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Hysteresis and avalanches in two-dimensional foam rheology simulations
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Foams have unique rheological properties that range from solidlike to fluidlike. We study two-dimensional
noncoarsening foams of different disorder under shear in a Monte Carlo simulation, using a drive@ large-
Potts model. Simulations of periodic shear on an ordered foam show several different response regimes. At
small strain amplitudes, bubbles deform and recover their shapes elastically, and the macroscopic response is
that of a linear elastic cellular material. For increasing strain amplitude, the energy-strain curve starts to exhibit
hysteresis before any topological rearrangements occur, indicating a macroscopic viscoelastic response. When
the applied strain amplitude exceeds a critical value, the yield strain, topological rearrangements occur, the
foam starts to flow, and we observe macroscopic irreversibility. We find that the dynamics of topological
rearrangements depend sensitively on the structural disorder. Structural disorder decreases the yield strain;
sufficiently high disorder changes the macroscopic response of a foam from a viscoelastic solid to a viscoelas-
tic fluid. This wide-ranging dynamical response and the associated history effects of foams result from
avalanchelike rearrangement events. The spatiotemporal statistics of rearrangement events do not display
long-range correlations for ordered foams or at low shear rates, consistent with experimental observations. As
the shear rate or structural disorder increases, the topological events become more correlated and their power
spectra change from that of white noise towarl ddise. Intriguingly, the power spectra of the total stored
energy also exhibit this 1/trend.[S1063-651X99)11405-3

PACS numbsgs): 83.70.Hq, 82.70.Rr, 02.70.Lq, 64.60.Cn

[. INTRODUCTION slow time scales, can lead to a highly nonlinear macroscopic
response. Here we study the relation between the micro-
In addition to their wide-spread industrial importarjdé, scopic topological events and the macroscopic response in
foams provide significant clues to the rheology of other comiwo-dimensional noncoarsening foams using a driven ex-
plex fluids, such as emulsions, colloids and polymer meltstended largeQ Potts model.
because we can observe their structures directly. The topo- In foams, a small volume fraction of fluid forms a con-
logical structures and the dynamics studied here also occur itnuous network separating gas bubblgg. The bubble
other cellular materials, such as biological tissues and polyshapes can vary from spherical to polyhedral, forming a
crystalline alloys. One of the most remarkable and technoeomplex geometrical structure insensitive to details of the
logically relevant features of foams is the range of mechaniliquid composition or the average bubble §i2¢ Because of
cal properties that arises from their structure. For sufficientlithe complexity of describing the network of films and verti-
small stress, foams behave like a solid and are capable @ks in three-dimensional foams, most studies have been two-
supporting static shear stress. For large stress, foams flodimensional. In two-dimensional foams free of stress, all
and deform arbitrarily like a fluid. However, we do not yet vertices are threefold and the walls connecting them meet at
fully understand the relationship between the macroscopi¢20° angles. Minimization of the total bubble wall length
flow properties of foams and their microscopic details, e.g.dictates that a pair of threefold vertices is energetically more
liguid properties, topological rearrangements of individualfavorable than a fourfold vertex. Therefore, topology and
bubbles, and structural disorder. Constructing a full multi-dynamics are intimately related, with the dominance of
scale theory of foam rheology is challenging. Foams displayhreefold vertices resulting from considerations of structural
multiple length scales with many competing time scalesstability in the presence of surface tension. When shear stress
memory effectge.qg., the hysteresis discussed in Sec. IV bedis present, a pair of adjacent bubbles can be squeezed apart
low), and slow aging punctuated by intermittent bursts ofby another pairFig. 1), known as to a T1 switching event
activity (e.g., the avalanches of T1 events discussed in Se¢3]. This local but abrupt topological change results in
V below), all of which severely limit their predictability and bubble complexes rearranging from one metastable configu-
control. These problems are intriguing both from an appliedation to another. The resulting macroscopic dynamics is
and from a fundamental perspective — they provide beautihighly nonlinear and complex, involving large local motions
ful concrete examples of multiscale materials, where structhat depend on structures at the bubble scale. The spatiotem-
ture and ordering at the microscale, accompanied by fast angbral statistics of T1 events is fundamental to the plastic
yielding of two-dimensional liquid foams.
The nonlinear and collective nature of bubble rearrange-
* Author to whom correspondence should be addressed. Addressent dynamics has made analytical studies difficult, except
correspondence to CNLS, MS B258, Los Alamos National Laboraunder rather special assumptions. Computer simulations can
tory, Los Alamos, NM 87544. Electronic address: jiang@Ianl.gov therefore provide important insights into the full range of
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late the macroscopic mechanical response to microscopic

b b bubble structures.
Experiments have measured the macroscopic mechanical
3 ¢ a c properties of three-dimensional foams. But due to the diffi-
d culty of direct visualization in three-dimensional foams, no
d detailed studies of rearrangements exist. Kbaal.[15] ap-

plied bulk shear to a foam trapped between two parallel
FIG. 1. Schematic diagram of a T1 event, where bubh)és c, plates and measured the stress-strain response, as well as the
andd swap neighbors. Notice that as the edge between the pair gfield strain as a function of liquid fraction. Princen and Kiss
vertices shrinks, the contact angles not in contact with this edg¢l6], applying shear in a concentric cylinder viscomeies.,
remain 120°. boundary shear determined the yield stress and shear vis-
cosity of highly concentrated water/oil emulsions. Recently,

foam behavior. Previous studies in this field can be categoWith the help of diffusing wave spectroscofiyWs), experi-

rized through their use of constitutive, vertex, center orments by Gopal and Durian on three-d|men5|0nal_ shaving
bubble models. creams showed that the rate of rearrangements is propor-

The constitutive models have evolved from the ideas 01tional to the strain rate, and that the rearrangements are spa-

Prud’homme and Princed]. They modeled foam as a two- tially and temporally_ ur!correlateﬁz]; Hohler et al. [17]
dimensional periodic array of hexagonal bubbles where Tioun? that u?der p?.”Od'Ct boun?ary shea_lr, fo?gjdre?rrlange—
events occur instantaneously and simultaneously for the e nents cross from a lineéar to noniinear regimep et al.
tire foam. Khan and Armstrong5] further developed the 18], in a similar experiment on concentrated emulsions,

model to calculate the detailed force balance at the films anH)und that some bubbles follow reversible trajectories while

vertices, and studied the stress-strain relationships as a fungthers follow ieversible chaotic trajectories. However, none

: ; ; L . A f these experiments has directly observed changes in bubble
tion of hexagon orientation, liquid viscosity, and liquid frac- 0 .
tion. Reinelt and KrayniK6] extended the same model to topology. Dennin and Knoblef19] performed a bulk shear

study a polydisperse hexagonal foam and derived explici?xperiment on a monolayef2D) Langmuir foam and

relations between stress and strain tensors. While analyticgpunteOI the number of bubble side-swapping events. Unfor-

calculations exist only for periodic structures or for Iinearf[ur;?:)ergt' limited statistics rendered their results difficult to

response, foams are naturally disordered with an inhererft . . - .
In an attempt to reconcile the different predictions of dif-

nonlinear response. Treating the foam as a collection of in: :
rent models and experiments, we use a Monte Carlo model,

teracting vertices, vertex models studied the effect of stres ded | b del dv heol
on structure and the propagation of defects in foams witde €xtended larg@ Potts model, to study foam rheology.

