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Late stage kinetics of a phase separation induced by a cw laser wave in binary liquid mixtures
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cw laser waves can be used to locally induce phase transitions. We investigate experimentally and theoreti-
cally a laser-driven liquid-liquid phase separation in a micellar phase of microemulsion and analyze its late
stage kinetics. The medium is optically quenched in composition in the metastable region of the phase diagram.
Two processes can lead to these concentration variations: electrostriction and thermodiffusion. The first
originates from induced dipolar couplings in a field gradient. The second corresponds to a variation in con-
centration driven by a small thermal gradient. Since the nucleated droplets are optically trapped by the beam,
we show that it becomes possible to experimentally analyze an academic situation, i.e., the diffusion-driven
growth of a single droplet in compensated gravity. The late stage of this kinetics can be divided into two parts,
a bulk behavior and a regime controlled by the finite transverse size of the beam. The bulk regime is totally
analogous to that observed in classical situations (R}t1/3, whereR is the droplet radius andt the time!, and the
scaling of the amplitudes in terms of reduced length and time scales is in total agreement with the expected
behaviors for fluids belonging to the same Ising universality class. Moreover, the Gaussian beam behaves as an
optical bottle with ‘‘soft walls’’ in which the absence of rigid boundaries, and thus of wetting couplings, allows
an intrinsic description of the influence of finite-size effects on the kinetics. The beam size breaks the dynamic
universality when the growing domains start to feel it. We experimentally investigate the resulting slowing
down, and a diffusion-driven model of the growth inside a laser wave is built for comparison. The good
agreement observed for the bulk regime and during its modification induced by finite-size effects opens a
promising field for the development of this new application of laser waves to control out-of-equilibrium liquid
mixtures.@S1063-651X~99!10005-9#

PACS number~s!: 64.70.Ja, 42.50.Vk, 64.75.1g, 64.60.My
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I. INTRODUCTION

In recent years, there have been striking advances tow
a better understanding of the intrinsic kinetics of phase se
ration in liquids@1#. Even if considerable success has be
achieved in the matching of theoretical behaviors@2# with
most of the experimental data, many aspects are still un
investigation, particularly those dealing with additional for
ing. This forcing is generally used as an externally driv
parameter. As a consequence, the number of degrees of
dom of the system increases, giving birth to new thermo
namic states not available otherwise. This aspect can be
important to develop new applications but, surprisingly, c
also improve existing knowledge of the basic behaviors
phase separation in classical situations. This has been
ticularly the case in flow-induced transitions in liquid sy
tems. Flows can induce phase separation@3#, phase ordering
@4#, crystallization@5#, and string formation@6#, but steady-
state shear also appeared to be an extremely efficient to
investigate nucleation in a quenched binary mixture@7#.
However, understanding of these various phenomena is
in an early stage because their theoretical description ca
be deduced from simple free-energy minimization argume
but by macroscopic equations of motion of the appropri
internal degrees of freedom@8#.

Unlike the flow case, electric fields offer an alternati
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way of analyzing external forcing effects using a simple th
modynamical approach. Indeed, since the invention
bubble chambers@9#, electric fields have been recognized
a promising tool to modify the thermodynamic properties
fluids and to drive phase transitions in liquid systems. Ho
ever, owing to the complex interaction between the elec
field produced by a moving particle and a supersatura
fluid, the first goal has been to understand field effects
thermodynamic equilibrium. Several experiments have b
designed to this end. For example, in 1965 Debye and K
both @10# observed a strong decrease in turbidity in ne
critical binary fluids subjected to an electric field. This man
festation was attributed to a shift of the critical point induc
by the field. This work on electric field effects in critica
opalescence was supplemented by a second work devot
the relaxation time of concentration fluctuations@11#. Due to
the importance of electric fields in a considerable numbe
applications, these seminal papers have triggered increa
and continuing interest in electric field couplings in bu
liquids @12# and fluid interfaces@13#. However, many aspect
remain to be explored. Even if electric field influences on
limit of thermodynamical stability@14# and the nucleation
processes@15# have also been analyzed to improve the ph
ics involved in bubble chambers, the interaction mechanis
are still insufficiently known and attempts at modeling@16#
have been disappointing. Moreover, despite applications
nucleate boiling @17# and thunderstorm formation@18#,
bubble and droplet growth rate in electric fields eviden
needs further characterization. Finally, the theoretical
scription of the kinetics of phase separation driven by
5804 ©1999 The American Physical Society
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PRE 59 5805LATE STAGE KINETICS OF A PHASE SEPARATION . . .
electric field@19#, or an electric field gradient@20#, remains
largely to be made.

The present study analyzes these kinetic aspects whe
electric field originates from a cw laser wave and the liqu
medium is a near-critical binary liquid mixture. As in th
case of steady-state shear flow couplings, we show tha
description of the dynamics of a phase separation driven
laser wave also provides fundamental results concerning
intrinsic behaviors of phase-separating systems. The
stage of the domain growth is illustrated by experime
done in a near-critical micellar phase of microemulsion.

In fact, light-induced phase transitions are well know
but laser waves have been essentially used as pressure~op-
tical cavitation@21#! or heating@22# sources. However, non
of these experiments, or even more recent investigation
light-induced nucleation in supersaturated solutions@23#,
have been able to describe the dynamics of the driven t
sitions. The main reasons are understandable. In optical c
tation, the system is driven in a strong nonlinear regime.
laser-induced heating, the situation could be more tracta
from the theoretical point of view; however, owing to th
Gaussian nature of laser waves and their high intensities
gradient of temperature is difficult to control experimenta
in absorbing liquids and can lead to complex secondary
fects, such as photophoresis@24#, which usually strongly dis-
turb ~or even destroy! the expected dynamical behavior
Nevertheless, recent experiments done inside the tightly
cused wave of an optical tweezer have shown that ph
separation in liquid mixtures can be generated around
focus either by an overheating@25# or an osmotic compres
sion @26# driven by the field distribution. This offers the op
portunity to analyze the kinetics of the induced transition a
to explore the possibilities of this new application of las
waves. Phase transitions can also be induced by relati
unfocused beams@27#. However, since little has been done
this new area, the subject needs to be investigated m
deeply from both the theoretical and the experimental vie
points. This is the purpose of the present paper.

We describe here a well controlled way to analyze
kinetics of a first-order phase transition driven by a class
laser wave in a binary liquid mixture. The phase separatio
induced by a quench in composition via wave-generated
cal variations in the concentration of one of the compone
of the mixture. Essentially, two different processes can l
to these variations in composition: electrostriction@28# and
thermodiffusion@29#. The former results from the couplin
of the induced dipole moment generated by the field on e
particle of solute with the gradient of this field. The latt
takes into account the following indirect thermal effect. Ev
with off-resonance laser beams, the wave is always slig
absorbed in the mixture due to a residual absorption of
components. Owing to the Gaussian nature of the wav
very weak beam-centered thermal gradient is generated.
spite its weakness, it can induce large concentration gr
ents, particularly in the vicinity of a liquid-liquid critica
point where the Soret constant presents a diverging beha

As will be theoretically described and experimentally
lustrated, the quenching in composition by a laser wave
many advantages.~i! The transition is confined inside th
beam. As a consequence, the interaction between doma
essentially one-dimensional during the late stage of
the
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growth @27#. Moreover, if the medium is also confined alon
the propagation axis, then it becomes simple to analyze
growth of a single domain generated by the wave. In t
case, no interaction between nucleated domains needs
taken into account.~ii ! When the size of the growing do
mains is small compared to the beam diameter, the field c
pling is analogous to the standard spatially uniform quen
obtained in classical situations. Thus, familiar droplet grow
behaviors are still accessible using an electromagnetic w
and they can be compared to the large set of existing exp
mental data.~iii ! Since the boundaries of the confined tra
sition are the wave edges, the beam behaves as a box
‘‘soft walls’’ and no wetting effects. This allows the analys
of intrinsic finite-size effects on the droplet growth@30#, a
situation often encountered in numerical simulations and
most impossible to experimentally explore in classical sit
tions due to wetting couplings on rigid boundaries.~iv! The
generated droplets are usually trapped inside the quen
region by the dipolar forces induced by the field gradie
Thus, they always grow in optimized conditions.~v! Owing
to the simplicity of the resulting confinement, the kinetics
a phase separation driven by the wave can be theoretic
derived, and the model can easily be compared to exp
mental observations.

