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Photoacoustic generation for a spherical absorber with impedance mismatch
with the surrounding media
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Pressure generation in a spherical absorber due to energy deposition from pulsed lasers is studied. For a
variety of conditions, analytical solutions are derived that allow quick computation of exact results. For the
special case of identical acoustic impedance, the pressure transient spreads to the surrounding medium by a
single compressive pulse followed by a tensile pulse at the end of illumination. For the general case of
impedance mismatch, the pressure transient is in the form of a series of dampened compressive and tensile
pressure pulses. In this paper both the amplitude ratio and the sign of consecutive pressure pulses are deter-
mined analytically, and are shown to be dependent upon the impedance mismatch. For laser pulses of duration
much less than the absorber’s characteristic oscillation time, a stress confinement limit is reached for most of
the absorber, but a sharp tensile stress in the core region of the sphere is predicted. This region of high stress
is defined byr <r., and we show that, is proportional to the laser pulse duratian Upon further shortening
of the laser pulse duration, the strength of this tensile stress continues to increase while its spatial distribution
is sharpened. This observation has relevance to a number of experiments where laser-induced pressure tran-
sients cause the absorber to fracty&1063-651X99)08605-3

PACS numbds): 42.62.Be, 43.20:g

[. INTRODUCTION surrounding medium are parts of one homogeneous material
and hence have identical acoustic impedances.

With the widespread use of lasers in medical and com- There has been renewed interest in thermoelastic effects
mercial applications, a physical understanding of the interacdue to the increasing use of shorter laser pulses in biological
tion between the laser pulse and absorbing material is botBystems. The generation of high pressure is desired in some
desirable and necessary. These investigations have signifi2dses such as cold ablation, while in other cases it is the
cant interest in terms of the basic physics involved in thec@use of unwanted damag5]. Because of the heteroge-
nonlinear interplay of optical and acoustic phenomgtip ~ N€OUS nature of, and_uneven absorption in, most biosystems,
They are also of interest from a practical point of view. Light @1 accurate prediction of pressure transients cannot be

can affect material through diverse physical means Whicy'f\chieved without taking into account the difference in acous-
include therma[2—4], electrical[5,6], and chemical7] pro- tic properties between different parts of the system. A for-

cesses. Even within the category of thermal effects, profnl“at'or.1 with general appllcabll_lty IS neec_ied. . .
In this paper, we have studied laser interactions with a

CESSes involving _thermomt_achamcal effects can follow Verysingle spherical uniform absorber surrounded by a transpar-
different underlying physics from the purely thermal-

) ; . . ent medium. With the assumption of linear mechanical re-
heating-conduction proceg8]. In this paper, our interest

. . ~sponses by the absorber and medium, an analytic solution for
focuses on one particular thermomechanical effect, whichyesire transients is obtained. Heat conduction is not in-

involves temperature rise, pressure buildup, and mechanicg|,,jed when the pulse duratiog is much shorter than char-
expansion. Processes like this are referred to as thermoelageteristic heat conduction times. Nonlinearity in propagation
tic, in distinction from another thermomechanical process—16), or the possibility of phase changes such as bubble for-
the optical breakdown which involves evaporation, generamation[17] are not considered within the analytical frame-
tion of hot plasmas upon energy absorption, and mechanicgork. The value of the analytic solution is however, twofold:
expansior(8]. (1) It gives an explicit relation between the laser input pa-
The theoretical investigation of thermoelastic effects berameters, the mechanical properties of the system, and the
gan with the two Danilovskaya probleni$950—-1952 [9]. generated pressure transieni®y. Even for systems with sig-
The first Danilovskaya problem is a half-space model withnificant nonlinearity, the solutions provide a detailed descrip-
an abrupt change of temperature on the surface and no cotien of photoacoustic generation at times before the nonlin-
duction between media. The second problem solves the sanearities are manifested, and allow a prediction of nonlinear
model with heat conductance taken into account. In eitheevents, such as a compressive portion of the transient which
case a pressure transient results due to the abrupt temperatweuld eventually develop into a shock wave, or a tensile
change. Generalizations of the model to other geometries arstress which might form a cold bubble inside the liquid. Even
temperature distributions have been ma#le—13. In par- when the nonlinear events occur, there is always a range of
ticular, Hu developed expressions for calculating the presinfluence outside which the linear solutions are still approxi-
sure outside the absorbing region for a spherical absorbenately valid[16]. For example, formation of a shock wave
[14]. Most of these analytical results, however, are obtainedar away from the absorber will not affect the pressure
under the special condition that the absorbing region and thehanges at the absorber until after enough time has elapsed
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for the effect of the shock disturbance to travel back to theén Sec. Il. In Sec. Il we discuss our results and the implica-

absorber. tions for some real systems.
Our analytic solution exhibits the following interesting
features for the pressure transient: For identical impedances Il. MODEL AND ANALYTIC SOLUTION

of the absorber and the medium, the pressure transient . . .
spreads to the medium in a compressive pulse, which is fol- Our model consists of an uniform spherical absorber sur-
lowed by a tensile pulse. For the general case of impedancré)undecj by a tr_ans_parent medium. The rate of energy input
mismatch, the pressure transient is in the form of a series dier unit masd, is given by[2]
pulses of decreasing amplitudes. The damping rate, or am- 3,
plitude ratio between successive pressure peaks, depends on |

the mismatch; the more similar the mechanical properties,

the faster the pulses decay. For identical densities but diﬁer\ivherelo is the incident fluence in J/d@na is the radius of
ent bulk modulil, the pulses spreading out to the medium arg,q spherer, is the laser pulse duratiom, is the static
exactly parabolic in shape. If the absorber has a larger mOdl&ensity of the sphere, ang, is the absorption coefficient.
lus than the surrounding medium, the consecutive pulses Tq pbe consistent with notation, we uséa Lagrangiajnto
have the same sign; that is, a series of compressive pulsg&note the initial position of an element of mass, afidt)
occur during the illumination, followed by a series of tensile (a Eulerian its corresponding position vector at timeln
pulses after the illumination. If the opposite is true, so thathis notation, an element of mass &t ,t) starts atr, i.e.,

the medium has a higher bulk modulus, the consecutivg(r,tzo):r. The mathematical dot operatidiit) means a
pulses have opposite signs; that is, compressive and tensilgta| time derivative for a fixed mass. The spatial derivative
pulses alternate with each other. For the general case of dif7 js taken with respect to while the spatial derivative with
ferent densities, the mathematical form of the pressure igespect to the Eulerian coordinate is explicitly denoted as
more complicated. However, the above mentioned feature¥ ,. With this notation, the equation of motion for a point
remain for moderate density mismatch. inside the sphere is
Another interesting feature of this model is the prediction .
of a sharp tensile stress in the core of the sphere for laser pU=—ViP, &

pulses much shorter than the oscillation time of the absorbe(NhereP is the pressure, and is the time varying density

Pulses of this length are expected to be in the stress confingrich is related to the static density by mass conservation.
ment regime, in which the pressure amplitudes generategd, spherical geometry

should become independent of pulse length. We find this not
to be true in the core region. Fractures near the center of the 5, o, 0u