zero liquid fraction(i.e., dry foam [3]. Okuzono and Ka- The largeQ Potts.model has §uccessfu|ly modgled foam
wasaki[7] studied the effect of finite shear rate by including Structure, coarsening, and drainaf#9,21, capturing the

the force on each vertex, a term which depends on the loc&NYSics of foams more realistically than other models. Here
motion and is based on the work of Schwartz and Princef’® extend the mgdel to include the ap.pl|cat|.0n of shear 1o
[8]. They predicted avalanchelike rearrangements in a slowljtudy the mechanical response of two-dimensional foams un-
driven foam, with a power-law distribution of avalanche sizeler stress. . .

versus energy release, characteristic of self-organized criti— This paper is orgamzed as fO"QWS' Sec. !I presents our
cality. Durian’s[9,10] “bubble” model, treating bubbles as ar_geQ POFtS model; Sec. Il contains a description .Of Simu-
disks connected by elastic springs, measured foam’s Iineé ition details; Sec. lV. presents rgsqlts on hysteresis; Sec. v
rheological properties as a function of polydispersity and lig- ISCUSSES the dynamlps and statistics of T1 evepts; Sec. Vi
uid fraction. He found similar distributions for the avalanch- discusses structural disorder; and Sec. VI contains the con-
elike rearrangements with a high-frequency cutoff. Weaire®!USions.
et al.[11], using a center model based on Voronoi construc-

tion from the bubble centers, applied extensional deforma-

tion and bulk shear to a two-dimensional foam. They con-

cluded that avalanchelike rearrangements are possible only The great advantage of our extended la@&otts model

for wet foams, and that topological rearrangements can inis its simplicity. The model is “realistic” in that the position
duce ordering in a disordered foam. A review by Weaire andand diffusion of the walls determine the dynamics, as they do
Fortes[12] includes some computer models of the mechanidin real foams and concentrated emulsions. Previous models
cal and rheological properties of liquid and solid foams.[7,10,1] were based on different special assumptions about
However, few models have attempted to relate the structurdhe energy dissipation. Since the energy dissipation is poorly
disorder and configuration energy to foam rheology. Onlyunderstood and also hard to measure in experiments, the ex-
recently, Sollichet al.[13], studying mechanisms for storing act ranges of validity for these models are not clear. Not
and dissipating energy, emphasized the role of both strucsurprisingly, these models lead to conflicting predictions,
tural disorder and metastability in the rheology of soft glassye.g., for the distribution of avalanchelike rearrangements
materials, including foams. Langer and Lj@4], using a (Sec. \J. None of these models alone captures the full com-
bubble model similar to Durian’s, found that the randomnesplexity of real foams.

of foam packing has a strong effect on the linear shear re- The extended larg€ Potts model, where bubbles have
sponse of a foam. One of the goals of our study is to quantifigeometric properties as well as surface properties, is not
the extent of metastability by measuring hysteresis, and rebased on anw priori energy dissipation assumption. In ad-

Il. MODEL
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dition, it has the advantage of simultaneously incorporatindength, thereby allowing new insights into the connection
many interactions, including temperature effects, for foamdetween microscopic foam structure and macroscopic me-
with arbitrary disorder and liquid contef22]. chanical response.

Both the film surface properties and the geometry of Before describing the details of the Potts model, we
bubbles are fundamental to understanding foam flow. Thehould first mention its major limitations. Viscosity is one of
contact angle of walls between vertices indicates whether the basic physical properties of foams, but it is not easily
structure is at equilibrium, corresponding to minimizing the SPecifieda priori in the Potts model. Although we can ex-
surface energy. In a real evolving pattern, the equilibrium{ract the effective viscosity and the viscoelasticity of foams

contact angle occurs only for slow movements during whicHTom simulations, we lack a clear quantitative description of
the vertices remain adiabatically equilibrated. Whenever 1€ foam viscosity in Potts model simulations and how it

topological rearrangemera T1 evenk of the pattern occurs, (rje_lates_to tlhfe effe|_<|:t|ve and I|q_U|d wscosmgs Of. a ltW.O'
the contact angles can be far from their equilibrium values. imensional foam. However, our ignorance about simulation
iscosity is equivalent to our ignorance about experimental

The walls then adjust rapidly, at a relaxation rate dependin X . . . o .
o-dimensional foam viscosity. Quantitative experiments

on the effective foam viscosity, to reestablish equilibrium.™ )

The same holds true for the other possible topologica\'\{III he_lp to separate Fhe roles of the Platgau border_s, fluid
change, the disappearance of a bubble, a T2 d@nHow- viscosity, and to_polog_lcal rearrangements in _de_termlm_ng the
ever, disappearance only occurs in foams that do not cor?—.ffeCt'Ve foam viscosity. A. seco.nd POSS'ble I|m|tat_|on Is the
serve bubble number and area, which we do not consider i€ ffect due to lattice discretization. We show in Sec. Il
this study. A difficulty in two-dimensional foams is that the that this pr_oblem does not invalidate our S|mulat|on§. A third
effective viscosity depends primarily on the drag betwee rawback is that the Monte Carlo algorithm results in uncer-

the Plateau borders and the top/bottom surfaces of the cof@iNties in the relative timing of events on the order of a few
tainer, not the liquid viscosity. Container chemistry, surfac-Pereent of a Monte Carlo step. While this uncertainty is in-

tant properties, and foam wetness all change the effectivéig”iﬁcam for well separated events, it can change the mea-

viscosity. Thus even in experiments, the effective viscosity issurerc]i mterva(lj bgt\lfveen frequent %veints. .
not equivalent to the liquid viscosity and is not possible to The extended larg@ Potts model treats foams as spins

derive from liquid viscosity. We define the equilibrium con- N 2 lattice. Each lattice site=(x;,y;) has an integer

tact angle so that any infinitesimal displacement of the vertexSPIN” i chosen from{1, ... Q}. Domains of like spins
causes a second-order variation of the surface energy, Whi{?rm bubbles, while links between different spins define the

during a T1 event the energy must vary macroscopically ove ubble walls(films). Thus each spin merely acts as a label
a small but finite coherence length, typically the rigidity for a particular bubble. The surface energy resides on the

length of a bubble. In our simulations, a bubbie under stresUPble walls only. Since the present study focuses on shear-
can be stretched or compressed up to 60% of its originaflven topological rearrangements over many loading cycles,
length, while conserving its area. we prohibit foam coarsening by applying an area constraint
In a'center model based on the Voronoi constructage,  ©N individual bubbles. In practical applications, foam defor-
e.g.,[11]), the coherence length of a bubble is comparable tgnation and_ rearrangement under stress is often much faster
its diameter. Contact angles are given correctly at equilibthan gas diffusion through the walls, so neglecting coarsen-
rium but approach and remain near 90° during a T1 eveniNd IS reasonable. The Potts Hamiltonian, the total energy of

since the centers are essentially uninfluenced by topologic&l® foam, includes the surface energy and the elastic bulk

