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Dense fluid transport for inelastic hard spheres
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The revised Enskog theory for inelastic hard spheres is considered as a model for rapid flow granular media
at finite densities. A normal solution is obtained via the Chapman-Enskog method for states near the local
homogeneous cooling state. The analysis is performed to first order in the spatial gradients, allowing identifi-
cation of the Navier-Stokes order transport coefficients associated with the heat and momentum fluxes. In
addition, the cooling rate is calculated to first order in the gradients and expressed in terms of the transport
coefficients. The transport coefficients are determined from linear integral equations analogous to those for
elastic collisions. The solubility conditions for these equations are confirmed and the transport coefficients are
calculated as explicit functions of the density and restitution coefficient using a Sonine polynomial expansion.
The results are not limited to small dissipation. Finally, the analysis is repeated using a simpler kinetic model.
Excellent agreement is obtained with the results from the revised Enskog eq{igti663-651X99)14405-2

PACS numbgs): 81.05.Rm, 05.20.Dd, 51.18y, 47.20—k

I. INTRODUCTION ago[5-8], but the technical difficulties of the analysis en-
tailed approximations that limited their accurafdy]. The
The analysis of granular media under rapid flow fre-analysis here provides formally exact results for the distribu-
quently exploits a hydrodynamic description. The essentiation function and transport coefficients in terms of the solu-
difference from that for normal fluids is the absence of entions to linear integral equations. In this respect it parallels
ergy conservation, leading to both obvious and subtle modielosely the analysis for elastic collisions. As in the latter
fications of the usual Navier-Stokes equations for states witltase, a first Sonine polynomial approximation is used to ob-
small spatial gradients of the hydrodynamic fields. The jus+tain practical results from this formulation. The approxima-
tification for a hydrodynamic description and a detailed deri-tion technique is known to be accurate for elastic collisions
vation of the form of the transport coefficients remains aand is expected to have comparable accuracy here as well.
topic of interest and controversy. For a low density systenThe results apply to all degrees of dissipation and over the
these problems have been addressed using the Boltzmasntire fluid density range. Consequently, it provides the basis
kinetic equation modified to account for inelastic binary col-for an unambiguous basis for the application of hydrodynam-
lisions. Recently, the Chapman-Enskog solution to the Boltics to granular flow under realistic conditions.
zmann equation, familiar from transport theory for normal  There are several motivations for this study. First, a quan-
gases, has been extended to the inelastic case to obtain th@tive test of the hydrodynamic description within the con-
Navier-Stokes equations and detailed expressions for thgxt of kinetic theory is possible by comparing predicted
transport coefficients as functions of the restitution coeffi-transport properties with those obtained directly from the
cient [1]. The case considered was an idealized gas ORET via Monte Carlo simulation. Such simulation methods
smooth, spherical hard spheres with inelastic binary colli-have been developed and applied in recent ygHrand the
sions. Preliminary comparisons with direct Monte Carloresults obtained here provide the basis for a test of the stan-
simulation of the Boltzmann equation indicate the results arelard method for derivation of hydrodynamics. Second, by
quite accurate, even for strong dissipat@h The objective  extending the Boltzmann analysis to high densities compari-
here is to extend this analysis to the revised Enskog kinetisons with molecular dynamics simulations become practical.
theory (RET) for a description of hydrodynamics and trans- For example, a comparison of the calculated viscosity depen-
port at higher densities. dence on both the density and restitution coefficient with that
The RET for elastic collision§3] is known to be an ac- from molecular dynamics would determine the validiand
curate kinetic theory over the entire fluid domain. In fact it any limitations of the kinetic theory and the hydrodynamic
describes the crystal phase as well, which may suggest itdescriptions for granular flow. Such a test is essential to ad-
relevance for granular media undergoing cluster formationdress the frequently made speculation that a hydrodynamic
Its generalization to inelastic collisions is straightforwardand/or kinetic theory description of granular flow is limited
(see, for example, Ref[4]) and the Chapman-Enskog to weak dissipation. None of the analysis here supports this
method can be applied to obtain the Navier-Stokes hydrodytatter view, beyond complications of the well-known hydro-
namic equations and the associated transport coefficientdynamic instability of the reference cooling state. Finally,
Similar attempts to apply the Boltzmann and Enskog kineticaccurate predictions from the RET allow tests of simpler
equations to derive transport coefficients began fifteen yeatsnetic models that have been propo$é0,11] for applica-
tion to more complex boundary driven states. In summary,
the results presented here provide the basis for both practical
*Permanent address: Departamento adch) Universidad de Ex- quantitative applications and fundamental benchmark tests.
tremadura, 06071 Badajoz, Spain. The RET and associated macroscopic conservation laws
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are reviewed in the next section. An overview of thetemperature, and(r,t) is the flow velocity. The cooling rate
Chapman-Enskog method for solving this equation is givery is proportional to (+ «?) and is due to dissipative colli-
in Sec. Ill. The results for the distribution function, heat flux, sions. The pressure tensB(r,t) and the heat fluxy(r,t)
and momentum flux to first order in the spatial gradients argyave both “kinetic” and “collisional transfer” contribu-
provided, with the details of the calculation appearing in ations, i.e.,P=Pk+P°® and q=g*+q°. The kinetic contribu-
series of Appendixes. As in the case of elastic collisionsjons are given by
these properties are expressed in terms of solutions to a set of
linear inhomogeneous integral equations. It is shown explic- K 1
itly that the necessary solubility conditions are satisfied. In P :J dvmWVi(r,v,1), q :J dvomVAVE(r,v,1),
Sec. IV these equations are solved using a lowest order ex- (7)
pansion in Sonine polynomials. Explicit expressions for the
distribution function and transport coefficients are given andand the collisional transfer contributions drg
compared to the elastic limit as a function of density and
restitution coefficient. In Sec. V the corresponding results 1ta J' q J' q J' 460
from a simple kinetic model are obtained and compared with Pr=—7—mo™ | dvi | dv; 70 (09
those from the RET. Excellent agreement is found for a wide
range of densities and restitution coefficients. This analysis is X( - g)zfr&fldxf(z)[r— (1=N)o,r+ oy Vo t]
summarized and discussed in the last section. 0

()

IIl. RET AND CONSERVATION LAWS
In this sgction a brief re\_/iew of the RET kinetic equation qc_1+“ mo J dVlJ deJ do-0(o-g)(o-g)>

and associated conservation laws are presented. The one-
particle distribution functiorf (r,v,t) is determined fronj4]

5 ><(G~fr)frfld)\f(z)[r—(1—)\)0-,r+)\¢r,v1,v2,t].
(§t+V1 Vl) f(ry,vy,t)=Jelry,vqf(D)], D °

©)
whereJg is the Enskog collision operator Here, V=v—U(r,t) is the peculiar velocity an@=13(V,
+V,) is the velocity of center of mass. Finally, the cooling
JE[rl,V1|f(t)]Eo-2f dvzf do®(o-g)(o-9) rate in Eq.(6) is given by
- Vo mo? A
x{a” 2@ (ry,ri—o,vi,V5,1) é«:(l_az)ﬂlz‘nr fdvlj def do-®(o-g)
_f(Z)(rlvrl+UvV1!V21t)}r (2) ~

