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Late stage kinetics of a phase separation induced by a cw laser wave in binary liquid mixtures
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cw laser waves can be used to locally induce phase transitions. We investigate experimentally and theoreti-
cally a laser-driven liquid-liquid phase separation in a micellar phase of microemulsion and analyze its late
stage kinetics. The medium is optically quenched in composition in the metastable region of the phase diagram.
Two processes can lead to these concentration variations: electrostriction and thermodiffusion. The first
originates from induced dipolar couplings in a field gradient. The second corresponds to a variation in con-
centration driven by a small thermal gradient. Since the nucleated droplets are optically trapped by the beam,
we show that it becomes possible to experimentally analyze an academic situation, i.e., the diffusion-driven
growth of a single droplet in compensated gravity. The late stage of this kinetics can be divided into two parts,
a bulk behavior and a regime controlled by the finite transverse size of the beam. The bulk regime is totally
analogous to that observed in classical situatid®rst| 3 whereRis the droplet radius antdthe time, and the
scaling of the amplitudes in terms of reduced length and time scales is in total agreement with the expected
behaviors for fluids belonging to the same Ising universality class. Moreover, the Gaussian beam behaves as an
optical bottle with “soft walls” in which the absence of rigid boundaries, and thus of wetting couplings, allows
an intrinsic description of the influence of finite-size effects on the kinetics. The beam size breaks the dynamic
universality when the growing domains start to feel it. We experimentally investigate the resulting slowing
down, and a diffusion-driven model of the growth inside a laser wave is built for comparison. The good
agreement observed for the bulk regime and during its modification induced by finite-size effects opens a
promising field for the development of this new application of laser waves to control out-of-equilibrium liquid
mixtures.[S1063-651X99)10005-9

PACS numbgs): 64.70.Ja, 42.50.VK, 64.75g, 64.60.My

I. INTRODUCTION way of analyzing external forcing effects using a simple ther-

In recent years, there have been striking advances towar(gr)godynammal approach. Indeed, since the invention of

a better understanding of the intrinsic kinetics of phase sepa-Ubble _c_hambe@], equtnc fields have been' recogngd as
a promising tool to modify the thermodynamic properties of

ration in liquids[1]. Even if considerable success has beer5‘Iuids and to drive phase transitions in liquid systems. How-

achieved in the matching of theoretical behavif2$ with ; : . .
. . ever, owing to the complex interaction between the electric
most of the experimental data, many aspects are still undqr

: o : . : " leld produced by a moving particle and a supersaturated
investigation, particularly those dealing with additional forc- fluid, F:he first go)elll has beegn ?o understand fiel% effects at

ing. This forcing is generally used as an externally driveny, e odynamic equilibrium. Several experiments have been
parameter. As a consequence, the number of degrees of fre&ésigned to this end. For example, in 1965 Debye and Kle-
dom of the system increases, giving birth to new thermodyy,sth [10] observed a strong decrease in turbidity in near-
namic states not available otherwise. This aspect can be vegyitical binary fluids subjected to an electric field. This mani-
important to develop new applications but, surprisingly, carfestation was attributed to a shift of the critical point induced
also improve existing knowledge of the basic behaviors oby the field. This work on electric field effects in critical
phase separation in classical situations. This has been pajpalescence was supplemented by a second work devoted to
ticularly the case in flow-induced transitions in liquid sys- the relaxation time of concentration fluctuatigid]. Due to
tems. Flows can induce phase separaf®Inphase ordering the importance of electric fields in a considerable number of
[4], crystallization[5], and string formatiori6], but steady- applications, these seminal papers have triggered increasing
state shear also appeared to be an extremely efficient tool tind continuing interest in electric field couplings in bulk
investigate nucleation in a quenched binary mixt(ivg. liquids[12] and fluid interface$13]. However, many aspects
However, understanding of these various phenomena is stittmain to be explored. Even if electric field influences on the
in an early stage because their theoretical description canntimit of thermodynamical stabilityf14] and the nucleation
be deduced from simple free-energy minimization argumentgrocesse§l5] have also been analyzed to improve the phys-
but by macroscopic equations of motion of the appropriatdcs involved in bubble chambers, the interaction mechanisms
internal degrees of freedof8]. are still insufficiently known and attempts at modelirig]
Unlike the flow case, electric fields offer an alternative have been disappointing. Moreover, despite applications in
nucleate boiling[17] and thunderstorm formatiorl8],
bubble and droplet growth rate in electric fields evidently
*Electronic address: delville@frbdx11.cribx1.u-bordeaux.fr needs further characterization. Finally, the theoretical de-
"Electronic address: aducasse@frbdx11.cribx1.u-bordeaux.fr  scription of the kinetics of phase separation driven by an
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electric field[19], or an electric field gradief0], remains  growth[27]. Moreover, if the medium is also confined along
largely to be made. the propagation axis, then it becomes simple to analyze the
The present study analyzes these kinetic aspects when tiggowth of a single domain generated by the wave. In this
electric field originates from a cw laser wave and the liquidcase, no interaction between nucleated domains needs to be
medium is a near-critical binary liquid mixture. As in the taken into account(ii) When the size of the growing do-
case of steady-state shear flow couplings, we show that tH8ains is small compared to the beam diameter, the field cou-
description of the dynamics of a phase separation driven by Bling is analogous to the standard spatially uniform quench
laser wave also provides fundamental results concerning tHPtained in classical situations. Thus, familiar droplet growth
intrinsic behaviors of phase-separating systems. The |af@ehaviors are still accessible using an eIectroma}grjetlc wave,
stage of the domain growth is illustrated by experiment@nd they can__k_Je c_ompared to the Ie_lrge set of eX|s_t|ng experi-
done in a near-critical micellar phase of microemulsion. ”??”ta' dataiii) Since the boundaries of the confined tran-_
In fact, light-induced phase transitions are well known sition are the wave edges, the beam behaves as a box with

but laser waves have been essentially used as pre&suie "“soft walls” and no wetting effects. This allows the analysis
tical cavitation[21]) or heating[22] sources. However, none O.ft mttrmsmﬁfmlte-sae g[ffecés' on the Qrolplgt g:o;/'\/@BO], a d al
of these experiments, or even more recent investigations o Hation often encountered in numerical simulations and al-
light-induced nucleation in supersaturated soluti¢@s], most impossible to expenr_nentally _ex_plore in clas_smal situa-
have been able to describe the dynamics of the driven trarfions due to wetting couplings on rigid boundariés) The

sitions. The main reasons are understandable. In optical Ca\ﬁ_en_erated dropl_ets are usual_ly trapped inside. the quepched
tation, the system is driven in a strong nonlinear regime. Fo egion by the dipolar forces induced by the field gradient.

laser-induced heating, the situation could be more tractablt hfhs’ they I@I\_/tvay? tgr]]row n l?.pt|m|zefc'j cond|'E[|otrE1sz) ko.W',?.g f
from the theoretical point of view; however, owing to the 0 he Simpiict y? S resu kl)ngﬂ(}:on inement, be tr:ne 'Cf O”
Gaussian nature of laser waves and their high intensities, t phase separation driven by the wave can be theoretically

gradient of temperature is difficult to control experimentally erlvte?, snd th? model can easily be compared 1o experi-
in absorbing liquids and can lead to complex secondary efnental observations.

fects, such as photophore§®i], which usually strongly dis- h Tfhe Opl>aper ;slorganlzed as foIIIovC\i/sd In. Sec. I, \t{ve lpresenth
turb (or even destroythe expected dynamical behaviors. . € flundamental processes Invoived during an optical quenc
n composition driven by a cw laser wave in a binary liquid

Nevertheless, recent experiments done inside the tightly fol! . o

cused wave of an optical tweezer have shown that phas'@'xmre‘ "%“.‘d |IIu_strate the_ efﬁmency_ of such a procgdure

separation in liquid mixtures can be generated around th hen a critical microemulsion is considered. We also discuss

focus either by an overheatig5] or an osmotic compres- e opical trappmg efficiency of laser waves to create a
compensated-gravity geometry. In Sec. Il we analyze the

sion[26] driven by the field distribution. This offers the op- 3 ) .
portunity to analyze the kinetics of the induced transition anci]aésvstgagﬁ;'nzes?ﬁe()f :gsvtrﬁiglgngnpr?:sbee;?np_?rr:t'og daggosre(:w
to explore the pOSS|_b_|I|t|es of this new _appllcatlon of Iaser o incor orgte the k?netics of has?a transitions ri)rf)duced E é
waves. Phase transitions can also be induced by relatlvelgSer WaE/e i a universal scr?eme the data are then in}tler
nf 7]. However, since little h n donein ! T -
tjhisofwljesv?datr)::n{tﬁe] su(k))j e?:t enézdgetottbee %Svgggga?gd em OI%reted in terms of reduced length and time scales for systems
deeply from bo'th the theoretical and the experimental View_belonging to the same Ising universality class. Section IV is
; . devoted to the droplet growth in the presence of wetting-free
oints. This is the purpose of the present paper. AN o . :
P purp b bap finite-size effects. After a first illustration, we derive theo-