- , pof “=u"p—-, (©)
absorber caused by tensile stress resulting from ultrashort or
laser pulses have been suggested by both numerical calcula-
tion [18] and experimental observati¢f9]. In particular, a Whereu is the radial(only) component ofu. With Eqg. (3),
microscopic simulation of an absorber by Zhigilei and Gar-the equation of motion now reads
rison showed the fracture effect at the center for ultrashort r2i=—u2VpP (4
pulseq 20]. The phenomenon, however, is still poorly under- Po '
stood in terms of its relation to the laser-pulse duration and | thjs paper, we use the assumption that the bulk modu-
its apparent violation of the stress confinement notion, angi;s B and thermal-expansion coefficient are constant,
there is a lack of a quantitative basis for its prediction. Anyhich excludes the occurrence of nonlinear propagation.
analytic model with explicit dependencies on the parametergyitn these approximations of constant mechanical param-

is very helpful in understanding the various aspects of thgters, the equation of state can be written as
phenomenon. Our analytic results show that the sharp tensile

stress develops in the core region of the sphere at a delayed ) .
time after the short laser pulse. The delay time is equal to the —=—gtel ®
time for a wave to travel from the surface of the absorber

is a critical radius that separates inner and outer regionge continuity equationi(=dJv/dt+u-V ), which allows
within the absorber that have differandependencies for the 5 to write Eq.(5) as

tensile stresst. is proportional to the laser pulse duration

7. Upon further shortening of the laser pulse duration be- v . .

yond this stress confinement limit, the strength of this tensile v V,-u=- B +aT. (6)
stress continues to increase while its spatial distribution is

sharpened. This is in obvious conflict with the general notion Energy conservation in a unit volume takes the form
of stress confinement. Our result predicting that pressures

1
= 1- 1-e 2% (1+42 , (1
Aareps Zafaz[ e (1+2a)]|, (D)

will continue to strengthen as the pulse duration is shortened pl = V- (PU)y=p(&+e, @
will lead to a more careful estimate of the threshold fluence
for mechanical damage for ultrashort laser pulses. whereg;=Ts—Pu is the internal energy rate of change per

A description of the model we use, as well as an outlineunit mass, ané, = u%/2 is the kinetic energy per unit mass.
of the steps leading to the analytic solution will be describeds the specific entropy.
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Use of Egs.(2) and (6) in Eq. (7) shows that, at any SP=—pob, (133
instant, the absorbed laser energy can be expressed as the
product of the temperature and the change of entropy of theorr>a,
absorber. This energy is used to raise the temperature of the
absorber and change its volume, 1 »=V2¢
EQr; ’

lo=Ts=c,T+BaTo, (8)

SP=—pmodb, 13b
wherec, is the specific heat. pmo® (130

The equation of motioriEq. (4)], the equation of state wherec?=B/p, andc%=B,/pmo- The boundary conditions
[Eq. (6)], and the conservation of enerffzg. (8)] constitute  are now(1) V=0 atr=0 ande for all t; (2) ¢=0 and
the governing equations for the absorber. Similar equa‘tion%:0 for t=0; and(3) for all t

can be obtained for the medium. The equation of motion is
\% o=V —ats
merZU:_UZVP. (9) ¢’|r—a ¢|r—a

The equation of state is Podlr—a-=Pmodl—a+-

= To solve Eqgs(13a and (13b), we follow the strategy of
V, U=——, (10) Hu [14], which is to perform a Laplace transformation on
Bm time before applying the Green’s-function method in space.

The direct use of space-time Green’s-function methods in-
olves multiple integrals, and is unnecessarily more compli-
ted mathematically.
Denoting the Laplace transform ofp as ®(r,s)

where the subscripn is for the medium. Equatiofil0) has
no temperature term because we are looking at times muc
shorter than the heat conduction time into the medium. Since

heat conduction is excludeB,,, is the adiabatic bulk modu- = £[4(r,1)] and using the initial boundary condition &t

lus. The set of e_quanon(gl), (6), (8), (9), and (10) can be —0, we have the following. For<a,
solved by numerical means subject to the following bound-

ary conditionsi(1) éu is strictly zero atr =0 ande, (2) U is ) s?
zero att=0, and(3) u andP are continuous at=a. Vo - ?‘D:af(r)Y(S)'
Even with the assumption of constant mechanical param-
eters, the set of equations is still nonlinear due to the spheri- P(r,s)=—s%py®. (14a

cal geometry and the coupling between volume expansion
and heating in Eq(8). However, unlike the nonlinearity as- Forr=>a,
sociated with a high and variable compressibility for a gas or 2

S

liquid, this nonlinearity has little effect on most systems and V2h— — D=0,

conditions of interest. We can assume that=u—r<r and m

its corresponding effect on heating is negligible. Dropping P(r.s)=—s2p ® 14b

the second term on the right of E@), we have (r.s) Pmo’s (140
ST=T—T(0)=f(r)y(t) where P(r,s) and y(s) are the Laplace transforms of

S6P(r,t) and y(t), respectively. The boundary conditions at
r=a are now

Ie
t)y=—[to(t)—(t— o(t— , 11
Y(O= 100 = (= 70) 6(t=70)] (11 Vol =V .,
wheref(r) is the spatial distribution of the energy deposition 0P| =a-=Pmo®P|r=a+-
I, andy(t) is its time dependence. We can then expand the , . N ,
set of Egs(4), (6), (8), (9), and(10) to first order insu and The Green’s functiors(r,r") is defined as
ST. The resulting equations are the following. Fexa, a
<I>(r,s)=ay(s)J dr'f(r")G(r,r’), (15
podU=BV[V.8u]—aBV T, 0
6P=—BV.-du+aB4T. (129  wherer’<a, since the energy deposition functidir) is
nonzero only inside the sphei®(r,r’) satisfies the follow-
Forr>a, ing equations:
PmodU=B,V[V-au], ) s2
VG(r,r')—=G(r,r')=46(r—r"), r=<a,
SP=—B,V-du. (12b c?
2
Since the system has spherical symmetnhas no curl, V2G(r,r')— S—G(r ry=8r—r'), r>a. (16)
and we can therefore writéu=V ¢. The equations now ' ci ' '

become the following. For=a, _ . _
The Green’s functionG(r,r’) is subject to the same

i" —v24_ boundary conditions a®. The Green’s function satisfying
2¢p=V°¢—adT, o O
c the boundary conditions is
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G(r,r')=1
_1P0r,a

ot

Pmol

\

whereQ is given by

sa
Cm

Po

Pmo

Q(x)= +1

. [s
sm)'(a(a—x)

sa s (s
+Fcos)’(a(a—x))—sml—(a(a—x)),

andg is given as the following:
oo %

andg ! is given by the following expansion:

sa
B

m

_ [sa
sin
c

sa

— —CO0s
Cc

sa

C

Po

Pmo

oo Ak
-1_ - 1+2k)_" 2
g __22 e (salc)(1+ )TR!

k=0 A1
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_1 ’ r,C .
r)——sin
97U 5, S

. r'e r(
g9 Q(r)gsm

5775

sr

—, r<r’<a

C

sr’

</ rr<r<a a7
sr’ S
—lexp ——(r—a)|, r'<a<r,
c Cm

where we have introduced the parameteys h,, andA
h1=(poa)/(pmoCm) +a/c,
h2=(poa)/(pmoCm) —alc,

LY

Pmo

A

o (19

The solution ford depends on the explicit choice fofr).