The paper is organized as follows. In Sec. II, we pres
the fundamental processes involved during an optical que
in composition driven by a cw laser wave in a binary liqu
mixture, and illustrate the efficiency of such a procedu
when a critical microemulsion is considered. We also disc
the optical trapping efficiency of laser waves to create
compensated-gravity geometry. In Sec. III we analyze
late stage kinetics of the resulting phase separation and s
how to analyze the growth of a single beam-trapped drop
To incorporate the kinetics of phase transitions induced b
laser wave in a universal scheme, the data are then in
preted in terms of reduced length and time scales for syst
belonging to the same Ising universality class. Section IV
devoted to the droplet growth in the presence of wetting-f
finite-size effects. After a first illustration, we derive the
retically the droplet growth rate driven by the field and,
particular, characterize the modification of the growth la
induced by the wave confinement. A comparison of the
namic behaviors resulting from the different mechanis
discussed in Sec. II, as well as those usually observe
classical uniform quench situations, is presented. We a
illustrate experimentally the kinetics of crossover induced
the finite size of the wave for different values of the cont
parameters, and compare observations with predicted dro
growths. We finally conclude in Sec. V and discuss the
portunities offered by this new application of laser waves
analyze the kinetics of first-order phase transitions in liq
mixtures.

II. LASER-DRIVEN PHASE SEPARATION
IN NEAR-CRITICAL LIQUID MIXTURES

A. Fundamental processes

Generally, the thermodynamic state of a binary liqu
mixture is described by three variables, for instance the te
peratureT, the volume fractionF of the solute~i.e., the
concentration!, and the hydrostatic pressure. Since we
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interested here in mixtures close to a liquid-liquid critic
point submitted to a low power cw laser radiation, glob
density fluctuations resulting from a field-induced hydr
static compression will be negligible compared to the fi
variations of concentration driven by the osmotic compre
ibility. Therefore, we suppose in the following that the h
drostatic pressure remains constant, even during the app
tion of a laser wave. LetF0 and T0 denote the value ofF
and T in the absence of an electromagnetic wave, andFE
andTE their field variations.FE andTE can easily be evalu
ated at first order with respect to the beam intensityI (rW) by
solving the field-modified heat and mass transfer equat
@31#. If we analyze the field interaction during periods mu
larger than thermal and density characteristic time scale
diffusion, we can neglect the time dependence of these e
tions, which become at steady state

¹W 2F~rW !5¹W 2FE~rW !, ~1a!

L th¹W
2TE~rW !1aaI ~rW !50, ~1b!

where FE(rW)5F th(rW)1Fel(rW). F th(rW) and Fel(rW) are
given by

F th~rW !52
%0

%S

kT

T0
TE~rW !, ~2a!

Fel~rW !5
«0KTF0

2

2 S ]«

]F D
T

uEW u2~rW !. ~2b!

%0 , %S , aa , andL th are, respectively, the initial density, th
density of the solute, the absorption coefficient at the wa
length l used, and the thermal conductivity.I (rW)
51/2«0«vuEW u2(rW) is the field intensity whereuEW u2(rW) repre-
sents the slowly varying square amplitude of the optical fi
~i.e., its mean value over one optical period!; v is the light
velocity in the mixture and« and «0 are, respectively, the
dielectric constant and the dielectric permitivity.F th(rW)
describes the thermodiffusive variation of concentrat
driven by the thermal gradient induced by the wave@Eq.
~1b!#. The thermodiffusion is characterized by the Soret c
stantkT . Fel(rW), which is proportional to the osmotic com
pressibility KT , describes the osmotic compression of t
solute induced by the wave via electrostrictive forces res
ing from field gradients.

Owing to the large time scales involved, the stationa
limit of the heat and mass transfer equations can be use
describe the intrinsic late stage kinetics of a liquid-liqu
phase transition. Such an assumption means that the
variation of composition has reached its steady state be
the phase transition occurs. This decoupling is particula
suitable for weak quenches, i.e., in the conditions assume
the present study, since Eqs.~1a! and ~1b! correspond to an
evaluation at first order in field intensity. Moreover, this
totally equivalent to classical situations which suppose
thermal~or a pressure! equilibrium after a temperature~or a
pressure! quench inside the coexistence curve before
transition begins@1#.

To describe how these laser-induced variations in com
sition can be used to drive a phase separation in a liq
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mixture, let us consider that the electromagnetic field is
classical Gaussian cw laser wave propagating along thz
axis. When its beam waista0 is relatively large, the beam
intensity at the distancer from the propagation axis has a
most a cylindrical symmetry, and can be described with
following expression arounda0 (TEM00 mode!:

I ~r ,z!'I ~r !5
P

pa0
2 expS 2

r 2

a0
2D , ~3!

where P is the incident beam power. Using Eq.~1b!, the
laser overheating becomes

TE~r !5
aaP

4pL th
F2E1S r 2

a0
2D 2 lnS r 2

acl
2 D G , ~4!

whereacl is a radius, large compared toa0 , that defines the
thermal boundary condition:TE(r 5acl)50. E1(x) is the
1-argument exponential integral function.

Thus, even if this temperature variation is too weak to
used as a quenching method, as in our low absorption me
the electromagnetic field gradient can locally drive a quen
in concentration in a binary liquid mixture located in com
position in the vicinity of its coexistence curve@27#. There
are two possible scenarios. First, ifFE(r ),0, then an in-
crease in the beam power will decrease the solute conce
tion inside the wave. To induce a phase transition, the ini
solute concentrationF0 of the mixture will be chosen on the
high concentration side of the coexistence curve. This is
lustrated by the arrow in Fig. 1, which schematically rep
sents the phase diagram of our system@32# ~see below!. On
the other hand, whenFE(r ).0, the quenching procedure i
symmetric to the preceding case. Therefore,F0 has to be
chosen in the low concentration side of the coexistence cu
to drive a phase separation in the system. Due to the ther

FIG. 1. ~a! Schematic phase diagram of our system as a func
of temperatureT0 and volume fractionF of solute.Fsamplecorre-
sponds to the chosen composition andTC denotes the critical tem-
perature;FM and Fm are, respectively, the concentration of th
majority and the minority phases in coexistence.FE represents the
local quench in composition induced by the wave from the init
point (F0 ,T0). Insets: ~a! Situation for T0,TC (F05Fsample);
~b! situation forT0.TC (F05FM).
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dynamic path followed by these changes in composition,
type of quench is particularly suitable to analyze nucleat
and growth processes inside the metastable region of the
existence curve.

B. Experimental setup and media chosen

The experimental setup used to observe and analyze
induced phase transition is presented in Fig. 2. The liq
mixture is contained in an optical fused quartz cell~1 cm
wide, 2 mm thick! placed in a thermally stabilized oven an
located at the focus of an X10 microscope lensL1 which
focuses a cw Ar1 laser beam~wavelengthl055145 Å in
vacuum! on the entrance face of the cell (z50). The laser
beam propagates vertically through the medium. The ev
tion of the interaction inside the wave is visualized and
corded transversally to the beam axis, by means of an op
system composed of an X20 microscope lens~numerical ap-
erture of 0.3!, a CCD video camera coupled to a VCR, and
personal computer for the frame acquisition. This syst
also allows us to visualize the beam waista0 inside the cell.
Values ofa0 ranging from 2 to 20mm can be achieved by
varying the optical path between the two lensesL1 and L2
( f 25200 mm). The brass-made oven is heated by four re
tors and the temperature is monitored by a PID; a regula
better than 0.05 K is measured over the cell size.