We describe here a well controlled way to analyze the .. ; ) X
kinetics of a first-order phase transition driven by a classicafeuc.aIIy the droplet growth rate driven by the field and, in

laser wave in a binary liquid mixture. The phase separation i ; .
induced by a quench in composition via wave-generated lpnduced by the wave confinement, A comparison of the dy-

cal variations in the concentration of one of the componenté‘amIC behaviors resulting from the different mechanisms

of the mixture. Essentially, two different processes can |ea(§l;scu§s?d |r_1f Sec. I, aShW‘f’t” at_s tho;e usuallyt %bs\t/a\;vedl In
to these variations in composition: electrostricti®8] and classical uniform guench situations, 1S presented. Ve aiso
thermodiffusion[29]. The former results from the coupling illustrate experimentally the kinetics of crossover induced by

of the induced dipole moment generated by the field on eacWe finite size of the wave for different values of the control
particle of solute with the gradient of this field. The latter parameters, and compare observations with predicted droplet

takes into account the following indirect thermal effect. EvengrOWthS' We finally conclude in Sec. V and discuss the op-

with off-resonance laser beams, the wave is always inghtI)Portun't'es offered by this new application of laser waves to

absorbed in the mixture due to a residual absorption of thgnalyze the kinetics of first-order phase transitions in liquid

components. Owing to the Gaussian nature of the wave, qixtures.

very weak beam-centered thermal gradient is generated. De-

spite its weakness, it can induce large concentration gradi- Il. LASER-DRIVEN PHASE SEPARATION

ents, particularly in the vicinity of a liquid-liquid critical IN NEAR-CRITICAL LIQUID MIXTURES

point where the Soret constant presents a diverging behavior.
As will be theoretically described and experimentally il-

lustrated, the quenching in composition by a laser wave has Generally, the thermodynamic state of a binary liquid

many advantagegi) The transition is confined inside the mixture is described by three variables, for instance the tem-

beam. As a consequence, the interaction between domainspsratureT, the volume fraction®d of the solute(i.e., the

essentially one-dimensional during the late stage of theoncentratiop and the hydrostatic pressure. Since we are

A. Fundamental processes
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interested here in mixtures close to a liquid-liquid critical LY W W)
. . . Ty >Te
point submitted to a low power cw laser radiation, global \ ® /
density fluctuations resulting from a field-induced hydro- T,| -0 -0 — <—
static compression will be negligible compared to the field ivl Licuid-licuid
variations of concentration driven by the osmotic compress- || ! i~ ot i

—> a4 critical line
ibility. Therefore, we suppose in the following that the hy- RO e
' E
@0 —=—O®

drostatic pressure remains constant, even during the applica  33°C|---- - - - - - - =
tion of a laser wave. Leb, and T, denote the value ob '
and T in the absence of an electromagnetic wave, énd !
andT¢ their field variations® ¢ andTg can easily be evalu- T = 32°C .

ated at first order with respect to the beam intenkif) by ¢
solving the field-modified heat and mass transfer equations
[31]. If we analyze the field interaction during periods much
larger than thermal and density characteristic time scales of
diffusion, we can neglect the time dependence of these equa
tions, which become at steady state

31°C

(0]

sample
320 () — ©2 >
ViR (1) =V Pe(n), (13 FIG. 1. (a) Schematic phase diagram of our system as a function
=5 R R of temperaturel, and volume fractior of solute.® g,y COITE-
AnVTe(F) + a,l (1) =0, (1b)  sponds to the chosen composition ahddenotes the critical tem-
perature;®,, and &, are, respectively, the concentration of the
where ®g(r)=d (M) +Dg(F). Py(M) and Pg(F) are  majority and the minority phases in coexistende. represents the

given by local quench in composition induced by the wave from the initial
point (®g,Tp). Insets: (a) Situation for To<Tc (Po=Pgampd;
Qo Kt (b) situation forTo>Te (Pg=Dy).
th(r)__Q_S_TE( r), (29) oo

mixture, let us consider that the electromagnetic field is a
ek D2 classical Gaussian cw laser wave propagating alongzthe
D ()= —( ) |E|2(F). (2b)  axis. When its beam waisd, is relatively large, the beam
2 intensity at the distance from the propagation axis has al-
most a cylindrical symmetry, and can be described with the
Q0. Os, @y, andAy, are, respectively, the initial density, the following expression arounéy (TEMg, mode:
density of the solute, the absorption coefficient at the wave-
length N used, and the thermal conductivityl(r)
=1/2s4ev|E|?(F) is the field intensity wheréE|?(F) repre-
sents the slowly varying square amplitude of the optical field
(i.e., its mean value over one optical penipd is the light ~whereP is the incident beam power. Using EflLb), the
velocity in the mixture and: and ¢, are, respectively, the laser overheating becomes
dielectric constant and the dielectric permitivitgp (1)
describes the thermodiffusive variation of concentration Te(r)= —2
driven by the thermal gradient induced by the wd¥. E
(1b)]. The thermodiffusion is characterized by the Soret con-
stantk;. ®(F), which is proportional to the osmotic com- wherea, is a radius, large compared &g, that defines the
pressibility Ky, describes the osmotic compression of thethermal boundary condition: Tg(r=a)=0. E;(x) is the
solute induced by the wave via electrostrictive forces resultl-argument exponential integral function.
ing from field gradients. Thus, even if this temperature variation is too weak to be
Owing to the large time scales involved, the stationaryused as a quenching method, as in our low absorption media,
limit of the heat and mass transfer equations can be used tbe electromagnetic field gradient can locally drive a quench
describe the intrinsic late stage kinetics of a liquid-liquidin concentration in a binary liquid mixture located in com-
phase transition. Such an assumption means that the fiefpsition in the vicinity of its coexistence curf27]. There
variation of composition has reached its steady state beforare two possible scenarios. First,&g(r)<0, then an in-
the phase transition occurs. This decoupling is particularlycrease in the beam power will decrease the solute concentra-
suitable for weak quenches, i.e., in the conditions assumed ition inside the wave. To induce a phase transition, the initial
the present study, since Eq4a) and(1b) correspond to an solute concentratio®, of the mixture will be chosen on the
evaluation at first order in field intensity. Moreover, this is high concentration side of the coexistence curve. This is il-
totally equivalent to classical situations which suppose dustrated by the arrow in Fig. 1, which schematically repre-
thermal(or a pressuneequilibrium after a temperatut@r a  sents the phase diagram of our sys{&#] (see beloyw On
pressurg quench inside the coexistence curve before theéhe other hand, whe(r)>0, the quenching procedure is
transition beging1]. symmetric to the preceding case. Therefobg, has to be
To describe how these laser-induced variations in compoehosen in the low concentration side of the coexistence curve
sition can be used to drive a phase separation in a liquitb drive a phase separation in the system. Due to the thermo-

P p( r2>
I(r, z)~|(r)— —zex 51, (3
a3 a

0

2 2

I’ r

A2
acl

—E; —In : (4)

a,P
A7 Ay, 0
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4 surfactant-coated water nanodroplets, called mice(ltes

T Microscope solute, in an oil-rich continuum(the solvant Due to its

| lens structure, this quaternary component system is analogous to
- a binary mixture. From the optical point of view, the mi-
1 T C-,C'D° celles can be considered as a set of dielectric spheres sus-
sample! B video pended in a continuous oil phase. The mixture composition
A _}_ e et i is close to the liquid-liquid coexistence between the critical

|

oven r"—-

temperatureTc=32°C and a demixing temperatufgy
=20°C so that a very small decrease in the micellar concen-
tration induces a liquid-liquid phase separation between two
phases of different micellar concentratiofisg. 1). For T,
>Tc, the system is in a two-phase equilibrium state. As
seen below, this does not disturb the experiment because the
induced transition is strongly localized in the beam. The lat-
ter case, for whichb, becomes the majority phase,, , is