For uniform absorption throughout the sphere, a step func-
tion is the obvious choice. However, direct use of a step
function with a discontinuity at =a leads to mathematical
complications later. To avoid this, we let

l-exd—n(a—r)], r<a

=10, r>a, (29

and taken— later. Such a complication is unfortunately

A=h;s+A,, necessary. Failing to do so will lead to a discontinuityuin
P With f(r) given by Eq.(20), we find the following. For
A2:h25+Ap, (18b) Sa,
|
P(r,s)=Bay(s)+Bay(s)u(s),
(213
C _ " Sr B N Sr
,u(s)=4—gr (Zo—2Z7 AL+Z7 Ay)ex < +(—=2Zg+Z; A1—Z7 Ay)ex <
s sa s sa
+(Z, —Z;)Aex < n(a—r)|+(—2Z,+Z,)A,ex < n(a—r)
- s . s
+(—Z5+Z3)A ex E(a—r)—na +(Z5—Z5)Aex —E(a—r)—na .
Forr>a,
P(r,s)=Bay(s)u(s),
_as 1 2+ S +sa N 1+Z‘ S sa
,u(s)—ﬁ s 4 ex a(r a) S sT4 ex a(r a) S
+(—Z3+2Z5)ex —C—(r—a)—na , (21b)
m

whereZ,, Z; , Z, , andZ; are defined as

a
ZO—_,

Zi=(an+1l(stcy)F(cyl(stcy)?,
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Z,=(rp+1)/(sxcy)F(cn)l(sxcny)?, Zz=1s=cn)F(cn)l(s=cn)? (22)

Using the expansion aj ! in Eq. (18), we can recast(s) into a series:

C oo
u(s)=5- 2 By(r.s). (233
k=0
Forr=a,
Ak sa - . s
B(r,s)=—7xexp —2k—||(—Zp+Z; A1—Z; Ay)exp — —(a—r)
Az c c
S
+(ZO—ZlA1+ZIA2)exp< —c(@tn +(Z3 —Z5)Arexd — n(a—r)]
. s s sr
+(Z, =25 )Aex —ZaE— nla—r)|+(Z3—Z3)Aexp — e
ot S
+(—Z3+Z3)A2exr(—6(2a—r)—77a . (23b
Forr>a,
B _, a AE 2ksa 1 2+ s N 1 - S 2sa
k(r,s)= sgmex —2k— _§+ 1 |ex a(r a) s 4 ex a(r a) re
S sa
+(Z§—Z§)exn(——(r—a)——— nal|. (230
Cm c
|
The linearities of the system and Laplace transform en- 1 s
able us to write Bo:(—§+21 ex;{—a(a—r)
OP(r,t)=0(t)P (r,t)— 6(t— 7o) P (r,t— 24 1 __ S
(r,t) (t)PL(r,t) (t—=70)P( o) (29 +(——Zl>eX[{—E(a+r)
whereP (r,t) is the pressure that would be generated if the
laser illumination was continued at the same intensity indefi- +(—=2Z,+2;)exd — n(a—r)]
nitely. The effect of turning off the laser is achieved by su-
perimposing a negative signal after r;. This fact is also S — s
obvious from Eq.(11). The P, (r,t) is now the following. (23 —Z3)ex ¢ (263
Forr=a,
. - Forr>a,
le c
PL(r,)=Ba—|t+ =2, txb(r,t)|. (253
Cy 2r <o
N s
Forr>a, Bo=| —<-+Z] |ex —E(r—a)
leC < il 2
P(r)=Baz"oS txby(r,t), (25h) g4 )ex"( (r+a)
2I’CU k=0
S
where b(r,t)=L71By(r,s), and f(t)*g(t) +(Z3 —Z;)ex;{ —or-nal. (26b)

=[hdt’f(t—t")g(t") is the convolution of andg.
The general solution for the pressure transient has a com-
plicated mathematical form. In some special cases, simple The inverse Laplace transform dg(r,s), by(r,t) is

and illustrative results can be obtained. given by the following, in which we drop terms which make
(@ pmo=po and cp=c. In this case, we havé ,=h, no contribution in the limit ofp—~. For r<a (assuming
=A,=0, and Eq(23) shows that alB, are zero excefB,. r<(a—r), the converse situation does not affect the final

B, is simplified as follows: For=<a, resuld,
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¢

a—r
t— —

r
o<ts-—
c

—(r+ Ct)exr{ 7C

a—r

r
_ r+ct enc[tf(afr)/c]_k ct—r enc[tf(aﬂ)/c], <= —
7( ) 7( ) c c

bo(r,t)= 27
o(r )= Lt ot atr a~r_ _atr (279
- — - <
n(ct—r)exp nc ol c c
a+r
, —<t.
\ C
Forr>a,
( r—a
0, O<ts——
c
1+ t t r-a r_at '
- r—ctyexg —gpc{t— —||, —<ts-
) < 7( ) U c c c ;
r,t)y= 27
o(rt) r+a r r+a @7
—1+p(ct—r)exg nc|t— ——||, —<t=——
c c
r+a
, —<t.
\ c
After computing the convolutiob*t, we obtain simple results for the pressure transient:r<oa,
g .
le a—r
Ba—t, 0O0<ts——
C, c
[ c a—r a+r a—r a+r
PL(r,)={ Ba—|t— —|t— t+ , t< (283
C, ar c c c c
a+tr
, ——<{t.
| c
Forr>a,
( r-a
0, O<ts—
c
Ic [a® r\?] r-a r+a
Po(r,t)= — | == t—= —<ts=— 28h
L(r1) Yare, |2 |1 c)’ c “t57¢ (28b)
r+a
, —<t.
c

For this special case, the pressure transient outside the sphd&8Bqwvas previously obtained by Hu in his study of pressure
generation in an aqueous medium by self-focusing and self-defocusing ¢ffdtts
(b) pmo=po andcy,#c. Under these conditions, we hade =0, A;=h;s, andA,=h,s. All B, are now nonzero: Far

<a,
h,\ ¥ sa
—| exp —2k—
h, c

h S
+(—2Z,+2Z;)exd — n(a—r)]+(ZZ—Z§)h—jex;{ —ZaE— p(a—r)

Zy _ h +
hs 22" h 2

B(r,s)= +

S
ex —E(a+r)

Zy _ hy_ S
—h—ls+21—h—121 ex| —E(a—r)

o Sr
+(Z3 —Z5)ex —cm

(293

_o_y.h S
+(—2Z; +Zg)h—lex —E(Za—r)—na

Forr>a,
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5 _2a[hy\k sta) 1+ZJr s 1 S s 2sa
k(r,s)—h—lC hy exg —2k— ||| g2y |ex —a(r—a) 5 4 |ex —a(r—a)——

Cc
_ n S sa
+(Z3—Z3)ex —C—(r—a)—?—na

m

+

. (29b)

The inverse Laplace transform & (r,s), b.(r,t) is given by the following(we again drop terms which make no
contribution in the limit of —): For r<a, we define a time parameter that is relevant for each valug, af=t

—2k(alc):
f a-r r
—qp(r+ctyexgen| ty———1| 11, O<ty=-
c o
+ct t— 2 4 et - ot =]
7y —(r+ct)expgcn| ty . (cty—r)expgcay| ty < I WS
2a h, ) a—r a+r a—r< a+r
. (h2>k< C—hl+h—177(r+ctk a)expg —cy| ty T + p(cty—r)exg cn| ty < I te=——
() hy h, et . a—r N - . a+r a+rt 2a—r
7| (1t 2a)exg — el - —— ||+ (1 —ctict 2a)exg el te- —— | |1, —<te= ¢
h, 3a—r a+tr 2a-r 2a
ni—3(2a—r—ctyexgcny| ty— +(r—cty+2a)expcy| t,——| |, << —
h; c c
0 2a
\ s T<tk.
(303
Forr>a, the important time parameter is definedtgst—2k(a/c)—[(r—a)/cy],
(0, t,=<0
a
[—1+ np(a—ct)exp —cpyty)], Ot ,<-—
c
2a [hy\X
be(r,t)=—| =] ¢ 2a a 2a (30b)
chy\hy —1+p(cte—a)exg eyl ty— —| |, —<te=—
c c c
0 2a<t
’ ? &