X(0- @)% A(r,r+ o,vy,V5,1), (10)

f(Z)(rl1r2!V11V2!t)EX(rlvr2|n(t))f(rlavl!tv)f(rZ!VZ 1t) )
(3  with 8=1/(kgT).

o The macroscopic balance equatigds-(6) are exact con-
Here, o is the hard sphere diameter= oo, o being a unit  sequences of the RET and provide the basis for developing a
vector,® is the Heaviside step function, agekv,;—Vv,. The  hydrodynamic description. The latter follows from a repre-
primes on the velocities denote the initial valde$,v,} that  sentation ofP(r,t), q(r,t), and{(r,t) as explicit functionals
lead to{v;,v,} following a binary collision,vj=v;—3(1 of the hydrodynamic fields and their gradients. The resulting
+a Y (o9 o, Vh=vy+i(l+a Y(o-g)o. The param- closed set of equations constitutes the hydrodynamics for the

etera is the coefficient of restitution with€ a<1. Finally, RET.' _SmceF_’(r,t), q(r.t), and f(r,t) are given gbove as
X[r.r+ain(t)] is the equilibrium pair correlation function explicit functionals off (r,v,t) such a representation can be

: e .o obtained if a corresponding solution to the RET can be ob-
2t(rC(t))ntgg]:{ir?:dabsjnn(itlgrflfgilgzre c?;weqwhbrlum density fleldtained as a function of the fields and their gradients. This is

The macroscopic balance equations for densityomen- done in the next section using the Chapman-Enskog method.
tum muU, and energy nkgT follow directly from Eq.(1) by
multiplying with 1, mv;, andmu?/2 and integrating ovev,, lil. CHAPMAN-ENSKOG EXPANSION

The Chapman-Enskog methft] assumes the existence

Din+nV-U=0, (4) of a “normal” solution such that all space and time depen-
_ dence of the distribution function occurs through the hydro-
DU +(mn)~14;P;; =0, ®)  gynamic fields : g
2 =
DT+ 5o (PyaU+V-0)= ~ T2, ® F(r,v,0) =f[v[n(1), T(t),U(D)]. (12)
B

The notation on the right side indicates a functional depen-
whereD;=¢,+U-V is the material derivativanis the mass dence on the density, temperature, and flow velocity. When
of a particle,kg is the Boltzmann’s constant,(r,t) is the this form is substituted into the RET all space and time de-
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rivatives occur through the corresponding derivatives of the fO=nv,3p(VlIvg), ve= V2kgT(r,t)/m. (18
hydrodynamic fields. The time derivatives can be expressed

in terms of space derivatives using the macroscopic balancehe dependence on the magnitude\bffollows from the
equationg4)—(6). In this way the RET becomes an equation requirement that to zeroth order in the gradients the distribu-
to  determine the functional  dependence  oftion function must be isotropic with respect to the peculiar

flv|n(t),T(t),U(t)] on the fields which are then determined velocity. The RET to this order is therefore the solution to
self-consistently from the macroscopic balance equations.

This procedure becomes more practical for states with small 1 ©) ©) O (0) £(0)

spatial gradients. Then the functional dependence can be 58V, (VEE) = I, 1], (19
made local by an expansion of the fields in terms of their

gradients, with the distribution function determined perturba-To date an exact solution has not been found. However, a
tively. To implement this expansion it is convenient to intro- yery good approximation can be obtained from an expansion
duce a formal expansion parametereferred to as the uni- jn Sonine polynomial$13]. In all of the following it is pre-
formity parameter. It measures the dependence on spatigimed thatf(®) is known. Since the distribution function is

gradients(e.g., a term of ordee is of first order in a hydro-  jsotropic the zeroth order pressure tensor and heat flux are
dynamic gradiente? is either a product of two first order found from Eqgs(7)—(10) to be

hydrodynamic gradients or one second degree hydrodynamic

gradien}. Accordingly the distribution function, collision op- Pi(jO): pSij q®=0, (20)
erator, and time derivative are given by the representations

oL ef g 3= IO4 I s wherep is the hydrostatic pressure

1+«

=00+ eV +- . (12 p=nksT+—5-mo’x f dv, f dv, FOV)FO(V,)

The coefficients in the time derivative expansion are identi- o .
fied by a representation of the fluxes and the cooling rate in xf do®(o- g)(o-g)?
the macroscopic balance equations as a similar series through

their definitions as functionals df 1+«
To zeroth order ine the RET becomes =nkgT| 1+ 3 ™* x| (21)
0§O)f(0):J(0)[f(0),f(o)], (13

The dimensionless density* =no® has been introduced.
The analysis is similar to first order g, although tech-

J<O)[f(0),f(0)]EX02f def do®(o-g)(o-9) nically more complex. Only the results are presented in this
section with the details given in the appendixes. The RET
X{a~ 28O (v]) F O (vh) — FO(v,) FO(v,)}. equation to first order is found to be
(14

1
(07+ L)+ S (ONED) Qv - (VO)
Herex = x[r.,r+ o{n(t)]]n—n(.1 is the pair functional evalu- 2
ated with all density fields ajc the local point The collision =A(V)-VInT+B(V)-V Inn+C;;(V)
operator(14) can be recognized as the Boltzmann operator

for inelastic collisions multiplied by this factogy. The mac- 1 2
roscopic balance equations to this order read X§ dUitaU;— §5ijV ‘Uj+D(WV)V-U,
d%n=0, sOu=0, T WHOT=-(O, (15 (22

where the cooling rat¢(® is determined by Eq(10) to  where£ is the linearized collision operator

zeroth order
L(X)=-0[{@ X]+3OX,fO]). (23

O=(1-¢a? M d d
(U=1-a’) 24n Vi Ovz Here Q=1—P, whereP is the projection operator onto the
© © 5 space spanned by A, andV? [see Eq.(A3) of Appendix
X EE(vy) T (va) vy — vyl . (16)  A]. The velocity dependence on the right side of E29) is
Sincef(® has the form(11) the time derivative can be evalu- 5 1
ated as A(V|n,U,T)= §f<°>+§v-vvf<°> %
1
JOFO) = _ AT §O=Z A0y (v§Oy (1
t & o 26 Vol ) (17 P [VEO+(gm)~1v (O]

Tk
p
whereV ,=d/dv. The second equality follows from dimen-

sional analysis which requires that the temperature depen- I l ) (0)
dence off®) must occur in the form 5 KLV, (VI (24
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p

B(V|n,UT)=-— [VEO+(Bm)~1v O]
p

(1+n&n InRk
p

1 0
1+§né’nlnx L], (25

Cij(VIn,UT)=Vi(V, fO)+Li[V, 1], (26)

p—p*
3pK

1
D(V)=3zKilV,, O]+ (2—3a)QV,- (V).
(27)
Here,VUi=r7/(9vi , P“=nkgT and the linear operatdiC[ X]
is defined by
K;[X]=Qxazf dvzf do®(o-g)

X (o g)o{a”2F O X(vy) +FO(vy)X(vo)}.