. S particularly interesting because all the incident beam power
Ar* Laser beam Monitor is used for the quench of the majority phase. Fg T, a

part of the incident beam power is lost for the quench since it
brings the system from its initial compositioh, to that

dynamic path followed by these changes in composition, thi€orresponding to the crossing of the coexistence cdrye
type of quench is particularly suitable to analyze nucleatiod®o>®w)-

and growth processes inside the metastable region of the co- In this mixture, we have previously shown that the elec-
existence curve. trostrictive variation in concentration Is negllglbﬂéﬂ be-

cause the optical polarizability of the micelles is extremely
small due to the weak refractive index contrast between wa-
) ter andn-dodecane. The interaction between the wave and
The experimental setup used to observe and analyze thfe micellar phase is mainly controlled by the thermodiffu-
in(_juced _phase t.ransit.ion is prgsented in Fig. 2. The liquidjye process: ®g(r)=dy(r). Sinceks is positive, ther-
mixture is contained in an optical fused quartz ddlicm  mogiffusion will result in a local decrease in the micellar
wide, 2 mm thick placed in a thermally stabilized oven and gncentration inside the bedi®,(r)<0]. In the following,
located at the focus of an X10 microscope Idnlswhic_h T, is considered close t@¢, eitherTo>Tc or To<Tc, in
focuses a cw AT laser beam(wavelength\o=5145A in  order to analyze the kinetic aspects of near-critical phase-
vacuum on the entrance face of the celt0). The laser geparating fluids. Thus, owing to the diverging behavior of
beam propagates vertically through the medium. The evolughe  thermodiffusive  constant kr (e, kT=k$[(Tc
tion of the interaction inside the wave is visualized and re-_ To)/Te] ™" with k8~3 and»=0.63) in the vicinity of the
corded transversally to the beam axis, by means (.)f an OptiC?:lritical point, IargeIIT values can be achieved. As a conse-
system composed of an X20 microscope lemsmerical ap- guence, despite the very small optical absorptigs=5.58
erture of 0.3, a CCD video camera coupled to a VCR, and a><10‘4cm‘1, low cw laser powers are able to induce size-

personal computer for the frame acquisition. This SYSteMple concentration variations. In fact, such fluids have many

also allows us 1o ylsuallze the beam wagtinside t_he cell. advantages(i) in the critical region, universality in terms of
Valu_es ofa, ranging from 2 to 2Qum can be achieved by Ising class is expectd®2] and,(ii) the critical divergence of
varying the optical path between the two lensgsand L, .kt near the critical point allows one to completely neglect
(f,=200mm). The brass-made oven is heated by four resisp, gmq)l temperature increase needed for thermodiffusion
tors and the temperature is monitored by a PID; a regulatiohareq to the associated concentration variation, leading

bet_lt_er than 9'05 K IIIS measured ove;r thehcell SIZE. {0 an almost perfect field-induced quench in composition
0 experimentally investigate the phase separation NMiimitations linked to the vicinity of the critical point have
duced by concentration variations, we use micellar phases Iready been discussed in RES1])

microemulsions as test media because they are generally sen-
sitive to laser waves. Indeed, owing to the supramolecular
size of the micelles, both electrostrictive and thermodiffusive
processes can lead to measurable micellar concentration Without any loss of generality, let us consider the sample
variations on the beam axi81], and thus are able to induce for Ty,<T., i.e., to be a homogeneous micellar phase of
a phase separation. We consider a quaternary componemicroemulsion located in composition close to its coexist-
mixture of water, oil, surfactarsoap, and cosurfactaral-  ence curve[situation depicted in the insdg) of Fig. 1].
coho)). The selected system has the following mass compoburing a beam power increase, the micellar concentration
sition: water 5%)-dodecane 78%, sodium dodecy! sulfate locally decreases. If®,(r)|>®,— Py, the system is lo-
4.8%, and 1-pentanol 12.2%. The phase diagram has alreadglly driven in the metastable region inside the coexistence
been reported for the ratio water/surfactatS=1.034 used curve. ForT>T¢, i.e., the situation depicted in the ingb}

[32]; it is schematically represented in Fig. 1. Located in theof Fig. 1, a quench is automatically induced by the applica-
oil-rich part of this diagram, our system features a micellartion of the laser wave. Typically, afT—Tc)=0.5K one
phase at room temperature. This is a stable suspension fiids on the beam axi§g(r=0)=2x10 2K and |®(r

FIG. 2. Experimental setup.

B. Experimental setup and media chosen

C. Experimental observation of the induced transition
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-g— laser beam ——pu
. optical cell g
&7 (2mm) N
liquid-liquid
capillary meniscus
(100um or
300um)
I
FIG. 3. Droplets generated in the beam by an optical quench in
composition in the cell of optical path=2 mm. The control pa- 2 T, <Te b T, >Te
rameters aré® =142 mW,a,=8 um, andT.—T,=1.0K. The bar
length is 100um. FIG. 4. Experimental configuratioffa) For T;<T. (one-phase

mixture); (b) for To>T. (phase-separated mixtirej represents
=0)|/A®=5%x10"2 (where A®=0y,—d,) for P  the gravity field.
=150mW, ay=100um, and ag=8 um. This optical

quenching in composition of the phadg, results in nucle- Ill. LATE STAGE DROPLET GROWTH
ation inside the beam of droplets constituted by the coexist- IN LASER-DRIVEN PHASE SEPARATION
ing minority phaseb,,, as illustrated in Fig. 3. A. Growth of a single beam trapped droplet

Moreover, since the refractive index of the micelles is o .
slightly smaller than that of the surrounding oil, the refrac- 10 Preserve a diffusional droplet growth during the late
tive index of the minority phasé,,, and thus of the drop- ;tage qf the transition, we axially Cpnflned the phase. separa-
lets, is larger than that of the surrounding phdsg. As a  1on using a glass capillary of optical path-100um im-
consequence, these droplets are transversally trapped in tArsed in the fused quartz cell. This experimental configu-
beam center by the electrostrictive forces and grow in thd@tion is illustrated in Fig. 4, either fofo<Tc [Fig. 4@)] or
optically quenched region. The efficiency of this transversel o= Tc [Fig. 4()]. A typical evolution of the late stage
optical trapping compared to the Boltzmann enekgy, can droplet growth in this _caplllary is |II_ustrated in _F|gs(aﬁ>—
easily be estimated. L, denote the optical polarizability °(®)- Following an optical quench in composition, we ob-

of a droplet of radiusR. In MKSA units one ha$33] serve the nuc_leation of several very small drop(gtpic_ally .
five to sevenin the beam. They coalesce by Brownian agi-

Em—EM | 5 tation at the early stage of the transition and give birth to a

P R®, (5 single droplefFig. 5] which grows around the center of
m M the capillary without observable axial movemeffigs.

wheree,, ande, are, respectively, the dielectric constant of 5(b)—5€)]. On both sides of this centered droplet, two other

the majority and the minority phases. Therefore, the transhemispherical droplets may be seen to wet the capillary
verse electrostrictive energy is edges(the minority phase of concentratiab,,, is more wet-

table to glass than the majority phase of concentraliqy).
80 =5 These two heterogeneous droplets, which are slightly larger
Wy=— ?pd|E| : (6)  than the beam size, can be evidenced by their curved inter-
faces, as shown in Fig.(&. Their growth, which is also
To estimateW, close toT¢, we assumey~e,, and As visi_ble in Figs. %b)—5(e), induces concentration_gradientsl
=gy —8m=(0s/dD)AD, where @s/dd)=—7.4x10"2 which generate on the _central droplet opposite  osmotic
was calculated in Ref27] using the Clausius-Mossotti rela- forces [34] much larger in modulus than gravity. These
tion. At (To—Tc)=0.5K, one finds|W,|/ksTo~20 for a forces trap the central droplet axially around the middle of
droplet radiusR=1 um, ag=8 um, and a beam poweP
=150 mW. This numerical application shows that the trans-
verse optical trapping is sufficiently strong to allow an effi-
cient droplet growth in the optically quenched region. How-
ever, for a slightly focused classical cw laser beam, the axial
intensity gradient aroun@, is weak. Thus, the nucleated
droplets are nearly free to move along thdirection. This is
particularly true when the sample is contained in a thick cell
such as that used for the illustration of Fig(@tical path 5
=2 mm). A small ascending flow of the droplets along the (@) ®) © @ (©
beam axis is observed during the late stage of the transition. g 5. Droplet generated in the beam by an optical quench in
Although small(measured droplet velocity~1 um/s fora  composition in a capillary(100 um thick) immersed in the
droplet radiusR~10um), this advection accelerates the cej: (3 t=100s, (b) t=200s, (c) t=300s, (d) t=500s, (6) t
droplet growth which loses its diffusional natuf@4]. We  —1000s. The two hemispherical droplets wetted on the capillary
will see in the foIIowing section how to eliminate this droplet edges are also underlined @. The control parameters arfe
flow in order to describe the growth of a single beam-trapped= 142 mw, a;=8 um, andTc—Ty,=1.0 K. The bar length is 100
droplet when it is controlled by diffusion. am,

pd:4’ﬂ'8M
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.P='142'm\.?V,'a0=8 pm T <T. ] | P=142 mW, a =8 um T >T

