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Hysteresis and avalanches in two-dimensional foam rheology simulations
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Foams have unique rheological properties that range from solidlike to fluidlike. We study two-dimensional
noncoarsening foams of different disorder under shear in a Monte Carlo simulation, using a driven large-Q
Potts model. Simulations of periodic shear on an ordered foam show several different response regimes. At
small strain amplitudes, bubbles deform and recover their shapes elastically, and the macroscopic response is
that of a linear elastic cellular material. For increasing strain amplitude, the energy-strain curve starts to exhibit
hysteresis before any topological rearrangements occur, indicating a macroscopic viscoelastic response. When
the applied strain amplitude exceeds a critical value, the yield strain, topological rearrangements occur, the
foam starts to flow, and we observe macroscopic irreversibility. We find that the dynamics of topological
rearrangements depend sensitively on the structural disorder. Structural disorder decreases the yield strain;
sufficiently high disorder changes the macroscopic response of a foam from a viscoelastic solid to a viscoelas-
tic fluid. This wide-ranging dynamical response and the associated history effects of foams result from
avalanchelike rearrangement events. The spatiotemporal statistics of rearrangement events do not display
long-range correlations for ordered foams or at low shear rates, consistent with experimental observations. As
the shear rate or structural disorder increases, the topological events become more correlated and their power
spectra change from that of white noise toward 1/f noise. Intriguingly, the power spectra of the total stored
energy also exhibit this 1/f trend.@S1063-651X~99!11405-3#

PACS number~s!: 83.70.Hq, 82.70.Rr, 02.70.Lq, 64.60.Cn
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I. INTRODUCTION

In addition to their wide-spread industrial importance@1#,
foams provide significant clues to the rheology of other co
plex fluids, such as emulsions, colloids and polymer me
because we can observe their structures directly. The to
logical structures and the dynamics studied here also occ
other cellular materials, such as biological tissues and p
crystalline alloys. One of the most remarkable and tech
logically relevant features of foams is the range of mecha
cal properties that arises from their structure. For sufficien
small stress, foams behave like a solid and are capabl
supporting static shear stress. For large stress, foams
and deform arbitrarily like a fluid. However, we do not y
fully understand the relationship between the macrosco
flow properties of foams and their microscopic details, e
liquid properties, topological rearrangements of individu
bubbles, and structural disorder. Constructing a full mu
scale theory of foam rheology is challenging. Foams disp
multiple length scales with many competing time scal
memory effects~e.g., the hysteresis discussed in Sec. IV
low!, and slow aging punctuated by intermittent bursts
activity ~e.g., the avalanches of T1 events discussed in S
V below!, all of which severely limit their predictability and
control. These problems are intriguing both from an appl
and from a fundamental perspective — they provide bea
ful concrete examples of multiscale materials, where str
ture and ordering at the microscale, accompanied by fast
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slow time scales, can lead to a highly nonlinear macrosco
response. Here we study the relation between the mi
scopic topological events and the macroscopic respons
two-dimensional noncoarsening foams using a driven
tended large-Q Potts model.

In foams, a small volume fraction of fluid forms a con
tinuous network separating gas bubbles@1#. The bubble
shapes can vary from spherical to polyhedral, forming
complex geometrical structure insensitive to details of
liquid composition or the average bubble size@2#. Because of
the complexity of describing the network of films and ver
ces in three-dimensional foams, most studies have been
dimensional. In two-dimensional foams free of stress,
vertices are threefold and the walls connecting them mee
120° angles. Minimization of the total bubble wall leng
dictates that a pair of threefold vertices is energetically m
favorable than a fourfold vertex. Therefore, topology a
dynamics are intimately related, with the dominance
threefold vertices resulting from considerations of structu
stability in the presence of surface tension. When shear st
is present, a pair of adjacent bubbles can be squeezed
by another pair~Fig. 1!, known as to a T1 switching even
@3#. This local but abrupt topological change results
bubble complexes rearranging from one metastable confi
ration to another. The resulting macroscopic dynamics
highly nonlinear and complex, involving large local motion
that depend on structures at the bubble scale. The spatio
poral statistics of T1 events is fundamental to the plas
yielding of two-dimensional liquid foams.

The nonlinear and collective nature of bubble rearran
ment dynamics has made analytical studies difficult, exc
under rather special assumptions. Computer simulations
therefore provide important insights into the full range
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foam behavior. Previous studies in this field can be cate
rized through their use of constitutive, vertex, center
bubble models.

The constitutive models have evolved from the ideas
Prud’homme and Princen@4#. They modeled foam as a two
dimensional periodic array of hexagonal bubbles where
events occur instantaneously and simultaneously for the
tire foam. Khan and Armstrong@5# further developed the
model to calculate the detailed force balance at the films
vertices, and studied the stress-strain relationships as a f
tion of hexagon orientation, liquid viscosity, and liquid fra
tion. Reinelt and Kraynik@6# extended the same model
study a polydisperse hexagonal foam and derived exp
relations between stress and strain tensors. While analy
calculations exist only for periodic structures or for line
response, foams are naturally disordered with an inhe
nonlinear response. Treating the foam as a collection of
teracting vertices, vertex models studied the effect of str
on structure and the propagation of defects in foams w
zero liquid fraction~i.e., dry foam! @3#. Okuzono and Ka-
wasaki@7# studied the effect of finite shear rate by includin
the force on each vertex, a term which depends on the l
motion and is based on the work of Schwartz and Prin
@8#. They predicted avalanchelike rearrangements in a slo
driven foam, with a power-law distribution of avalanche si
versus energy release, characteristic of self-organized c
cality. Durian’s@9,10# ‘‘bubble’’ model, treating bubbles as
disks connected by elastic springs, measured foam’s lin
rheological properties as a function of polydispersity and
uid fraction. He found similar distributions for the avalanc
elike rearrangements with a high-frequency cutoff. Wea
et al. @11#, using a center model based on Voronoi constr
tion from the bubble centers, applied extensional deform
tion and bulk shear to a two-dimensional foam. They co
cluded that avalanchelike rearrangements are possible
for wet foams, and that topological rearrangements can
duce ordering in a disordered foam. A review by Weaire a
Fortes@12# includes some computer models of the mecha
cal and rheological properties of liquid and solid foam
However, few models have attempted to relate the struct
disorder and configuration energy to foam rheology. O
recently, Sollichet al. @13#, studying mechanisms for storin
and dissipating energy, emphasized the role of both st
tural disorder and metastability in the rheology of soft glas
materials, including foams. Langer and Liu@14#, using a
bubble model similar to Durian’s, found that the randomn
of foam packing has a strong effect on the linear shear
sponse of a foam. One of the goals of our study is to quan
the extent of metastability by measuring hysteresis, and

FIG. 1. Schematic diagram of a T1 event, where bubblesa, b, c,
andd swap neighbors. Notice that as the edge between the pa
vertices shrinks, the contact angles not in contact with this e
remain 120°.
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late the macroscopic mechanical response to microsc
bubble structures.