(28)
The functional {*D(fM)) is related to{™) by [see, Eq.
(A23)]
(W p—p" EEIPIEN
{H==(1-a) V.U+ 5H(1), (29)

pk

Bmmo?y
(D) =(1-a?)—5— f dv, f av,
x fOv)tD(V,) g% (30)
The solution to Eq(22) is of the form

f=A4.VINT+8B-Vinn

+DV-U. (31

1 2
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P —0. (36)

A
B
D

There are additional necessary conditions for the solution to
these equations to exist, the Fredholm alterndtivB. These
“solubility conditions” are proved in Appendix B.

With the distribution functionf®) determined, the heat
and momentum fluxes can be calculated to first order in the
spatial gradients from Eq$7)—(9). The details of the calcu-
lations are given in Appendixes C and D with the results

2
Pl(Jl):_n 0’0JU|+0"|UJ—§5”VU _‘y(leVU'

q¥=—«kVT—uVn, (37

where 7 is the shear viscosityy is the bulk viscosity « is
the thermal conductivity, ang. is an additional transport
coefficient not present for elastic collisions

2mn* xy(1+a)| 3
— k . —
Tmn*nyovo(l+ @)
ok mn* x(1+ ) 7Tmn*)(na'vg(1+a)l
K=K 5 48T a),
(40)
n* x(1+
M:Mk[1+ w (41

Here the superscripk denotes the contributions from the
kinetic parts of the fluxes. The kinetic parts of the transport
coefficients in these results are expressed in terms of the

Substitution of this into Eq(22) gives the integral equations gp|ytion to the integral equations as

to determineA(V), B(V), C;(V), andD(V)
g(o)
(—g<°>TaT+ L— 7) A=A, (32)

(= {OTor+L)B=[B+(1+nd,Inx)(@.A], (33

(—¢{OTor+L0)Cj=Cyj, (39

1
(={OTor+L)D+ 5 (D) QY- (VI@)=D. (39)

1
7="15 f dvD;(V)C;(V), =0, (42
1

1
“ =—3—nf dV S(V)-B(V), (43)

whereD;;(V) andS(V) are

Use has been made of the fact tit)(f(Y)) is a scalar and

therefore couples only t®. The lowest order distribution 1 1 )

(0 is a functional of the exact nonequilibrium fields. Con- Dij(V)=m( Vivi— §V25ii)’ S(V)=V<§mvz— §kBT)'
sequently, its moments with respect to\1,, andV? are the (44
same as those for the exact distribution, i”f{®)=Pf. This

implies thatf(*) lies entirely in the orthogonal subspace soThe dimensionless integrals(a) and |, («) in Egs. (39
acceptable solutions to Eq82)—(34) must obey and (40) are



PRE 59
@)= avi [ av, (OO, 49
Uo
1 (0) (0)
(@)= avi [ av, 1OV,
n UO

X

3 1
97 (9:G)*+gG*+ 59(9-G)+ 193}
(46)

In addition to the fluxes, the cooling ratecan be calculated
to first order in the gradients from EqR9) and (30)

k

— m
g(1>=(1—a)p kp -1+ ﬁz dvlf dv,
p 4dn“o
X tO(V)D(V,)g?|V-U. (47)
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f dVD;;(V)LC;; (V)

14

1]:

f dvD;;(V)Gij(V)

f dvVS(V)- LA(V) f dVvVS(V)-LB(V)

VM_ .
f dV S(V)- B(V)
(5)

V=
f dv s(Vv)-A(V)

Further, ko=15kg70/4m and 7,=5m*%160%(7wB)Y? are
the low density values of the thermal conductivity and the
shear viscosity in the elastic limit, respectively. The constant
c*(a) is related to the fourth moment &%) by

8

2
c*(a)=— (mTB) %f de(O)(V)V4—14—5. (52

It is seen that* («) vanishes iff (?) is replaced by the Max-

This Comp|etes the results of the Chapman-Enskog 50|Lwe”ian distribution, and hence it is a measure of the devia-
tion to first order in the spatial gradients. The distributiontion of the reference state from that for a gas with elastic

function f=f(@+ 1) with f(°) given by the solution to Eq.

(19 and M) given by Eq.(31) is exact to this order in the
gradients, as are the flux¢37). These results require solu-

tion to the linear equation@82)—(34). An approximate solu-

tion, known to be accurate for elastic collisions, is given in

collisions.

IV. SONINE POLYNOMIAL APPROXIMATION

More explicit results require determination P’ and the

the next section. For that purpose it is convenient to use apolutions.A, 1B, and C;; to the linear integral equations
equivalent exact expression for the kinetic parts of the transt32)—(34). It is useful to represent these quantities as an ex-

port coefficientssee Appendix €
- 1(°>_11 L 1-3a)mn*
w5l v 5t -1+ a)(1-3a)mn* x|,
(48)

5nkg
- 2Bm

Kk

(=20

p * 1 * 2
1+E c*+ —=mn*x(1+a)

2 10

1
<13

X|2a—1+ c*

1
5(1+a)— , (49

5
3(1+a)

5
27 (2v,— 3§<°>)1{ (1+n3q1n x) £ (k" o)
m

P
3pk

p 2
1+nd, In—) c*— —mn*x(1+a)
pk 15

X

1 1
1+ =nd, |nx> a(l—a)+ Z(a(l—a)

2

4
+_

*
3C

] : (50

with the definitions

pansion in a complete set of polynomials and generate ap-
proximations by truncating the expansion. In practice the
leading term in these expansions provides a very accurate
description over the full range of dissipation and density.
The determination off(®) to leading order in the Sonine
polynomial expansion has been discussed elsewl&ieso

only the result is quoted here

1
fOV)=fy(V) 1+ZC*E(V)}, (53
1 2 5 15
E(V)=(§Bmvz> —E,BmVZJrZ. (54)

The constant* is the same as that of E¢2). It is deter-
mined by substituting Eq(53) into the lowest order RET
equation(19) and retaining linear terms in the first Sonine
polynomial to get

321—a)(1—-2a?)
81— 17a+30a3(1—a)

c*(a)= (55

Comparison of this prediction with direct Monte Carlo simu-
lation of the kinetic equation shows a very good agreement
even for relatively large dissipatidi5]. The tensorial prop-
erties of A, 1B, C;j, andD are obvious and traditionally the
scalar magnitudes have been expanded in terms of Sonine
polynomials. For elastic collisions truncation of the series at
the leading first Sonine polynomial approximation, taking
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into account the requiremeri86), gives very good results TABLE I. Summary of the main results of the paper.
(accurate to within a few percentin the present case this
approximation is N amg® | )
f=fu{ 1+ 3 E(V)— £ — (VT +4Vn)-S(V)
A(V) c4S(V) .
B(V) cs(V) —B—nk%(aiujmjui—éaijv-U)Di,-(V)JrcDE(V)v-u :
—fu(V) , n
Ci(V) CeDij(V) 7" =7 [L+ s mn* x(1+ @) ]+ 5 9%,
D(V) cpE(V) 7 = (v = 3O%) 1 f5(1+ @) (1-3a) mn* x],
'y*:%’ﬁn*zx(l-i‘ a)(l—3—12C*),
vg)| ¥ 2 K* = kK14 Ean* y (14 @) ]+ S mn* 2 (1+ ) (1+ c¥),
fu(V)=n| — e (VIvo)®, (56)