1=100 pm 1=100 pm
o T -T0=0.7K . TC-T0=0.8K o o N
B TT,=0.6K - 8 T.-T,=0.7K ; m.ﬁ\‘".; NS
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FIG. 6. Bulk behavior of the growth of a single beam-trapped  FIG. 7. Bulk behavior of the growth of a single beam-trapped
droplet for To<Tc in a 100um-thick capillary. The bulk regime droplet for To>T¢ in a 100um-thick capillary. The bulk regime
Rxt'?is indicated. Rxt'? is indicated.

the capillary and totally eliminate the droplet advection dur-reliable results with optical visualization techniques for drop-
ing the late stage of the transition. Thus, as long as the drogdet radii smaller than the beam size. Indeed, even if it is
let does not feel the transverse finite size of the beam, itseasonably well trapped, when a droplet is smaller than the
growth should be analogous to that predicted in classicapeam size, its Brownian motion is still non-negligible. Thus,
conserved-order-parameter situatigns., bulk behavior in ~ due to the small field depth of the microscope lens used for
microgravity: RoxtY® [35-37, wheret is the time. This the observations, it becomes almost impossible to obtain
behavior was investigated for bothi,<T. and T,>T.  good images of the droplet is these conditions. Then, it is
cases. surprising that droplet radii between 9 and/Af do not take
Three experiments are presented in Fig. 6 for differenfully into account the finite-size effects generated by the
positive Tc— T, values. All were performed with the same Gaussian shape of the wave of beam waigt-8 um. In
beam radius #,=8 um) and incident beam powerP( fact, as is theoretically described in the next section, in the
=142 mW). The values of these controlled parameters wergresence of thermodiffusion, finite-size effects appear for
chosen for several reasor(s. The beam radius value is suf- droplet radii larger than the beam radius. As illustrated by
ficiently small to give rise to an efficient transverse trappingEd. (4), this is due to the induced temperature distribution at
of the droplet, and is reasonably large to minimize the diverthe origin of thermodiffusion, which is much wider than that
gence of the beam inside the thick cell in order to approxi-of the wave. Thermodiffusion is a nonlocal process.
mate its shape by a cylindrical Gaussian profiléi) The On the other hand, three experiments are presented in Fig.
beam power value was chosen to quench the mixture weakly, for different positiveT,—Tc values. All were done in the
even if larger beam powers give totally analogous result$ame beam conditions as those performedTipe T¢ (Fig.
(see the discussion at the end of this section and Figf). The exponentx (Rxt*) measured for different experi-
9). (iii) Finally, both values prevent disturbing secondaryments, including those presented in Fig. 7, are listed in the
effects, such as electrostrictive droplet deformafi®8]. The  lower part of Table I. It can be noticed that the obserxed
exponentsx (defined byRx=tX) measured for different ex- are slightly smaller than the expectre: 3 value. This sur-
periments, including those presented in Fig. 6, are reportelrising observation may also be explained by the theoretical
in the upper part of Table I. As expected, it can be seen thatackground developed in the next section. It is a signature of
the droplet radius behaves &<t'® for 800<t<4000s. the beginning of the influence of the finite-size effects in-
During this time rangeR varies between 9 and 1&m. duced by the Gaussian shape of the wave. Indekgl,
Two points need to be stressed to understand the limita=®y for To>T¢, so all the beam power injected into the
tions of these measurements. First, it is very difficult to getmedium is used for the optical quenching. As a consequence,
for the same|To—T¢| and the same beam properties, the
TABLE |. Growth law exponents (Rxt¥) in the bulk regime ~ quench is deeper than that fo5<Tc . As shown in Sec. IV,
and mean valug obtained forT,< T (one-phase mixtujeand for ~ the deeper the quench, the faster the droplet saturation to-

To>T¢ (phase-separated mixtire wards the thermodynamic equilibrium. Therefore, finite-size
effects appear more quickly and slow down the droplet

Te—To (K) 1.0 0.7 0.6 0.5 growth faster. This is exactly what is observed here.

X 0.33 0.30 0.32 0.29

X 0.31 B. Data analysis in reduced length and time scales

To—Te (K) 10 08 0.7 05 for the Ising class(d=3,n=1)

X 0.25 0.23 0.26 0.23 The dynamics of phase separation in near-critical systems

X 0.24 is a complex problem whose various aspects still remain un-

solved. The case of systems belonging to the universality
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class 1=3, n=1) of the Ising model, wherd andn are, asymptotic limit. Their analysis also suggested that, in spite
respectively, the space and the order parameter dimensioff the large differences between these systems, a similar dy-
alities[1], is the one more commonly studied. It has been thé'@Mics governs phase separation processes. To analyze more
subject of important theoretical and experimental work durPrecisely this suggested scaling behavior, the following ana-

ing the past ten yearsee Refs. i139]). One important goal lytic function for_Qm(r) has been.propgsed for the early-to-
of these studies is the determination of universal growth Iaw%ate stage of spinodal decompositip#8]:
for the kinetics of the induced phase transitions. To compare A\ 12 B\ 12 B'\ 12
the dynamic behavior of very different systems, the experi- Q;l—l—( ) (’tan—l Q;l(ﬁ) (?) H
mental data are usually discussed in terms of dimensionless
variables reduced from system-dependent length and time =B’r. @
scales. However, the comparison between very different sys-
tems such as pure fluids, binary liquid mixtures, polymerThis expression was obtained by integration of the following
blends, micellar systems, microemulsions, alloys, and inorequation using the boundary conditio®,f) "*—1 whenr
ganic glasses is made difficult by the puzzling choice of—0:
many different characteristic scales. Besides, the conditions
in which the phase separation dynamics occurs are not al- dQ;,1
ways well known. Moreover, the interaction between grow- dr
ing domains as well as the coupling with an external field,
such as gravity, for instance, can strongly bias the analysis of By choosing the correct values for paramet&fsandB’,
the data. In this section, we present the results of our experq. (7) describes the two behavio®,(7)x(7) >3 and
ments in which the beam constraint allows the study of they (7)o(7)~1. A’ and B’ are chosen so as to find the
growth of an isolated beam trapped droplet and the opticghehavior of the early and the intermediate stages predicted
trapping results in a significant reduction of the gravitationalyy kawasaki and Oht§44], and to recover the late stage
coupling. We compare the dynamic behaviors observed withyynamics calculated by Siggid5].
those of other systems belonging to the same Ising clss ( ~ ysing Q,,(7) = k(1) and7=D ~t/(¢7)? [35], the data
=3,n=1), using the same scaling. obtained in the critical case for both pure fluif$6] and