\

The pressure transients are given by Eg5a and(25b), and the following convolutionb*t; Forr<a,

( a—r
0, O<t<——
c
C b a(hy,\] 1 “Mernien 2" a—r t<a+r a1
—T% PR R— —_ — <
2rtkh1h1<2r"c"12c’ckc (319
2
< (tthy), ——<t
\
Forr>a,
0, t=O0
a hz)kt 2at 0=t 2a
Et*bk: 2rhy\ hy k ks K= ¢ (31b
a
0, <t

(c) Finally, p,o# po andc,# c. For this most general case, the mathematical form is complicated. The inverse Laplace

transform ofB,(r,s), by(r,t) is given by the following(again dropping terms which make no contribution in the limit of
n—»): Forr<a, definet,=t—2k(a/c):



r
L 0<t=_

(RG]
—n(r+ct)expgcy tk_T

a—r
—(r+ctyexpcy| ty— <

atr

+(ctk—r)exr{cn(tk—T

h, a—r
h—l(r+ctk—2a)ex —-Cc7y tk—? +(cty—r)expcy|t

bk(r,t)=<

+(r—ct+ 2a)exr{cn(tk— —_—

a—r
7 (r+ctk—2a)exr{ —cn(tk— <

+(r—ct+ 2a)exp{cn(tk— —

<ty
c k

For r>a, definet ,=t—2k(a/c)—
(0, t,=<0

[(r—a)/cnm]:

| ©

2a [hy\X
o\ o m@—ctoexp(— eyt ) +E (tk), O0<ty=
1 1

h,\ ¥ 2a
Chl hy n(Ctl—ajexg ey b= ||+
'—'so (tk)

=kt
':50 (tk_
=k+

\
whereso——A /h1 and{s(t), Es

bk(r,t)=<

ol o
oy

'_'50 ~(ty), <t=

2a )
—<
c %

(t) are defined as

a . 2a
{s(t): W ﬁ_SR [eSt(hzs+Ap)k(2+ h;s+hys+ ZAP)]’ '_'k s (D= W P {eSt(hzs—l-A )

1

The pressure transients are given by H§$a and (25b), and the following convolutionb*t:
(

Forr=a,

a—r
0, 0<tk\_
c

2(1+A,)| ty— —— | +h;+hy | Di(sp,0+2(1+A4))

txb, a
p— 3 [ ——
2r ¢ 2rhkHt

2r bl 2 1
F k(SO’0)+Dk So,tk__ +(h1+h2) Dk

a+r 5 a+r L
2(1+4,) Stk ——| Dk R

\

) a2

a—r L a—r
Di(s,0)— D SO:tk_T —(hy+hy)Dy SOvtk_T ,

So,tk—

(323

(32b)

a—r a+r
— <ty —
C C

(333

atr
—<ty.
c k

=i

65 3dd

" VDIY3HdS V d04 NOILVYYINTO JILSNOOVOL1OHd

6119



5780

Forr>a,

c
St b=t
2r rhi"

whereD}(s,t) andDZ(s,t) have the following definitions:

1 9% [(hs+A))ke!|
1 _ = |4
Di(s,0)= & s ) (343
& [(hys+A ket
2 _ p
Di(sV=17 T (34b
Applying the Leibnitz differential rule, we find
AK
Di(s.0)=(~ 1)1, (359
k-1
Dﬁ(s,O)z(—1)kg,:;—2[ksrb+(k+1mp], (35h)

k
k! . .
Difs,t)= .:20 AP hh(hos+A,) K eSREZ (1),

i)!
(350)

[l

—pret

Ri(s,t)= 2 (— 1) (350)

N
R(s.t)= 2( DI(+D) =gy g2 (358

This completes our analytic solution.

Ill. RESULTS AND DISCUSSION
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tensile wave, and then at a timg later for the compressive
wave. These reflections send waves of the opposite sign out-
ward. The inward moving waves from the surface and their
reflections superimpose their effects. Furthermore, when the
mechanical impedance of the surrounding medium is not
matched to the absorber, the outward moving waves are par-
tially reflected back into the absorber, and partially transmit-
ted. The net effect of these different pressure transients de-
pends on their order of occurrence, which is determined by
the length of the laser pulse and the point of observation. In
this section, we analyze the pressure profiles for a variety of
cases in which we vary the laser pulse duration compared to
the relaxation time of the medium.

The general formconditions(b) and(c)] of the pressure
transient is of a series of decaying pulses. The time scale of
an individual peakr, is the propagation time of a sound
wave from the surface of the absorber to the center and back
to the surface. Equatiof24) shows that the effect of turning
off the laser pulse is equivalent to adding a negative signal at
t=r9. If 7o>7., the positive and negative pressure tran-
sients are well separated. On the other hand, for ultrashort
laser pulsesy<<7., the overlap of the positive and negative
pressure signals can lead to interesting effects such as tensile
fracture inside the absorber, which we discuss later.

A. Long laser pulse

In this case, the positive and negative pressure pulses are
well separated. The pressure amplitude is proportional to the
intensity of the lasefinversely proportional to the laser pulse
duration for a fixed fluenge and outside the absorber the
pressure decays with arlfactor due to the spherical geom-
etry. During the illumination, the uniform pressure buildup
inside the absorber drives a compressive pressure wave out
into the medium, and a tensile wave in toward the absorber’s
center. At a point inside the absorber, the pressure increases
uniformly with time until this tensile wave reaches the loca-
tion, at timet=(a—r)/c. The tensile disturbance relieves
the pressure. The tensile wave is reflected at the spherical

The various profiles of positive compressive pressureorigin and the reflected wave, with a sign change that makes

buildup and negative tensile pressure are fundamentally dué compressive, reaches the pointat t=(a+r)/c. At t
to only a few physical effects. When the laser is turned on, a=2a/c, the wave reflected from the origin reaches the sur-
uniform compressive pressure increase occurs throughout thace and is partially transmitted out into the medium and
absorber, and at the same time a tensile wave due to thmartially reflected at the surface. This finishes one cycle of
expansion of the absorber starts to travel in from the surfacehe pressure pulse. If the absorber and medium are not per-
When the pulse is turned off, the uniform compressivefectly matched inB and p, the part of the wave that is re-
buildup stops, but a compressive wave traveling in from thelected back from the surface will generate another round of
surface commences. propagation in from the surface to the origin and back to the
In addition, reflections from the origin occur, first for the surface. The cycle will continue with decaying amplitudes.
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€ a=30um. Thenr,=2a/c=4x10"8s, which is about half
of 79. The laser pulse carries an energy of 10, so that the
4 — —02a resultingl ,=8.84x 10° J/(gs). The resulting pressure tran-
. =062 sients as a function of time are plotted for points inside the
focus, equivalent to the absorbing region in our treatment
21 ] [Fig. 1(a): r=0.2a,0.6a] and outside the focug-ig. 1(b): r
. =2al.
0 : . For a point inside the focal sphere, the pressure increases

linearly with time according to Eq289 until the relieving

. tensile wave reaches it d&=(a—r)/c. The tensile wave

27 comes as a result of surface expansion due to the initial in-
: ternal pressure buildup. The pressure then drops paraboli-

cally according to Eq(2839. The tensile wave continues in-

ward, and is reflected at the spherical origin. The reflected

wave undergoes an amplitude inversion and is now compres-

Pressure (105 Pa)