To experimentally investigate the phase separation
duced by concentration variations, we use micellar phase
microemulsions as test media because they are generally
sitive to laser waves. Indeed, owing to the supramolec
size of the micelles, both electrostrictive and thermodiffus
processes can lead to measurable micellar concentra
variations on the beam axis@31#, and thus are able to induc
a phase separation. We consider a quaternary compo
mixture of water, oil, surfactant~soap!, and cosurfactant~al-
cohol!. The selected system has the following mass com
sition: water 5%,n-dodecane 78%, sodium dodecyl sulfa
4.8%, and 1-pentanol 12.2%. The phase diagram has alr
been reported for the ratio water/surfactantW/S51.034 used
@32#; it is schematically represented in Fig. 1. Located in
oil-rich part of this diagram, our system features a mice
phase at room temperature. This is a stable suspensio

FIG. 2. Experimental setup.
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surfactant-coated water nanodroplets, called micelles~the
solute!, in an oil-rich continuum~the solvant!. Due to its
structure, this quaternary component system is analogou
a binary mixture. From the optical point of view, the m
celles can be considered as a set of dielectric spheres
pended in a continuous oil phase. The mixture composit
is close to the liquid-liquid coexistence between the criti
temperatureTC532 °C and a demixing temperatureTD

520 °C so that a very small decrease in the micellar conc
tration induces a liquid-liquid phase separation between
phases of different micellar concentrations~Fig. 1!. For T0
.TC , the system is in a two-phase equilibrium state.
seen below, this does not disturb the experiment because
induced transition is strongly localized in the beam. The l
ter case, for whichF0 becomes the majority phaseFM , is
particularly interesting because all the incident beam po
is used for the quench of the majority phase. ForT0,TC , a
part of the incident beam power is lost for the quench sinc
brings the system from its initial compositionF0 to that
corresponding to the crossing of the coexistence curveFM
(F0.FM).

In this mixture, we have previously shown that the ele
trostrictive variation in concentration is negligible@27# be-
cause the optical polarizability of the micelles is extreme
small due to the weak refractive index contrast between
ter andn-dodecane. The interaction between the wave a
the micellar phase is mainly controlled by the thermodiff
sive process: FE(r )5F th(r ). Since kT is positive, ther-
modiffusion will result in a local decrease in the micell
concentration inside the beam@F th(r ),0#. In the following,
T0 is considered close toTC , eitherT0.TC or T0,TC , in
order to analyze the kinetic aspects of near-critical pha
separating fluids. Thus, owing to the diverging behavior
the thermodiffusive constant kT „i.e., kT5kT

0@(TC

2T0)/TC#2n with kT
0'3 andn50.63… in the vicinity of the

critical point, largekT values can be achieved. As a cons
quence, despite the very small optical absorptionaa55.58
31024 cm21, low cw laser powers are able to induce siz
able concentration variations. In fact, such fluids have m
advantages:~i! in the critical region, universality in terms o
Ising class is expected@32# and,~ii ! the critical divergence of
kT near the critical point allows one to completely negle
the small temperature increase needed for thermodiffus
compared to the associated concentration variation, lea
to an almost perfect field-induced quench in composit
~limitations linked to the vicinity of the critical point have
already been discussed in Ref.@31#!.

C. Experimental observation of the induced transition

Without any loss of generality, let us consider the sam
for T0,TC , i.e., to be a homogeneous micellar phase
microemulsion located in composition close to its coexi
ence curve@situation depicted in the inset~a! of Fig. 1#.
During a beam power increase, the micellar concentra
locally decreases. IfuF th(r )u.F02FM , the system is lo-
cally driven in the metastable region inside the coexiste
curve. ForT0.TC , i.e., the situation depicted in the inset~b!
of Fig. 1, a quench is automatically induced by the appli
tion of the laser wave. Typically, at (T02TC)50.5 K one
finds on the beam axisTE(r 50)5231022 K and uF th(r
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50)u/DF5531022 ~where DF5FM2Fm) for P
5150 mW, acl5100mm, and a058 mm. This optical
quenching in composition of the phaseFM results in nucle-
ation inside the beam of droplets constituted by the coex
ing minority phaseFm , as illustrated in Fig. 3.

Moreover, since the refractive index of the micelles
slightly smaller than that of the surrounding oil, the refra
tive index of the minority phaseFm , and thus of the drop-
lets, is larger than that of the surrounding phaseFM . As a
consequence, these droplets are transversally trapped i
beam center by the electrostrictive forces and grow in
optically quenched region. The efficiency of this transve
optical trapping compared to the Boltzmann energykBT0 can
easily be estimated. Letpd denote the optical polarizability
of a droplet of radiusR. In MKSA units one has@33#

pd54p«MS «m2«M

«m12«M
DR3, ~5!

where«M and«m are, respectively, the dielectric constant
the majority and the minority phases. Therefore, the tra
verse electrostrictive energy is

Wd52
«0

2
pduEW u2. ~6!

To estimateWd close toTC , we assume«M'«m and D«
5«M2«m5(]«/]F)DF, where (]«/]F)527.431022

was calculated in Ref.@27# using the Clausius-Mossotti rela
tion. At (T02TC)50.5 K, one findsuWdu/kBT0'20 for a
droplet radiusR51 mm, a058 mm, and a beam powerP
5150 mW. This numerical application shows that the tra
verse optical trapping is sufficiently strong to allow an ef
cient droplet growth in the optically quenched region. Ho
ever, for a slightly focused classical cw laser beam, the a
intensity gradient arounda0 is weak. Thus, the nucleate
droplets are nearly free to move along thez direction. This is
particularly true when the sample is contained in a thick c
such as that used for the illustration of Fig. 3~optical path
l 52 mm). A small ascending flow of the droplets along t
beam axis is observed during the late stage of the transi
Although small~measured droplet velocityV'1 mm/s for a
droplet radiusR'10mm), this advection accelerates th
droplet growth which loses its diffusional nature@34#. We
will see in the following section how to eliminate this dropl
flow in order to describe the growth of a single beam-trapp
droplet when it is controlled by diffusion.

FIG. 3. Droplets generated in the beam by an optical quenc
composition in the cell of optical pathl 52 mm. The control pa-
rameters areP5142 mW,a058 mm, andTC2T051.0 K. The bar
length is 100mm.
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III. LATE STAGE DROPLET GROWTH
IN LASER-DRIVEN PHASE SEPARATION

A. Growth of a single beam trapped droplet

To preserve a diffusional droplet growth during the la
stage of the transition, we axially confined the phase sep
tion using a glass capillary of optical pathl 5100mm im-
mersed in the fused quartz cell. This experimental confi
ration is illustrated in Fig. 4, either forT0,TC @Fig. 4~a!# or
T0.TC @Fig. 4~b!#. A typical evolution of the late stage
droplet growth in this capillary is illustrated in Figs. 5~a!–
5~e!. Following an optical quench in composition, we o
serve the nucleation of several very small droplets~typically
five to seven! in the beam. They coalesce by Brownian ag
tation at the early stage of the transition and give birth to
single droplet@Fig. 5~a!# which grows around the center o
the capillary without observable axial movement@Figs.
5~b!–5~e!#. On both sides of this centered droplet, two oth
hemispherical droplets may be seen to wet the capill
edges~the minority phase of concentrationFm is more wet-
table to glass than the majority phase of concentrationFM).
These two heterogeneous droplets, which are slightly lar
than the beam size, can be evidenced by their curved in
faces, as shown in Fig. 5~a!. Their growth, which is also
visible in Figs. 5~b!–5~e!, induces concentration gradien
which generate on the central droplet opposite osm
forces @34# much larger in modulus than gravity. Thes
forces trap the central droplet axially around the middle

in

FIG. 4. Experimental configuration.~a! For T0,TC ~one-phase
mixture!; ~b! for T0.TC ~phase-separated mixture!. gW represents
the gravity field.

