“v j
f (0)#52xs2E dV1E dV2 f (0)~V1!@“v2 j

f (0)~V2!#E dŝ Q~ŝ•g!~ŝ•g!s i@Di j ~V19!2Di j ~V1!#

5
1

6
m~11a!xs3E dV1E dV2 f (0)~V1!@“v2 j

f (0)~V2!#

3E dŝ Q~ŝ•g!~ŝ•g!2$ŝ j@~ŝ–V1!2~11a!~ŝ•g!#13V1 j%

5
1

6
m~11a!xs3E dV1E dV2 f (0)~V1! f (0)~V2!E dŝ~ŝ•g!H 4~ŝ–V1!2

3

2
~11a!~ŝ•g!J

5
1

3
~11a!mpxs3E dV1E dV2 f (0)~V1! f (0)~V2!F8

3
~V1•g!2~11a!g2G

52
2

3
pkpn* x~11a!~3a21!. ~C6!
in
Use of this in Eq.~C4! gives the final result

hk5
pk

nh2
1

2
z (0)

F11
1

15
pn* x~11a!~3a21!G . ~C7!

The kinetic part of the thermal conductivity is obtained
a similar way. Multiplication of Eq.~32! by S(V) and inte-
gration over the velocity leads to

kk52
1

3T
~nk22z (0)!21E dVS~V!•A~V!

52
1

3T
~nk22z (0)!21E dVS~V!•F S 5

2
f (0)

1
1

2
V•“v f (0)DV2

p

pk
~V f (0)1~bm!21

“v f (0)!G
2

1

6T
~nk22z (0)!21E dVS~V!•K@“v•~V f (0)!#

5
5kBpk

2m
~nk22z (0)!21F11

1

2 S 11
p

pkD c*

2
mb

15pkE dVS~V!•K@“v•~V f (0)!#G . ~C8!

The last term on the right side is, more explicitly,

E dVS~V!•K@“v•~V f (0)!#

52xs2E dV1E dV2 f (0)~V1!

3$“v2
•@V2f (0)~V2!#%E dŝ Q~ŝ•g!
~ŝ•g!s iQ * @Si~V19!2Si~V1!#. ~C9!

HereQ* is the adjoint projection operator with the effect

Q* Si~V1!5Si~V1!2
1

3bm
ViE dV f (0)~V!V•S~V!

5ViF1

2
mV22

5

2b S 11
1

2
c* D G . ~C10!

With this result~C9! becomes

E dVS~V!•K@“v•~V f (0)!#

5
1

2
m~11a!xs3E dV1E dV2 f (0)~V1! f (0)~V2!

3V2•“v2
E d ŝQ~ŝ•g!~ŝ•g!2F ~ŝ•V1!2

2
3

4
~11a!~ŝ•g!~ŝ•V1!1

1

8
~11a!2~ŝ•g!2

1
1

2
V1

22
5

2bm S 11
1

2
c* D G

52
3

2~bm!
pk~11a!2pxn* F2112a

1S 1

2
~11a!2

5

3~11a! D c* G . ~C11!

Use of this in Eq.~C8! gives the desired result
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kk5
5kBpk

2m
~nk22z (0)!21H 11

1

2 S 11
p

pkD c* 1
1

10
~11a!2

3pxn* F2112a1S 1

2
~11a!2

5

3~11a! D c* G J .

~C12!

To evaluatemk, multiply Eq. ~33! by S(V) and integrate
over the velocity to get

mk52~2nm23z (0)!21
1

3nE dV S~V!•@~11n]n ln x!

3z (0)A1B#

52~2nm23z (0)!21F ~11n]n ln x!z (0)
T

n
kk
2
1

3nE dV S•BG
52~2nm23z (0)!21F ~11n]n ln x!z (0)

T

n
kk

1
5

4

p

pk

1

mb2 S 11n]n ln
p

pkD c* 1S 11
1

2
n]n ln x D

3
1

3nE dVS~V!•K@ f (0)#G . ~C13!