5 : ‘ sive, but is not attenuated by the reflection at the origin. The
! 2 reflected compressive wave moves outward and reaches a
(@) t (units of laser pulse duration ) pointr att=(a+r)/c and causes cancellation of all pressure

disturbances. The pressure stays at zero afigla+r)/c.
From Fig. Xa) and Eq.(283, we see that the further the
8 1 point is inside, the sharper the pressure drop to zero.
— r2a For a point outside the sphermera, the pressure stays at
zero until the compressive pressure transient, originating
from the surface, arrives at=(r—a)/c. The pressure then
increases and decreases parabolically according t¢2Bt)
[see Fig. 1b)]. At t=(a+r)/c, the reflected wave from the
origin arrives and cancels the pressure disturbance. The pres-
sure stays at zero aftér=(a+r)/c until the laser is turned
off.

At t= 74, the onset of the negative laser signal begins as

E-N

Pressure (10* Pa)
o

IN

-8 00 ;
shown in Fig. 1. The compressive aspect of the pressure
0 1 2 transient has been changed into tensile.
(b) t (units of laser pulse duration 7)) 2. pmo=po and ¢, #cC

FIG. 1. Finite focusing effect in water. Gauge pressiimepas- For this case, because of the sound speed mismatch at the
calg vs time (in units of 7o, the laser pulse duratiprior points ~ Poundary, the reflected tensile wave from the origin will suf-
inside the focug(a) r=0.2a, 0.6 a] and outside the focugb) r fer another reflection at the surface boundaryt-aRa/c.
=2a]. The values used for water ar@o,=1glcn?, c,  This surface reflection generates another round of propaga-
=4.18J)(gK), B=2.25GPa, an&=6.9x 10" > K. For the laser, tion and reflection at the origin and a series of pressure
we user,=10""s, a=30um, and a deposition rate ¢f=8.84 pulses result. A strict definition of a pressure pulse for this
X108 Jg9. A single pressure pulse is observed because of th€ase can be made as follows. From E2fl), we define the
perfect acoustic match at surface boundary which precludes surfaddh pulse for a point outside the absorber as the pressure
reflections. transient for times betweenkRa/c) +[(r—a)/c,]<t<2(k

+1)(a/lc)+[(r—a)/cy], k=0,1,2.... The kth pulse,
At the end of the laser pulge= 7, the “onset” of the nega- originating from the surface boundary at=a, starts att
tive laser signal sets in, and a series of pressure pulses simii=2k(a/c) and lasts for an interval oféc. It propagates
lar to those generated during the positive laser signal wilfrom the surface both outward and inward, but with different

develop. However, there is a difference in that the compressound speeds.

sive and tensile attributes will be reversed. We note from Eq(31) that each pulse is exactly parabolic
as a function of time outside the absorber while inside the
1. pmo=po and ¢,=c absorber, the pulse is comprised of a parabolic portion be-

Jween t=2k(a/c)+[(a—r)/c] and t=2k(al/c)+[(a
+r)/c] and two linear portions outside the parabolic portion.

t points outside the absorber, the partial transmittance at
the boundary causes consecutive pulses to decrease in mag-
nitude with a ratio

For this simplest of cases, the pressure transients insi
and outside the absorber are given by Egd) and Eq.(28).
There is only a single positive and a single negative pressu
pulse for this case, since no reflection will occur at the me
chanically perfectly matched surface boundary. A typical
profile of the transients for the finite focusing effect in water
is given in Fig. 1. For water, we havg,=1 glcn?, c,
~4.18 J(gK), B=2.25GPa, andx=6.9x1075 K1, We ho_C¢Cm (36)
choose a laser pulse of duratieg=10 ’s and focal size hy c+cy
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From Eg.(36), we see that consecutive pulses have the 6
same sign it is greater thaw,,,. Since we are examining the
case forp0=pg, that means the absorber has a larger bulk
modulus than the surrounding medium. If the opposite is
true, consecutive pulses have opposite sign from each other.
In the latter case, the pressure transient spreading to the me-
dium has compressive and tensile pulses alternating with
each other. The closer the two sound speeds, the faster the
pulses decay.

It is also important to emphasize that the duration of each
pressure peak in the surrounding medidfig. 2) is 7
=2alc, wherec is the speed of sound in the absorber. This
has important ramifications because it affords a method for 4
experimentally determining the bulk modulBdor particles
that are small enough to present difficulties in measuring
their pressures directly. The duration of a pressure pgak 6
for a pressure signal at a locationtsidethe absorber, which
makes it easier to measure using an acoustic transd8@ger @ t (units of laser puise duration 1)
than it would be close to the heated absorber. A measure-
ment of 7., along with knowledge of a particle’s radias
gives the speed of sound in the particle. When combined
with the density of the particle, the bulk modulus is deter-
mined. In addition, the amplitudes of the pressures both in- 4] — r=la
side and outside the absorber are proportionat,tthe ther-
mal expansion coefficient of the absorber. Therefore, @hce
is determined by measuring,, a measurement of the am-
plitude of the pressure outside the absorber, where it is easier
to make such measurements, allows a determinatian of

To illustrate the profile of the transient for the conditions
under discussion, we study the biological system of a mel-
anosome immersed in a waterlike medium. The melanosome 4
is a spheroidal composite of melanin found in the retinal
pigment epithelialRPE cells of the eyd 2—4]. The system 5 1
is currently under intensive investigations due to its laser
safety and medical applications. The melanosome is usually -8 r ; .
modeled as a highly absorbing sphere with, 0 1 2
=1000 cm?’, a=1um, pe=135g/cni, and c, (b) t (units of laser pulse duration )
=2.51 J(g K) while the medium can be approximated as wa-
ter. We use a laser with pulse duratieg=4x10"°s and
incident fluencel ,=1 J/cnt, which is knoyvn to result in water medium, induced by a laser ah=4x10"°s and I,
damage tO,RPE cellR,3]. Use of Eq.(1) gives an absorp- =1 J/cnf. Typical values used for the melanosome atg
tion rate ofl,=1.72< 10" J/(g 9. To fit with the conditions =1000cm?, a=1um, po=1.35g/cm (approximated for this
we are investigating at this point in the papermf,=po, case as 1.0 g/cinthe value of water andc,=2.51J(gK). The
we approximate the density of melanosome to be that obulk modulus and bulk thermal expansion coefficient used for the
water, and usgg=1 g/cm°’, Reliable numbers for the bulk melanosome are those of graphitB=39.4 GPa anda=2.98
modulusB and bulk thermal expansion coefficiemtof the ~ X107 °K™". Gauge pressur@n pascalsvs time(in units of o, the
melanosome have not yet been reported. In order to continuaser pulse durationfor a point inside the melanosoni¢a) r
with the calculations, we use graphite as a substitute because0-6a] and outside the melanosonjéb) r=2a]. Consecutive
of their chemical similarity{21], and setB=39.4 GPa and Pulses outside the melanosome have the same sign sincg .
@=2.98x10 °K 1 Accurate estimates of these numbers
may come from future experiments employing the presensorbing aqueous solution of potassium chromateQic,)
theory and results discussed in the previous paragraph. embedded in a spherical cavity inside a transparent solid me-