FIG. 5. Droplet generated in the beam by an optical quench
composition in a capillary~100 mm thick! immersed in the
cell: ~a! t5100 s, ~b! t5200 s, ~c! t5300 s, ~d! t5500 s, ~e! t
51000 s. The two hemispherical droplets wetted on the capill
edges are also underlined in~a!. The control parameters areP
5142 mW, a058 mm, andTC2T051.0 K. The bar length is 100
mm.
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the capillary and totally eliminate the droplet advection d
ing the late stage of the transition. Thus, as long as the d
let does not feel the transverse finite size of the beam
growth should be analogous to that predicted in class
conserved-order-parameter situations~i.e., bulk behavior in
microgravity!: R}t1/3 @35–37#, where t is the time. This
behavior was investigated for bothT0,TC and T0.TC
cases.

Three experiments are presented in Fig. 6 for differ
positive TC2T0 values. All were performed with the sam
beam radius (a058 mm) and incident beam power (P
5142 mW). The values of these controlled parameters w
chosen for several reasons.~i! The beam radius value is su
ficiently small to give rise to an efficient transverse trapp
of the droplet, and is reasonably large to minimize the div
gence of the beam inside the thick cell in order to appro
mate its shape by a cylindrical Gaussian profile.~ii ! The
beam power value was chosen to quench the mixture wea
even if larger beam powers give totally analogous res
~see the discussion at the end of this section and
9!. ~iii ! Finally, both values prevent disturbing seconda
effects, such as electrostrictive droplet deformation@38#. The
exponentsx ~defined byR}tx) measured for different ex
periments, including those presented in Fig. 6, are repo
in the upper part of Table I. As expected, it can be seen
the droplet radius behaves asR}t1/3 for 800,t,4000 s.
During this time range,R varies between 9 and 15mm.

Two points need to be stressed to understand the lim
tions of these measurements. First, it is very difficult to

FIG. 6. Bulk behavior of the growth of a single beam-trapp
droplet for T0,TC in a 100-mm-thick capillary. The bulk regime
R}t1/3 is indicated.

TABLE I. Growth law exponentsx (R}tx) in the bulk regime
and mean valuex̄ obtained forT0,TC ~one-phase mixture! and for
T0.TC ~phase-separated mixture!.

TC2T0 ~K! 1.0 0.7 0.6 0.5
x 0.33 0.30 0.32 0.29
x̄ 0.31

T02TC ~K! 1.0 0.8 0.7 0.5
x 0.25 0.23 0.26 0.23
x̄ 0.24
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reliable results with optical visualization techniques for dro
let radii smaller than the beam size. Indeed, even if it
reasonably well trapped, when a droplet is smaller than
beam size, its Brownian motion is still non-negligible. Thu
due to the small field depth of the microscope lens used
the observations, it becomes almost impossible to ob
good images of the droplet is these conditions. Then, i
surprising that droplet radii between 9 and 15mm do not take
fully into account the finite-size effects generated by t
Gaussian shape of the wave of beam waista058 mm. In
fact, as is theoretically described in the next section, in
presence of thermodiffusion, finite-size effects appear
droplet radii larger than the beam radius. As illustrated
Eq. ~4!, this is due to the induced temperature distribution
the origin of thermodiffusion, which is much wider than th
of the wave. Thermodiffusion is a nonlocal process.

On the other hand, three experiments are presented in
7 for different positiveT02TC values. All were done in the
same beam conditions as those performed forT0,TC ~Fig.
6!. The exponentsx (R}tx) measured for different experi
ments, including those presented in Fig. 7, are listed in
lower part of Table I. It can be noticed that the observex
are slightly smaller than the expectedx5 1

3 value. This sur-
prising observation may also be explained by the theoret
background developed in the next section. It is a signatur
the beginning of the influence of the finite-size effects
duced by the Gaussian shape of the wave. Indeed,F0
5FM for T0.TC , so all the beam power injected into th
medium is used for the optical quenching. As a conseque
for the sameuT02TCu and the same beam properties, t
quench is deeper than that forT0,TC . As shown in Sec. IV,
the deeper the quench, the faster the droplet saturation
wards the thermodynamic equilibrium. Therefore, finite-s
effects appear more quickly and slow down the drop
growth faster. This is exactly what is observed here.

B. Data analysis in reduced length and time scales
for the Ising class„d53, n51…

The dynamics of phase separation in near-critical syste
is a complex problem whose various aspects still remain
solved. The case of systems belonging to the universa

FIG. 7. Bulk behavior of the growth of a single beam-trapp
droplet for T0.TC in a 100-mm-thick capillary. The bulk regime
R}t1/3 is indicated.



io
th
ur

w
a

er
le
tim
sy
e
o
o

io
t a
w
ld

is
e
th
ic
na

i
s

r
r

e

n
ri

st
it
t
y
d

-

g

m

-
itio
n
o
r-
s
o

ite
dy-
more
na-
o-

ng

e
cted
e

-
avior
e
m-
ri-
a

se

the

ted

se
vior.
bed
-

of

rep-
lt of
nted

te
-

e is
i-

er,
ted
es
-
in

5810 PRE 59J. P. DELVILLE, C. LALAUDE, S. BUIL, AND A. DUCASSE
class (d53, n51) of the Ising model, whered and n are,
respectively, the space and the order parameter dimens
alities@1#, is the one more commonly studied. It has been
subject of important theoretical and experimental work d
ing the past ten years~see Refs. in@39#!. One important goal
of these studies is the determination of universal growth la
for the kinetics of the induced phase transitions. To comp
the dynamic behavior of very different systems, the exp
mental data are usually discussed in terms of dimension
variables reduced from system-dependent length and
scales. However, the comparison between very different
tems such as pure fluids, binary liquid mixtures, polym
blends, micellar systems, microemulsions, alloys, and in
ganic glasses is made difficult by the puzzling choice
many different characteristic scales. Besides, the condit
in which the phase separation dynamics occurs are no
ways well known. Moreover, the interaction between gro
ing domains as well as the coupling with an external fie
such as gravity, for instance, can strongly bias the analys
the data. In this section, we present the results of our exp
ments in which the beam constraint allows the study of
growth of an isolated beam trapped droplet and the opt
trapping results in a significant reduction of the gravitatio
coupling. We compare the dynamic behaviors observed w
those of other systems belonging to the same Ising clasd
53, n51), using the same scaling.

When a whole system is brought from the one-phase
gion to the two-phase region, the phase transition may p
ceed either by droplet nucleation~quench in the metastabl
region! or by spinodal decomposition~quench in the unstable
region!. The latter is characterized by a pattern of interco
nected domains that interact continuously. Their characte
tic size is Lm(t)52p/km(t) @40#. This expression is the
usual experimental definition ofLm , wherekm is the peak
position of the maximum scattered intensityI (k,t) @1#. Lm(t)
grows astx, where the exponentx evolves as the transition
proceeds. The phase separation dynamics of a critical sy
may be simplified into three main regimes associated w
three exponent values: the early stage also known as
Cahn regime (x'0), the intermediate stage controlled b
diffusion mechanisms (x' 1

3 ), and the late stage dominate
by the hydrodynamic interactions between domains (x'1).
Classically, two reduced parameters defined asQm(t)
5km(t)/km(0) andt5t/tm

0 are sufficient to compare the be
havior of different systems.@km(0)#21 is the characteristic
length of the chosen system, generally the correlation len
of density fluctuations inside the coexistence curvej2, and
tm
0 is the associated relaxation time defined by (tm

0 )21

5D2@km(0)#2, where D25kBT0/6phj2 and h are the
mass diffusion coefficient and the bulk viscosity.