details such as the difference between a fourfold vertex and @€"9Y-
pair of threefold vertices.
In a vertex mode(see, e.g.[7]), the walls connecting the H=D Jij(1— 5, .0+ (a,—A,)?, (1)
vertices adiabatically follow an out-of-equilibrium, slowly i o n
relaxing vertex. In such a model, the walls are constrained to . . . ] ]
be straight and vertices typically have arbitrary angles. ItvhereJ;; is the coupling strength between neighboring spins
essence, the deviation of the vertex angles from the equilibei and oj, summed over the entire lattice. The first term
rium value represents the integrated curvature of the bubbl@ives the total surface energy. The second term is the area
walls. Because of their unphysical representation of contac¢onstraint which prevents coarsening. The strength of the
angles, pure vertex models with straight walls cannot handi€onstraint {') is inversely proportional to the gas compress-
T1 events correctly. ibility; a, is the area of thath bubble and?,, its correspond-
The extended large® Potts model avoids these limita- ing area under zero applied stress. We can include coarsen-
tions: walls are free to fluctuate, which is not true in vertexing by settingl” to zero.
models, and the contact angles during a T1 event are correct, We extend the Hamiltonian to include shear:
which is not true in center models. A further advantage of
our extended larg& Potts model is that it allows direct ' , (1
measurement of T1 events. The other models cannot directly =T EI i Ox( 5‘”“1)' @
count T1 events. Instead, they quantify rearrangement events
by their associated decreases in energy. As we will discushe new term corresponds to applying shear stfairde-
later, this energy decrease is not always directly proportionaiiled explanation follows belowto the wall between neigh-
to the number of T1 events. Our model therefore deliverdoring bubblesr; ando;, with y corresponding to the strain
accurate information about individual T1 events as well adield, (x;,y;) to the coordinate of spiw;, and (1,0 is the
the averaged macroscopic measures such as total bubble wditection of the strain.
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The system evolves using Monte Carlo dynamics. Our Note that our driving in the Potts model differs from that
algorithm differs from the standard Metropolis algorithm: we in driven spin systems, for which a large body of literature
choose a spin at random, bahly reassign it if it is at a addresses the dynamic phase transition as a function of driv-
bubble wall and thewnly to one of its unlike neighbors. The ing frequency and amplitude4]. Our driving term acts on
probability of accepting the trial reassignment follows thethe bubble wallg§domain boundarigsonly, while in driven
Boltzmann distribution, namely, spin systems, e.g., the kinetic Ising model, all spins couple to

the driving field. The resulting dynamics differ greatly.

1, AH' <O,
Pl exgt —A1/IT), AH'=0 @
! = I1l. SIMULATION DETAILS
whereAH' is the change ir{’ due to a trial spin flip, and Experimental observations show that the mechanical re-

is temperature. Time is measured in units of Monte Carlasponses of a foam, including the yield strain, the elastic
steps(MCS), where one MCS consists of as many spin trialsmoduli, and the topological rearrangements, are sensitive to
as there are lattice sites. This algorithm reproduces the saniie liquid volume fractio25]. In particular, the simulations
scaling as classic Monte Carlo methods in simulations obf both Durian[10] and Weaireet al. [11] showed a critical
foam coarsening, but significantly reduces the simulationiquid fraction at which a foam undergoes a “melting tran-
time [23]. sition.” Although different liquid content and drainage ef-
The second term ifk{" biases the probability of spin re- fects can be readily incorporated in the Potts m¢aa], we
assignment in the direction of increasirg(if y<<0) or de-  focus on the dynamics of topological rearrangements and do
creasingx; (if y>0). From dimensional analysis 1, ¥  not consider the liquid fraction dependence of flow behavior,
has units of force, but we can interpret it as the strain field.e., we assume the dry foam limit in this study. Also, we
for the following reason: In the Potts model a bubble wallignore gas diffusion across the walls, assuming that bubble
segment moves at a speed proportional to the reassignmedéformation and rearrangement are much faster than coars-

probability P; in this case, ening.
The definition of time(Monte Carlo steps or MOSs not
veeyP, (4)  directly related to real time, but we have made choices to

. . ) _ensure that we do not under-resolve events. A shear cycle in
where the prefactor follows from dimensional analysis. Thisihe periodic shear case takes about 4000 MCS. In our simu-
shear term effectively enforces a velocityat the bubble |ations, a single deformed bubble recovers on a time scale of
walls, therefore it imposes a strain rate on the foam. The, few MCS while the relaxation of a cluster of deformed

strain e(t) is then proportional to a time integral of bubbles takes a much longer time, on the order of 10—100
. MCS. A T1 event by definition takes one MQe short life
eocJ /,y(t’)pdt/_ (5) of a fourfold vertey, but the viscous_ relaxatio_n has to aver-
0 age over at least the four bubbles involved in the T1 event,

o o _ ~and thus lasts much longer.
If we limit the application of this term to the boundaries  we used periodic boundary conditions in theirection,
of the foam, we impose a boundary shear, equivalent to Moo mitigate finite-size effects. For ordered foams under
ing the boundary of the foam with no-slip between bubblesyoundary shear, we used a 40000 lattice with each bubble

touching the boundary and the boundary, i.e., containing 20x 20 lattice sites; for ordered foams under bulk
shear, we used a 256256 lattice with 16< 16 sites for each
706 (1), Yi= Ymin, bubble. When unstressed, all the bubbles are hexagons, ex-
y=14 —vG(),  ¥Yi=Ymax: (6)  cept for those truncated bubbles touching the top and bottom
0, otherwise, boundaries. In the case of disordered foams, we used a 256

X256 lattice with various area distributions. We have also
where y, is the amplitude of the strain field ar@(t) is a performed simulations using a lattice of size 18224

16X 16 bubbles. The results did not appear to differ qualita-
v=BYy;G(1), (7)  tively. A 16X 16 bubble has a side length around 10 lattice

sites, so its smallest resolvable tilt angle is approximately
with y; betweery,, andynax, corresponds to applying bulk arctan(1/10%=5.7°. Had lattice effects been a problem, we
shear with the strain rate varying linearly as a function ofwould have expected a significant difference in the simula-
position in the foam. The gradient of strain rate is the sheations with bubbles of size 6464, where the smallest angle
rate, 8. The corresponding experiment would be similar tois about four times smaller. But increasing the simulation
Dennin and Knobler's monolayer Langmuir foam experi- size from 16 to 64 did not lead to significant changes in the
ment[19]: a monolayer foant2D) on the surface of a liquid quantities we measured. Thus, we used bubbles of sZ#16
is sheared in a concentric Couette cell, with no-slip condi-all the simulations reported in this paper.
tions between the bubbles and the container surface. In all Lattice anisotropy can induce artificial energy barriers in
our studies we usé&(t)=1 for steady shear, an(t) lattice simulations. All our runs use a fourth-nearest-
= sin(wt) for periodic shear. Since for steady shear the straimeighbor interaction on a square lattice, which has a lattice
is a constant times time, ofyPt, plotting with respect to  anisotropy of 1.03, very close to the isotropic situatitat-
time is equivalent to plotting with respect to strain. tice anisotropy of 1
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Standard quantitative measures of cellular patterns are theeld. In cellular materials, including foams, hysteresis can
topological distributions and correlations, area distributionshave multiple microscopic origins, including stick-slip inter-
and wall lengths — all quantities that in principle can befacial and vertex motion, local symmetry-breaking bubble
measured in experiments. Since the areas are constrained, fiearrangementT1 event$, and the nucleation of new and
evolution of the area distribution is not useful. We define theannihilation of old cells. In all of these, noise and disorder
topological distributiorp(n) as the probability that a bubble play an intrinsic role in selecting among the many possible
hasn sides; itsmth moments areu,==,p(n)(n—(n))™.  metastable states arising when the foam is driven away from
The area distributiop(a) and its second moment,(a) are  equilibrium. By focusing on noncoarsening foams, we rule
defined in a similar fashion for the bubble areas. We use aut nucleation and annihilation as sources for hysteresis. Our
variety of disordered foams with different distributions, asfoam is therefore an ideal testing ground for improving our
characterized by thejz,(n) and w,(a). understanding of hysteresis as it arises from local rearrange-