Experiments have measured the macroscopic mecha
properties of three-dimensional foams. But due to the di
culty of direct visualization in three-dimensional foams,
detailed studies of rearrangements exist. Khanet al. @15# ap-
plied bulk shear to a foam trapped between two para
plates and measured the stress-strain response, as well a
yield strain as a function of liquid fraction. Princen and Ki
@16#, applying shear in a concentric cylinder viscometer~i.e.,
boundary shear!, determined the yield stress and shear v
cosity of highly concentrated water/oil emulsions. Recen
with the help of diffusing wave spectroscopy~DWS!, experi-
ments by Gopal and Durian on three-dimensional shav
creams showed that the rate of rearrangements is pro
tional to the strain rate, and that the rearrangements are
tially and temporally uncorrelated@2#; Höhler et al. @17#
found that under periodic boundary shear, foam rearran
ments cross from a linear to nonlinear regime; He´braudet al.
@18#, in a similar experiment on concentrated emulsio
found that some bubbles follow reversible trajectories wh
others follow irreversible chaotic trajectories. However, no
of these experiments has directly observed changes in bu
topology. Dennin and Knobler@19# performed a bulk shea
experiment on a monolayer~2D! Langmuir foam and
counted the number of bubble side-swapping events. Un
tunately, limited statistics rendered their results difficult
interpret.

In an attempt to reconcile the different predictions of d
ferent models and experiments, we use a Monte Carlo mo
the extended large-Q Potts model, to study foam rheology
The large-Q Potts model has successfully modeled foa
structure, coarsening, and drainage@20,21#, capturing the
physics of foams more realistically than other models. H
we extend the model to include the application of shear
study the mechanical response of two-dimensional foams
der stress.

This paper is organized as follows: Sec. II presents
large-Q Potts model; Sec. III contains a description of sim
lation details; Sec. IV presents results on hysteresis; Se
discusses the dynamics and statistics of T1 events; Sec
discusses structural disorder; and Sec. VII contains the c
clusions.

II. MODEL

The great advantage of our extended large-Q Potts model
is its simplicity. The model is ‘‘realistic’’ in that the position
and diffusion of the walls determine the dynamics, as they
in real foams and concentrated emulsions. Previous mo
@7,10,11# were based on different special assumptions ab
the energy dissipation. Since the energy dissipation is po
understood and also hard to measure in experiments, the
act ranges of validity for these models are not clear. N
surprisingly, these models lead to conflicting predictio
e.g., for the distribution of avalanchelike rearrangeme
~Sec. V!. None of these models alone captures the full co
plexity of real foams.

The extended large-Q Potts model, where bubbles hav
geometric properties as well as surface properties, is
based on anya priori energy dissipation assumption. In a
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dition, it has the advantage of simultaneously incorporat
many interactions, including temperature effects, for foa
with arbitrary disorder and liquid content@22#.

Both the film surface properties and the geometry
bubbles are fundamental to understanding foam flow. T
contact angle of walls between vertices indicates whether
structure is at equilibrium, corresponding to minimizing t
surface energy. In a real evolving pattern, the equilibri
contact angle occurs only for slow movements during wh
the vertices remain adiabatically equilibrated. Wheneve
topological rearrangement~a T1 event! of the pattern occurs
the contact angles can be far from their equilibrium valu
The walls then adjust rapidly, at a relaxation rate depend
on the effective foam viscosity, to reestablish equilibriu
The same holds true for the other possible topolog
change, the disappearance of a bubble, a T2 event@3#. How-
ever, disappearance only occurs in foams that do not c
serve bubble number and area, which we do not conside
this study. A difficulty in two-dimensional foams is that th
effective viscosity depends primarily on the drag betwe
the Plateau borders and the top/bottom surfaces of the
tainer, not the liquid viscosity. Container chemistry, surfa
tant properties, and foam wetness all change the effec
viscosity. Thus even in experiments, the effective viscosit
not equivalent to the liquid viscosity and is not possible
derive from liquid viscosity. We define the equilibrium co
tact angle so that any infinitesimal displacement of the ve
causes a second-order variation of the surface energy, w
during a T1 event the energy must vary macroscopically o
a small but finite coherence length, typically the rigidi
length of a bubble. In our simulations, a bubble under str
can be stretched or compressed up to 60% of its orig
length, while conserving its area.

In a center model based on the Voronoi construction~see,
e.g.,@11#!, the coherence length of a bubble is comparable
its diameter. Contact angles are given correctly at equi
rium but approach and remain near 90° during a T1 ev
since the centers are essentially uninfluenced by topolog
details such as the difference between a fourfold vertex a
pair of threefold vertices.

In a vertex model~see, e.g.,@7#!, the walls connecting the
vertices adiabatically follow an out-of-equilibrium, slowl
relaxing vertex. In such a model, the walls are constraine
be straight and vertices typically have arbitrary angles.
essence, the deviation of the vertex angles from the equ
rium value represents the integrated curvature of the bu
walls. Because of their unphysical representation of con
angles, pure vertex models with straight walls cannot han
T1 events correctly.

The extended large-Q Potts model avoids these limita
tions: walls are free to fluctuate, which is not true in vert
models, and the contact angles during a T1 event are cor
which is not true in center models. A further advantage
our extended large-Q Potts model is that it allows direc
measurement of T1 events. The other models cannot dire
count T1 events. Instead, they quantify rearrangement ev
by their associated decreases in energy. As we will disc
later, this energy decrease is not always directly proportio
to the number of T1 events. Our model therefore deliv
accurate information about individual T1 events as well
the averaged macroscopic measures such as total bubble
g
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length, thereby allowing new insights into the connecti
between microscopic foam structure and macroscopic
chanical response.

Before describing the details of the Potts model,
should first mention its major limitations. Viscosity is one
the basic physical properties of foams, but it is not eas
specifieda priori in the Potts model. Although we can ex
tract the effective viscosity and the viscoelasticity of foam
from simulations, we lack a clear quantitative description
the foam viscosity in Potts model simulations and how
relates to the effective and liquid viscosities of a tw
dimensional foam. However, our ignorance about simulat
viscosity is equivalent to our ignorance about experimen
two-dimensional foam viscosity. Quantitative experimen
will help to separate the roles of the Plateau borders, fl
viscosity, and topological rearrangements in determining
effective foam viscosity. A second possible limitation is t
size effect due to lattice discretization. We show in Sec.
that this problem does not invalidate our simulations. A th
drawback is that the Monte Carlo algorithm results in unc
tainties in the relative timing of events on the order of a fe
percent of a Monte Carlo step. While this uncertainty is
significant for well separated events, it can change the m
sured interval between frequent events.