_ When a whole system is brought from the one-phase repinary liquid mixtures[40] show a pattern with intercon-
gion to the two-phase region, the phase transition may pronected domains associated with a late stage scaled behavior
ceed either by droplet nucleatigquench in the metastable Q. (7)*(7) L. Moreover, for off-critical systems, a phase
region or by spinodal decompositidiguench in the unstable separation may proceed by droplet growth, i.e., with a com-
region. The latter is characterized by a pattern of intercon-jetely different morphology. In that case, recent experi-
nected domains that interact continuously. Their characterispents in binary liquids and pure fluids have pointed to a
tic size is Ly(t)=2m/kn(t) [40]. This expression is the gecond late stage scaled behav@(7) ()~ Y3 An over-
usual experimental definition df,, wherek, is the peak yiew of a large number of experiments in relation to these
position of the maximum scattered intensiifk,t) [1]. Lm(t)  two scaling laws has been presented in R9]. In spite of
grows ast*, where the exponent evolves as the transition an jmportant dispersion in the results, it appears that the
proceeds. The phase separation dynamics of a critical systegxperimental behavio®,(7) ()3 described in[35] is
may be simplified into three main regimes associated withhe slowest for all these systems, both for interconnected
three exponent values: the early stage also known as thgmains and for a compact assembly of droplets.
Cahn regime X~0), the intermediate stage controlled by  Qur particular case of laser-induced off-critical phase
diffusion mechanismsx~3), and the late stage dominated separation belongs to the second type of universal behavior.
by the hydrodynamic interactions between domaxs'{).  The growth of the central beam-trapped droplet is described
Classically, two reduced parameters defined @s(7) by Rect* with the mean valuex=0.31 and 0.24, respec-
=Km(t)/ki(0) andr=t/t], are sufficient to compare the be- tively, for To<T and To>Tc. Moreover, as observed in
havior of different systemg.k,(0)]~* is the characteristic Fig. 6 and Fig. 7, our results also show that the amplitude of
length of the chosen system, generally the correlation lengtR(t) is, as expected, slightly dependent on {fig— T¢|
of density fluctuations inside the coexistence cufve and  value. This dependence should disappear when data are rep-
t% is the associated relaxation time defined hy)(* resented in scaled variables. Figure 8 illustrates the result of
=D [kn(0)]?, where D™ =kgTo/6mné~ and 7 are the this procedure. For the sake of comparison, also represented
mass diffusion coefficient and the bulk viscosity. are the experimental late stage behaw@y(7)= (7)Y for

The first experiments performed on systems of the saman off-critical phase separation, analyzed[8%], and the

molecular nature for different quench depths attempted tacaled dynamics of spinodal decomposition with its late
show that the evolution of,,(t) could be plotted on a uni- stage regimeQ,(7)<(7) 1. Our data suggest that the re-
versal master curve characterized by the boundary conditioduced growth of a beam-trapped droplet in the bulk regime is
(Qm) “1—1 whenr—0 [41]. Moreover, Snyder and Meakin comparable to that of a set of tightly packed droplets in mi-
[42] compared experimental results obtained for small mol-crogravity, represented in Fig. 8 by a dashed line. However,
ecule liquid mixtures, high molecular weight polymers, inor- even if the slope is in good agreement with the expected
ganic glasses, and metallic alloys to determine if there was behavior for an off-critical liquid, the measured amplitudes
common dynamic behavior. All the results seemed to colare shifted below this limit. More precisely, in this bulk re-
lapse on a single curv®,(7) for r—0, with the same gimeRxt3 our experimental data are approximately within

1

Y —tan”

=A'Q+B". ®
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10° pree=r T T T e 142 mW 390 mW. Thus, potentially disturbing secondary effects do
i a=8pm not exist for a wide range of beam powers. This underlines
1=100pm the intrinsic robustness of laser-induced transitions and al-
10" E 3 lows a real comparison of the droplet growth behaviors with
3 l,}:s;"TtsC 3 those obtained in classical uniform situations. Moreover,
[ from this set of experiments one gets the shRifRy=1.7,
Q 10° k < \l‘\Slope: -1/3 1] 1.9, and 2.1, respectively, fér=230, 290, and 390 m\isee
" E -" the inset of Fig. 9 As expected, the number of nucleated
T domains at the beginning of the transition increases with the
10° § %:’i“!rtz "‘a_ quench depthrespectivelyN=5, 7, and 9. These experi-
E ] ments show the opportunity provided by optical traps to cre-
ate a compensated gravity geometry which really preserves a
il s snd diffusional droplet growth, except during the early coales-

FIG. 8. Representation of the experimefitscluding those il-
lustrated in Figs. 6 and)7n reduced variables using the particular
choiceQ(7) =kn(t)¢é~ andr=D t/(£¢)?. For a comparison, the

cence stage.

IV. KINETICS OF DROPLET GROWTH
IN THE PRESENCE OF WETTING-FREE
FINITE-SIZE EFFECTS

two late stages observed experimentally for systems of the same
Ising class, and characterized, respectively, Q=71 (critical
fluids) and Q. 7~ (off-critical fluids), are also depicted. Inset:

zoom on the measurements to show the relative positions between | the preceding section, we analyzed the existence of the
the data and observations in microgravity. classical bulk regim&Rect'? inside a laser wave. This bulk

) o . behavior, often considered as the late stage of the transition,
a factor 2 larger than those obtained in microgravitiean  oes not, in practice, lead to a state of equilibrium. Indeed, a

factor 1.5 forTo<T¢ and 1.8 forTo>Tc). This deviation is  sysiem is always bound and this finiteness will slow the
not surprising and is due to the droplet coalescences OCCUBrowth down more and more until the system reaches the
ring at the early stage of the transition, which mome”tar”ythermodynamic equilibrium given by the lever rule. Unfor-
accelerate the kinetics. If we supposel/that the observed droﬂ]nately, this theoretical expectation, only analyzed numeri-
let (characterized by a growth laRet') 1/r3esults from the  cally 47,48, is difficult to probe experimentally because the
coalescgence oN droplets of radiusRy>t™", then roughly |ate stage of a phase separation is always affected by the
R/Ry=3/N. Factors of 1.5 and 1.8 betweandRy lead,  preferential attraction of one of the two coexisting phases on
respectively, tdN=3 and 6, in agreement with observations the rigid boundaries. This influence of the wetting processes
(N~5-7). induces hydrodynamic interactions which usually totally
Finally, to show that the choice d?=142mW for the = modify the droplet pattern, accelerate the kinetics, and de-
beam power used is not linked to any particularly sensitivestroy the diffusional nature of the growth. By using cw laser
property of the medium, except that it corresponds to a wealyaves to quench the mixture, this important problem disap-
optical quench condition, Fig. 9 depicts the droplet growthpears. Due to the Gaussian shape of the beam, the bulk re-
laws observed for much larger beam powers. Rwet™®is  gime R=t3 cannot indefinitely subsist. As it grows, a drop-
still preserved since the measured exponen{®>t*) are |et probes transversally a region that is less and less
x=0.33, 0.31, and 0.30, respectively, fBr=230, 290, and quenched by the wave. Thus, after a bulk behavior, the
growth will progressively slow down and the droplet radius

A. Experimental evidence of finite-size effects
on droplet growth

2F e Geomw will reach a ma>_<imum valu&:, defined by the_experimen-
« P=200mW Slope: V3 tal cond|lt|0ns (i.e., beam _power, beam radius, ahd,
- o P=230mW —T¢|). Figure 10 shows this expected crossover between the
5 w0k i bulk behavior and that driven by finite-size effects.
& [ 1
;é 1 B. Theoretical description of the kinetics of a phase separation
g 6r driven by a cw cylindrical Gaussian wave
ié- 4l After this first experimental illustration, it is of practical
8 T-T =05K importance to build a model for the droplet growth in a
e sc“m Gaussian cw laser wave. For a relatively unfocused laser
liwowm 10° 10° wave and for axial distancg$érom the beam-waist location
2102 1;)3 o4 z=0) z4< 27-ra(2)/)\, thg Wave_symmet_ry is almost cylindricgl
Time £ () around the propagation axis. In this section we take into

account this symmetry of the optical quenching to build a

FIG. 9. lllustration of the bulk regime robustness of droplet cylindrical model of growth. However, despite this symme-
growth versus the incident beam power. Inset: comparison of th&y, Figs. 3 and 4 show that the growing droplets are spheri-

data in reduced variables with ti@,o 7~ ¥/* behavior observed for

off-critical systemgdashed ling

cal due to a minimization of the surface energy; rupturing in
spheres induced by Rayleigh-like instabilities of growing cy-
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A TR I J(R)=47R?D[V®],_g
F P=142 mW :
L a,=8 um ] _
t 1=100 um ] =47RD |CI)(r—>oc)—(<I)R(R)

 (roe(r) )]r ©
e ] | oy T Pelr ol
E slop-e-:1/3 o r=R r

[ where @¢(r) is either®q(r) or ®y(r) and ®r(R)=d(r

=R). Then, we postulate the form of the cylindrical flux as

Droplet radius R (um)

=

\

2

0

3

[+

L

T Je(R)=27RID"[V®],_g=IKe(R){®(r—o) ~[ DR(R)