In practice, we generate the initial configuration by parti-ments and interfacial dynamics.
tioning the lattice into equal-sized square domains, each con- In accordance witti7], we define the quantity
taining 16<16 lattice sites. The squares alternate offsets in
every other row, so the pattern resembles a brick wall ar- B
ranged in common bond. We then run the simulation with ¢’=in 0(1=4,, 'o'j) ®
area constraints, but without strain, at finite temperature for a
few Monte Carlo steps, and then decrease the temperature 4@ the total stored elastic energy. Here sifgsre neighbors,
zero and let the pattern relax. The minimization of total sur{ne symmation is over the whole lattice, afids the wall
face energyand hence the total bubble wall lengtfesults  ihickness that we choose to be 1 in all our simulaticary
in a hexagonal pattern, the initial configuration for the or-¢y5m limit). Thus ¢ gives essentially the total bubble wall
Qered foam. For disordered initial configurations, We CONength, which differs by a constant, namely the surface ten-
tinue to evolve the hexagonal pattern without area congjon, from the total surface energy. In zero temperature simu-
straints at finite temperature so that the bubbles coarsen. Wgiions, the area constraint is almost always satisfied so that
monitor w,(n) of the evolving pattern, and stop the evolu- gmai flyctuations in area contribute only 10of the total
tion at any desired distribution or degree of structural d'sor'energy. Thus we can neglect the elastic bulk energy of the
der. Then we relax the patterns at zero temperature with ar§g,pples, and assume that the total foam energy resides on the
constraints to guarantee that they have equilibrated, i.epypple walls only, i.e., all forces concentrate at the bubble
without added external strain or stress the bubbles would nQl5i1s. We can calculate values of the averaged stress by
deform or rearrange. o o taking numerical derivatives of the total surface energy with

For all our simulationsI'=1 (which is sufficiently large  yegpect to straifil1]. However, the calculation via deriva-
to enforce air incompressibility in bubbleand 7;;=3 (ex-  tjves is not suitable for foams undergoing many topological
cept when we vary the coupling strength to change the efehanges; since the stored elastic energy changes discontinu-
fective viscosity of the foam Most of the simulations shown ously when topological rearrangements occur. The alterna-
in this paper are run at zero temperature except when Wgye is to calculate stress directly, as given[RS6], by the
study temperature effects on hysteresis, because the data &{gn of forces acting on the bubble walls, which locally is
less noisy and ea;ier to interpret. A finite but low tempera‘proportional to the wall length change of a bubble. Because
ture speeds the simulations, but does not appear to changgces on the bubble walls in Potts model foams are not well
the results qualitatively. o _ characterized, we limit our discussions to energy-strain rela-

The number of sides of a bubble is defined by its numbefjgnships. The more rigorous definition of strain involves the
of different neighbors. During each simulation, we keep a listyefinition of a mesoscopic length scale corresponding to a
of neighbors for each bubble. A change in the neighbor list|yster of bubbles, over which the effects of bubble wall
indicates a topological change which, since bubbles do No{ientation and bubble deformation can be average@7In

disappear, has to be a T1 event. the average stress tensor, defined asr
=(LAYZ i jylrijlrijrij . with A the total area of the foam and
IV. HYSTERESIS rij the distance between two neighboring vertices, is directly

related tog via ¢=Tr(o). Hereafter, we present ogr data

We can view foam flow as a collective rearrangement ofag (t)/4(0) to scale out differences due to different initial
bubbles from one metastable configuration to another. Wegnfigurations.

investigate the configurational metastability by studying hys-
teresis of the macroscopic response.

Hysteresis is the phenomenon in which the macroscopic
state of a system does not reversibly follow changes in an The simplest perturbation which induces topological rear-
external parameter, resulting in a memory effect. Hysteresisangements is boundary shear on an ordered foam. In this
commonly appears in systems with many metastable statesise we can confine the deformation to the bubbles touching
due to(but not limited t9 interfacial phenomena or domain the moving boundaries, and easily locate all the T1 events.
dynamics. The classic example of the former is that the conAs the applied boundary shear increases, the bubbles touch-
tact angle between a liquid and a solid surface depends dng the boundaries distort, giving rise to a stored elastic en-
whether the front is advancing or retreating. The classic exergy. We show snapshots of the pattern in Fig).2When a
ample of the latter is ferromagnetic hysteresis, in which thepair of vertices come together to form a fourfold vertex, the
magnetization lags behind the change in applied magnetioumber of sides changes for the cluster of bubbles involved.

A. Hysteresis in ordered foams
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a macroscopic viscoelastic response. If we keep increasing
the strain amplitude, the hysteresis loop increases in size.
When the applied strain amplitude exceeds a critical value,
T1 events start occurring, and the foam starts to flow, which
leads to a further change in the shape of the hysteresis loop.
Even larger strain amplitude introduces more T1 events per
period, and adds small loops to the “wings” of the hyster-
esis loop. Figure @& shows the smooth transition between
the three types of hysteresis in the energy-strain curve.
4 : : : : : : : : : We can adjust the viscosity of the bubble walls by chang-
ing the coupling strengtly;; . Smaller coupling strength cor-
responds to lower viscosity. Similar transitions from elastic
to viscoelastic to fluidlike flow behavior occur for progres-
sively lower values of coupling strength, shown in Fi¢h)3
The phase diagram in Fig.(@ summarizes 44 different
simulations and shows the elastic, viscoelastic, and fluidlike
behavior(as derived from the hysteretic responae a func-
tion of the coupling strengthg; (i.e., viscosity and strain
amplitudesy,. A striking feature is that the boundaries be-
tween these regimes appear to be linear. Figud® $hows
the effect of finite temperature on the energy-strain curves.
With progressively increasing temperature, noise becomes
more dominant and eventually destroys the hysteresis loop.
ke 1900 2000 3000 2000 5000 This result implies gllmlnlshed metastability at finite tem-.
() Time (MCS) perature. However, it does not seem to change the trend in
mechanical response.
FIG. 2. An ordered foam under boundary sheaJ:snapshots, A more conventic_)nal experiment ig the applicgtion of bulk
different shades of gray encode bubble topologiettice size 256 ~Shear7,10,16,19, with the shear strain varying linearly as a

x 256); (b) energy-strain curve and the number of T1s presented ifunction of the vertical coordinate, from, at the top of the
50 MCS bins. foam to — y, at the bottom. In our bulk shear simulations