The extended large-Q Potts model treats foams as spi
on a lattice. Each lattice sitei 5(xi ,yi) has an integer
‘‘spin’’ s i chosen from$1, . . . ,Q%. Domains of like spins
form bubbles, while links between different spins define t
bubble walls~films!. Thus each spin merely acts as a lab
for a particular bubble. The surface energy resides on
bubble walls only. Since the present study focuses on sh
driven topological rearrangements over many loading cyc
we prohibit foam coarsening by applying an area constra
on individual bubbles. In practical applications, foam defo
mation and rearrangement under stress is often much fa
than gas diffusion through the walls, so neglecting coars
ing is reasonable. The Potts Hamiltonian, the total energy
the foam, includes the surface energy and the elastic b
energy:

H5(
i j
Ji j ~12ds is j

!1G(
n

~an2An!2, ~1!

whereJi j is the coupling strength between neighboring sp
s i and s j , summed over the entire lattice. The first ter
gives the total surface energy. The second term is the
constraint which prevents coarsening. The strength of
constraint (G) is inversely proportional to the gas compres
ibility; an is the area of thenth bubble andAn its correspond-
ing area under zero applied stress. We can include coar
ing by settingG to zero.

We extend the Hamiltonian to include shear:

H85H1(
i

g~yi ,t !xi~12ds is j
!. ~2!

The new term corresponds to applying shear strain~a de-
tailed explanation follows below! to the wall between neigh
boring bubbless i ands j , with g corresponding to the strain
field, (xi ,yi) to the coordinate of spins i , and ~1,0! is the
direction of the strain.
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The system evolves using Monte Carlo dynamics. O
algorithm differs from the standard Metropolis algorithm: w
choose a spin at random, butonly reassign it if it is at a
bubble wall and thenonly to one of its unlike neighbors. Th
probability of accepting the trial reassignment follows t
Boltzmann distribution, namely,

P;H 1, DH8,0,

exp~2DH8/T!, DH8>0,
~3!

whereDH8 is the change inH8 due to a trial spin flip, andT
is temperature. Time is measured in units of Monte Ca
steps~MCS!, where one MCS consists of as many spin tri
as there are lattice sites. This algorithm reproduces the s
scaling as classic Monte Carlo methods in simulations
foam coarsening, but significantly reduces the simulat
time @23#.

The second term inH8 biases the probability of spin re
assignment in the direction of increasingxi ~if g,0) or de-
creasingxi ~if g.0). From dimensional analysis ofH8, g
has units of force, but we can interpret it as the strain fi
for the following reason: In the Potts model a bubble w
segment moves at a speed proportional to the reassign
probability P; in this case,

v}AgP, ~4!

where the prefactor follows from dimensional analysis. T
shear term effectively enforces a velocityv at the bubble
walls, therefore it imposes a strain rate on the foam. T
straine(t) is then proportional to a time integral ofv,

e}E
0

t
Ag~ t8!Pdt8. ~5!

If we limit the application of this term to the boundarie
of the foam, we impose a boundary shear, equivalent to m
ing the boundary of the foam with no-slip between bubb
touching the boundary and the boundary, i.e.,

g5H g0G~ t !, yi5ymin ,

2g0G~ t !, yi5ymax,

0, otherwise,

~6!

whereg0 is the amplitude of the strain field andG(t) is a
normalized function of time. On the other hand,

g5byiG~ t !, ~7!

with yi betweenymin andymax, corresponds to applying bul
shear with the strain rate varying linearly as a function
position in the foam. The gradient of strain rate is the sh
rate, b. The corresponding experiment would be similar
Dennin and Knobler’s monolayer Langmuir foam expe
ment@19#: a monolayer foam~2D! on the surface of a liquid
is sheared in a concentric Couette cell, with no-slip con
tions between the bubbles and the container surface. In
our studies we useG(t)51 for steady shear, andG(t)
5sin(vt) for periodic shear. Since for steady shear the str
is a constant times time, orAgPt, plotting with respect to
time is equivalent to plotting with respect to strain.
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Note that our driving in the Potts model differs from th
in driven spin systems, for which a large body of literatu
addresses the dynamic phase transition as a function of d
ing frequency and amplitude@24#. Our driving term acts on
the bubble walls~domain boundaries! only, while in driven
spin systems, e.g., the kinetic Ising model, all spins couple
the driving field. The resulting dynamics differ greatly.

III. SIMULATION DETAILS

Experimental observations show that the mechanical
sponses of a foam, including the yield strain, the elas
moduli, and the topological rearrangements, are sensitiv
the liquid volume fraction@25#. In particular, the simulations
of both Durian@10# and Weaireet al. @11# showed a critical
liquid fraction at which a foam undergoes a ‘‘melting tra
sition.’’ Although different liquid content and drainage e
fects can be readily incorporated in the Potts model@21#, we
focus on the dynamics of topological rearrangements and
not consider the liquid fraction dependence of flow behav
i.e., we assume the dry foam limit in this study. Also, w
ignore gas diffusion across the walls, assuming that bub
deformation and rearrangement are much faster than co
ening.

The definition of time~Monte Carlo steps or MCS! is not
directly related to real time, but we have made choices
ensure that we do not under-resolve events. A shear cyc
the periodic shear case takes about 4000 MCS. In our si
lations, a single deformed bubble recovers on a time scal
a few MCS while the relaxation of a cluster of deforme
bubbles takes a much longer time, on the order of 10–
MCS. A T1 event by definition takes one MCS~the short life
of a fourfold vertex!, but the viscous relaxation has to ave
age over at least the four bubbles involved in the T1 eve
and thus lasts much longer.

We used periodic boundary conditions in thex direction,
to mitigate finite-size effects. For ordered foams und
boundary shear, we used a 4003100 lattice with each bubble
containing 20320 lattice sites; for ordered foams under bu
shear, we used a 2563256 lattice with 16316 sites for each
bubble. When unstressed, all the bubbles are hexagons
cept for those truncated bubbles touching the top and bot
boundaries. In the case of disordered foams, we used a
3256 lattice with various area distributions. We have a
performed simulations using a lattice of size 102431024
with 64364 bubbles and a lattice of size 102431024 with
16316 bubbles. The results did not appear to differ quali
tively. A 16316 bubble has a side length around 10 latt
sites, so its smallest resolvable tilt angle is approximat
arctan(1/10)'5.7°. Had lattice effects been a problem, w
would have expected a significant difference in the simu
tions with bubbles of size 64364, where the smallest angl
is about four times smaller. But increasing the simulati
size from 162 to 642 did not lead to significant changes in th
quantities we measured. Thus, we used bubbles of size 12 in
all the simulations reported in this paper.

Lattice anisotropy can induce artificial energy barriers
lattice simulations. All our runs use a fourth-neare
neighbor interaction on a square lattice, which has a lat
anisotropy of 1.03, very close to the isotropic situation~lat-
tice anisotropy of 1!.



t
ns
be
d,
th
e

e
as

rti
o
i

a
it

or
re
ur

r
n

on
. W
u-
or
ar
i.e
n

e

w
ta
ra
an

be
lis
lis
n

o
W
ys

p
a

es
at
n
o
s
e
th
e

an
r-
le

d
er
ble
rom
le

Our
ur
ge-

ll
en-
mu-
that

the
n the
ble

by
ith
-
cal
tinu-
na-

is
use
ell
la-

he
o a
all

d
tly

al

ar-
this

hing
nts.
uch-
en-

he
ed.