)% =3(vE —200%) U 1+ 3(1+p*)c* + fomn* x(1+ )
The factorf (V) occurs since these polynomials are defined

relative to a Gaussian scalar product. The coefficients arethe |}, 114 a)— C*})
projections of A, B, C;;, andD alongS(V), D;;(V), and 2 3(1+a) ’
E(V) p* =1+ 5 mn* x(1+a)],
2mp? . w* =2(20% =37%%) 1 (1+ndy In X)g<°>*,<k*+%(1+nan|np*)c*
c4| 2mpd A(V)-S(V) Snkg “ 2 1 ira
Cs T BV)-S(V) = 2mng? ) —f5mn* x(1+3nd, In Y)(1+afa(l—a)+3[5+ (1
_ K
5n K _ *
57) a)lc*}y,
I N SR B
52 2 Cp o P OV 64 (1+55C*)x(1—af)
comte | dve, D= 68 2 2
X[zshmn* x+(p* —1)(5—a)c*],
2 p*=1+ 1+a77n*x, X:(l—ﬁﬂ'n*)(l—%ﬂ'n*)_s,
szﬁf dVD(V)E(V), (59 = Ox Spr 0% 250 (17 02) (14 Sct),

vy,

1
where use has been made of the definiti#® and (43). é“)*z[;0(16!)(p*1)+3£z(1a2)(1+6%0*)x09
The distribution functionf™) in this approximation is ob-

* _ _ _ 5.2 _ 201 _ -1
tained from Eq.(31) c*=32(1-a)(1-2a%)[81 3.7a+30a (1-a)]
C
3 A=12 (1*&)(5a2+4a*1)+1—2(159a+ 3a?—19a—15a3)
= — | = (VY T+ V) - S(V)
X(1+a),
2 kl( 2 vy=x[1-3(1-a)*][1-gc*],
+— 7"z U+ U;— 5 6;V-U|D;;(V) 19-3
n 7o\ GiYiToMiT 3o ij vﬁ=v2=%,(l+a)x1+i’—2(1—a)+T24aC* ’

—cpE(V)V-U

. 60 e 1te

- 2_ 3
Y=g X 128—96a + 15a“— 15a

To evaluate the kinetic parts of the transport coefficients
the forms (48)—(50) can be used, with the frequencies
v,(a), v.(a), andv,(a) determined from Eq(51) using
the approximation56)

C*
+ 6—4(l5a3— 15a2+498a—434)} )

v.=v, have been reduced by the characteristic collision fre-

f dVD;; LfyD;; f dvS-LfyS quencyvo=p*/ 75. The resulting dimensionless variables are
Vom0 WEVu£TT - * = pf * = f * = e/ *=nuw/T
defMDIjDI] de fMSS K 7o 4 Yo, “ Ko H H K(06’2)
(61)
p*=plp*, *={lvy, vy=v,lve, vi=vi=vvg.
The calculation of all properties now has been reduced to (63

guadratures. An outline of the integrations involved are

given in Appendix E while the contributions to the cooling Also shown in this table is the Carnahan-Starling approxima-
rate are obtained in Appendix F. The results are summarizetion for y as a function ofn*. It is easy to check that all

in Table I. The transport coefficients have been reduced byesults presented in Table | have the correct elastic limit for
70 and ko. The cooling rate/ and the frequencies, and  a=1[12].
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FIG. 1. Plot of the low density transport coefficients as a func- FIG. 3. Plot of the reduced thermal conductivity
tion of the restitution coefficient: shear viscosityy* («,0) (solid ~ «*(a,n*)/«*(«,0) as a function of the reduced density as ob-
line), thermal conductivity«* («,0) (dashed ling and u* («,0) tained from the Sonine expansion of the RE&®lid line) and from
(dotted ling. the kinetic model equation discussed in Seddéshed ling From

the top to the bottomg=1, 0.8, and 0.6.

The transport coefficients for granular flow of dense, . . . . .
weakly inelastic hard spheres were studied by ketal. [5] port_ (_:oeff|C|ents are increasing functions of Fhe den3|ty. at
by using an approximate moment method to solve the Engufﬁmently Iargeq, yvhqse slopes decrease with decreasing
skog kinetic equation. However, the method does not includ& (-6, greater dissipation
all contributions to leading order in (1a), and neglects
completely those from¢*(a) and c*(a). It also gives V. KINETIC MODEL
u(a)=0 in contrast to the finite result found here. In gen-
eral, Lun’s results show important quantitative discrepancie§Or
with those derived here. For example, @=0.6 andn*
=0.2, the discrepancies are11% for the reduced shear
viscosity 7* and ~73% for the reduced thermal conductiv-
ity «*. Figure 1 showsp*(a,n*=0), «*(a,n*=0), and

The Chapman-Enskog solution to the RET described here
states with small spatial gradients is technically difficult
but straightforward. For more complex states driven far from
equilibrium the RET becomes intractable. In these cases it is
useful to have kinetic models with the same qualitative fea-
f . X . AN tures as the RET but with a mathematically simpler structure.
p*(a,n*=0) as functions ofa in the low density limit.  the prototype example for this approach is the Bhatnagar-
These are the same as those given in Rif.Recent Monte 5o Krook(BGK) kinetic model for the Boltzmann equa-
Carlo S|mulat|0n§ of the dllt_Jte shear.wscosny confirm thetiOn [17]. Generalizations to the RET for both elasfits]
accuracy OI this calculagon[Z]’; F|9ures 2-4 show 404 inelastic[4,10,11 cases have been discussed recently
”*(“’n*)/”*(“’o)’ «* (a,n*)/x*(a,0), and  and applied with excellent success to shear flow far from
©* (a,n*)/u*(a,0) as functions of the density fat=1,  gqyilibrium. The objective is to test the most sophisticated of

0..8, gnd 0.6. Al_so shown.in Figs. 2—4 are the results from theyo5e model§11] for the prediction of the transport proper-
kinetic model discussed in Sec.[¥6]. In general, all trans-

2.2 . T . . . T .
35 . . . T . . . T
20| e
18} 4
8
_ 5
= S 16 B
i =
X 5
c ~ 14} —
5 =
=
12 -
1.0 n 1 n 1 " 1 1 1 n
05 . . , \ 0.0 0.1 0.2 0.3 0.4 0.5

0.0 0.1 0.2 03 0.4 0.5 n'
n FIG. 4. Plot of the reduced transport coefficient
FIG. 2. Plot of the reduced shear viscosifj (a,n*)/ 7* («,0) ¥ (a,n*) u*(a,0) as a function of the reduced densit§ as
as a function of the reduced density as obtained from the Sonine obtained from the Sonine expansion of the R&Dblid line) and
expansion of the RET. From the top to the bottom, we have confrom the kinetic model equatiofdashed ling From the top to the
sidered the values of the restitution coefficient 1, 0.8, and 0.6.  bottom,«=0.8 and 0.6.
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ties calculated from the RET in the previous sections. The VI. DISCUSSION

detailed analysis leading to the model kinetic equation can be

found in Ref.[11] and will not be repeated here. The model . .The RET. Kinetic theqry for hard spheres W't.h (_alastlc col-
kinetic equation is lisions provides the basis for an accurate description of trans-

port over a wide range of densities, as confirmed by both
Monte Carlo and molecular dynamics simulations. The ob-
—p(f—fO)+(X-S jective of the present work has been to extend the application
of this equation, with appropriate modifications, to the case
of inelastic collisions. The transport processes considered are
. (64  those for a fluid with small spatial gradients of the hydrody-
namic fields. The macroscopic balance equations for mass,