Time t (s) P
—Ve(R I}, (10)
FIG. 10. Experimental late stage growth law of a beam-trapped

i : ; ; 113
droplet in the 10Qum-thick capillary. The regimeet™= (bulk \parek (R) andWg(R) are unknown functions which need

_behavioy and Ro.ct.o (sgturation of the d_rop_let radiug 10 Rynay to be determined. Far>R, the variation of the solute con-
induced by the finite size of the beamre indicated. centration induced by the droplet growth is given by

J -

— — —w)]=D " V? — — 0
lindrical droplets in a laser wave has also been observed é’t[q)o Pelr =D VA Ro=Delr ]
[49]. Unfortunately, a rigorous treatment of such symmetry w P
mixing (growing spheres in a cylindrical quen¢kanalogous —f (jc- —) N(R,1)dR, (11)
to that encountered for droplet growth in a gravitational field 0 r
[50], cannot be performed simply. Since our aim is to ex-

plpre the p.roperues of Iaser—drlyen phase _transmons and Oolute diffusion equation includes the concentration variation
tain analytical results for easy interpretation of the experiyqgting from the growth of other cylinders which constitute
mental data, we will not take into account this surfacey, effective medium. Therefore, the intrinsic local concen-

tension effect; instead, we will analyze the transverse growthyation of soluted®(r)— ®g(r) induced by the growth obeys
of cylindrical droplets. To compare the model with the mea-

surements, we will assimilate the predicted radius of the
. . . J -

beam centered growing cylinder with that of the observed — _[®(r)—~®g(r)]=D V{D(r)— Dg(r)]+Se

spherical droplet. at
Unlike the spherical symmetry scenario where the single —D(¢p) Y D(r)—De(r)],

droplet problem may be solved directly from the steady-state
equation for the solute diffusion, it is necessary here to con- (12
sider an effective medium which will remove the unphysical

. . L . . -~ where
singularity appearing in the concentration field. Indeed, in
cylindrical symmetry, the general solution of the stationary

mass diffusion equatiorila exhibits a logarithmic diver- D~ (¢p) 2= kaE(R)n(R,t)dR,
gence ar —«. Even if anad hocapproach towards resolu- 0
tion is to introduce a cutoff distance which prevents this
divergence[51], it has been showf52] that this method -

leads to incorrect results, even qualitatively. To solve this SE=J ke(R)[Pr(R)—Ve(R)In(R,t)dR. (13
problem in a more appropriate way, Marqugég] consid- 0

ered an effective medium and derived self-consistently th . . . .
growth rate of circular domains. Thus, we now extend Mar_%ere,n(R,t) Is the density of cylinders per unit length. Ow-

, ) ; . ing to the transverse Gaussian shape of the optical quench,
gusee’s model of two-dimensional Ostwald ripening to the ne hasd (r— ) =@ (r—)=0. Thus®(r—o)=d

. . L — = — =0U. — =@y,
laser-driven transverse growth of a beam-trapped cyllndrlcq?e_' the initial bulk value. Using these boundary conditions,
droplet of radiusk and lengthl, which is large compared to Eq. (11) becomes
R (I>R).

Since the flux of solutéC(R) at the interface of the cy- -D"- ~2¢p 14
lindrical droplet is not known, we postulate its form using S (e) o a4
that of a spherical quench induced by a spherical wave, angioreover,d¢(r) represents the field variation of concentra-
obtain its expression from the boundary conditions. The fluxijon at steady state. Consequently, using @8) in the adia-
of solute js(R) around a spherical droplet nucleated in abatic approximatiof54], i.e.,[ ¢®(r)/dt]=0, the concentra-
spherical wavé53] is given by tion around the cylindrical beam-trapped droplet satisfies

whereN(R,t) is the density of cylinders of radiuR. This
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[VZ=(e) 2[@(r)~Po—De(r)]=0. (1) d_R;[(ﬁ) Ki(R/¢e)
dt R | e/ Ko(R/{e)
From this equation it appears thét represents a screening Le\ Ko(R/IZE) [ 0Pk
length which removes the divergence at infinity existing in Pe(R)+R R)K(RIZ) \ ar
the single cylinder case. Taking into account the boundary X =R
conditions, the solution of E¢15) is D= Py
KO(rlgE) CDO_(I)M do
P(r>R) =g+ De(r)+ o—=~ 2 M =2
( ) 0 E( ) KO(ngE) + q)m_ch R ’ (21)

X[PR(R)=®o=Pe(R)], 19 where (e satisfies the relationship ¢§) !

=2m[gRIK{(R/{g)/Ko(RIZE)IN(R,t)dR. Here dy is a
whereK(x) is the zeroth modified Bessel function. Then, capillary length given by

we can deduce the cylindrical flux of soluﬁ@(R) at the .

droplet interface _
i O By D) ATl 70 (22
5 (R)=27RID- d®eg) 1 Ky(RIg) In a “®*’ model of phase transitions, one hag=¢/6
c(R)=2m ar | g Ko(RILE) [56]. Finally, when comparing the experimental results with
R the model, we assume that the variationRifZg with the
r quench depth calculated numerically by Marqusee for the
X[q)R(R)_‘DO_(I)E(R)]J?’ (17) Ostwald ripening regime still holds in the presence of the

laser field.
Equation (21) is very similar to the classical growth

whereK(x) is the first modified Bessel function. Using the rate of a cylindrical domain for spatially uniform quenching
definitions given by Eq(10), we also get [52], except that now, the supersaturatio®g(R)
+R(Ze/R)Ko(R/ Le) K1 (RILe) (dPE/dr); —pt Po— Dy
becomes a function of the beam and the droplet radii. More-
( R) K1(R/ k) over, we now need to particularizg(r). In fact, for a
kE(R)IZ']TD — | . . . K K
Le) Ko(RIZE) better illustration, we will separate the thermodiffusive and
the electrostrictive processes, assuming thafr) is either
Dy(r) or g(r). Since the phase transition in our experi-
Ko(R/Lg) [ 0Pk mental system is essentially driven by a thermodiffusive con-
E(R)+§Em<7) . (19 tribution, we will mainly discuss this case and give results
r=R for electrostriction when needed. Following the procedure
for thermodiffusion, the treatment of an electrostriction-

If we assume that the incident beam power is sufficientlydriven transition is totaI_Iy straightforward. According to Egs.
low, as in the experiments, to ensure a sufficient optical trapt2a) and(4), we can writed(r) as
ping of the droplet without inducing a field variation of the

V(R)=®

surface tensiow [55], then®z(R) is given by the classical P —(P 1 _E ﬁ O ﬁ
Gibbs-Thomson relation for cylindef§2], (r)=( th)Oln(y(ac,/ao)z) Y\ a2 n asl|’
(23
1 g where
Oy—Pr(R)= (19

(Py— @) (Il 0®)1 R’

(Pp)o=Pp(r=0)=———

0o kr ayP | ( aé)
0s To 4mAy,

where u is the chemical potential per unit volume. By mass

balance, the flux of solute at the droplet interface equals its . ) B ]
volume change, is the optical quench in composition on the beam axis and

vy=1.781 is the Euler constafE;(x<1)~ —In(yx)+x].
Without any alteration of generality, we assundg,
- d o 7 =), for the description of the model. This means that the
Je(R)= (@ = Py) ﬁ(”R I)F- 20 jnitial composition of the mixture is supposed to be located
on its coexistence curve as for experimentsSTgt-Tc. In
that case, all the incident beam power is used for the quench.
Then, the transverse three-dimensional diffusion-controlleso, by particularizing the optical quench to the thermodiffu-
growth rate of a cylindrical beam-trapped droplet nucleatedive contribution and taking into accoudty=®,,, the
by an optical quench in composition becomes droplet growth rate becomes
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Droplet radius R (in pm) when dR/dt=0 Time t (s)

FIG. 11. Set of radii corresponding to a zero growth rate versus FIG. 12. Predicted droplet growth for the experimental condi-
the optical quench depth at the beam center for both electrostrictiviions given in Fig. 10 P=142 mW) and for a smaller quench depth
and thermodiffusive processes. The lgfght) part gives the varia- (P=100mW). The regimesRxt*? (intermediate free-growth
tion of the critical radiuSQE (maximum radiuﬂfm) allowed by the  stage and Rt (finite-size effects are depicted. The behaviét
finite size of the wave. For a comparison, the variation for a clas=t*® is given for ease of interpretation since it corresponds in the
sical uniform quench inside an infinite medium is also plotted. Themodel to a crossover between the prediciedt? and Roct° re-
arrows indicate the evolution of the droplet radius in the differentgimes.
regions separated lyR/dt=0.