with an ordered foam, the energy-strain relationship has two

Different shades of gray in Fig.(@ reflect the topologies of distinct behaviors depending on the shear rate. At small
the bubbles. Note that a five-sidédiark gray and a seven- shear rates, a “sliding plane” develops in the middle of the
sided(light gray) bubble always appear in pairs except dur-foam. As shown in Fig. @), nonhexagonal bubbles appear
ing the short lifetime of a fourfold vertewwhen the number only at the center plane. The energy-strain curve, shown in
of sides is ambiguous because of the discrete lattdace  Fig. 4(b), therefore, resembles that for boundary shear on an
the strain exceeds a critical value, the yield strain, all theordered foam. The energy curve in Figb¥also shows that
bubbles touching the moving boundaries undergo almost sithe baseline of energy is larger and that the decrease in am-
multaneous rearrangements, thereby releasing stress. Thétude of the energy due to T1s is smaller than in Figp) 2
stored elastic energyg, increases with time when the because bulk shear induces a more homogeneous distribution
bubbles deform, then decreases rapidly when the bubble¥ distortion and thus of stored elastic energy. Again the
rearrange. Stress accumulates only in the two boundary layeriodic structure of the bubbles causes the periodicity of the
ers of bubbles, and never propagates into the interior of theurve, reminiscent of the shear planes observed in metallic
foam. The whole process repeats periodically, due to the peglasses in the inhomogeneous flow regime, where stress-
riodic bubble structure, as shown in Figlb® the energy- induced rearrangement causes plastic deform&g8h
strain plot(as mentioned at the end of Sec. Il, for steady At high shear rates, the ensemble of T1 events no longer
shear, plotting time is equivalent to plotting straifihis re-  localizes in spacéFig. 5a)]. Nonhexagonal bubbles appear
sult corresponds to the mechanical response obtained in tieroughout the foam. The energy-strain curve, shown in Fig.
model of Khanet al. with periodic hexagonal bubbles ori- 5(b), is not periodic but rather smooth; beyond the yield
ented at zero degrees with respect to applied sf&in point, the bubbles constantly move without settling into a

When applying periodic sheay(t) =y, sin(wt), we keep  metastable configuration and, correspondingly, the foam dis-
the period 2r/w fixed and vary the amplitudey,. Under  plays dynamically induced topological disorder. The transi-
sinusoidal periodic shear, we observe three types of behation between these two regimes, localized and nonlocalized
ior. When the strain amplitude is small, bubbles deform andl'l events, occurs when the shear rate is in the range 1
recover their shapes elastically when stress is released. N§10 2<|g|<5x 10 2. This transition can be understood if
topological rearrangement occurs and the energy-strain plove look at the relaxation time scale of the foam. Due to
is linear, corresponding to an elastic respof®d. This re-  surface viscous drag and geometric confinement of other
sult agrees perfectly with the experimental result of DWS inbubbles, the relaxation time for a deformed bubble in a foam
[17]. As the strain amplitude increases, the energy-straifis on the order of 10 MCS. For a shear rgge-5x 102,
curve begins to exhibit a small butterfly-shaped hysteresig ™! is of the same order as the relaxation time. Thus for
loop before any topological rearrangements occur, indicatinghear rates above the natural internal relaxation time scale,

Number of T1s (Bars)
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FIG. 3. Energy-strain curves for ordered foam under periodic boundary Sf@adumbers above the figures asg. Progressively
increasing shear amplitude &f;=3 leads to a transition between three types of hysteregis:1.0 corresponds to an elastic response,
vo= 3.5 shows viscoelastic respond@efore any T1 event occyrsy,= 7.0 is a typical response when only one T1 event occurs during one
cycle of strain loading. The intermediate steps show that the transition between these three types iglsnbatfibers above the figures
are J;; . Progressively decreasing liquid viscosityicreasingJ;; at yo=7) shows a similar transition between elasti;& 10) and
viscoelastic (7;; =5) regimes, and flow due to T1 eventg;(=3 for one T1 event andj; =1 for three T1 evenjsduring one strain cycle.

(c) Phase diagram of hysteresis in the parameter spges 7; . (d) Effect of progressively increasing temperatilirg( J;; =3, yo=4). All
data shown here are averaged over 10 periods.

the macroscopic response changes from jagged and piecthe yield strain decreases to zero and the foam changes from
wise elastic to smooth and viscous response, as observed anviscoelastic solid to a viscoelastic fluid. We show an ex-

fingering experiments in foanj29]. ample of such viscoelastic fluid behavior in Fighpfor a
random foam, which shows no energy accumulation,
B. Hysteresis in disordered foams namely, its yield strain is zero. The foam deforms and yields

In a disordered foam, bubbles touching the moving foan{!k€ @ fluid upon application of the smallest strain. .
boundary have different sizes. Boundary strain causes differ- Under a periodic shear, the stored energy increases during
ent bubbles to undergo T1 rearrangements at different time&" initial transient period but reaches a steady state after a
Stress no longer localizes isliding) boundary layers, but few periods of loading. Energy-strain plots show hysteresis
propagates into the interidiFig. 6a)]. The vyield strain is due to topological rearrangements similar to those in ordered
much smaller. When the size distribution of the foam isfoams, but as the degree of disorder increases, the corre-
broad, the linear elastic regime disappears, since even $ponding elastic regime shrinks and eventually disappears.
small strain may lead to topological rearrangements of small Rearrangement events in a disordered foam under bulk
bubbles. In other words, with increasing degree of disordershear at a low shear rafsnapshots shown in Fig(&] cor-
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(b) Time (MCS) ' FIG. 5. An ordered foam under bulk shear with shear p@ate
=0.05: (a) snapshots(b) energy-strain curve and the number of

FIG. 4. An ordered foam under bulk shear with shear fate T1s. The magnified view in the box shows the correlation between
=0.01:(a) snapshots, shades of gray encode bubble topologies as fjress releases and overlapping avalanches of T1 events.
Fig. 2; (b) energy-strain curve and the number of T1s. The magnis, o yesiqual stress at zero strain, but would not affect the

fied view in the box shows the correlation between stress releasq%sults reported here
and overlapping avalanches of T1 events. ’

. . V. T1 AVALANCHES
respond to those in an ordered foam at a high shear rate. The

rearrangements are discrete and avalanchelike, resembling aln both experiment§30,31 and our simulations, the con-
stick-slip process, or adding sand slowly to a sandpile. Howtact angles of the vertices remain close to 120° until two
ever, at sufficiently high shear rate all the avalanches overlapertices meet. The applied strain rate determines the rate at
and the deformation and rearrangements are more homogerich vertices meet. The resulting fourfold vertex rapidly
neous and continuous, as in a simple viscous liquid. Figureplits into a vertex pair, recovering 120° contact angles, at a
7(b) shows the typical energy-strain curve of a disorderedate determined by the viscosity. This temporal asymmetry in
foam under steady bulk shear. the T1 event contributes to the hysteresis.