Equation(64) has the same form as EfL) except that the Mmomentum, and enerdhor, equivalently, for number den-
RET collision operator has been replaced by the terms on thaity: flow velocity, and temperature, as given in Egg—(6)]
right side of Eq(64). The first term is the exact projection of follow directly from moments of the RET with respect to
the collision operator into the subspace spanned by,Jand 1. V. andv?. These equations include the unknown pressure
V2 [see Eq(A2) of Appendix A]. The second term represent tensor, heat flux, and cooling rate which are given as func-
an approximation to the collision operator in the orthogonaltionals of the distribution functiof The closed set of hydro-
subspaceQ=1-P. It differs from the corresponding ki- dynamic equations are obtained when a solution to the RET
netic model for elastic collisior|d.8] only by the last term of is known as a functional of the hydrodynamic fields. Here,
the brackets which accounts for the cooling. The functionghis solution is obtained perturbatively for small spatial gra-
S(V) andDj;(V) are given by Eq(44) while X andY;; are  dients using the Chapman-Enskog method well known from
defined by the case of elastic collisions. The distribution function has
been calculated through first order in the gradients. Use of

J
E+v~V)f=PJE[f]+Q

(0) 1
+YDi O+ SV, (V)

this in the functionals for the pressure tensor, heat flux, and

f dVS Je[ (O] f av DijJE[f(o)] cooling rate provides a representation of these as linear com-
X="—— Y= . (65  binations of the gradients. The coefficients in these expres-
f dv {0s.s f dv f©D,, D, sions are the transport coefficients which are functions of the

density and restitution coefficient. Use of these first order

, o results in the macroscopic balance equations provides the
The Chapman-Enskog solution to the kinetic model equapyqrodynamic equations which are the basis for a fluid dy-

tion proceeds in the same way as described in Sec. lll. Taamics description of granular flow. This work extends a

. . O . . .
Icz\l/\)/e_st order in the gradientS®) is again the solution, and recent corresponding analysis for a low density granular gas
fi*)is determined from Eq(22) with only the replacement 1] The following comments are offered for context and

©) clarification.
The distribution functiorf is given in terms of a reference
(1) H_2_vy. (1)
L=t 7 Vo (V. (66)  function f© which is the solution to Eq(19). While the

exact solution to this equation has not been obtained to date,

All results of Table | are the same except now it is easy to verify that it differs from the Maxwellian for
elastic collisions. This reference function depends on space
v’f, = p* 4 (0% (67) and time only through the hydrodynamic fields. In particular,
for both elastic and inelastic cases, the reference state is time
and dependent. However, for the inelastic case the time scale for

the temperature is set by the cooling r&t® rather than the
3 spatial gradients. This means that within the hydrodynamic
vE=vh=v*+ Eg(O)*’ (68) description_ there can be two we!l-separateql time scales, for
weak gradients and strong dissipation. This should not be
confused with the separation dfoth hydrodynamic time
with v*=w/v,. Since the kinetic model has only one free scales from the shorter kinetic excitations in the solution to
parameterv* only one of these frequencies can be repro-RET. Investigations to datl 1] suggest that the kinetic ex-
duced exactly by the model. For example, the chaife citations remain isolated from the hydrodynamic excitations
equal t0v’;—§(°)* will yield the exact shear and bulk vis- so that the later dominate on sufficiently large time scales,
cosities, but the thermal conductivity apdwill be approxi-  just as in the elastic case.
mate(the Prandtl number at low density is 1 instead of 2/3). The deviations of from f(°) are proportional to spatial
This limitation of the one parameter kinetic model is well gradients of the temperature, density, and flow velocity. The
known and occurs for the case of elastic collisions as well. Itoefficients of each gradient are functions of the velocity
is remarkable that the kinetic model reproduces exactly alwhich are determined from linear inhomogeneous integral
other features of transport, both the dependence on dissipaguations. In the elastic case these coefficients are nonzero
tion and on the density. This dependence is shown in Figonly for the temperature gradient and the traceless part of the
2-4 for different values of the restitution coefficient. Excel- velocity gradient. For inelastic collisions there are two addi-
lent agreement with the Enskog results is found over a wid¢ional terms, one proportional to the density gradient and one
range of values fon* anda. proportional to the divergence of the velocity field. The
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former gives rise to an additional term in the heat flux, whilecalculations here, appropriate at high densities, make com-
the latter provides an additional term in the cooling rate. Theparisons of transport properties in this manner as well. It is
latter provides a correction to the results of Rgf]l. The hoped that such simulations will be performed in the near
additional term of the heat flux due to the density gradienfuture.
has been recognized in earlier work.

The form of {9 and the solutions to the linear integral ACKNOWLEDGMENTS
equations to determinkeand the transport coefficients were
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Imit and fo give an excetient approximation - "' the Direccim General de InvestigagioCientfica y Tecnica

liminary comparisons of the resulting viscosity with Momef(Spair) through Grant Nos. PR1997-0248 and PB97-1501
Carlo simulations at low density also confirm the accuracy O(V G

this method[2]. The method does not make amaypriori
limitation on the degree of dissipation so it is expected that
the dependence of the shear viscosity, bulk viscosity, thermal

conductivity, 4, and cooling rate on both* and « is well To initiate the Chapman-Enskog expansion it is useful to
described. make a formal transformation of the RET to expose the ef-

A primary outcome of these calculations is a form for thefects of cooling. First, define the operauﬂf] by
hydrodynamic equations with all parameters given explicitly. ' '

The heat and momentum fluxes are determined to first order ) 1
in the gradients. Since these occur as divergences in the hy- Jel[f]=Jg[f]— Egvv-(Vf), (A1)
drodynamic equations their contributions are of second order
in the gradients. In contrast, the cooling rate is determined, decompose it according to
only to first order, showing a contribution proportional to
V.U and given byV* in Table I. The second term in the IL[F]—PIL[F]+ QIL[F], (A2)
brackets of that expression does not appear to have predicted £ £ F
before. In principle, the Navier-Stokes order hydrodynamicsyhere P is the projection operator onto an orthonormal set
for inelastic collisions requires going one order further in theconstructed from{1v 2,\,};
Chapman-Enskog expansigBurnett order to obtain the
cooling rate to second order. This has been done in the low S 0) , N
density limit where it is found that the corrections are very Pg(v)=n 2 Pa(VTE(V) | dv g (v)gv'),
small[1]. Consequently, it is likely that the hydrodynamics (A3)
determined here provides a good basis for applications of
fluid dynamics to granular flows. mA 3