The first experiments performed on systems of the sa
molecular nature for different quench depths attempted
show that the evolution ofkm(t) could be plotted on a uni
versal master curve characterized by the boundary cond
(Qm)21→1 whent→0 @41#. Moreover, Snyder and Meaki
@42# compared experimental results obtained for small m
ecule liquid mixtures, high molecular weight polymers, ino
ganic glasses, and metallic alloys to determine if there wa
common dynamic behavior. All the results seemed to c
lapse on a single curveQm(t) for t→0, with the same
n-
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asymptotic limit. Their analysis also suggested that, in sp
of the large differences between these systems, a similar
namics governs phase separation processes. To analyze
precisely this suggested scaling behavior, the following a
lytic function for Qm(t) has been proposed for the early-t
late stage of spinodal decomposition@43#:

Qm
21212S A8

B8D
1/2H tan21FQm

21S B8

A8D
1/2G2tan21F S B8

A8D
1/2G J

5B8t. ~7!

This expression was obtained by integration of the followi
equation using the boundary condition (Qm)21→1 whent
→0:

dQm
21

dt
5A8Qm

2 1B8. ~8!

By choosing the correct values for parametersA8 andB8,
Eq. ~7! describes the two behaviorsQm(t)}(t)21/3 and
Qm(t)}(t)21. A8 and B8 are chosen so as to find th
behavior of the early and the intermediate stages predi
by Kawasaki and Ohta@44#, and to recover the late stag
dynamics calculated by Siggia@45#.

UsingQm(t)5km(t)j2 andt5D2t/(j2)2 @35#, the data
obtained in the critical case for both pure fluids@46# and
binary liquid mixtures@40# show a pattern with intercon
nected domains associated with a late stage scaled beh
Qm(t)}(t)21. Moreover, for off-critical systems, a phas
separation may proceed by droplet growth, i.e., with a co
pletely different morphology. In that case, recent expe
ments in binary liquids and pure fluids have pointed to
second late stage scaled behaviorQm(t)}(t)21/3. An over-
view of a large number of experiments in relation to the
two scaling laws has been presented in Ref.@39#. In spite of
an important dispersion in the results, it appears that
experimental behaviorQm(t)}(t)21/3 described in@35# is
the slowest for all these systems, both for interconnec
domains and for a compact assembly of droplets.

Our particular case of laser-induced off-critical pha
separation belongs to the second type of universal beha
The growth of the central beam-trapped droplet is descri
by R}tx with the mean valuesx̄50.31 and 0.24, respec
tively, for T0,TC and T0.TC . Moreover, as observed in
Fig. 6 and Fig. 7, our results also show that the amplitude
R(t) is, as expected, slightly dependent on theuT02TCu
value. This dependence should disappear when data are
resented in scaled variables. Figure 8 illustrates the resu
this procedure. For the sake of comparison, also represe
are the experimental late stage behaviorQm(t)}(t)21/3 for
an off-critical phase separation, analyzed in@35#, and the
scaled dynamics of spinodal decomposition with its la
stage regimeQm(t)}(t)21. Our data suggest that the re
duced growth of a beam-trapped droplet in the bulk regim
comparable to that of a set of tightly packed droplets in m
crogravity, represented in Fig. 8 by a dashed line. Howev
even if the slope is in good agreement with the expec
behavior for an off-critical liquid, the measured amplitud
are shifted below this limit. More precisely, in this bulk re
gimeR}t1/3, our experimental data are approximately with
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a factor 2 larger than those obtained in microgravity~mean
factor 1.5 forT0,TC and 1.8 forT0.TC). This deviation is
not surprising and is due to the droplet coalescences oc
ring at the early stage of the transition, which momenta
accelerate the kinetics. If we suppose that the observed d
let ~characterized by a growth lawR}t1/3) results from the
coalescence ofN droplets of radiusRN}t1/3, then roughly
R/RN5A3 N. Factors of 1.5 and 1.8 betweenR andRN lead,
respectively, toN53 and 6, in agreement with observatio
(N'5 – 7).

Finally, to show that the choice ofP5142 mW for the
beam power used is not linked to any particularly sensit
property of the medium, except that it corresponds to a w
optical quench condition, Fig. 9 depicts the droplet grow
laws observed for much larger beam powers. TheR}t1/3 is
still preserved since the measured exponentsx (R}tx) are
x50.33, 0.31, and 0.30, respectively, forP5230, 290, and

FIG. 8. Representation of the experiments~including those il-
lustrated in Figs. 6 and 7! in reduced variables using the particul
choiceQm(t)5km(t)j2 andt5D2t/(j2)2. For a comparison, the
two late stages observed experimentally for systems of the s
Ising class, and characterized, respectively, byQm}t21 ~critical
fluids! and Qm}t21/3 ~off-critical fluids!, are also depicted. Inse
zoom on the measurements to show the relative positions betw
the data and observations in microgravity.

FIG. 9. Illustration of the bulk regime robustness of drop
growth versus the incident beam power. Inset: comparison of
data in reduced variables with theQm}t21/3 behavior observed for
off-critical systems~dashed line!.
ur-
y
p-

e
k

390 mW. Thus, potentially disturbing secondary effects
not exist for a wide range of beam powers. This underlin
the intrinsic robustness of laser-induced transitions and
lows a real comparison of the droplet growth behaviors w
those obtained in classical uniform situations. Moreov
from this set of experiments one gets the shiftsR/RN51.7,
1.9, and 2.1, respectively, forP5230, 290, and 390 mW~see
the inset of Fig. 9!. As expected, the number of nucleate
domains at the beginning of the transition increases with
quench depth~respectivelyN55, 7, and 9!. These experi-
ments show the opportunity provided by optical traps to c
ate a compensated gravity geometry which really preserv
diffusional droplet growth, except during the early coale
cence stage.

IV. KINETICS OF DROPLET GROWTH
IN THE PRESENCE OF WETTING-FREE

FINITE-SIZE EFFECTS

A. Experimental evidence of finite-size effects
on droplet growth

In the preceding section, we analyzed the existence of
classical bulk regimeR}t1/3 inside a laser wave. This bulk
behavior, often considered as the late stage of the transi
does not, in practice, lead to a state of equilibrium. Indee
system is always bound and this finiteness will slow t
growth down more and more until the system reaches
thermodynamic equilibrium given by the lever rule. Unfo
tunately, this theoretical expectation, only analyzed num
cally @47,48#, is difficult to probe experimentally because th
late stage of a phase separation is always affected by
preferential attraction of one of the two coexisting phases
the rigid boundaries. This influence of the wetting proces
induces hydrodynamic interactions which usually tota
modify the droplet pattern, accelerate the kinetics, and
stroy the diffusional nature of the growth. By using cw las
waves to quench the mixture, this important problem dis
pears. Due to the Gaussian shape of the beam, the bul
gimeR}t1/3 cannot indefinitely subsist. As it grows, a dro
let probes transversally a region that is less and l
quenched by the wave. Thus, after a bulk behavior,
growth will progressively slow down and the droplet radi
will reach a maximum valueRmax

E defined by the experimen
tal conditions ~i.e., beam power, beam radius, anduT0
2TCu). Figure 10 shows this expected crossover between
bulk behavior and that driven by finite-size effects.

B. Theoretical description of the kinetics of a phase separation
driven by a cw cylindrical Gaussian wave

After this first experimental illustration, it is of practica
importance to build a model for the droplet growth in
Gaussian cw laser wave. For a relatively unfocused la
wave and for axial distances~from the beam-waist location
z50) zd,2pa0

2/l, the wave symmetry is almost cylindrica
around the propagation axis. In this section we take i
account this symmetry of the optical quenching to build
cylindrical model of growth. However, despite this symm
try, Figs. 3 and 4 show that the growing droplets are sph
cal due to a minimization of the surface energy; rupturing
spheres induced by Rayleigh-like instabilities of growing c
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lindrical droplets in a laser wave has also been obser
@49#. Unfortunately, a rigorous treatment of such symme
mixing ~growing spheres in a cylindrical quench!, analogous
to that encountered for droplet growth in a gravitational fie
@50#, cannot be performed simply. Since our aim is to e
plore the properties of laser-driven phase transitions and
tain analytical results for easy interpretation of the expe
mental data, we will not take into account this surfa
tension effect; instead, we will analyze the transverse gro
of cylindrical droplets. To compare the model with the me
surements, we will assimilate the predicted radius of
beam centered growing cylinder with that of the observ
spherical droplet.