PRE 59 5823HYSTERESIS AND AVALANCHES IN TWO- . . .
Standard quantitative measures of cellular patterns are
topological distributions and correlations, area distributio
and wall lengths — all quantities that in principle can
measured in experiments. Since the areas are constraine
evolution of the area distribution is not useful. We define
topological distributionr(n) as the probability that a bubbl
has n sides; itsmth moments aremm[(nr(n)(n2^n&)m.
The area distributionr(a) and its second momentm2(a) are
defined in a similar fashion for the bubble areas. We us
variety of disordered foams with different distributions,
characterized by theirm2(n) andm2(a).

In practice, we generate the initial configuration by pa
tioning the lattice into equal-sized square domains, each c
taining 16316 lattice sites. The squares alternate offsets
every other row, so the pattern resembles a brick wall
ranged in common bond. We then run the simulation w
area constraints, but without strain, at finite temperature f
few Monte Carlo steps, and then decrease the temperatu
zero and let the pattern relax. The minimization of total s
face energy~and hence the total bubble wall length! results
in a hexagonal pattern, the initial configuration for the o
dered foam. For disordered initial configurations, we co
tinue to evolve the hexagonal pattern without area c
straints at finite temperature so that the bubbles coarsen
monitor m2(n) of the evolving pattern, and stop the evol
tion at any desired distribution or degree of structural dis
der. Then we relax the patterns at zero temperature with
constraints to guarantee that they have equilibrated,
without added external strain or stress the bubbles would
deform or rearrange.

For all our simulations,G51 ~which is sufficiently large
to enforce air incompressibility in bubbles! andJi j 53 ~ex-
cept when we vary the coupling strength to change the
fective viscosity of the foam!. Most of the simulations shown
in this paper are run at zero temperature except when
study temperature effects on hysteresis, because the da
less noisy and easier to interpret. A finite but low tempe
ture speeds the simulations, but does not appear to ch
the results qualitatively.

The number of sides of a bubble is defined by its num
of different neighbors. During each simulation, we keep a
of neighbors for each bubble. A change in the neighbor
indicates a topological change which, since bubbles do
disappear, has to be a T1 event.

IV. HYSTERESIS

We can view foam flow as a collective rearrangement
bubbles from one metastable configuration to another.
investigate the configurational metastability by studying h
teresis of the macroscopic response.

Hysteresis is the phenomenon in which the macrosco
state of a system does not reversibly follow changes in
external parameter, resulting in a memory effect. Hyster
commonly appears in systems with many metastable st
due to~but not limited to! interfacial phenomena or domai
dynamics. The classic example of the former is that the c
tact angle between a liquid and a solid surface depend
whether the front is advancing or retreating. The classic
ample of the latter is ferromagnetic hysteresis, in which
magnetization lags behind the change in applied magn
he
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field. In cellular materials, including foams, hysteresis c
have multiple microscopic origins, including stick-slip inte
facial and vertex motion, local symmetry-breaking bubb
rearrangement~T1 events!, and the nucleation of new an
annihilation of old cells. In all of these, noise and disord
play an intrinsic role in selecting among the many possi
metastable states arising when the foam is driven away f
equilibrium. By focusing on noncoarsening foams, we ru
out nucleation and annihilation as sources for hysteresis.
foam is therefore an ideal testing ground for improving o
understanding of hysteresis as it arises from local rearran
ments and interfacial dynamics.

In accordance with@7#, we define the quantity

f[(
i , j

u~12ds i ,s j
! ~8!

as the total stored elastic energy. Here sitesi , j are neighbors,
the summation is over the whole lattice, andu is the wall
thickness that we choose to be 1 in all our simulations~dry
foam limit!. Thus f gives essentially the total bubble wa
length, which differs by a constant, namely the surface t
sion, from the total surface energy. In zero temperature si
lations, the area constraint is almost always satisfied so
small fluctuations in area contribute only 1023 of the total
energy. Thus we can neglect the elastic bulk energy of
bubbles, and assume that the total foam energy resides o
bubble walls only, i.e., all forces concentrate at the bub
walls. We can calculate values of the averaged stress
taking numerical derivatives of the total surface energy w
respect to strain@11#. However, the calculation via deriva
tives is not suitable for foams undergoing many topologi
changes, since the stored elastic energy changes discon
ously when topological rearrangements occur. The alter
tive is to calculate stress directly, as given in@26#, by the
sum of forces acting on the bubble walls, which locally
proportional to the wall length change of a bubble. Beca
forces on the bubble walls in Potts model foams are not w
characterized, we limit our discussions to energy-strain re
tionships. The more rigorous definition of strain involves t
definition of a mesoscopic length scale corresponding t
cluster of bubbles, over which the effects of bubble w
orientation and bubble deformation can be averaged. In@7#,
the average stress tensor, defined ass
5(1/A)(^ i , j &ur i j u r̂ i j r̂ i j , with A the total area of the foam an
r i j the distance between two neighboring vertices, is direc
related tof via f5Tr(s). Hereafter, we present ourf data
asf(t)/f(0) to scale out differences due to different initi
configurations.

A. Hysteresis in ordered foams

The simplest perturbation which induces topological re
rangements is boundary shear on an ordered foam. In
case we can confine the deformation to the bubbles touc
the moving boundaries, and easily locate all the T1 eve
As the applied boundary shear increases, the bubbles to
ing the boundaries distort, giving rise to a stored elastic
ergy. We show snapshots of the pattern in Fig. 2~a!. When a
pair of vertices come together to form a fourfold vertex, t
number of sides changes for the cluster of bubbles involv
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Different shades of gray in Fig. 2~a! reflect the topologies o
the bubbles. Note that a five-sided~dark gray! and a seven-
sided~light gray! bubble always appear in pairs except du
ing the short lifetime of a fourfold vertex~when the number
of sides is ambiguous because of the discrete lattice!. Once
the strain exceeds a critical value, the yield strain, all
bubbles touching the moving boundaries undergo almos
multaneous rearrangements, thereby releasing stress.
stored elastic energy,f, increases with time when th
bubbles deform, then decreases rapidly when the bub
rearrange. Stress accumulates only in the two boundary
ers of bubbles, and never propagates into the interior of
foam. The whole process repeats periodically, due to the
riodic bubble structure, as shown in Fig. 2~b!, the energy-
strain plot ~as mentioned at the end of Sec. II, for stea
shear, plotting time is equivalent to plotting strain!. This re-
sult corresponds to the mechanical response obtained in
model of Khanet al. with periodic hexagonal bubbles or
ented at zero degrees with respect to applied strain@5#.