The Chapman-Enskog method does not make explicit use {(V)}= { 1,01/2(7V2— E) ,(mﬁ)lle]- (A4)
of the form of the collision operator until a late stage in the
analysis. Therefore, the results can be extended in severghe normalization coefficient
directions without new conceptual difficulties. One generali-
zation of importance for practical applications is to include 4 ) )
hard objects of different shapes, a degree of roughness, anda  ¢=N j dvft(v) TV )
possible velocity dependence @f In the opposite direction,
it is of interest to consider simpler collision operators thatwith c* given by Eqg.(52). Also Q=(1—7P) is the orthogo-
allow access to solutions for more complex nonequilibriumna| projection. The contributions froJe[ f] can be calcu-

states far from equilibrium. One such example has been exateq directly in terms of the collisional parts of the fluxes
plored in Sec. V. It is shown there that a simple kineticang the RET equation becomes

model has the capacity to reproduce most of tfieand «

dependence of the transport coefficients, giving credibility to

its application to more complex states. One example of the ~ (d+V-V)f =57V, - (V)

latter is a recent study of the rheology of a granular medium

under shear flow19]. Good agreement with Monte Carlo , B .

simulations of the RET are obtained for a wide rangeof = QIg[f]— =1 )[VVPC*‘ %
a, and the shear rate.

As noted in the Introduction there are concerns that the
qualitative changes introduced by inelastic collisions may
invalidate the necessary conditions for a hydrodynamic or
kinetic theory description. If the RET is a good description, To zeroth order in the gradients this equation becomes
the validity of hydrodynamics can be tested by Monte Carlo
simulation of the evolution of initial states with small spatial
gradients to check the* anda dependence of the transport
properties predicted here. Further, a test of the validity of the
RET is possible using molecular dynamics simulations. Thavhich is the same as EL9) of Sec. Ill.

APPENDIX A: CHAPMAN-ENSKOG EXPANSION

mpa 3|2 3 15
=§+§C, (AS)

m
—v2—1>

X (V-q+P%VU)|. (A6)

Q

1
JO[O, O] 5§<°)Vv‘(Vf(°))} =0 (A7)
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To first order in the gradientgA\6) becomes fO(r; = o,v,,1)

agO)f(l)zzP%g(O)Vv (Vf(l))+ QJ(l)[f] Hf(o)(rl,VZ,t)[ 1i[0’ Vin n_(VUiln f(o))((l' V)Ul

1
—5(3+v-vu|nf<°>)a-V|nT ] (A16)

1
— Qig“(l)Vv-(Vf(o))—[(&§1)+V-V)f(°)

1 B where y is obtained from the functiong}(r,,r,* o,|n) by
1) 0 (0) c . I L
5TV (V) | = SRV Vp evaluating all density fields ai(r, ,t). The collision operator
to first order then becomes
3p¢/mB

LI a7 .
+20(3V 1)VU

. (A8) Q[ f]1— QIO (O £(O)]— ££(1)

L (0)
1+§nan Iny | K[fY]-VInn

The first term on the right side vanishes, i.e.,
PV, (Vi) =0, A9 1
v ) (A9) +KGLV,, f@]9;U;+ z7C[VU-(Vf<°>)]-V InT,

which follows from the conditiorPf(Y)=0. The fourth term (A17)
is calculated using the fori8)

O)§(0) £(0)1=, 42 O o o
(agl)_{_v.v)f(O)_ ;g(l)vu(vf(o)) J [f ,f ] Xo j dVZJ d(f@(ﬂ' g)(ﬂ' g)

X{a 2O (v FO(vh) — FO(vy) FOvy)},
= OGO +v- V)Inn—(V, 1O)(D+v-V)y, { (vp) F(vy) (V) F(v,)}

(A18)
1 1
—EVU-(Vf(O))(8§1)+V-V)In T_Eg(l)vv.(vf(O))_ L(X)=—Q(IOFO X]+ IO X, O], (A19)
(A10) , A
K[X]=Qxo f dvzj do®(o-9)
The macroscopic balance equations to first order in the gra- L
dients are X(o-g)o{a 21OWHX(vh) + FO(v) X(v,)}.
(oM+U-V)n+nV.U=0, (A11) (A20)
Substitution of Eqs(Al4) and (A17) into Eq. (A8) gives
(0 +U-V)U;+(mn)~1g,p=0, (A12) L
(@0+ 0D+ 05 (v, (VIO)
(1) 2p 1
(7 +U-V)T+ -V - U= -T¢M.  (A13)
B
= —{Bk 1+ndp, InBk [FOV+(Bm) " Y(V,f®)]
p p

Use of these in EQLA10) gives finally

1
1 +(l+—n<9nln)()7C[f(°)] -Vinn
(oM +v-V)fO— 55‘1’% L(VFO) 2
=fOV.Vinn+(mn) Y(V,i(?).vp +{ _[f<o>v+(ﬁm)—1(vvf<o>)]£k+f<0)v
p

1
- E[VU-(Vf<°>)]v-V InT—(V, fO)(V-V)Uu;
-ViInT

1 1
+5V, (Vf<°>)v+§7c[vu (VEO)]

V.U. (A14)

_{f(o)_%vv.(vf(o))
p

1
+ (v,-vuif<°>)—§5ijV~Vuf(°>+/cj[vvif(°>]

Finally, the collision operator must be expanded to first order

in the gradients. To do so the following results are needed: p—pX
-5 ?Qvu-(vﬂo)) 9. (A21)
p

1
+ +_ .
X(rl’rl_(r'n)ﬁ){( 1x5ndpInxe-Vin n), (A9 |1 the last line use has been made of the identity
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12 m
PV, - (VEO)=—£(0) —'8V2—1 . (A22)
’ 4+5c* | 3

To expose the functional dependencez8f on 1) Eq. (10) is evaluated directly to first order in the gradients

2
t=1-aP 0 X [ avy [ av, 1010 [ da e g0

ma? . R
+(1—a2)'81;:]Xf dvlf dV2f(0)(V1)f(°)(V2)fda-@(o--g)(a--g)3(VU2i In ) (g V)U,
mo? A R
+ 1= T X [ avy [ VA OV IO + 1OV OV, [ deo(o-g(a-o7
mmro? maro?
=(1—a2>ﬁ2”% f dv, f dvzf<°><v1>f<°>(vz>g3—<1—w% f dv, f dV,f OV, FO(V,)g?V -U
B

m 2
+(1- az)% f v, f dV, FOV ) FD(V,) g3

1
_ g(O)_ §(1_ a,Z) mn* yV-U+ g(l,l)(f(l)), (A23)
m 2
(0= (10t X i f vy f v, FOV) FO(V,)g?, (A24)
m 2
§<1v1><f<1>)z<1—a2)ﬁl”% f dv, f dV, OV FB(V,) g%, (A25)

With these result$A21) becomes

1
(&§0)+£)f(1)+ g(lvl)(f(l))QEVv.(Vf(o))