Note that in all our hysteresis plots, the energy-strain In vertex model simulations, sudden releases of energy
curves cross at zero strain, indicating no residual stored eroccur once the applied shear exceeds the yield StrairThe
ergy at zero strain. This crossing is an artifact of our defini-event sizen, i.e., the energy release per event in the dry foam
tion of energy, which ignores angular measures of distortionlimit, follows a power-law distributionp(n)~n~2%2 Durian
I.e., the total bubble wall length does not distinguish amongd10] found a similar power-law distribution in his bubble
the directions in which the bubbles tilt. A choice of stressmodel, with an additional exponential cutoff for large events.
definition which included angular information would show Simulations of Weairet al.[11,26], however, suggested that



®(Line)

Number of T1s (Bars)
wm
o

1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

(b) Time (MCS)
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power-law behavior only appeared in the wet foam limit.
Experiments, on the other hand, have never found system-
wide events or long-range correlations among eveEhts9)].
One of our goals is to reconcile these different predictions.
These differences may result from the use of energy re-
lease as proxy for topological changes, rather than enumer-
ating actual events, as well as the assumption of a linear
relation between jumps in the stored elastic energy and the
number of T1 events, namelgg¢/dt=cN, whereN is the
number of T1 events andis a constant. A drastic drop in
the total bubble wall length indicates a large number of T1
events. However, in a disordered foam, all T1 events are not
equal, since they do not all release the same amount of stored
elastic energy. The energy released during a T1 event scales
as the bubble perimeter, i.e., smaller bubbles release less
energy. Hence smaller bubbles undergo more T1 events.
Moreover, a T1 event is not strictly local, but deforms its
neighborhood over a certain finite range, as demonstrated by
T1 manipulations in magnetic fluid foam experimef2].
Therefore, the number of T1 events is not always directly
proportional to the decrease in total bubble wall length. Thus
we cannot compare the energy dissipation and T1 events
directly. Furthermore, the mechanisms of energy dissipation
differ in these models. Kawasakt al. [8] included the dis-
sipation due to the flow of liquid out of the Plateau borders,
Durian [10] considered only the viscous drag of the liquid,
while Weaireet al. [11] modeled an equilibrium calculation
involving quasistatic steps in the strain that do not involve
any dissipation. In our model, the evolution minimizes the

(b) energy-strain curve and number of T1 events presented in 10fyi7| free energy naturally. To avoid ambiguities, we directly

MCS bins.

3 . , . , . . . . : 0.99
-
w
3,0
Q2 [ ‘ |
=
@ L
= : %
=i (! {098 £
© | S|
Bt N’
D
2 S
g1
=
4
0 : : 0.97
0 02 04 06 08 1 12 14 16 18 2
(b) Time (MCS) x10

FIG. 7. A disordered foam under bulk shear at shear pate
=0.01:(a) snapshots, shades of gray encode bubble topoldigies
tice size 256&256); (b) energy-strain curve and number of T1
events.

count T1 events in addition to tracking energy.

The avalanchelike nature of rearrangements appears in the
sudden decreases of the total elastic energy as a function of
time. Figure 4b) shows the relation between energy and the
number of T1 events in an ordered foam under steady bulk
shear for a small strain. The stored energy increases almost
linearly until the yield strain is reached. The avalanches are
well separated. Every cluster of T1 events corresponds to a
drastic decrease in the stress, and the periodicity is due to the
ordered structure of the foam. At a higher shear f&ig.

5(b)], the yield strain remains almost the same, but the ava-
lanches start to overlap and the energy curve becomes
smoother. In the sandpile analogy, instead of adding sand
grains one at a time and waiting until one avalanche is over
before dropping another grain, the grains accumulate at a
constant rate and the avalanches, large and small, overlap
one another. A sufficiently disordered foam may not have a
yield strain[Fig. 6(b)]; T1 events occur at the smallest strain.
The foam flows as a fluid without going through an interme-
diate elastic regime.

To study the correlation between T1 events, we consider
the power spectrum afi(t), the number of T1 events at each
time step,

pN(f)=f dtf dre T"N(t)N(t+ 7), 9)

wheref is the frequency with unit MCS!. Figure §a) shows
typical power spectra of the time series of T1 events in an
ordered foam under bulk shear. At a shear @te0.01, the
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108 : : : ; , T1 events show no power law. The peak-at0 2 is due to
the periodicity of bubble structure in an ordered foam when
£-1.0 1 a “sliding plane” develops. At shear rajg=0.02, the spec-
. 0.05 trum resembles that of white noise. As the shear rate in-
10%F 1

creases tg3=0.05, the power spectrum develops a power-
law tail at the low-frequency end, with an exponent very
close to 1. In a disordered foam, with increasing shear rate,

o100 002 the spectra for the T1 events gradually change from com-
4 pletely uncorrelated white noise toflat higher shear rates.
0.0 By 1/f, we mean any noi;e o_f power _spectrLS(f)~f*“,
4 ' where 0<a<2 or near 1, i.e., intermediate between Brown-
ian noise @=2) and white noise ¢=0).
These power spectra suggest that the experimental results
for T1 events as reported [2,19] correspond to a low shear
10 — - — — - ,  rate, with no long-range correlation among T1 events. Struc-
9 10 10 10 o 10 10 tural disorder introduces correlations among the events.
f .
@ Power-law avalanches do not occur in ordered hexagonal
cells at low shear rate, where rearrangements occur simulta-
10° ' Yy ' ' neously. At a high shear rate, when the valueyof® is
1B \f ] comparable to the duration of rearrangement events, the
;005 bubbles move constantly. The foam behaves viscously, since
07 | rearrangements are continuously induced before bubbles can
10* 0.02 1 relax into metastable configurations which can support stress
o 17} mww‘.m ] elastically. At these rates, even an initially ordered structure
= 0.01 ‘ behaves like a disordered one, as shear destroys its symmetry
1077 ‘ b and periodicity.
164 ] In a disordered foam, whenever one T1 event happens,
5l 0.005 ‘ il 1 the deformed bubbles release energy by viscous dissipation
0.001 WWWM,MW” and also transfer stress to their neighboring bubbles, which
10°% ‘ ‘ 1 in turn are more likely to undergo a T1 switch. Thus, T1
108 ‘ events become more correlated. Shown in Fig),8the
0 power spectra change from that of white noise towairfd 1/
14 15° 1(';5 noise. When the first sufficiently large region to accumulate
(b) stress undergoes T1 events, it releases stress and pushes most
of the rest of the bubbles over the brink, causing an “infinite
" avalanche”: some bubbles switch neighbors, triggering their
10 : neighbors to rearrang@nd so ol until a finite fraction of
0.05 the foam has changed configuration, causing a decrease in
10° the total stored energy, mimicking the cooperative dynamic
events in a random field Ising mod@&3]. We never observe
i system-wide avalanches as claimed in the vertex model
simulationg[ 7], agreeing with Durian’s simulatio4.0] and
o Denninet al's experimentd19]. For even greater disorder,
& 107 0.01 the bubbles essentially rearrange independently, provided
spatial correlations for area and topology are weak. Pairs of
10% 0.001 bubbles switch as the strain exceeds their local yield points.
’ Although more frequent, the avalanches are small, without
16t long correlation lengths. Figurd@ shows the power spectra
for T1 events for a highly disordered structure wih(n)
. =1.65. We observe no power-law behavior, even at high
10105 PP e ¢ 1P o 7  shear rates. Thus a highly disordered foam resembles a ho-
t mogeneous but nonlinear viscous fluid.
) Over a range of structural disorder the topological rear-