When applying periodic shearg(t)5g0 sin(vt), we keep
the period 2p/v fixed and vary the amplitude,g0. Under
sinusoidal periodic shear, we observe three types of be
ior. When the strain amplitude is small, bubbles deform a
recover their shapes elastically when stress is released
topological rearrangement occurs and the energy-strain
is linear, corresponding to an elastic response@27#. This re-
sult agrees perfectly with the experimental result of DWS
@17#. As the strain amplitude increases, the energy-st
curve begins to exhibit a small butterfly-shaped hystere
loop before any topological rearrangements occur, indica

FIG. 2. An ordered foam under boundary shear:~a! snapshots,
different shades of gray encode bubble topologies~lattice size 256
3256); ~b! energy-strain curve and the number of T1s presente
50 MCS bins.
-

e
i-
he

es
y-
e
e-

he

v-
d
No
lot

in
is
g

a macroscopic viscoelastic response. If we keep increa
the strain amplitude, the hysteresis loop increases in s
When the applied strain amplitude exceeds a critical va
T1 events start occurring, and the foam starts to flow, wh
leads to a further change in the shape of the hysteresis l
Even larger strain amplitude introduces more T1 events
period, and adds small loops to the ‘‘wings’’ of the hyste
esis loop. Figure 3~a! shows the smooth transition betwee
the three types of hysteresis in the energy-strain curve.

We can adjust the viscosity of the bubble walls by chan
ing the coupling strengthJi j . Smaller coupling strength cor
responds to lower viscosity. Similar transitions from elas
to viscoelastic to fluidlike flow behavior occur for progre
sively lower values of coupling strength, shown in Fig. 3~b!.
The phase diagram in Fig. 3~c! summarizes 44 differen
simulations and shows the elastic, viscoelastic, and fluid
behavior~as derived from the hysteretic response! as a func-
tion of the coupling strengthsJi j ~i.e., viscosity! and strain
amplitudesg0. A striking feature is that the boundaries b
tween these regimes appear to be linear. Figure 3~d! shows
the effect of finite temperature on the energy-strain curv
With progressively increasing temperature, noise becom
more dominant and eventually destroys the hysteresis lo
This result implies diminished metastability at finite tem
perature. However, it does not seem to change the tren
mechanical response.

A more conventional experiment is the application of bu
shear@7,10,16,19#, with the shear strain varying linearly as
function of the vertical coordinate, fromg0 at the top of the
foam to 2g0 at the bottom. In our bulk shear simulation
with an ordered foam, the energy-strain relationship has
distinct behaviors depending on the shear rate. At sm
shear rates, a ‘‘sliding plane’’ develops in the middle of t
foam. As shown in Fig. 4~a!, nonhexagonal bubbles appe
only at the center plane. The energy-strain curve, shown
Fig. 4~b!, therefore, resembles that for boundary shear on
ordered foam. The energy curve in Fig. 4~b! also shows that
the baseline of energy is larger and that the decrease in
plitude of the energy due to T1s is smaller than in Fig. 2~b!,
because bulk shear induces a more homogeneous distrib
of distortion and thus of stored elastic energy. Again t
periodic structure of the bubbles causes the periodicity of
curve, reminiscent of the shear planes observed in met
glasses in the inhomogeneous flow regime, where str
induced rearrangement causes plastic deformation@28#.

At high shear rates, the ensemble of T1 events no lon
localizes in space@Fig. 5~a!#. Nonhexagonal bubbles appe
throughout the foam. The energy-strain curve, shown in F
5~b!, is not periodic but rather smooth; beyond the yie
point, the bubbles constantly move without settling into
metastable configuration and, correspondingly, the foam
plays dynamically induced topological disorder. The tran
tion between these two regimes, localized and nonlocali
T1 events, occurs when the shear rate is in the rang
31022,ubu,531022. This transition can be understood
we look at the relaxation time scale of the foam. Due
surface viscous drag and geometric confinement of o
bubbles, the relaxation time for a deformed bubble in a fo
is on the order of 10 MCS. For a shear rateb5531022,
b21 is of the same order as the relaxation time. Thus
shear rates above the natural internal relaxation time sc

in
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FIG. 3. Energy-strain curves for ordered foam under periodic boundary shear:~a! Numbers above the figures areg0. Progressively
increasing shear amplitude atJi j 53 leads to a transition between three types of hysteresis:g051.0 corresponds to an elastic respons
g053.5 shows viscoelastic response~before any T1 event occurs!, g057.0 is a typical response when only one T1 event occurs during
cycle of strain loading. The intermediate steps show that the transition between these three types is smooth.~b! Numbers above the figures
are Ji j . Progressively decreasing liquid viscosity~increasingJi j at g057) shows a similar transition between elastic (Ji j 510) and
viscoelastic (Ji j 55) regimes, and flow due to T1 events (Ji j 53 for one T1 event andJi j 51 for three T1 events! during one strain cycle.
~c! Phase diagram of hysteresis in the parameter spaceg0 vsJi j . ~d! Effect of progressively increasing temperatureT (Ji j 53, g054). All
data shown here are averaged over 10 periods.
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the macroscopic response changes from jagged and p
wise elastic to smooth and viscous response, as observ
fingering experiments in foams@29#.

B. Hysteresis in disordered foams

In a disordered foam, bubbles touching the moving fo
boundary have different sizes. Boundary strain causes di
ent bubbles to undergo T1 rearrangements at different tim
Stress no longer localizes in~sliding! boundary layers, bu
propagates into the interior@Fig. 6~a!#. The yield strain is
much smaller. When the size distribution of the foam
broad, the linear elastic regime disappears, since eve
small strain may lead to topological rearrangements of sm
bubbles. In other words, with increasing degree of disord
ce-
in

r-
s.

a
ll
r,

the yield strain decreases to zero and the foam changes
a viscoelastic solid to a viscoelastic fluid. We show an e
ample of such viscoelastic fluid behavior in Fig. 6~b! for a
random foam, which shows no energy accumulati
namely, its yield strain is zero. The foam deforms and yie
like a fluid upon application of the smallest strain.

Under a periodic shear, the stored energy increases du
an initial transient period but reaches a steady state aft
few periods of loading. Energy-strain plots show hystere
due to topological rearrangements similar to those in orde
foams, but as the degree of disorder increases, the co
sponding elastic regime shrinks and eventually disappea

Rearrangement events in a disordered foam under b
shear at a low shear rate@snapshots shown in Fig. 7~a!# cor-



T
in
w

rla
og
u
re

ai
e
n
ion
n
ss
w

the

-
wo
te at
ly
t a

y in

rgy

am

e
ts.
t

as
n

as

of
een

5826 PRE 59JIANG, SWART, SAXENA, ASIPAUSKAS, AND GLAZIER
respond to those in an ordered foam at a high shear rate.
rearrangements are discrete and avalanchelike, resembl
stick-slip process, or adding sand slowly to a sandpile. Ho
ever, at sufficiently high shear rate all the avalanches ove
and the deformation and rearrangements are more hom
neous and continuous, as in a simple viscous liquid. Fig
7~b! shows the typical energy-strain curve of a disorde
foam under steady bulk shear.