[
T

1 1
+[ —[f(O)V+(Bm)‘1(VUf(°))]£k+f(°)V+ EVU-(Vf(O))VvL EK[VU.(Vf(O))]
p

[fOV+(Bm) YV, )]+ -Vinn

1
1+nd, |n£k 1+ 5ndy InX>IC[f(°)]
p

-VinT

(0) (0) L 2
HVV )+ KLV, F21)5 | dUit aiUj— 56V - U

1 _ nk
+ §/ci[vv_f<°>]+'°3—'f(2—3a)vi-(Vf(°>) V-u. (A26)
' p

This is the resul{22) used in the text.
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APPENDIX B: SOLUBILITY CONDITIONS 1

k_
The solubility conditiongFredholm alternativg14]) for =" 10 v _(1/2)§(o)]f dvD;;(V)Cij(V). (C2
Egs. (32—(35) can be identified by using the propei($6) K

and the definition$32)—(35) to write these equations in the

equivalent form

The integral on the right side can be performed using the
© definition (26)
—{OTor+L— % A=A, (B1)

o/
— | dVD;;(V)C;;(V)
O(— {OTgr+ £)B=[B+(1+na, In y) {O.A], (B2) 10 ne

dem< v 5,J)V(V f(0))
A~ {OTor+L)Cj=Cyj , (B3)

1 +1g/ dVDi(VKLY, O]
A~ {OTor+ L)D+ 5 (D) QV, - (V) =D.

(B4 1
) =—pk+ Ef dvD;(V)K[V, ], (C3
Use has been made of the property
and Eq.(C2) becomes
A A A
oT B le \ B T B (B5)
a = — =V, = &
|G 27 G G _ P : ©
D D D 7*= 1- kf dVDij(V)ICi[VUjf 11

1
v, Eg(O)
. . (CH
as follows from Eq.(A9). Since the left side of these equa-
tions lies in the orthogonal subspace it is necessary that the
right sides must as well, or equivalently

The remaining integral is performed using the definition of
IKC in Eq. (28
A
i 0 B6
P c. |70 (B6)

D

| avoynkry,, 1)

= 2 . o o .
These are the solubility conditions. It is straightforward to X J dVlD'J(Vl)QJ dej do®(o-9)

verify that they are satisfied by direct integration using the
definitions (24)—(27) and Eq.(A3). X (o g)o-i{a’zf(o)(VDVvé_ fO(V))
]

APPENDIX C: KINETIC CONTRIBUTIONS +f(0)(V1)VUZJ_ fOv,)l. (CH

Equations(48)—(50) for the kinetic contributions to the
transport coefficients follow directly from the integral equa-
tions. Consider the viscosity. Multiply E¢34) by D;; and

integrate over the velocity to get The projection operato@ can be replaced by the identity

operator becaus;j(V,) is traceless. The scattering law for
Vi andV; is given in Sec. Il. However, a simpler form is
obtained by changing variables to integrate ovgrandV,
ij, (C1) instead ofV; andV, in the first term of Eq(C5). The Jaco-
bian of the transformation is and o~-g= — o g'. Also,
wherev, is defined by Eq(51). From dimensional analysis V,(V},V4)=Vi=V,;—}(1+a)o(o-g). The integral then

i
Ko T2 50 becomes

(= {OTor+v,) n*=— dVD;;(V)C;

10
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| avpyki, 101=—xo [ v, [ av 10w, 1O [ 450596 910D, (V) -Dy (V)
1
=§m(1+a)xa3f dvlf dV, VYLV, FO(Vy)]
xf do0(0-g)(a-9*oj[(a-V1) —(1+a)(0-g)]+3Vy}

1 R - 3 -
=€m(1+a))(0'3f dvlf dVZf(O)(Vl)f(O)(VZ)fdo-(a'-g)[4(o--V1)—§(1+a)((r-g)}

1
=§(1+a)m77)(0'3f dvlf dv2f<°)(v1)f(°>(v2)[§(vl.g)—(1+a)92

2
=— §pk7'rn*)((1+a)(3a—1). (C6)
|

Use of this in Eq(C4) gives the final result (o 9o Q*[S(VY) —Si(V)]. (C9)

k

e P 1+i7rn* (1+a)(3a—1)|. (C7)
g 1 £© 15 X ' Here O* is the adjoint projection operator with the effect
Vﬂ— E

The kinetic part of the thermal conductivity is obtained in . _ 1 )
a similar way. Multiplication of Eq(32) by S(V) and inte- Q*S(V)=S(Vy) ~ 3ﬁmvi dVi(V)V-S(V)
gration over the velocity leads to

v{l V2 > 1+1 *) (C10
1 =VilzmV— — =Cc* .
Kk=—3—T(vK—2g<°>)—1f dVS(V)-A(V) 2 2B\ 2
1 5 ith thi
__ _(VK_zg(o))_lf dVS(V) - (_f(O) With this result(C9) becomes
3T 2
1
+EV~VUf<°>)V—%<Vf<°>+<ﬁm)—lvl,f<°>>] f dVS(V)- K[V, (V)]
p
1
:5kBpk(V g1 1+1 LA ><V2-VUJ d((}-g)(&.g)z[((}-vl)z
2m K 2 p"

3 - - 1 N
-1+ @)(0- 9o V) + 5 (14 )59

mg o
——kj dvsS(V)- K[V, - (VIO)]]. (C9
15p 1 5 1
+oVEi- ——| 1+ —c*
The last term on the right side is, more explicitly, 2 2pm 2
=—ipk(l+a)27r n* -1+ 2«
J dVS(V)- K[V, (VIO)] 2(pm) X
! 1 —5 * C11
— o[ av, [ av, 10wy Har o gy e (1D

. (0) > .
X{Vy, [Vaf (VZ)]}f do®(o-9) Use of this in Eq(C8) gives the desired result
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k_ Skgp* (0) 1 P c* 1 2 —i dvs-B
K= (v,—2¢O)~1 1+§ 1+— ok +—(1+a) 3n ‘
T
1 S = —37(0))-1 (0) _ ok
*| _ - _ * =22v,—3") 7 (1+nd,In x)¢ K
X aryn 1+2a+ 2(1+a) 31t a) o } © n n
(C12 5p 1 p 1
+——k— 1+nd,In—|c*+ 1+§nanlnx
To evaluatex®, multiply Eq. (33) by S(V) and integrate 4 p mp? p
over the velocity to get 1
1 an f dVS(V)JC[f(O)]]. (C13
:—(2vﬂ—3g<°>)—1—f dVS(V)-[(1+nd,Iny)
3n
x{®.A+B
{OALE] The last integral is

-
=2(2v,—3¢{)* (1+n(?nInX)§(0)ﬁKk

| avsv) K1@1=—xo? [ av, [ v, (OO, [ 450050/ 910 TS (VD -S (V)]

Em(1+a)xa3j dvlf def(O)(Vl)f(o)(Vz)J d&@(&-g)(&-g)z[(&-vl)z

—§(1+a)(&.g)(&.v )+ E(1+a)2({r-g)2+ “Vi— ——| 1+ 1<:*
4 Vs 21 28m 2
3 1
—_ __ nk * _ - _ _ | ~*
25m (1+a)mn* x| a(l a)+4(a(l a)+3 C (C19
Substitution of Eq(C14) into Eq.(C13 gives
T 5 pkg 1
k_ 0)y -1 0), k
w —ZH(ZVM—3§( ) [(1+nan Inx) @k +ZW(1+M” In;) c*—| 1+ 5nd, Inx)
1
><B—p(1+a)7rn ¥l a(l—a)+ > (a(l—a)+§ c* ] (C15