Moreover, Fig. 11 also illustrates different behaviors, in

dR D~ ( R) Kl(R/gE)( (D)o 1 terms of accessible droplet radii, for an electrostrictive or a
at- R\ KA(R DD 777 thermodiffusive quench in composition. This difference is
£e) Ko(R/Ze) \(Pm—Pm) In(yac/ao) due to the local or the nonlocal character of the quench.
R? R? Le\ Ko(RIEg) Since electrostriction varies linearly with field intensity, it is
= a_é —In a_a +2 R K(RIZe) highly dependent on the beam radius and droplet radii cannot

be larger thana,. On the contrary, for thermodiffusion,
R? do which is driven by the temperature dissipated in the medium
ex;{ _a_g‘)_l J_E . and thus essentially depends on the beam power, such a
strong dependence does not exist and valueBEg& larger

If R<ay, Eq. (24) reduces to the familiar expression of than the beam radius are allowed. It also explains why in the
the growth rate in two dimensions for spatially uniform preceding section the bulk regine<t*® was observed even
quencheg52]. To show the difference with a classical spa- for droplet radii larger than the beam radius.
tially uniform situation, Fig. 11 illustrates the set of predicted  To illustrate the saturation of the droplet radius towards
radii for which dR/dt=0 versus the quench depth on the eriax, and thus the appearance of Rmt° regime at the late
beam axis. For a comparison, the electrostrictive case is alssctage of the transition, we can compute the droplet growth
depicted[assuming $e)o=(P)o] as well as the classical o £q (24). The full line in Fig. 12 illustrates the pre-

Ei‘av'olr V‘{E'CT'{?S stated s/%ci\fzbcqrres;zrc:nds EO :che _f_'tuf‘t'cmcted variation for the experimental conditions given in Fig.
3. In the latter casedR/dt=0 gives the set of critical g " eqration was done considering the initial condition

radii. This set is represented by a hyperbola which simpl E E o E . E .

means that the critical radius is )i/nvergeply proportional to 'LF;\ZR[_TC:_(RC)S/D ¢ ]=Rc+¢& /2, where7c is the relax-
quench depth. For an optical quench, the situation is mor@tion time associated with the critical radi@ (deduced
complicated. In the presence of the wave, the stationary rélom dR/dt=0) at the beginning of the quench agd/2

gime dR/dt=0 leads to a droplet radius which exhibits a corresponds to an uncertainty on the activation barrier of the
cuvette shape as a function of the initial central quenctprder ofkgT [56]. The experimental droplet growth satura-
depth. dR/dt=0 is positive inside this curve and negative tion is theoretically observed. Moreover, whBha,<1, the
outside. The left branch corresponds to the critical raiigs ~droplet does not feel the Gaussian nature of the quench, and
variation and the right branch gives the maximum droplethe classical free-growth behavig=t'? predicted at the
radiusRE,,, allowed by the finite size of the optical quench. intermediate stage in classical situatidbg] is also recov-
This finite-size effect also leads to a cutoff in the set ofered by the model. However, since we are essentially inter-
possibleRE: There is a maximum value (R(E: which also  ested in the influence of the finite-size effects on droplet
represents the smallest accessiBfg,,; this is associated growth, we have not supplemented the droplet growth rate
with a minimum quench depth below which the transition€equation by the mass conservation equat®| (lever rule
cannot occur. This limitation shows that the beam size reat thermodynamic equilibriuinthis could be done using the
duces the set of accessible length scales for droplet growtprocedure developed in R¢68] coupled with our predicted
compared to a classical uniform quench. growth rate. Thus, even if a sort 8f<t'® behavior appears

X (24
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in the predicted droplet growth, it is not associated with the 102 [————m — i 10°
Ostwald ripening regiméas in experimenjsbecause mass [ P=00 mW, a,=3 um ; ;
conservation was not taken into account; it corresponds in- [ ¢ T -T=08K . M 1.
H [+

stead to a crossover between the predidiedt’? and t° | o T, T 06K g L ;1:
regimes. — 1=100 pm w 1=

Finally, for the same beam conditions angy—T¢|, we 5 | 101 %- E _?
saw in the preceding experimental section that the growth « } - <—|| ! g
exponent in the bulk regime measured Ty<T¢ is larger E ts) 10° 3
than that forT,>T.. Since®, is not located on the coex- '§ M ____________ g’
istence curve foil ,<T¢, the term @o— P )/ (Py— D) Ena_ o B | | 110 ®
appearing in the growth rate needs to be considered within £ 1 &
the description of our experiments. This means that for the _ “‘..‘# e
same range of measured droplet radii, the growth rate is 10'[ i
smaller when the quench is deeper. To mimic this behavior,
we continue to assumé,=®,, and decrease the beam
power. Figure 12 shows that observations are recovered: in

the bulk regime the slope of the droplet growth law de- 10° )
creases when the quench depth increases, because finite-siz Time t (s)
effects appear earlier. 102 v 102
P=110mW,a =3um [ TR ]
.- - _E o
C. Kinetics of crossover induced by finite-size effects [ o T T=06K L .- M g ]
o _ . oT-T =04K § | o‘@' 410!
The kinetics of crossover induced by the finite size of the I 0-c = 1 1
. . . . . 1=100 pm ~ ]
optical quench was investigated for different experimental
conditions. After a first illustration given in Fig. 10 for a

beam waisty=8 um, Figs. 13a)—13(c) depict in more de-

tail the saturation of the growth of a single beam-trapped
droplet forag=3 um. To analyze the effect of the quench
depth, the beam power and the distance in temperature to the
critical point were modified. Each figure also gives the pre-
dicted R(t) variations. The direct comparison between ex- 10!
periments and predictions is made difficult due to the droplet
coalescences occurring at the early stage of the transition.

The parts of the data representing the bulk regime of the
growth still continue to be larger than those predicted by the 107 — 108 I ""1'04 105
model, which is intrinsically diffusion-driven. The transient Time ¢ (s)

nature of this droplet growth acceleration, used in the pre- , o
ceding section to recover the number of coalescences ob- 10 [ p_142 mW, a =3 um T 10
served visually at the beginning of the transition, can easily [ o

be checked by making a time translation of the experimental * T, T=08K S —
data. The result of this procedure is illustrated in the different ° T, T~04K WM
insets. As also shown in Table Il, the agreement between o | 1=100um 110"
predicted and measureRﬁax values is quite satisfactory, ex- -
cept for To—T-=0.4K (see discussion belgwTherefore,
these experiments demonstrate that after the coalescence:
stage, the diffusional nature of the droplet growth inlan
=100um glass capillary is really preserved in the beam
during the late stage of the transition.

We also analyzed finite-size effects in the presence of
advection in a cell of optical path=2 mm (configuration
illustrated in Fig. 3. The growth of two flowing droplets in
such a geometry is presented in Fig. 14. Even if the existence
of the flow makes the data noisy, the droplet radius satura- “
tion is observed again and tiRE_ values are in reasonable 10° 10 Time ¢ (5)
agreement with those predicted for a pure diffusive growth.

Of course, before saturation, the growmo(tO-B) cannot fit [ 13, Finite-size effects on the growth law of a beam-trapped
the predictions because the advection makes the kinetiG§oplet in the 10Qum-thick capillary. PredictedR(t) variations
much faster than a diffusion-driven ofi§9]. Thus, despite (solid and dashed lingsire also depicted for comparison with ex-
the axial flow of the droplets, the finite transverse size of theyeriments. Inset: comparison after a time translation of the experi-
beam still constrains the growth, and mEaXvalue seems to mental points(see text (a) For P=90 mW, (b) for P=110 mW,
correspond to that obtained for a diffusion-controlled kinet-and(c) for P=142 mw.

Droplet radius R (um)
()  snipea pdoaq

R (um)

Droplet radius R (um
(wirl) Y snipea yrdoaqg

(=]
—
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TABLE Il. Experimental and predicted valugbetween parenthesesf the maximum droplet radiuBE,,, (in micrometers resulting

from an optical quench in composition as a function of the different external parameters.