Note that in all our hysteresis plots, the energy-str
curves cross at zero strain, indicating no residual stored
ergy at zero strain. This crossing is an artifact of our defi
tion of energy, which ignores angular measures of distort
i.e., the total bubble wall length does not distinguish amo
the directions in which the bubbles tilt. A choice of stre
definition which included angular information would sho

FIG. 4. An ordered foam under bulk shear with shear rateb
50.01:~a! snapshots, shades of gray encode bubble topologies
Fig. 2; ~b! energy-strain curve and the number of T1s. The mag
fied view in the box shows the correlation between stress rele
and overlapping avalanches of T1 events.
he
g a
-
p
e-

re
d

n
n-
i-
,

g

some residual stress at zero strain, but would not affect
results reported here.

V. T1 AVALANCHES

In both experiments@30,31# and our simulations, the con
tact angles of the vertices remain close to 120° until t
vertices meet. The applied strain rate determines the ra
which vertices meet. The resulting fourfold vertex rapid
splits into a vertex pair, recovering 120° contact angles, a
rate determined by the viscosity. This temporal asymmetr
the T1 event contributes to the hysteresis.

In vertex model simulations, sudden releases of ene
occur once the applied shear exceeds the yield strain@7#. The
event sizen, i.e., the energy release per event in the dry fo
limit, follows a power-law distribution:r(n);n23/2. Durian
@10# found a similar power-law distribution in his bubbl
model, with an additional exponential cutoff for large even
Simulations of Weaireet al. @11,26#, however, suggested tha

in
i-
es

FIG. 5. An ordered foam under bulk shear with shear rateb
50.05: ~a! snapshots;~b! energy-strain curve and the number
T1s. The magnified view in the box shows the correlation betw
stress releases and overlapping avalanches of T1 events.
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FIG. 6. A disordered foam under boundary shear:~a! snapshots,
shades of gray encode bubble topologies~lattice size 2563256);
~b! energy-strain curve and number of T1 events presented in
MCS bins.

FIG. 7. A disordered foam under bulk shear at shear rateb
50.01:~a! snapshots, shades of gray encode bubble topologies~lat-
tice size 2563256); ~b! energy-strain curve and number of T
events.
power-law behavior only appeared in the wet foam lim
Experiments, on the other hand, have never found syst
wide events or long-range correlations among events@2,19#.
One of our goals is to reconcile these different prediction

These differences may result from the use of energy
lease as proxy for topological changes, rather than enum
ating actual events, as well as the assumption of a lin
relation between jumps in the stored elastic energy and
number of T1 events, namely,df/dt5cN, whereN is the
number of T1 events andc is a constant. A drastic drop in
the total bubble wall length indicates a large number of
events. However, in a disordered foam, all T1 events are
equal, since they do not all release the same amount of st
elastic energy. The energy released during a T1 event sc
as the bubble perimeter, i.e., smaller bubbles release
energy. Hence smaller bubbles undergo more T1 eve
Moreover, a T1 event is not strictly local, but deforms
neighborhood over a certain finite range, as demonstrate
T1 manipulations in magnetic fluid foam experiments@32#.
Therefore, the number of T1 events is not always direc
proportional to the decrease in total bubble wall length. Th
we cannot compare the energy dissipation and T1 ev
directly. Furthermore, the mechanisms of energy dissipa
differ in these models. Kawasakiet al. @8# included the dis-
sipation due to the flow of liquid out of the Plateau borde
Durian @10# considered only the viscous drag of the liqui
while Weaireet al. @11# modeled an equilibrium calculation
involving quasistatic steps in the strain that do not invo
any dissipation. In our model, the evolution minimizes t
total free energy naturally. To avoid ambiguities, we direc
count T1 events in addition to tracking energy.

The avalanchelike nature of rearrangements appears in
sudden decreases of the total elastic energy as a functio
time. Figure 4~b! shows the relation between energy and t
number of T1 events in an ordered foam under steady b
shear for a small strain. The stored energy increases alm
linearly until the yield strain is reached. The avalanches
well separated. Every cluster of T1 events corresponds
drastic decrease in the stress, and the periodicity is due to
ordered structure of the foam. At a higher shear rate@Fig.
5~b!#, the yield strain remains almost the same, but the a
lanches start to overlap and the energy curve beco
smoother. In the sandpile analogy, instead of adding s
grains one at a time and waiting until one avalanche is o
before dropping another grain, the grains accumulate a
constant rate and the avalanches, large and small, ove
one another. A sufficiently disordered foam may not hav
yield strain@Fig. 6~b!#; T1 events occur at the smallest strai
The foam flows as a fluid without going through an interm
diate elastic regime.

To study the correlation between T1 events, we consi
the power spectrum ofN(t), the number of T1 events at eac
time step,

pN~ f !5E dtE dte2 i f tN~ t !N~ t1t!, ~9!

wheref is the frequency with unit MCS21. Figure 8~a! shows
typical power spectra of the time series of T1 events in
ordered foam under bulk shear. At a shear rateb50.01, the
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FIG. 8. Power spectra of the number of T1 events:~a! an or-
dered foam for three shear ratesb50.01, 0.02, and 0.05, respec
tively; ~b! a disordered foam@m2(n)50.81,m2(a)57.25# for five
shear rates from 0.001 to 0.05;~c! a very disordered foam@m2(n)
51.65,m2(a)521.33# for three shear rates.
T1 events show no power law. The peak at;1023 is due to
the periodicity of bubble structure in an ordered foam wh
a ‘‘sliding plane’’ develops. At shear rateb50.02, the spec-
trum resembles that of white noise. As the shear rate
creases tob50.05, the power spectrum develops a pow
law tail at the low-frequency end, with an exponent ve
close to 1. In a disordered foam, with increasing shear r
the spectra for the T1 events gradually change from co
pletely uncorrelated white noise to 1/f at higher shear rates
By 1/f , we mean any noise of power spectrumS( f ); f 2a,
where 0,a,2 or near 1, i.e., intermediate between Brow
ian noise (a52) and white noise (a50).

These power spectra suggest that the experimental re
for T1 events as reported in@2,19# correspond to a low shea
rate, with no long-range correlation among T1 events. Str
tural disorder introduces correlations among the eve
Power-law avalanches do not occur in ordered hexago
cells at low shear rate, where rearrangements occur sim

neously. At a high shear rate, when the value ofġ21 is
comparable to the duration of rearrangement events,
bubbles move constantly. The foam behaves viscously, s
rearrangements are continuously induced before bubbles
relax into metastable configurations which can support st
elastically. At these rates, even an initially ordered struct
behaves like a disordered one, as shear destroys its symm
and periodicity.