rangement events are strongly correlated. The question natu-
FIG. 8. Power spectra of the number of T1 everig:an or-  ally arises whether the transition between these correlated
dered foam for three shear ratgs=0.01, 0.02, and 0.05, respec- and uncorrelated regimes is sharp or smooth, and what de-
tively; (b) a disordered foariu,(n)=0.81u,(a)=7.25] for fivre  termines the transition points. We are currently carrying out
shear rates from 0.001 to 0.0&) a very disordered foarfu,(n) detailed simulations involving different structural disorder to
=1.65u,(a)=21.33 for three shear rates. study this transition.
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FIG. 9. Number of T1 events per unit shear per bubble as a
function of shear rate for four foams: squares correspond to a foam  ,
of 180 bubbles, withu,(n)=1.65, u,(a)=21.33; stars correspond
to a foam of 246 bubbles, witlu,(n)=1.72, u,(a)=15.1; tri- 1d%
angles correspond_ to a foam of 377 bubbles, witf{n)=1.07, ' 0.05
H2(a) =2.50; and circles correspond to a foam of 380 bubbles, with 81
mo(n)=0.95, u,(a)=2.35. The inset shows on a log-log scale that 002 ‘
N varies by several orders of magnitude. 1051 0.01 MW“ ‘
S :
2o L
Previous simulationgl0] and experimentkl9] measured 0.005
N, the average number of T1 events per bubble per uni 10°7] u""‘WM
shear, and concluded thht was independent of the shear o 0-001 TR
. : i ; ; 10 Wik,
rate. Our simulation results in three different foams with ‘
shear rates covering two orders of magnitude, however, dis 52
agree. As shown in Fig. 9, our data indicate tNatlepends
sensitively on both the polydispersity of the foam and the 10°
shear rate. Only at large shear rates ddeseem to be inde- (b)
pendent of the shear rate, which might correspond to th
above-mentioned experiments.
The avalanches andflpower spectra resemble a number Jpe . . . .
of systems with many degrees of freedom and dissipativ:
dynamics which organize into marginally stable std&®4. 1d%
Simple examples include stick-slip models, driven chains o 0.05
nonlinear oscillators, and sandpile models. In sandpile mod 8-
els, both the energy dissipation rdtetal number of trans-
port events at each .time stve_and the output currenthe 10°7 570
number of sand grains leaving the pilshow power-law &
scaling in their distributions. In particular, if the avalanches % 104 0-005
do not overlap, then the power spectrum of the output currer
follows a power law with a finite size cutoff35]. The 107 o0
1/f-type power spectra result from random superposition o ol
individual avalanchef36]. 10
If the analogy with sandpiles holds, we should expect the o2

power spectra of the time derivativibp/dt, of the stored

energy, i.e., the energy change at every time step, to b 4

10
1/f-like, and thus the power spectra gfto be f 2. How-
ever, in our simulationsd¢/dt does not show Ittype
broadband noise. Figures (#)-10(c) show the correspond-
ing power spectra fop from the same simulations as Fig. 8,

(¢

10

=5 10—4

FIG. 10. Power spectra of the enerd@ an ordered foam for

which are obviously nof ~2, i.e., the topological rearrange- three shear ratestb) a disordered foam u,(n)=0.81u,(a)
ments are not in the same universality class as sandpiles. k¥a7.25 for five shear ratesfc) a very disordered foamu,(N)
particular, Fig. 8c) shows a complicated trend: the power =1.65u,(a)=21.33 for five shear rates.
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spectrum changes from a small slope at shear pte 1.4
=0.001 tof %2 spanning over four decades At=0.005.

But as the shear rate increases, the power law disappea 127 = 1y(n)=0.81
Instead, a flat tail develops at high frequencies due to Gaus: =—a |1(n)=1.65
ian noise. Other different slopes appear over different re. 1
gimes of different sizes, indicating the existence of multiple §
time scales and length scales. We will further explore the% 0.8t
implications of these spectra fa¥ elsewherd 37].

o—o liAN)=0

VI. EFFECTS OF STRUCTURAL DISORDER 0.4+

As structural disorder plays an important role in mechani- o2t
cal response, we study the effect of disorder on the vyielc

strain and the evolution of disorder in foams under shear. W« ¢ : - = : ‘ ' ' :
define the yield strain, at which the first T1 avalanches occur 0.01 0.02 0.08 0.04 0.05
as the displacement at the top boundary of the foam dividet  (a) p

by half the height of the foartsince the zero strain is in the
middle of the foamrescaled by the average bubble width.
Figure 11a) shows the yield strain as a function of shear 35 ‘ , . , . , . ‘ ‘
rate 8 for different foam disorders. We find that for an or- *—e 11, (n)=0.81
dered foam at low shear rates, when a sliding plane occurs i e
the middle of the foam, the yield strain is independent of —t L, (n)=2.02
shear rate. We expect this independence because T1 evel =
occur almost simultaneously in the sliding plane, and the 25
bubble size determines the yield strain. At high shear rates
T1 events distribute more homogeneously throughout th¢g , .
foam, which lowers the yield strain. The upper limit for the =
yield strain in an ordered foam is¥3, when all the vertices
in a hexagonal bubble array simultaneously become fourfolc
under shear. The nucleation of topological deféfite- and

151

seven-sided bubble pajrand their propagation in foams 1t

lower the yield strain. But the yield strain does not reach

zero even at a very high shear rate®£0.05. An ordered 55 ‘ , , , , , , ‘ ,

foam remains a solid with finite yield strain. For a disordered 0 2000 4000 6000 8000 10000

foam, the yield strain is lower for higher shear rates; and a () Thune:(MICS)

the same shear rate, the yield strain decreases drastically
zero as disorder increases — the foam changes from a vit
coelastic solid to a viscoelastic fluid.

The most commonly used measure for topological disor- 1.02
der is the second moment of the topological distribution,
m,(n). During diffusional foam coarsening, the topological
distribution tends to a stationary scaling form apd(n)
assumes a roughly constant value. Experiments on soe
foams with up to 10000 bubbles in the initial st489,31]
and early smaller simulations38] gave a value ofu,(n)
=1.4 in the scaling regime. Other simulations showed &
slightly lower value ofu,=1.2[39]. Weaireet al.[11] re-
ported shear-induced ordering, i.e., a reductionug{n)
with shearing. However, in our simulations, foams with ini-
tial wo(n) ranging from 0.81 to 2.02 show no shear-induced
ordering. Insteadu,(n) increases and never decreases bacl liaa
to its initial unstrained value. Figure () shows the evolu- . . , ‘ . ‘ ‘ ‘ , B
tion of u,(n) for a variety of initial topological distributions. ¢ 0 08 12 16 i
The difference between the simulations of Weatel. [11] (© Time (MCS)
and ours is not surprising. Weaigd al. applied step strain
and observed the resulting equilibrated pattern. In our simu- F|G. 11. (a) Yield strain as a function of shear rat&) Evolu-
lations, bubbles are constantly under shear, i.e., the foam ifon of u,(n) under constant bulk shear; legend denotes the initial
not in equilibrium. The topological disorder, as measured byy,(n). (c) Evolution of u,(n) under steady bulk shear for an or-
uo(n), therefore increases as the energy accumulates anfgred foam, showing the correlation between the stress decreases
decreases as the energy releases, as does the number ofded u,(n).