Unlike the spherical symmetry scenario where the sin
droplet problem may be solved directly from the steady-s
equation for the solute diffusion, it is necessary here to c
sider an effective medium which will remove the unphysic
singularity appearing in the concentration field. Indeed,
cylindrical symmetry, the general solution of the stationa
mass diffusion equation~1a! exhibits a logarithmic diver-
gence atr→`. Even if anad hocapproach towards resolu
tion is to introduce a cutoff distance which prevents t
divergence@51#, it has been shown@52# that this method
leads to incorrect results, even qualitatively. To solve t
problem in a more appropriate way, Marqusee@52# consid-
ered an effective medium and derived self-consistently
growth rate of circular domains. Thus, we now extend M
qusee’s model of two-dimensional Ostwald ripening to
laser-driven transverse growth of a beam-trapped cylindr
droplet of radiusR and lengthl, which is large compared to
R ( l @R).

Since the flux of soluteJWC(R) at the interface of the cy
lindrical droplet is not known, we postulate its form usin
that of a spherical quench induced by a spherical wave,
obtain its expression from the boundary conditions. The fl
of solute JWS(R) around a spherical droplet nucleated in
spherical wave@53# is given by

FIG. 10. Experimental late stage growth law of a beam-trap
droplet in the 100-mm-thick capillary. The regimesR}t1/3 ~bulk
behavior! and R}t0 ~saturation of the droplet radiusR to Rmax

E

induced by the finite size of the beam! are indicated.
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JWS~R!54pR2D2@¹W F#t5R

54pRD2H F~r→`!2S FR~R!

2F ]

]r
„rFE~r !…G

r 5R
D J rW

r
, ~9!

where FE(r ) is either Fel(r ) or F th(r ) and FR(R)5F(r
5R). Then, we postulate the form of the cylindrical flux a

JWC~R!52pRlD2@¹W F# r 5R5 lkE~R!$F~r→`!2@FR~R!

2CE~R!#%
rW

r
, ~10!

wherekE(R) andCE(R) are unknown functions which nee
to be determined. Forr @R, the variation of the solute con
centration induced by the droplet growth is given by

]

]t
@F02FE~r→`!#5D2¹W 2@F02FE~r→`!#

2E
0

`S JWC•
rW

r DN~R,t !dR, ~11!

whereN(R,t) is the density of cylinders of radiusR. This
solute diffusion equation includes the concentration variat
resulting from the growth of other cylinders which constitu
an effective medium. Therefore, the intrinsic local conce
tration of soluteF(r )2FE(r ) induced by the growth obey

]

]t
@F~r !2FE~r !#5D2¹W 2@F~r !2FE~r !#1SE

2D2~zE!22@F~r !2FE~r !#,

~12!

where

D2~zE!225E
0

`

kE~R!n~R,t !dR,

SE5E
0

`

kE~R!@FR~R!2CE~R!#n~R,t !dR. ~13!

Here,n(R,t) is the density of cylinders per unit length. Ow
ing to the transverse Gaussian shape of the optical que
one hasFel(r→`)5F th(r→`)50. ThusF(r→`)5F0 ,
i.e., the initial bulk value. Using these boundary condition
Eq. ~11! becomes

SE5D2~zE!22F0 . ~14!

Moreover,FE(r ) represents the field variation of concentr
tion at steady state. Consequently, using Eq.~12! in the adia-
batic approximation@54#, i.e.,@]F(r )/]t#50, the concentra-
tion around the cylindrical beam-trapped droplet satisfies

d
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@¹W 22~zE!22#@F~r !2F02FE~r !#50. ~15!

From this equation it appears thatzE represents a screenin
length which removes the divergence at infinity existing
the single cylinder case. Taking into account the bound
conditions, the solution of Eq.~15! is

F~r .R!5F01FE~r !1
K0~r /zE!

K0~R/jE!

3@FR~R!2F02FE~R!#, ~16!

whereK0(x) is the zeroth modified Bessel function. The
we can deduce the cylindrical flux of soluteJWC(R) at the
droplet interface

JWC~R!52pRlD2H S ]FE

]r D
r 5R

2
1

zE

K1~R/zE!

K0~R/zE!

3@FR~R!2F02FE~R!#J rW

r
, ~17!

whereK1(x) is the first modified Bessel function. Using th
definitions given by Eq.~10!, we also get

kE~R!52pD2S R

zE
D K1~R/zE!

K0~R/zE!
,

CE~R!5FE~R!1zE

K0~R/zE!

K1~R/zE! S ]FE

]r D
r 5R

. ~18!

If we assume that the incident beam power is sufficien
low, as in the experiments, to ensure a sufficient optical tr
ping of the droplet without inducing a field variation of th
surface tensions @55#, thenFR(R) is given by the classica
Gibbs-Thomson relation for cylinders@52#,

FM2FR~R!5
1

~FM2Fm!~]m/]F!T

s

R
, ~19!

wherem is the chemical potential per unit volume. By ma
balance, the flux of solute at the droplet interface equals
volume change,

JWC~R!5~Fm2FM !
d

dt
~pR2l !

rW

r
. ~20!

Then, the transverse three-dimensional diffusion-contro
growth rate of a cylindrical beam-trapped droplet nuclea
by an optical quench in composition becomes
ry

y
-

ts

d
d

dR

dt
5

D2

R S R

zE
D K1~R/zE!

K0~R/zE!

3H FE~R!1RS zE

R D K0~R/zE!

K1~R/zE! S ]FE

]r D
r 5R

Fm2FM

1
F02FM

Fm2FM
2

d0

R
J , ~21!

where zE satisfies the relationship (zE)21

52p*0
`R@K1(R/zE)/K0(R/zE)#n(R,t)dR. Here d0 is a

capillary length given by

d05
s

~Fm2FM !2~]m/]F!T
. ~22!

In a ‘‘F4’’ model of phase transitions, one hasd05j2/6
@56#. Finally, when comparing the experimental results w
the model, we assume that the variation ofR/zE with the
quench depth calculated numerically by Marqusee for
Ostwald ripening regime still holds in the presence of t
laser field.

Equation ~21! is very similar to the classical growth
rate of a cylindrical domain for spatially uniform quenchin
@52#, except that now, the supersaturationFE(R)
1R(zE /R)K0(R/zE)/K1(R/zE)(]FE /]r ) r 5R1F02FM
becomes a function of the beam and the droplet radii. Mo
over, we now need to particularizeFE(r ). In fact, for a
better illustration, we will separate the thermodiffusive a
the electrostrictive processes, assuming thatFE(r ) is either
F th(r ) or Fel(r ). Since the phase transition in our expe
mental system is essentially driven by a thermodiffusive c
tribution, we will mainly discuss this case and give resu
for electrostriction when needed. Following the procedu
for thermodiffusion, the treatment of an electrostrictio
driven transition is totally straightforward. According to Eq
~2a! and ~4!, we can writeF th(r ) as

F th~r !5~F th!0

1

ln„g~acl /a0!2
…

H 2E1S r 2

a0
2D 2 lnS r 2

acl
2 D J ,

~23!

where

~F th!05F th~r 50!52
%0

%S

kT

T0

aaP

4pL th
lnS g

acl
2

a0
2 D

is the optical quench in composition on the beam axis a
g51.781 is the Euler constant@E1(x!1)'2 ln(gx)1x#.