A typical profile of pressure transients for this system isdium. A solution of 35 mg of potassium chromate per cubic
shown in Fig. 2. Pressure transients are plotted as a functiocentimeter yields an absorption coefficient ofy
of time for points inside the melanosoni&ig. 2a): r =1000 cm? [22]. The mechanical properties are little
=0.6a] and outside the melanosoni€ig. 2(b): r=2al]. changed from that of water, so we ugg=1 g/cn?, c,
From Fig. Zb), we see that consecutive pulses have the same 4.18 J(gK), B=2.25 GPa, andx=6.9x10"°> K 1. For
sign sincec>c,, in this case. the solid medium, we use polystyrene, which transmits about

To illustrate the case af<c,,, we propose the following 90% of visible light[23]. Typical values ar®,=7 GPa and
experiment that is easily realizable in the laboratory: an abp,o~1.19—1.20 g/crh[23], which we approximate as that

— r=0.6a

Pressure (106 Pa)

2 -

0 1 2

Pressure (105 Pa)
o

FIG. 2. Pressure generation in a melanosome surrounded by a
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10 1 3. pmo* po and ¢, #C
8 - For this most general case, the pressure transient has a
6] —— r=0.62a complicated mathematical form given by E¢@4), (25), and
(33). The actual profile of pressure transients however, is
- 41 very similar to that in Sec. Il A24,,0=po andc,,#c), just
Iy discussed, if the densities of the absorber and medium do not
= differ by much.
£ 01 Again, we use the system of a melanosome immersed in a
g 2] waterlike medium for demonstration. This time we use a
& 4] realisticpo=1.35 g/cm, rather than approximating it to have
the same value as water. In Fig. 4, we show for such a
6 1 system the pressure transients plotted as a function of time
8 for a point inside the melanosonjBig. 4(a): r=0.6a] and
0 outside the melanosoni€ig. 4(c): r =2a]. Except for the

difference in the density, all other values for the melanosome
and the laser are the same as those used in Fig. 2. Also
@) t (units of laser puise duration 7,) plotted are the pressure transients calculated directly from
Egs. (4), (6), (8), (9), and(10) using the Lax algorithm of

N

0 1

47 numerical solution of the partial differential equati(PDE)

5 [24] that allows the computation of the pressure transients
without going through the linearization and decoupling used

5 ] —_— =22 to obtain the analytical results. We see from Fig. 4 that the
numerical and analytical calculations agree perfectly for this

14 system and conditions. This agreement, as well as agreement

that we found for other values of the parameters, justifies our
analytic approach, and shows that nonlinearities associated
with the spherical geometry and the coupling of volume ex-

Pressure (104 Pa)
o

-1 4 pansion and heating are negligible for these systems. The
analytic method has the advantage of being much quicker for

2 computations. Comparing Figs. 2 and 4, we find that the
pressure transients are very similar to each other, although

31 the pulses in Fig. 4 are no longer strictly parabolic.

-4 T ]

0 1 2 B. Ultrashort laser pulse
() t (units of laser pulse duration t,)

When the laser pulse hag<< 7., the overlap of the pres-
FIG. 3. Pressure generation in a potassium chromate solutiofure transients produced by the positive laser signal and
surrounded by polystyrene, induced by a laserrgE10°%s and  negative laser signal that turns off the laser, leads to a new
lo=1J/cnt. For a solution of 35 mg of potassium chromate per phenomenon. We note that for a long laser pulse, when the
cubic centimeterq =1000 cm*. For the solution we use the me- positive and negative pressure signals are well separated, the
chanical properties of watera=0.1mm, po=1g/cm?, ¢,  sjze of the pressure transients at a given point and the maxi-
=4.18J(gK), B=2.25GPa, and=6.9x10 °K"". For polysty-  pym pressure attained during the transigdB| ., are in-

rene, we useB,,=7 GPa andpyo~1.19—1.20 g/cri=1.0 g/cnd. . .
Gauge pressurén pascalg vs time (in units of 7, the laser pulse yersely proportional to the laser pulse duratign (Note that

duration for a point inside the absorbing solutip@ r=0.6a]and  le=le/ 70, Wherel, is the total energy input per unit maks.

a point in the solid mediurfi(b) r =2a]. Consecutive pulses in the It iS postulated, however, th&bP|,., will stop increasing
medium have opposite signs sincec, . and approach a limit whem, becomes as small as some
mechanical relaxation time of the system suchrasWhen

_ ) 7o IS below this relaxation time, the system has no time to
of water. We choose the size of the sg!uuon 0 h@e rejax and expand during the laser pulse duration, and the
=0.1mm, alaser with pulse duratieg=10""s and fluence iyt energy is used with maximum efficiency in the genera-
lp=1J/cnt (low enough not to evaporate the soluiom  tion of pressure. This concept, called the stress confinement
Fig. 3, we show for such an experiment the expected presondition, has often been used in estimates of the upper limit
sure transients plotted as a function of time for a point insidéor pressure amplitudes for a given energy inf22]. In our

the solution[Fig. 3(@): r=0.6a], and outside the solution case, this would imply that5P| . would become indepen-
[Fig. 3(b): r=2a]. It is seen in Fig. @) that outside the dent of 7y whenry<r7.

solution, the consecutive pulses have opposite signefor  Conditions which might exhibit stress confinement have
<cn. Thatis, the medium experiences compressive and terbeen used in recent experiments as well as numerical work
sile pulses alternating with each other. [18,19. The experiments have shown fractured melanosome
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8 1 transients caused by ultrashort laser pulses is needed. Our
—0.6a analytic solution, based on macroscopic continuum mechan-
6 1 —— Analytic ics, provides an opportunity for this investigation.

* Numerical Our analytic solution reveals that although the maximum
stress can be safely estimated by the stress confinement con-
dition during the laser pulse, a tensile stress develops later at
t=7./2 that relieves the pressure. However, there is a region
r<r. inside the absorber where tHéP| .. continues to
increase asy is reduced, even whermy<<7.. In this region,
the concept of stress confinement does not hold for the ten-
sile stress. The value of, which we call the critical radius,
is proportional tory, and also marks a transition in thie
dependence of thBSP|,.c. This phenomenon should occur

Pressure (1‘06 Pa)

in all systems with a confined absorber where the relaxing
6 - .
tensile pressure pulse from the outer part of the absorber
8 ‘ . converges into the geometric center. We also expect the ef-
0 1 2 fect to be less pronounced in lower dimensional systems, as
® its of | Ise durati supported by the numerical study of Paltauf and Schmidt-
t (units of laser pulse duration z,) Kloiber [18] on a two-dimensional system.
8 - We now demonstrate this phenomenon assumipg
=pg andc,=c. This case has the simplest mathematics and
6 is sufficient to exhibit the effect of interest. First we observe
r=2a from Egs. (25 and (29) that, for long laser pulses, the
4 — Analytic dependence ofSP|.x changes inside the absorber, rather
+ « + Numerical
— than at the surface: For>a/2,
Qt:
)
=
g
a 2
8 r Bal.a 1
& oP t=—|=———~—. 37
A | |ma*( c) arcc,7y  Tof 373
For O<r=a/2,
-8 r .
0 1 2
(b) t (units of laser pulse duration z,)
FIG. 4. Pressure generation in a melanosome surrounded by a a—r Balg(a—r) a—r
water medium, induced by a laser af,=4x10°s and I, | 6P| mad t= C = cC, 7o ~ 0 (37b)
U