In a disordered foam, whenever one T1 event happe
the deformed bubbles release energy by viscous dissipa
and also transfer stress to their neighboring bubbles, wh
in turn are more likely to undergo a T1 switch. Thus, T
events become more correlated. Shown in Fig. 8~b!, the
power spectra change from that of white noise towardf
noise. When the first sufficiently large region to accumul
stress undergoes T1 events, it releases stress and pushe
of the rest of the bubbles over the brink, causing an ‘‘infin
avalanche’’: some bubbles switch neighbors, triggering th
neighbors to rearrange~and so on!, until a finite fraction of
the foam has changed configuration, causing a decreas
the total stored energy, mimicking the cooperative dynam
events in a random field Ising model@33#. We never observe
system-wide avalanches as claimed in the vertex mo
simulations@7#, agreeing with Durian’s simulations@10# and
Denninet al.’s experiments@19#. For even greater disorde
the bubbles essentially rearrange independently, provi
spatial correlations for area and topology are weak. Pair
bubbles switch as the strain exceeds their local yield poi
Although more frequent, the avalanches are small, with
long correlation lengths. Figure 8~c! shows the power spectr
for T1 events for a highly disordered structure withm2(n)
51.65. We observe no power-law behavior, even at h
shear rates. Thus a highly disordered foam resembles a
mogeneous but nonlinear viscous fluid.

Over a range of structural disorder the topological re
rangement events are strongly correlated. The question n
rally arises whether the transition between these correla
and uncorrelated regimes is sharp or smooth, and what
termines the transition points. We are currently carrying
detailed simulations involving different structural disorder
study this transition.
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Previous simulations@10# and experiments@19# measured
N̄, the average number of T1 events per bubble per
shear, and concluded thatN̄ was independent of the she
rate. Our simulation results in three different foams w
shear rates covering two orders of magnitude, however,
agree. As shown in Fig. 9, our data indicate thatN̄ depends
sensitively on both the polydispersity of the foam and
shear rate. Only at large shear rates doesN̄ seem to be inde-
pendent of the shear rate, which might correspond to
above-mentioned experiments.

The avalanches and 1/f power spectra resemble a numb
of systems with many degrees of freedom and dissipa
dynamics which organize into marginally stable states@34#.
Simple examples include stick-slip models, driven chains
nonlinear oscillators, and sandpile models. In sandpile m
els, both the energy dissipation rate~total number of trans-
port events at each time step! and the output current~the
number of sand grains leaving the pile! show power-law
scaling in their distributions. In particular, if the avalanch
do not overlap, then the power spectrum of the output cur
follows a power law with a finite size cutoff@35#. The
1/f -type power spectra result from random superposition
individual avalanches@36#.

If the analogy with sandpiles holds, we should expect
power spectra of the time derivativedf/dt, of the stored
energy, i.e., the energy change at every time step, to
1/f -like, and thus the power spectra off to be f 22. How-
ever, in our simulationsdf/dt does not show 1/f -type
broadband noise. Figures 10~a!–10~c! show the correspond
ing power spectra forf from the same simulations as Fig.
which are obviously notf 22, i.e., the topological rearrange
ments are not in the same universality class as sandpile
particular, Fig. 8~c! shows a complicated trend: the pow

FIG. 9. Number of T1 events per unit shear per bubble a
function of shear rate for four foams: squares correspond to a f
of 180 bubbles, withm2(n)51.65, m2(a)521.33; stars correspon
to a foam of 246 bubbles, withm2(n)51.72, m2(a)515.1; tri-
angles correspond to a foam of 377 bubbles, withm2(n)51.07,
m2(a)52.50; and circles correspond to a foam of 380 bubbles, w
m2(n)50.95,m2(a)52.35. The inset shows on a log-log scale th

N̄ varies by several orders of magnitude.
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FIG. 10. Power spectra of the energy:~a! an ordered foam for
three shear rates;~b! a disordered foam@m2(n)50.81,m2(a)
57.25# for five shear rates;~c! a very disordered foam@m2(N)
51.65,m2(a)521.33# for five shear rates.
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spectrum changes from a small slope at shear rateb
50.001 to f 20.8 spanning over four decades atb50.005.
But as the shear rate increases, the power law disapp
Instead, a flat tail develops at high frequencies due to Ga
ian noise. Other different slopes appear over different
gimes of different sizes, indicating the existence of multip
time scales and length scales. We will further explore
implications of these spectra forf elsewhere@37#.

VI. EFFECTS OF STRUCTURAL DISORDER

As structural disorder plays an important role in mecha
cal response, we study the effect of disorder on the y
strain and the evolution of disorder in foams under shear.
define the yield strain, at which the first T1 avalanches oc
as the displacement at the top boundary of the foam divi
by half the height of the foam~since the zero strain is in th
middle of the foam! rescaled by the average bubble width

Figure 11~a! shows the yield strain as a function of she
rate b for different foam disorders. We find that for an o
dered foam at low shear rates, when a sliding plane occu
the middle of the foam, the yield strain is independent
shear rate. We expect this independence because T1 e
occur almost simultaneously in the sliding plane, and
bubble size determines the yield strain. At high shear ra
T1 events distribute more homogeneously throughout
foam, which lowers the yield strain. The upper limit for th
yield strain in an ordered foam is 2/A3, when all the vertices
in a hexagonal bubble array simultaneously become four
under shear. The nucleation of topological defects~five- and
seven-sided bubble pairs! and their propagation in foam
lower the yield strain. But the yield strain does not rea
zero even at a very high shear rate ofb50.05. An ordered
foam remains a solid with finite yield strain. For a disorder
foam, the yield strain is lower for higher shear rates; and
the same shear rate, the yield strain decreases drastica
zero as disorder increases — the foam changes from a
coelastic solid to a viscoelastic fluid.

The most commonly used measure for topological dis
der is the second moment of the topological distributio
m2(n). During diffusional foam coarsening, the topologic
distribution tends to a stationary scaling form andm2(n)
assumes a roughly constant value. Experiments on s
foams with up to 10 000 bubbles in the initial state@30,31#
and early smaller simulations@38# gave a value ofm2(n)
51.4 in the scaling regime. Other simulations showed
slightly lower value ofm251.2 @39#. Weaireet al. @11# re-
ported shear-induced ordering, i.e., a reduction ofm2(n)
with shearing. However, in our simulations, foams with in
tial m2(n) ranging from 0.81 to 2.02 show no shear-induc
ordering. Instead,m2(n) increases and never decreases b
to its initial unstrained value. Figure 11~b! shows the evolu-
tion of m2(n) for a variety of initial topological distributions
The difference between the simulations of Weaireet al. @11#
and ours is not surprising. Weaireet al. applied step strain
and observed the resulting equilibrated pattern. In our sim
lations, bubbles are constantly under shear, i.e., the foa
not in equilibrium. The topological disorder, as measured
m2(n), therefore increases as the energy accumulates
decreases as the energy releases, as does the number
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FIG. 11. ~a! Yield strain as a function of shear rate.~b! Evolu-
tion of m2(n) under constant bulk shear; legend denotes the in
m2(n). ~c! Evolution of m2(n) under steady bulk shear for an o
dered foam, showing the correlation between the stress decre
andm2(n).
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pological events, and does not necessarily settle to an e
librium value.