0.5

VOAS

+0.46

wy(n)

Stress
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pological events, and does not necessarily settle to an equamplitudes, bubbles deform and recover their shapes elasti-
librium value. cally after stress release. The macroscopic response is that of
In an ordered foam at shear rgfs=0.01 (Fig. 4 with  a linear elastic solid. For larger strain, the energy-strain
separated T1 avalanches,(n) fluctuates in synchrony with curve starts to exhibit hysteresis before any topological rear-
the total energy, shown in Fig. d. When the avalanches rangements occur, indicating a macroscopic viscoelastic re-
overlap,u(n) fluctuates more smoothly, but almost always sponse. Increasing the strain amplitude increases the area of
has a positive correlation with the total stored energy. the hysteresis loop. When the applied strain amplitude ex-
Notice that in the energy-strain pldtSig. 2b), Fig. 4b)],  ceeds a critical value, the yield strain, T1 events occur and
stored energy slowly increases over long times, because Wge foam starts to flow, and we observe macroscopic irrevers-
qontlnuously apply shear and the foam |s_aIW§\y_s out of eQUihility.
librium. Bubbles do not fully recover their original shapes. We are currently testing this observation in an experiment

This deformation slowly accumulates at long times. In dis-g - to[17], applying periodic boundary shear to a homo-
ordered foams, topological rearrangement may enhance the

i k ; eneous foam, and measuring the total bubble wall length
spatial correlation of bubbles, i.e., small bubbles cluster Ovel. il (instead of using diffusion wave spectroscp
time, as predicted by Langer and Liu’s bubble modet]. y 9 P Hy

We will report results on spatial correlations for bubble to-gpta'g ¢h' We d?af_‘ dlrEctrl]y c_omparﬁ th_ese dlata_V\_nth tp fe pre-
pology n and areaa elsewherd 37]. ( icted three |st|ncF ehaviors. The viscoelasticity of foams
is better characterized using the complex modulsy)

[13], which we plan to use in future investigations.

VIl. CONCLUSIONS The comparison between the mechanical responses of or-

. o . r nd disordered foams provi me insight into th

We have included a driving term in the lar@e-Potts de e_d and disordered foams provides some S19 o the
: . relation between local structure and macroscopic response.

model to apply shear to foams of different disorder. When

the driving rate is too fast for the foam to relax, the SystemAn ordered foam has a finite yield strain. Structural disorder

falls out of equilibrium. The mechanical response then lag heecrrﬁzz?c?stcr:)e ?/C'?gjssgﬁgg S;J;f'%iml¥rgﬁZc\j/'isscégj;;;tri]fggﬁj
behind the driving shear, resulting in hysteresis. Our mode P P

differs from most well studied driven spin models: our spins 0a V|scoe.las't|c ﬂwd. A random_ foam W'th. broad ftopology'

do not couple to an external field the way Ising spins Coupleanc_J area dlstrlbutlons_lacks the linear elastic and VL_Q,coeIastlc
to an oscillating magnetic field, and all action occurs only atSOIId regimes. Any finite stress can lead to top(_)log_lcal_ rear-
the domain boundaries. rangements of small bubbles and thus to plastic yielding of

Because of the difficulty in characterizing local stress anc}he foam. More detailed simulations and experiments are

strain in Potts model foams. we have chosen to use the reQ_eeded to determine the dependence of the yield strain on the

caled total bubble wall lengthp, as the order parameter for a;]ea an(il topﬁ!oglczal d|str|tt)ut|or;fs Otf thle _fotan:j, and on trtle
hysteresis. While the hysteresis loops reflect the nonlinearitgoleoariggl ec?éfe::?s i?"ntsat;(raa fizni e; slvrﬁe)l/nli?ers? eclij Ci?] rg?drgre%_
and metastability of bubble configurations, it is still an open oan?s driven at hiah shear rat’es Local topoloaical rear-
guestion whether we can find more appropriate order paran{— tgth 9 f h |% b}gl I

etes) that will provide more insight into the dynamics of T1 rangementyne appearance of nonhexagonal bu ur

events. Another consequence of this difficulty is the lack of e{)herﬁ:‘gig(:ugsﬂ}ﬁ ;?:g?é;fesdugéggm? more homogeneous flow
clear quantitative description of the viscosity in our simu- ! ) —
lated foams in terms of the model parameters, a difficulty OUr simulations show thaX, the average number of T1
mirrored in the lack of understanding of effective foam vis- €vents per bubble per unit shear, is sensitive to the area dis-
cosity in experiments. As mentioned above, a fundamentdfibution of the foam and the shear rate. Only for a small
problem is the lack of experimental data on the viscosity of@nge of shear rates do foams having similar distributions
two-dimensional foams. We hope that these simulations wilshow similar values oN, which may explain previous stud-
motivate new experiments in this direction. ies [10,19. Our results emphasize the importance of both
The local cellular patterns characteristic of T1 events instructural disorder and configurational metastability to the
foams are strikingly similar to the low-temperature defectsbehavior of soft cellular materials.
and the hexatic-square Voronoi patterns observed in two- In disordered foams, the number of T1 events is not di-
dimensional(particle systems, e.g., two-dimensional liquid rectly proportional to the elastic energy release, because each
crystals and colloidal suspensions, where studies have foFl event is nonlocal and different T1 events can release dif-
cused on the melting phase transitiga9,41]. This similar-  ferent amounts of energy. Therefore, we count T1 events and
ity led us to try the defect description used in melting stud-energy release separately.
ies, namely the nearest-neighbor-bond-orientation order Avalanchelike topological rearrangements play a key role
paramete= , exp(d64,), whereé, is the angle between two in foam rheology. Our simulations show that T1 events do
neighboring bonds. However, we found it insensitive to thenot have finite long-range correlations for ordered structures
orientation change of bubble walls during T1 events and thusr at low shear rates, consistent with experimental observa-
not a useful order parameter. How the nucleation and propdions. As the shear rate or structural disorder increases, the
gation of topological defects in a sheared foam relate to théopological events become more correlated. Over a range of
nucleation and role of topological defects in the two-disorders, the power spectra ard.1As Hwa and Kardar
dimensional melting studies remains an interesting questiompointed out, 1f noise may arise from a random superposition
We have demonstrated three different hysteresis regimesf avalanche§36]. These 1f spectra suggest that avalanches
in an ordered foam under oscillating shear. At small strairof different sizes, although they overlap, are independent of
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each other. Both greater structural disorder and higher she#ibute to the global response? Magnetic fluid foam experi-

rate introduce a flat tail at the high-frequency end, a signaments offer a unique opportunity to locally drive a vertex

ture of Gaussian noise, but do not change the exponent in thend force a single T1 everior a T1 avalancheby a well-

power-law region. controlled local magnetic field. We are investigating the ef-
However, unlike the sandpile model, the power spectra ofects of single T1 events using magnetic fluid foam experi-

the total energy, rather than of the energy dissipation, show ments and the corresponding Potts model simulatidds

similar trend toward ¥/ One major difference between T1

avalanches and sand ava_llanches is that each sand grai_n car- ACKNOWLEDGMENTS
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