The last integral is
E dVS~V!•K@ f (0)#52xs2E dV1E dV2 f (0)~V1! f (0)~V2!E dŝ Q~ŝ•g!~ŝ•g!s iQ* @Si~V19!2Si~V1!#

5
1

2
m~11a!xs3E dV1E dV2 f (0)~V1! f (0)~V2!E dŝ Q~ŝ•g!~ŝ•g!2F ~ŝ•V1!2

2
3

4
~11a!~ŝ•g!~ŝ•V1!1

1

8
~11a!2~ŝ•g!21

1

2
V1

22
5

2bm S 11
1

2
c* D G

52
3

2bm
pk~11a!pn* xFa~12a!1

1

4 S a~12a!1
4

3D c* G . ~C14!

Substitution of Eq.~C14! into Eq. ~C13! gives

mk52
T

n
~2nm23z (0)!21H ~11n]n ln x!z (0)kk1

5

4

pkB

m S 11n]n ln
p

pkD c* 2S 11
1

2
n]n ln x D

3
kBpk

2m
~11a!pn* xFa~12a!1

1

4 S a~12a!1
4

3D c* G J . ~C15!

APPENDIX D: COLLISIONAL TRANSFER CONTRIBUTIONS

The collisional transfer contributions to the pressure tensor and heat flux are determined from Eqs.~8! and ~9!. Consider
first the pressure tensor which becomes to first order in the gradients

Pi j
c 5

1

4
~11a!ms3xE dV1E dV2E dŝ Q~ŝ•g!~ŝ•g!2ŝ i ŝ jF f (0)~V1! f (1)~V2!1 f (1)~V1! f (0)~V2!

2
1

2
f (0)~V2!ŝ•“ f (0)~V1!1

1

2
f (0)~V1!ŝ•“ f (0)~V2!G

5
1

2
~11a!ms3xE dV1E dV2E dŝ Q~ŝ•g!~ŝ•g!2ŝ i ŝ jF f (1)~V1! f (0)~V2!1

1

2
f (0)~V1!ŝ•“ f (0)~V2!G

5
1

15
~11a!ms3pxE dV1E dV2 f (1)~V1! f (0)~V2!~2gigj1g2d i j !

2]kU l

11a

4
ms4xE dV1E dV2 f (0)~V1!“v2l

f (0)~V2!E dŝ Q~g•ŝ!~g•ŝ!2ŝ i ŝ j ŝk
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5
2

15
~11a!n* pxPi j

k 1]kU l

11a

48
ms4pxE dV1E dV2 f (0)~V1! f (0)~V2!

3“v2l
g21@gigjgk1g2~gjd ik1gid jk1gkd i j !#

5
2

15
~11a!mn* pxPi j

k 1]kU l

11a

48
ms4pxE dV1E dV2 f (0)~V1! f (0)~V2!

3$g23gl gigjgk2g21~gjgkd i l 1gigkd j l 1gjgidkl 1gl gjd ik1gl gid jk1gl gkd i j !2g~d j l d ik1d i l d jk1dkl d i j !%

5
2

15
~11a!n* pxPi j

k 2
11a

18

mspxn*

n E dV1E dV2 f (0)~V1! f (0)~V2!gF3

5 S ] jUi1] iU j2
2

3
d i j“•UD1d i j“•UG .

~D1!

From this equation one can easily identify the collisional transfer contributions to the shear viscosityh and the bulk viscosity
g given by Eqs.~38!, ~39!, and~45!.

The collisional transfer contribution to the heat flux to first order in the gradients can be obtained in a similar wa
result is

qi
c5

1

2
~11a!ms3xE dV1E dV2E dŝ Q~ŝ•g!~ŝ•g!2~ŝ•G!ŝ iF f (1)~V1! f (0)~V2!1

1

2
f (0)~V1!ŝ•“ f (0)~V2!G

5
1

5
~11a!n* pxqi

k2] iT
11a

48

mspxn*

nT E dV1E dV2 f (0)~V1! f (0)~V2!Fg21~g•G!21gG21
3

2
g~g•G!1

1

4
g3G .

~D2!

From Eq.~D2! one may identify the collisional contributions to the thermal conductivityk and the coefficientm given in Eqs.
~40!, ~41!, and~46!.
in
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APPENDIX E: FIRST SONINE APPROXIMATION

In this appendix an outline of the integrations appear
in the evaluation of the transport coefficients is given us
the first Sonine approximations for the zeroth-order distri
tion ~53! and for the first-order distribution~56!. The fre-
quenciesnh* and nk* 5nm* are given by Eq.~61! in the first
approximation. It is straightforward to show that the proje
tion operatorQ in the definition ofL can be replaced by th
identity in both integrations, and these integrals become
same as those appearing in the Boltzmann limit~except for a
factor x) @1#. The details will not be repeated here and on
the results are quoted in Table I.