In an ordered foam at shear rateb50.01 ~Fig. 4! with
separated T1 avalanches,m2(n) fluctuates in synchrony with
the total energy, shown in Fig. 11~c!. When the avalanche
overlap,m2(n) fluctuates more smoothly, but almost alwa
has a positive correlation with the total stored energy.

Notice that in the energy-strain plots@Fig. 2~b!, Fig. 4~b!#,
stored energy slowly increases over long times, because
continuously apply shear and the foam is always out of eq
librium. Bubbles do not fully recover their original shape
This deformation slowly accumulates at long times. In d
ordered foams, topological rearrangement may enhance
spatial correlation of bubbles, i.e., small bubbles cluster o
time, as predicted by Langer and Liu’s bubble model@14#.
We will report results on spatial correlations for bubble
pology n and areaa elsewhere@37#.

VII. CONCLUSIONS

We have included a driving term in the large-Q Potts
model to apply shear to foams of different disorder. Wh
the driving rate is too fast for the foam to relax, the syst
falls out of equilibrium. The mechanical response then la
behind the driving shear, resulting in hysteresis. Our mo
differs from most well studied driven spin models: our sp
do not couple to an external field the way Ising spins cou
to an oscillating magnetic field, and all action occurs only
the domain boundaries.

Because of the difficulty in characterizing local stress a
strain in Potts model foams, we have chosen to use the
caled total bubble wall length,f, as the order parameter fo
hysteresis. While the hysteresis loops reflect the nonlinea
and metastability of bubble configurations, it is still an op
question whether we can find more appropriate order par
eter~s! that will provide more insight into the dynamics of T
events. Another consequence of this difficulty is the lack o
clear quantitative description of the viscosity in our sim
lated foams in terms of the model parameters, a difficu
mirrored in the lack of understanding of effective foam v
cosity in experiments. As mentioned above, a fundame
problem is the lack of experimental data on the viscosity
two-dimensional foams. We hope that these simulations
motivate new experiments in this direction.

The local cellular patterns characteristic of T1 events
foams are strikingly similar to the low-temperature defe
and the hexatic-square Voronoi patterns observed in t
dimensional~particle! systems, e.g., two-dimensional liqu
crystals and colloidal suspensions, where studies have
cused on the melting phase transitions@40,41#. This similar-
ity led us to try the defect description used in melting stu
ies, namely the nearest-neighbor-bond-orientation or
parameter(n exp(6iun), whereun is the angle between two
neighboring bonds. However, we found it insensitive to
orientation change of bubble walls during T1 events and t
not a useful order parameter. How the nucleation and pro
gation of topological defects in a sheared foam relate to
nucleation and role of topological defects in the tw
dimensional melting studies remains an interesting quest

We have demonstrated three different hysteresis regi
in an ordered foam under oscillating shear. At small str
ui-
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amplitudes, bubbles deform and recover their shapes el
cally after stress release. The macroscopic response is th
a linear elastic solid. For larger strain, the energy-str
curve starts to exhibit hysteresis before any topological re
rangements occur, indicating a macroscopic viscoelastic
sponse. Increasing the strain amplitude increases the are
the hysteresis loop. When the applied strain amplitude
ceeds a critical value, the yield strain, T1 events occur
the foam starts to flow, and we observe macroscopic irrev
ibility.

We are currently testing this observation in an experim
similar to @17#, applying periodic boundary shear to a hom
geneous foam, and measuring the total bubble wall len
directly ~instead of using diffusion wave spectroscopy! to
obtainf. We can directly compare these data with the p
dicted three distinct behaviors. The viscoelasticity of foa
is better characterized using the complex modulusG(v)
@13#, which we plan to use in future investigations.

The comparison between the mechanical responses o
dered and disordered foams provides some insight into
relation between local structure and macroscopic respo
An ordered foam has a finite yield strain. Structural disord
decreases the yield strain; sufficiently high disorder chan
the macroscopic response of a foam from a viscoelastic s
to a viscoelastic fluid. A random foam with broad topolog
and area distributions lacks the linear elastic and viscoela
solid regimes. Any finite stress can lead to topological re
rangements of small bubbles and thus to plastic yielding
the foam. More detailed simulations and experiments
needed to determine the dependence of the yield strain on
area and topological distributions of the foam, and on
shear rates. High shear rates effectively introduce more
pological defects into the foam, as manifested in orde
foams driven at high shear rates. Local topological re
rangements~the appearance of nonhexagonal bubbles! occur
throughout the foam, resulting in more homogeneous fl
behavior, as in disordered foams.

Our simulations show thatN̄, the average number of T1
events per bubble per unit shear, is sensitive to the area
tribution of the foam and the shear rate. Only for a sm
range of shear rates do foams having similar distributio
show similar values ofN̄, which may explain previous stud
ies @10,19#. Our results emphasize the importance of bo
structural disorder and configurational metastability to
behavior of soft cellular materials.

In disordered foams, the number of T1 events is not
rectly proportional to the elastic energy release, because
T1 event is nonlocal and different T1 events can release
ferent amounts of energy. Therefore, we count T1 events
energy release separately.

Avalanchelike topological rearrangements play a key r
in foam rheology. Our simulations show that T1 events
not have finite long-range correlations for ordered structu
or at low shear rates, consistent with experimental obse
tions. As the shear rate or structural disorder increases,
topological events become more correlated. Over a rang
disorders, the power spectra are 1/f . As Hwa and Kardar
pointed out, 1/f noise may arise from a random superpositi
of avalanches@36#. These 1/f spectra suggest that avalanch
of different sizes, although they overlap, are independen



he
na
t

o
w
1
n
ffe
ile
n

e
n

ri-
ex

ef-
ri-

er,
-
S/
by

5832 PRE 59JIANG, SWART, SAXENA, ASIPAUSKAS, AND GLAZIER
each other. Both greater structural disorder and higher s
rate introduce a flat tail at the high-frequency end, a sig
ture of Gaussian noise, but do not change the exponent in
power-law region.

However, unlike the sandpile model, the power spectra
the total energy, rather than of the energy dissipation, sho
similar trend toward 1/f . One major difference between T
avalanches and sand avalanches is that each sand grai
ries the same energy, while each T1 event can have a di
ent energy. A better analogy may be a ‘‘disordered sandp
model, where the sand grains have different sizes or de
ties, and avalanches overlap.

Avalanches of T1 events decrease the stored elastic
ergy, leading to foam flow. How do single T1 events co
id
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tribute to the global response? Magnetic fluid foam expe
ments offer a unique opportunity to locally drive a vert
and force a single T1 event~or a T1 avalanche! by a well-
controlled local magnetic field. We are investigating the
fects of single T1 events using magnetic fluid foam expe
ments and the corresponding Potts model simulations@42#.
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