APPENDIX D: COLLISIONAL TRANSFER CONTRIBUTIONS
The collisional transfer contributions to the pressure tensor and heat flux are determined frqi®) Bqd.(9). Consider
first the pressure tensor which becomes to first order in the gradients

1 A aa
Pﬁzz(lw)ma?'xf dvlf dvzf do0(o-9)(0- )00 FONV)FD(V) + BV FO(Vy)

1 . 1 .
- §f<°>(v2)a. viOvy)+ Ef<°>(v1)a- viOv,)

1 ~
FOV OV, + SFOV) e VEO(Vy)

1 ~ - - .-
=§(1+a)m03)(f dVlf dvzf da@(a-g)(a-g)zoioj

1 (1) (0) 2
15(1+a)m0' mx | dVq [ dV, (V)T (V,)(20,0;+9%6;)

oy e, © ) - SVIREIC S
AU, mo“y | dV, | dV,f (Vl)sz/f (Vy) | do®(g-0)(g- o) giTjoy
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2 * k lta (0) (0)
=1—5(1+ a)n 77)(Pij+(7kU/4—8m0' wx | dVqi| dV, (V) FH(V,)
XV, 0 [0i9;9k+ 9%(9; S+ 9i Sik + Ik i) ]

2 ta (0) (0)
15(1+a)mn 77)(P +o U, ——= 78 mo fo dVlf dVv, fH(V)FP(V,)

X{9_3g/gigj9k_9_1(919k5i/+gigk5j/+gjgi5k/"’g/gj5ik+g/gi5jk+9/9k5ij)—9(5j/5ik+ i/ it Ok, 0ij)}
1+a momyn*

—(1+a)n* 7T)(P ETE =

(0) (0) 3 2

(B1)

From this equation one can easily identify the collisional transfer contributions to the shear viscasitythe bulk viscosity
v given by Egs(38), (39), and(45).

The collisional transfer contribution to the heat flux to first order in the gradients can be obtained in a similar way. The
result is

1 A e e o s 1 .
qi°=§(1+a)m03)(f dvlf dvzf do0®(o-g)(0-9)*(0-G)o; f<1>(v1)f<°>(v2)+§f<°>(v1)o-Vf<°>(v2)}

1 1+a Mo mxn _
= S(1+ an* mxql— 4 T —f av. [ av, 1O )f<°><v2>[ -G+ gG?+ a(g-G)+ ; }

(D2)

From Eq.(D2) one may identify the collisional contributions to the thermal conductivignd the coefficient. given in Egs.
(40), (42), and(46).

APPENDIX E: FIRST SONINE APPROXIMATION In a similar way, the integrdl, is given by

In this appendix an outline of the integrations appearing
in the evaluation of the transport coefficients is given using I

K= 77’3v69f dgf dGe 9*26e~26710G
the first Sonine approximations for the zeroth-order distribu-

tion (53) and for the first-order distributio56). The fre- * 15 g2
quenciesv; and vy =wv} are given by Eq(6) in the first Xi1+ T ?—51152 7+2G2>
approximation. It is straightforward to show that the projec-

tion operatorQ in the definition of£ can be replaced by the g? 2
identity in both integrations, and these integrals become the +2v54(g- G)%+ 21)54 Z+G2 H

same as those appearing in the Boltzmann l{emicept for a
factor y) [1]. The details will not be repeated here and only
the results are quoted in Table I.

The collisional contributions are given in terms of the

3 1
97 (9:G)*+9G*+ 59(9-G)+ ng}

dimensionless integrals, and 1, defined by Eqs(45) and 8 7
(46), respectively. In both cases, the integrations over the :_( +_C*) (E2
relative and center of mass variablgandG are performed (2m)? 32
and nonlinear terms ie* are neglected. The integra) is
given by APPENDIX F: CONTRIBUTIONS TO THE COOLING
3, -7 222 \—2G2/p2 RATE
=3, —g°2v5a— v
hy=m v j dgj dce ° °9 Up to the first order in gradients, the cooling rate is
c*[15 [d? 5 1
X 1+Z ?_500 7+2G év:g(O)_§(l_a,2)ﬂ_n*XV.U+§(l,1), (FD
2 2
+205%(g-G)2+ 205" 9 e H where {(® and ¢ are defined by Eqg16) and (30), re-
4 spectively. The contributiog(®) can be evaluated easily by

using the first Sonine approximation f&°) [1]. Its expres-
4 1 : : . T
— _( 1— — *)_ (ED) sion appears in Table I. The two first contributions to the
(2m)12 32 cooling rate were calculated by Goldshtein and Shaffip
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although an error was made in the expressiondbr The  To convert Eq(F5) in an explicit expression fot,, the two
corrected value for the latter was obtained in R&8| and is  integrals appearing in the right-hand side of Bép) and the
given by Eq.(55. With this change the results of Réff]  quantityr, must be evaluated. The calculation is straightfor-
agree with the first two terms on the right side of Hel). ward, leading to the results

In the first Sonine approximatio*"Y is given by

,8m770'2)(
L)y — (] 2N "7 A 15
AD)=A=e) CDJ dvlf dva f VE(V)QV, - (VIO)=Tnc*(a),  (FO
X fOV ) fy(V)E(V2)g®
1 3 m |\ Y2
S _ 2 % _ 2
—2(1 o ) 1+ 64C )(m,@) Nno“xCp . f dVE(V)K,[VUI f(O)]
F2 3, c* 159 +3a”— 19« —154°
In order to determine,,, multiply the integral equatiofB5) g| e tda—1+ 15 1-a
by E(V) and integrate oveY to get
X (1—a?)mn* yn=\(a)mn* xn, (F7)
(={OTor+v)cp
2 deE V)D(V 1+
= 14 o
150 (V)D(V) vi=—"T=""—11128-96a+ 15a°—154°
Y Vo 48
1
— — D[ dVE(V)QV,- (Vi) F3 c*
15n¢ f (V)QV,-( ) F39 + a(15a3—15a2+498a—434) , (F8)
with the definition
deE(V)E[fM(V)E(V)] and consequently
v,= (F4)
defM(V)E(V)E(V) 1 (245nmn* y+[(p—po/3pk](2— 3a)c*
CD:_ .
[_)imensionlzljlzl analysis requires th#f and v, are propor- Yo %g(O)* +v* + (5% 164)| 1+ %c*)x(l— a?)
tional to T+< while the integrals on the right-hand side are
independent off. Thereforecy,= T~ Y2 and Eq.(F3) gives (F9
2 1 . . )
T f dVE(V)D(V) Finally, (XY is obtained from Eqs(F2) and (F9). We are
— O v, not aware of any previous calculation of-Y for compari-
2 son. It is noted that*Y vanishes in the limits of elastic
1 spheres =1 , arbitrary density and of dilute inelastic
- 55(1’1)J dVE(V) QVU'(Vf(O))}- (F5  spheresif* =0, arbitrary inelasticity.
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