The collisional contributions are given in terms of th
dimensionless integralsI g and I k defined by Eqs.~45! and
~46!, respectively. In both cases, the integrations over
relative and center of mass variablesg andG are performed
and nonlinear terms inc* are neglected. The integralI g is
given by

I g5p23v0
27E dgE dGe2g2/2v0

2
e22G2/v0

2
g

3H 11
c*

4 F15

2
25v0

22S g2

2
12G2D

12v0
24~g•G!212v0

24S g2

4
1G2D 2G J

5
4

~2p!1/2S 12
1

32
c* D . ~E1!
g
g
-

-

e

e

In a similar way, the integralI k is given by

I k5p23v0
29E dgE dGe2g2/2v0

2
e22G2/v0

2

3H 11
c*

4 F15

2
25v0

22S g2

2
12G2D

12v0
24~g•G!212v0

24S g2

4
1G2D 2G J

3Fg21~g•G!21gG21
3

2
g~g•G!1

1

4
g3G

5
8

~2p!1/2S 11
7

32
c* D . ~E2!

APPENDIX F: CONTRIBUTIONS TO THE COOLING
RATE

Up to the first order in gradients, the cooling rate is

z5z (0)2
1

3
~12a2!pn* x“•U1z (1,1), ~F1!

wherez (0) and z (1,1) are defined by Eqs.~16! and ~30!, re-
spectively. The contributionz (0) can be evaluated easily b
using the first Sonine approximation tof (0) @1#. Its expres-
sion appears in Table I. The two first contributions to t
cooling rate were calculated by Goldshtein and Shapiro@7#,
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although an error was made in the expression forc* . The
corrected value for the latter was obtained in Ref.@13# and is
given by Eq.~55!. With this change the results of Ref.@7#
agree with the first two terms on the right side of Eq.~F1!.

In the first Sonine approximation,z (1,1) is given by

z (1,1)~D!5~12a2!
bmps2x

12n
cDE dV1E dV2

3 f (0)~V1! f M~V2!E~V2!g3

5
1

2
~12a2!S 11

3

64
c* D S p

mb D 1/2

ns2xcD .

~F2!

In order to determinecD , multiply the integral equation~35!
by E(V) and integrate overV to get

~2z (0)T]T1ng!cD

5
2

15nE dVE~V!D~V!

2
1

15n
z (1,1)E dVE~V!Q“v•~V f (0)!, ~F3!

with the definition

ng5

E dVE~V!L@ f M~V!E~V!#

E dV f M~V!E~V!E~V!

. ~F4!

Dimensional analysis requires thatz (0) and ng are propor-
tional to T1/2 while the integrals on the right-hand side a
independent ofT. ThereforecD}T21/2 and Eq.~F3! gives

cD5
2

15n

1

1

2
z (0)1ng

F E dVE~V!D~V!

2
1

2
z (1,1)E dVE~V!Q“v•~V f (0)!G . ~F5!
. E

ct

-
an

, J
To convert Eq.~F5! in an explicit expression forcD the two
integrals appearing in the right-hand side of Eq.~F5! and the
quantityng must be evaluated. The calculation is straightfo
ward, leading to the results

E dVE~V!Q“v•(V f (0))5
15

2
nc* ~a!, ~F6!

E dVE~V!Ki@“v i
f (0)#

5
3

8 S 5a214a211
c*

12

159a13a2219a215a3

12a D
3~12a2!pn* xn[l~a!pn* xn, ~F7!

ng* 5
ng

n0
5

11a

48
xF128296a115a2215a3

1
c*

64
~15a3215a21498a2434!G , ~F8!

and consequently

cD5
1

n0

~2/45!lpn* x1@~p2pk!/3pk#~223a!c*

1

2
z (0)* 1ng* 1~5c* /64!S 11

3

64
c* Dx~12a2!

.

~F9!

Finally, z (1,1) is obtained from Eqs.~F2! and ~F9!. We are
not aware of any previous calculation ofz (1,1) for compari-
son. It is noted thatz (1,1) vanishes in the limits of elastic
spheres (a51 , arbitrary density! and of dilute inelastic
spheres (n* 50, arbitrary inelasticity!.
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