Without any alteration of generality, we assumeF0
5FM for the description of the model. This means that t
initial composition of the mixture is supposed to be locat
on its coexistence curve as for experiments atT0.TC . In
that case, all the incident beam power is used for the que
So, by particularizing the optical quench to the thermodif
sive contribution and taking into accountF05FM , the
droplet growth rate becomes
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dR

dt
5

D2

R S R

zE
D K1~R/zE!

K0~R/zE!
X ~F th!0

~FM2Fm!

1

ln~gacl
2 /a0

2!

H 2E1S R2

a0
2 D 2 lnS R2

acl
2 D 12S zE

R D K0~R/zE!

K1~R/zE!

3FexpS 2
R2

a0
2 D 21G J 2

d0

R
C. ~24!

If R!a0 , Eq. ~24! reduces to the familiar expression
the growth rate in two dimensions for spatially unifor
quenches@52#. To show the difference with a classical sp
tially uniform situation, Fig. 11 illustrates the set of predict
radii for which dR/dt50 versus the quench depth on th
beam axis. For a comparison, the electrostrictive case is
depicted@assuming (fel)05(F th)0# as well as the classica
behavior which, as stated above, corresponds to the situa
R!a0 . In the latter case,dR/dt50 gives the set of critica
radii. This set is represented by a hyperbola which sim
means that the critical radius is inversely proportional to
quench depth. For an optical quench, the situation is m
complicated. In the presence of the wave, the stationary
gime dR/dt50 leads to a droplet radius which exhibits
cuvette shape as a function of the initial central quen
depth. dR/dt50 is positive inside this curve and negativ
outside. The left branch corresponds to the critical radiusRC

E

variation and the right branch gives the maximum drop
radiusRmax

E allowed by the finite size of the optical quenc
This finite-size effect also leads to a cutoff in the set
possibleRC

E : There is a maximum value ofRC
E which also

represents the smallest accessibleRmax
E ; this is associated

with a minimum quench depth below which the transiti
cannot occur. This limitation shows that the beam size
duces the set of accessible length scales for droplet gro
compared to a classical uniform quench.

FIG. 11. Set of radii corresponding to a zero growth rate ver
the optical quench depth at the beam center for both electrostric
and thermodiffusive processes. The left~right! part gives the varia-
tion of the critical radiusRC

E ~maximum radiusRmax
E ) allowed by the

finite size of the wave. For a comparison, the variation for a c
sical uniform quench inside an infinite medium is also plotted. T
arrows indicate the evolution of the droplet radius in the differ
regions separated bydR/dt50.
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Moreover, Fig. 11 also illustrates different behaviors,
terms of accessible droplet radii, for an electrostrictive o
thermodiffusive quench in composition. This difference
due to the local or the nonlocal character of the quen
Since electrostriction varies linearly with field intensity, it
highly dependent on the beam radius and droplet radii can
be larger thana0 . On the contrary, for thermodiffusion
which is driven by the temperature dissipated in the medi
and thus essentially depends on the beam power, su
strong dependence does not exist and values ofRmax

E larger
than the beam radius are allowed. It also explains why in
preceding section the bulk regimeR}t1/3 was observed even
for droplet radii larger than the beam radius.

To illustrate the saturation of the droplet radius towar
Rmax

E , and thus the appearance of anR}t0 regime at the late
stage of the transition, we can compute the droplet gro
from Eq. ~24!. The full line in Fig. 12 illustrates the pre
dicted variation for the experimental conditions given in F
10. Integration was done considering the initial conditi
R@tC

E5(RC
E)3/D2j2#5RC

E1j2/2, where tC
E is the relax-

ation time associated with the critical radiusRC
E ~deduced

from dR/dt50) at the beginning of the quench andj2/2
corresponds to an uncertainty on the activation barrier of
order of kBT @56#. The experimental droplet growth satur
tion is theoretically observed. Moreover, whenR/a0!1, the
droplet does not feel the Gaussian nature of the quench,
the classical free-growth behaviorR}t1/2 predicted at the
intermediate stage in classical situations@57# is also recov-
ered by the model. However, since we are essentially in
ested in the influence of the finite-size effects on drop
growth, we have not supplemented the droplet growth r
equation by the mass conservation equation@52# ~lever rule
at thermodynamic equilibrium!; this could be done using th
procedure developed in Ref.@58# coupled with our predicted
growth rate. Thus, even if a sort ofR}t1/3 behavior appears

s
ve

-
e
t

FIG. 12. Predicted droplet growth for the experimental con
tions given in Fig. 10 (P5142 mW) and for a smaller quench dep
(P5100 mW). The regimesR}t1/2 ~intermediate free-growth
stage! and R}t0 ~finite-size effects! are depicted. The behaviorR
}t1/3 is given for ease of interpretation since it corresponds in
model to a crossover between the predictedR}t1/2 and R}t0 re-
gimes.
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in the predicted droplet growth, it is not associated with
Ostwald ripening regime~as in experiments! because mas
conservation was not taken into account; it corresponds
stead to a crossover between the predictedR}t1/2 and t0

regimes.
Finally, for the same beam conditions anduT02TCu, we

saw in the preceding experimental section that the gro
exponent in the bulk regime measured forT0,TC is larger
than that forT0.TC . SinceF0 is not located on the coex
istence curve forT0,TC , the term (F02FM)/(Fm2FM)
appearing in the growth rate needs to be considered wi
the description of our experiments. This means that for
same range of measured droplet radii, the growth rate
smaller when the quench is deeper. To mimic this behav
we continue to assumeF05FM and decrease the bea
power. Figure 12 shows that observations are recovered
the bulk regime the slope of the droplet growth law d
creases when the quench depth increases, because finit
effects appear earlier.

C. Kinetics of crossover induced by finite-size effects

The kinetics of crossover induced by the finite size of
optical quench was investigated for different experimen
conditions. After a first illustration given in Fig. 10 for
beam waista058 mm, Figs. 13~a!–13~c! depict in more de-
tail the saturation of the growth of a single beam-trapp
droplet for a053 mm. To analyze the effect of the quenc
depth, the beam power and the distance in temperature to
critical point were modified. Each figure also gives the p
dicted R(t) variations. The direct comparison between e
periments and predictions is made difficult due to the drop
coalescences occurring at the early stage of the transi
The parts of the data representing the bulk regime of
growth still continue to be larger than those predicted by
model, which is intrinsically diffusion-driven. The transie
nature of this droplet growth acceleration, used in the p
ceding section to recover the number of coalescences
served visually at the beginning of the transition, can ea
be checked by making a time translation of the experime
data. The result of this procedure is illustrated in the differ
insets. As also shown in Table II, the agreement betw
predicted and measuredRmax

E values is quite satisfactory, ex
cept for T02TC50.4 K ~see discussion below!. Therefore,
these experiments demonstrate that after the coalesc
stage, the diffusional nature of the droplet growth in anl
5100mm glass capillary is really preserved in the bea
during the late stage of the transition.

We also analyzed finite-size effects in the presence
advection in a cell of optical pathl 52 mm ~configuration
illustrated in Fig. 3!. The growth of two flowing droplets in
such a geometry is presented in Fig. 14. Even if the existe
of the flow makes the data noisy, the droplet radius satu
tion is observed again and theRmax

E values are in reasonabl
agreement with those predicted for a pure diffusive grow
Of course, before saturation, the growth (R}t0.8) cannot fit
the predictions because the advection makes the kine
much faster than a diffusion-driven one@59#. Thus, despite
the axial flow of the droplets, the finite transverse size of
beam still constrains the growth, and theRmax

E value seems to
correspond to that obtained for a diffusion-controlled kin
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FIG. 13. Finite-size effects on the growth law of a beam-trapp
droplet in the 100-mm-thick capillary. PredictedR(t) variations
~solid and dashed lines! are also depicted for comparison with e
periments. Inset: comparison after a time translation of the exp
mental points~see text!. ~a! For P590 mW, ~b! for P5110 mW,
and ~c! for P5142 mW.
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TABLE II. Experimental and predicted values~between parentheses! of the maximum droplet radiusRmax
E ~in micrometers! resulting

from an optical quench in composition as a function of the different external parameters.