P=90 mW P=110 mW P=142 mW P=110 mW P=142 mW

ap=3 um ap=3 um ap=3 um ap=8 um ap=8 um

I=100um I=100um I=100um 1=300um I=100pum*

|=300um’

=2 mnt
To—Tc=0.4K 12+1 (16.9 14+1 (19.5 14+1 (23 16+1" (19.2
To—Tc=0.5K 15+1 (14.7) 17+1" (16.9
To—Tc=0.6K 14+1 (12.7) 14+1 (14.9 15+1 (17.9 15+1" (15.9
To—Tc=0.8K 12+1 (10.3 14+1 (12.2 14+1 (14.8 14+1% (135
To—Tc=1.0K 14+1* (12.9

ics. Analyzing all the measured and predicifL, listed in ~ Rxt®® instead ofRtS. This simply means that at low
Table 11, two conclusions can be made. First, the agreemeriReynolds number, here R@x10™° for a droplet radiusR

is reasonably good, except fég— Tc=0.4 K, for which the =~ =10um, the flow is too weak to disturb the intrinsic cutoff
measure®E is smaller than the predicted value. Since thisdistance imposed by the beam.

discrepancy only appears whe&g is approached, it could be Finally, thermodynamic stability means that a droplet of
explained by the saturation of thermodiffusion, which alsoradius larger tharRrEnax is unstable. It should evaporate until
exists for electrostriction, and results from the vicinity of the its radius reacheRﬁaX. This expected behavior can be ex-
critical point (see Appendix A in Ref{31]). Unfortunately, perimentally checked in a capillary of optical path

we have never been able to give a definite answer to this- 300,,m. Indeed, unlike the situation depicted in Fig. 5 for
hypot_hesns. Indeed, ellmlna_thn of_the saturation of the field =100um, whenl =300.m two droplets generally remain
coupling atTo—Tc=0.4K, if it exists, implies the use of , the capillary at the late stage of the transition. Since they
smaller beam intensities, i.e., a decrease in the beam POWg(enally coalesce, the radius of the resulting final droplet

(P<90mW) or an increase in the beam wag§ (ag E : ;
-8 wm). However, in both cases, the beam intensity Wasbecomes larger thaR,,,,. Figure 15 illustrates the expected

not sufficiently strong to allow an efficient beam trapping.drOplet evaporation and the decrease in its radius towards

E .
On the other hand, despite the continuous advection of thEmax for different values of the control parameters. The coa-
growing droplets in cells of optical path=2 mm (droplet lescences, indicated by an arrow, are clearly evidenced by
velocity Vy~1 um/s), the measure®E,, values surpris- the shifts in droplet radius. Also represented are the predicted
] max

ingly correspond to those obtained from the model, even idiffusion-driven R(t) variations. For this capillary size, a

the growth rate is much larger: in the bulk regime one hagveak droplet advection also appears, now transiently, at the
intermediate stage of growth. As previously shown for

=2 mm, we can again observe th@j REW seems to be

107  P-142mW,a,=8pm  r— | 107 insensitive to the transient flow ari) before saturation, the
_ " growth law isRot?8
. To'Tc=o'8K i _.-;‘?ﬁ) |_> ;101
o Ty T06K 2| &0 g D. Discussion of finite-size effects
- 1=2 mm 10! K5 -] g =] . . .
g 2 18 = The above analysis shows that the cutoff distance im-
= [ ...-.': '% posed by the beam radius breaks the universal behavior of
2 100 t) 2 droplet growth 2] as soon as the drop starts to feel the beam
E g size. A direct comparison with recent theoretical work on
b = finite-size effects in phase-separating systddg,4g is,
§' g however, difficult to make, particularly because of the “soft
| = wall” geometry provided by the wave. The shape of the
10'f beam generates a cutoff volume, with no rigid boundary,
beyond which the transition cannot occur. Unlike classical
[ % situations, the size of this volume varies with the amplitude
R , of the different control parameter®(a,,|T—Tc|). More-
102 10° 10* over, the initial quench is not spatially uniform over this

Time ¢ (s) length scale. Thus, finite-size effects induced by a laser wave

FIG. 14. Finite-size effects on the growth law of a droplet flow- are quite different from those resulting from the rigid bound-
ing along the beam axis in the cé® mm thick. PredictedR(t) ~ ary conditions used in Ref§47,48. First, in a Gaussian
variations(solid and dashed lingsre also depicted for comparison quench there is no need for additional hypotheses taking into
with experiments. Inset: comparison after a time translation of theaccount the finiteness of the box containing the medium,
experimental pointgsee texk either by imposing a cutoff droplet radius on the growth rate
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e V. CONCLUSION

Droplet coal . . . o
roplet poalescence In this paper we have investigated the late stage kinetics

-~ RE, = 15um of first-order phase transitions in liquid mixtures driven by a
T AN oo cw laser wave. Our main aim was to illustrate how finite-size
10'F effects can be explored in fluids, whereas classical methods
L fail due to the impossibility of eliminating the intrinsic inter-
action with the container. Since the wave behaves in a bulk
as an optical bottle with “soft walls,” we show that laser-
a,=8 um induced transitions fulfill their promise. Moreover, to incor-
T,-T.=0.5 K ] porate such an analysis in a more general framework, it is
1=300 um also important to compare the field-induced kinetics in the
100 ——— NV absence of finite-size effects with classical results obtained in
10 W (5)10 10 familiar uniform quench situations.

In a near-critical micellar phase of microemulsion we
have illustrated the ability of laser waves to quench a mix-
ture in composition, to nucleate droplets of the minority
phase, and to trap them optically. Working with small optical
path cells, the growth of a single droplet in compensated
gravity has been investigated. In a first step, we analyzed the
bulk behavior of this droplet growth. The classical behavior
R t3was recovered. To interpret the amplitude of the mea-
sured growth laws, the data were analyzed in terms of re-
duced length and time scales for the Ising clads-8,n
=1). This description shows that the droplet growth driven
by the wave when finite-size effects are negligible is in total
agreement with the behavior observed in classical situations.

To pursue this investigation, we extended this study to the
intrinsic influence of the finite size of the beam on the drop-
let growth. After a first illustration of the crossover from the
PR e g0 Rt3 regime to the saturation of the kinetics associated

10? 10° 10 10° with the decrease in quench depth felt by the growing drop-

Time t (s) let, we developed a model of growth inside the beam. The
dynamics in the presence of the wave was calculated and the
FIG. 15. lllustration of the thermodynamic stability of tRE,,, kinetics of crossover induced by finite-size effects is de-

value by the decrease in the droplet radRis>RE, ) towardsRE, scribed. Our experiments are interpreted using this model.
Despite some approximations, there is good quantitative

after the coalescence with a second drofiteticated by the arroy . !
The predicted droplet growthsolid line) are also illustratedia) ~ @9reement between theory and experiments. We also illus-
For P=110 mW and(b) for P=142 mW. trate the robustness of finite-size effects, showing that they

are not disturbed by the advection of the growing droplets at
. - low Reynolds numbers even if the growth laws are modified
[48] or by using a lever rule for a finite volunjé7]. Indeed,  py the flow.
even if the wave creates a Iength scale beyond which the As a consequence, the present work shows how laser
transition cannot be induced, both the medium and thevaves can be used to investigate the kinetics of conserved-
Gaussian excitation are still of infinite extent. On the Otherorder_parameter first-order phase transitions whereas more
hand, a description of the droplet distribution, as in Refsclassical experimental setups are limited. More generally,
[47,48, does not really hold for an optical quench since onlythis new application of laser waves illustrates their efficiency

a few droplets are nucleated in the beam. to induce localized gradients in the bulk and to control non-
Therefore, this Stl,ldy illustrates how finite-size effects Caréqu”ibrium processes in soft matter physics_

be smoothly induced in a bulk material to prevent abrupt
boundary conditions. It also describes a new way to analyze
these effects experimentally in a wetting-free geometry,
since it is well known that the preferential attraction of one
of the two coexisting phases on the rigid boundaries results We are grateful to E. Freysz and Y. Garrabos for helpful
in a dynamic coupling between the growth and wetting phediscussions, and J. Plantard and M. Winckert for technical
nomena, which considerably modifies the kinetics of coarsassistance. This work was partially supported by thgi&e
ening[60]. Aquitaine.

Droplet radius R (um)

102 T — T
[ P=142 mW, a, =8 um, 1=300 pm (b) ]

o T-T. = 0.6K
oT,-T, = 0.5K

Droplet radius R (um)
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