=1 J/cnt. Values used for the melanosome arg=1000cm %,
a=1 um, po=1.35 g/lcrd, andc,=2.51 J(g K). The bulk modulus
and bulk thermal expansion coefficient used are those of graphite:
B=39.4 GPa andr=2.98<10 °K™*. Gauge pressurén pascals  here the dependencies epandr are explicitly displayed.
vs time (in units of 7, the laser pulse_ duratu))_rnor a point inside  Note that, for a long laser pulsgIP| . iS inversely propor-
the melanosomp(a) r =0.6a] and a point outside the melanosome jon4 to 7,. Also, the critical radius .= a/2 marks a transi-
Al%o ndluded i the resuis of e numerical oluton which takeetC" ©f Fdependence from 10 a linear dependence-r.
. : Physically, such a transition is necessary as we go toward
into account all the coupled terms in E@4), (6), (8), (9), and(10). e .
The analytic and numerical solutions are in excellent agreement. smallerr to avoid infinite pressures at the origin. .
For ultrashort laser pulseg< 7., the pressure transients

at a particular point are different from those generated by
particles for ultrashort pulsé49]. The fractures are believed longer laser pulses due to the overlap of the positive and
to be caused by a large tensile stress in the absorber. Inrgegative signals. Let us begin with the casea. For a point
microscopic simulation of a two-dimensional absorber, Zhig-r outside the absorber, a pressure transient reachestit at
ilei and Garrison[20] showed tensile fracture around the =(r—a)/c. Before the acoustic pressure pulse is over, the
core of the absorber for short laser pulses. As opposed to tHeansient created by the negative laser pulse that turns off the
idea of stress confinement, these investigations suggest thlaser att=ry also arrives at=ry+[(r —a)/c]. The effects
pressure amplitudes continue to increaser@is shortened, produced by the two signals tend to cancel each other, but
even whenry<7.. To determine if a stress confinement re- not completely. Detailed analysis using E¢&4), (25), and
gime occurs or not, a more careful study of the pressuré28) shows that, for>a,
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0, Oo<ts——
1 r—a\(r+a r— r—a
—|t— , <79+ —
7'0 C C
lC r r—a r+a
SP(r,t)=Ba To—2t+ —|, Tt —<ts=—— (39)
4rc,
1 ¢ r—a ) r+a r+a ) +r+a
o\ O o T 7o
r+a
O: TO+_C <t.

Figure 5 is the profile of the pressure signal outside therough is equal ta.— 7o~ 7. This is especially important in
focal region ¢=2a) for the same finite focusing effect in considering material damage or failure, since the forces that
water as in Fig. 1. However, in Fig. 5 we use a laser with aare created depend on the rate of change of the pressure.
much shorter pulse duration than in Fig. 1. The pulse duraEqually important is the result that the rise time to the com-
tion in Fig. 5 is7,=10"°s, which is much shorter than the pressive peak, and the decay time from the tensile trough, are
system’s mechanical relaxation time af=4x 10 8s. Un-  now on the order of,. Therefore, as the laser pulse duration
der these conditions af,< ., the negative tensile pressure is shortened, greater forces occur, and material failure in the
pulse of Fig. 1b) occurs before the positive compressive medium becomes more likely.
pulse has finished, and Fig. 5 can be viewed as the overlap of We see from Eq(38) that the maximum pressures occur
the positive and negative pulses. The negative tensile wavet t=7o+[(r—a)/c] and t=(r+a)/c (corresponding, re-
travels out from the surface starting & when the laser is spectively, to compressive and tensilEor the ultrashort,
turned off. Due to their width, the time between the compresdimit,
sive maximum of the peak and the tensile minimum of the

2a

C

lC

|5P|max: Ba 4rc,

(39

1
7o "’F

We see from Eq(39) that| 5P| . indeed approaches a limit
when 7y decreases. Far>a, the stress confinement limit is
valid and ther dependence dfsP| .y is 1k.

Forr=a and deep in the sphere, the pressure at a point
first increases linearly with time due to the uniform heating.
The pressure stops building up when the laser is turned off,
and remains at a constant value. Meanwhile, the tensile wave
associated with the positive laser signal due to the expansion
at the surface is moving inward from the surface and arrives
att=(a—r)/c. When this tensile wave reaches the paoijrit
starts to reduce the pressure at a large rate which increases as
1/7y. It then takes 2/c for this wave to travel to the origin
and reflect back as a compressive wave. During this time, the
tensile stress can reach large negative values that can fracture
the absorber. The shorter the laser pulse, the greater the ten-
sile stress attained. Once the compressive reflection arrives,

1 ns laser pulse

I’

— r=2a

<

Pressure (105 Pa)

!
IS

-8

20 40 60 80 100

t (units of laser pulse 1,)

FIG. 5. Finite focusing effect in water for ultrashort laser pulses.

Gauge pressur@n pascalg vs time (in units of 7o, the laser pulse
duration for a point outside the focus=2a. Values used for water
are po=1 glen?, ¢,=4.18 J(gK), B=2.25GPa, anda=6.9
X 1075 K™% The laser pulse, with a focal size @& 30 um, carries

the tensile stress continues to increase but at a much slower
rate.

On the other hand, for larger values ofnside the mel-
anosome, where the rate of increasing tensile stress is not as

the same fixed energy of 18J as in Fig. 1. Under these conditions |arge, the tensile stress may not have time to build up to a
of 7o<r., the negative tensile pressure pulse occurs before thérge value. This is because startingrgtwhen the laser is
positive compressive pulse has finished, and the resulting transiefidrned off, equivalent to a negative laser fluence, a compres-
can be viewed as the overlap of the positive and negative pulseSive wave set off by the negative laser signal starts to travel
The time between the compressive peak and the tensile trough i8 from the surface. The compressive wave from the surface
approximately equal te.=2a/c. will arrive at r at t=7y+[(a—r)/c]. If this compressive
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wave arrives before the compressive reflection from the orisignal, arrives firstr. occurs for a value of such that &
gin returns tor at t=(a+r)/c, the tensile stress does not +r)/c is equal tory+[(a—r)/c], and gives

have enough time to build up to a large value. We define the or

critical radiusr; as the radius where the compressive wave, r0=7°_ (40)
traveling in from the surface that is associated with the nega-

tive laser signal, arrives at the same instant that the compregye will show thatr. also marks the transition for the
sive wave from the positive laser signal returns back aftedependence oféP| .. Furthermore, for <r., | 6P| max IS
reflection at the origint . separates region rr.), where  proportional to 1#, even for ultrashort pulses, but in region
the first transient from the positive laser returns back first]l we show that| 5P|y is only weakly dependent om.
and region Il ¢>r.), where the compressive wave traveling Using Egs.(24), (25), and (28), for r<a we have the fol-
in from the surface that is associated with the negative lasdowing. Region | ¢<r,),