P590 mW P5110 mW P5142 mW P5110 mW P5142 mW
a053 mm a053 mm a053 mm a058 mm a058 mm
l 5100mm l 5100mm l 5100mm l 5300mm l 5100mm*

l 5300mm†

l 52 mm#

T02TC50.4 K 1261 ~16.9! 1461 ~19.5! 1461 ~23! 1661† ~19.2!
T02TC50.5 K 1561 ~14.7! 1761† ~16.9!
T02TC50.6 K 1461 ~12.7! 1461 ~14.9! 1561 ~17.9! 1561† ~15.4!
T02TC50.8 K 1261 ~10.3! 1461 ~12.2! 1461 ~14.8! 1461# ~13.5!
T02TC51.0 K 1461* ~12.4!
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ics. Analyzing all the measured and predictedRmax
E listed in

Table II, two conclusions can be made. First, the agreem
is reasonably good, except forT02TC50.4 K, for which the
measuredRmax

E is smaller than the predicted value. Since th
discrepancy only appears whenTC is approached, it could be
explained by the saturation of thermodiffusion, which a
exists for electrostriction, and results from the vicinity of t
critical point ~see Appendix A in Ref.@31#!. Unfortunately,
we have never been able to give a definite answer to
hypothesis. Indeed, elimination of the saturation of the fi
coupling atT02TC50.4 K, if it exists, implies the use o
smaller beam intensities, i.e., a decrease in the beam p
(P,90 mW) or an increase in the beam waista0 (a0
.8 mm). However, in both cases, the beam intensity w
not sufficiently strong to allow an efficient beam trappin
On the other hand, despite the continuous advection of
growing droplets in cells of optical pathl 52 mm ~droplet
velocity Vd'1 mm/s), the measuredRmax

E values surpris-
ingly correspond to those obtained from the model, eve
the growth rate is much larger: in the bulk regime one h

FIG. 14. Finite-size effects on the growth law of a droplet flo
ing along the beam axis in the cell~2 mm thick!. PredictedR(t)
variations~solid and dashed lines! are also depicted for compariso
with experiments. Inset: comparison after a time translation of
experimental points~see text!.
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R}t0.8 instead ofR}t1/3. This simply means that at low
Reynolds number, here Re'231026 for a droplet radiusR
510mm, the flow is too weak to disturb the intrinsic cuto
distance imposed by the beam.

Finally, thermodynamic stability means that a droplet
radius larger thanRmax

E is unstable. It should evaporate un
its radius reachesRmax

E . This expected behavior can be e
perimentally checked in a capillary of optical pathl
5300mm. Indeed, unlike the situation depicted in Fig. 5 f
l 5100mm, whenl 5300mm two droplets generally remain
in the capillary at the late stage of the transition. Since th
eventually coalesce, the radius of the resulting final drop
becomes larger thanRmax

E . Figure 15 illustrates the expecte
droplet evaporation and the decrease in its radius towa
Rmax

E for different values of the control parameters. The co
lescences, indicated by an arrow, are clearly evidenced
the shifts in droplet radius. Also represented are the predic
diffusion-driven R(t) variations. For this capillary size,
weak droplet advection also appears, now transiently, at
intermediate stage of growth. As previously shown forl
52 mm, we can again observe that~i! Rmax

E seems to be
insensitive to the transient flow and~ii ! before saturation, the
growth law isR}t0.8.

D. Discussion of finite-size effects

The above analysis shows that the cutoff distance
posed by the beam radius breaks the universal behavio
droplet growth@2# as soon as the drop starts to feel the be
size. A direct comparison with recent theoretical work
finite-size effects in phase-separating systems@47,48# is,
however, difficult to make, particularly because of the ‘‘so
wall’’ geometry provided by the wave. The shape of t
beam generates a cutoff volume, with no rigid bounda
beyond which the transition cannot occur. Unlike classi
situations, the size of this volume varies with the amplitu
of the different control parameters (P,a0 ,uT2TCu). More-
over, the initial quench is not spatially uniform over th
length scale. Thus, finite-size effects induced by a laser w
are quite different from those resulting from the rigid boun
ary conditions used in Refs.@47,48#. First, in a Gaussian
quench there is no need for additional hypotheses taking
account the finiteness of the box containing the mediu
either by imposing a cutoff droplet radius on the growth ra

e
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@48# or by using a lever rule for a finite volume@47#. Indeed,
even if the wave creates a length scale beyond which
transition cannot be induced, both the medium and
Gaussian excitation are still of infinite extent. On the oth
hand, a description of the droplet distribution, as in Re
@47,48#, does not really hold for an optical quench since on
a few droplets are nucleated in the beam.

Therefore, this study illustrates how finite-size effects c
be smoothly induced in a bulk material to prevent abr
boundary conditions. It also describes a new way to ana
these effects experimentally in a wetting-free geome
since it is well known that the preferential attraction of o
of the two coexisting phases on the rigid boundaries res
in a dynamic coupling between the growth and wetting p
nomena, which considerably modifies the kinetics of coa
ening @60#.

FIG. 15. Illustration of the thermodynamic stability of theRmax
E

value by the decrease in the droplet radiusR (.Rmax
E ) towardsRmax

E

after the coalescence with a second droplet~indicated by the arrow!.
The predicted droplet growths~solid line! are also illustrated.~a!
For P5110 mW and~b! for P5142 mW.
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V. CONCLUSION

In this paper we have investigated the late stage kine
of first-order phase transitions in liquid mixtures driven by
cw laser wave. Our main aim was to illustrate how finite-s
effects can be explored in fluids, whereas classical meth
fail due to the impossibility of eliminating the intrinsic inter
action with the container. Since the wave behaves in a b
as an optical bottle with ‘‘soft walls,’’ we show that lase
induced transitions fulfill their promise. Moreover, to inco
porate such an analysis in a more general framework,
also important to compare the field-induced kinetics in
absence of finite-size effects with classical results obtaine
familiar uniform quench situations.

In a near-critical micellar phase of microemulsion w
have illustrated the ability of laser waves to quench a m
ture in composition, to nucleate droplets of the minor
phase, and to trap them optically. Working with small optic
path cells, the growth of a single droplet in compensa
gravity has been investigated. In a first step, we analyzed
bulk behavior of this droplet growth. The classical behav
R}t1/3 was recovered. To interpret the amplitude of the m
sured growth laws, the data were analyzed in terms of
duced length and time scales for the Ising class (d53,n
51). This description shows that the droplet growth driv
by the wave when finite-size effects are negligible is in to
agreement with the behavior observed in classical situatio

To pursue this investigation, we extended this study to
intrinsic influence of the finite size of the beam on the dro
let growth. After a first illustration of the crossover from th
R}t1/3 regime to the saturation of the kinetics associa
with the decrease in quench depth felt by the growing dr
let, we developed a model of growth inside the beam. T
dynamics in the presence of the wave was calculated and
kinetics of crossover induced by finite-size effects is d
scribed. Our experiments are interpreted using this mo
Despite some approximations, there is good quantita
agreement between theory and experiments. We also i
trate the robustness of finite-size effects, showing that t
are not disturbed by the advection of the growing droplets
low Reynolds numbers even if the growth laws are modifi
by the flow.

As a consequence, the present work shows how la
waves can be used to investigate the kinetics of conser
order-parameter first-order phase transitions whereas m
classical experimental setups are limited. More genera
this new application of laser waves illustrates their efficien
to induce localized gradients in the bulk and to control no
equilibrium processes in soft matter physics.
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