—, O<t=
7'0 TO
a—r
1, m<t=s——
c a—r atr a—r at+r
1- - t+ , t<
le 4r 7y c (o c (>
SP(r,t)=Ba— (419
Cy t a+r a—r
-—, —<ts7yt+t—
70
c ( a— ( +a+r t+l +a—r ) +a+r
4r 7 7o 7o g o T 7o
a+r
\O, Tot+ —<t
Region Il (r>r.),
(—, o<ts<
TO o
a—r
1, <ts——
c a—r a+r a—r —r
1- - , t<ro+ ——
lo 4r 1y c c c
OP(r,t)=Ba— (41b)
Cy c 2r a—r a+r
1_E 2t_7'0+_ y T0+ _<t$T
c ¢ a— ( at+r t a+r ¢ a-+tr
— 79— — || t— 79+ —|——+ —<t=7yt+ —
4r7'0 TO TO C TO ! TO
a+r
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Detailed analysis shows that, in region I, the maximum ten- 2 1 r=0.01 a Region I
sile stress occurs at=ry+[(a—r)/c]. For the ultrashort
70<7. limit [as well as the limit of smalr sincer=<r,
~ 75 from Eq. (40)], we have N Z=E : X
- 1 ~
e ~ .
= _ ~ = c 1
| 6P| max=Ba(a r)CCvTO o (4239 % -2 l - _ 5ns
E LJ —_—— . — 2ns
2
B 4 — 1ns
In region Il, a maximum tensile stress occurs tat[(a
+r)/c]. In the ultrashortry limit, we have
-6
l.Cc [2a 1 ‘ ‘ ‘
| 6P| mas= Ba4rec — 70|~ (42b) 0 2 4 6
v (@) t (108 sec)
oo . r=0.3 a2 Region II
From Eq.(42), we see that, while in region [I6P|ax —— loms

becomes independent af as, goes toward zero, in region 4
| | 6P| max CONtinues to increase as we reduge Ther de-
pendence of SP| 4 iN region | is linear, and becomes inde-
pendent ofr at ultrashort laser pulses agapproaches zero,
as opposed to the rl/dependence in region Ik, being
proportional tory, decreases ag, decreases. This allows
the boundary of region Il to move inward toward smaller
These inner locations of region IF&r. but smallr) con-
tinue to experience highsP| . When they switch from be-
ing in region | to region Il, because the tensile stress in
region Il depends on i/ However, the tensile stress in re-
gion | continues to be a little higher, with the maximum at
the origin beinga/(a—r.) larger than atr.. The picture
presented by this model in which the tensile stress at the
center continues to increase gsdecreases is quite different
from the idea of a stress confinement limit, and should serve
as a new approach for calculating the acoustic damage in real
biological systems. t (107 sec)
To illustrate the effect, we use the example of the finite
focusing effect in water shown in Fig. 1.7As\gain We US€ 8, gecreasing order of pulse duratiom=10%, 5x10°°,
focal size ofa=30um and7.=2a/c=4X10 "s. The laser 5,159 and 109s. The gauge pressufim pascals vs time (in
pulse carries the same fixed energy of 10 as in Fig. 1. secondsfor a point in region | (<r_) atr=0.0la, and for a point
However, we use a series of much shorter pulses in a degn region Il (r>r.) at r=0.3a. Values used for water are
creasing orderr,=10"8, 5x10°° 2x10°° and 10°s. po=1glend, ¢,=4.18J(gK), B=2.25GPa, and a=6.9
The first laser pulse,=10 8s has a.=(7y/7.)a=0.25 X107 3K~ The laser pulse, with a focal size @& 30 um, carries
while the last one has g.=0.025. We choose two points the same fixed energy of 18J as in Fig. 1. In region |, the tensile
inside the absorber:=0.01a, which is in region | for every stress continues to increase with decreasing laser pulse duration,
laser pulse; and=0.3a, which is in region Il for every laser while in region Il the stress amplitude changes very little frogm
pulse. The pressures as a function of time for thesertwo =102t0 10 °s.
are shown in Fig. 6. For comparison, we use the same real
unit of time for all laser pulses.
From Fig. 6, we see that in region | the tensile stress
keeps increasing with decreasing laser pulse duration, whilgc. This is the same laser-melanosome system described in
in region Il the maximum of the stress amplitude changegFig. 4, which has ar,=2a/c=3.7X10 s. We choose a
very little from 7,=108-10°s. Notice that atr, laser withry=10 !!s, which givesr,=0.027. We choose
=10"8s, the amplitudes at=0.01a and 0.2 are of the an observation point at=0.01a which is inside region I.
same order, but at,=10"°s, they differ by an order of Figure 7 shows that under these general conditions, a series
magnitude. of tensile spikes appears with an interval &f between
This phenomenon is quite general. In Fig. 7, we showspikes. The appearance of a series of tensile spikes is in
results for the general conditions whepg,# py and ¢,  contrast with the special case @f,=p, andc,,=c, where

Pressure (10¢ Pa)

o
N
.
[9)]

FIG. 6. Finite focusing effect in water for ultrashort laser pulses.
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0.01 ns laser pulse where short wavelength response is important. A micro-
scopic investigation may reveal more interesting features at
, lr r T

this limit.

IV. CONCLUSION

] We have investigated the pressures expected to result

" r=0.01a when a laser pulse is incident on a spherical absorber using
-6 1 both numerical and analytical techniques. We have looked at
laser pulses of duration both greater and shorter than the
-8 1 mechanical relaxation time of the absorber. The pressure
profiles result from a uniform compressive pressure increase
-10 | throughout the absorber while the laser is on, along with a
tensile wave traveling in from the surface due to the expan-
' . ‘ ‘ ‘ ‘ ‘ sion of the absorber. When the pulse is turned off the uni-
0 5 0 15 2 25 30 3% form compressive buildup stops, but a compressive wave
traveling in from the surface commences.

In addition, reflections from the origin of first the tensile

FIG. 7. Pressure generation in a melanosome surrounded by'%ave, and then the compressive wave occur, sending waves
water medium, induced by an ultrashort laserrgé X 10 s and ~ Of the opposite sign outward. These reflections superimpose
lo=1J/cnf. Values used for the melanosome are, their effects. When the mechanical impedance of the sur-
=1000cm?, a=1 um, p,=1.35g/cm, and c,=2.51J(gK).  rounding medium is not matched to the absorber, the out-
The bulk modulus and bulk thermal expansion coefficient used argvard moving waves are partially reflected back into the ab-
those of graphiteB=39.4 GPa andv=2.98<10 °K™1. Gauge sorber, and partially transmitted.

Pressure (10° Pa)

t(10-1 sec)

pressurdin pascalsvs time(in secondsfor a point inside region | The net effect of these different pressure transients de-
(r=0.01a andr.=0.027). A series of tensile spikes is observed in pends on their order of occurrence which is determined by
this case. the length of the laser pulse, and point of observation. Of

especial interest, we find that deep inside the absorber,
<r., there is a region where the concept of stress confine-
ment does not hold. Even when the laser pulse duration is
only a single tensile spike is observed. much shorter than the mechanical relaxation time of the ab-
Finally, we mention that in the limit of,=0, the tensile sorber,7o<7., asg is shortened the magnitude of the ten-
stress appears to approach infinity, which is unphysicalsile stress continues to increase. The large tensile stresses
Eventually, as the laser pulse duration is shortened, nonlirthat develop at the center of the absorber may be of critical
earities will play a role. The critical radius., which is importance in damaging or fracturing the absorber.
proportional torg in Eq. (40), also has a lower bound, which
we presume to be the microscopic spacing. Continuum me- ACKNOWLEDGMENT
chanics, upon which the present treatment is based, fails
when the important scale is comparable to atomic or molecu- The authors wish to thank the U.S. Air Force Office of
lar spacings. It is then necessary to ask about the fate of thecientific Research for funding this work through Grant No.
large tensile stress when. approaches atomic spacings, F49620-96-1-0438.
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