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Stability and structure of a supercooled liquid mixture in two dimensions
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The structural and thermodynamic properties of a two-dimensional binary mixture of soft discs are reported
over a range of temperatures down to large supercoolings using constantNPT molecular dynamics simula-
tions. It is shown that the four orders of magnitude increase in the structural relaxation time is not accompanied
by any significant increase in translational or orientational order. The phase diagram, calculated in the
temperature/composition plane using thermodynamic integration, exhibits a deep eutectic point that is respon-
sible for stabilizing the amorphous state. Voronoi analysis of the low-temperature ground state reveals a
structure characterized by a network of linear arrays of fivefold and sevenfold sites. The heat capacityCP

exhibits an asymmetric peak with a maximum atT* 50.55. It is argued that the initial rapid drop inCP for
T* ,0.55 is an equilibrium result and, hence, the peak in the heat capacity corresponds to the existence of an
‘‘enthalpy gap’’ with a characteristic temperature ofT* '0.35. This gap results from a minimum volume
change associated with an anharmonic fluctuation.@S1063-651X~99!07705-3#

PACS number~s!: 64.70.Pf, 61.20.Lc, 02.70.Ns, 61.20.Ja
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I. INTRODUCTION

Of all the puzzling features of glass-forming liquids, it
the presence of mechanical stability without order that r
resents the core problem. It is straightforward, after all,
understand why particle configurations of high symmet
such as found in crystals, should correspond to potential
ergy minima~or, at least, extrema! and hence represent rigi
states @1#. Rigid amorphous configurations, on the oth
hand, typically provide no such simple clues as to why th
have been ‘‘selected’’ from the huge space of possible c
figurations for the special status of stability. The presence
these noncrystalline minima is the origin of the roughness
the potential energy surface over the space of configurat
and, in a general sense, the slow dynamics at low temp
ture. Their existence also fuels the speculation concern
‘‘hidden’’ phase transitions, on cooling, into some low e
ergy subset of these stable structures.

In this paper we explore the nature of stability, mecha
cal and thermodynamical, in a two-dimensional~2D! glass-
forming liquid through molecular dynamics~MD! simula-
tions. The system is a binary mixture of discs interacting
a soft 1/r 12 repulsion with a diameter ratio of 1.4. Elsewhe
@2#, we present a study of the relaxation dynamics and
spatial distribution in the same 2D liquid. The particle si
ratio has been chosen so as to maximize disruption of cry
structures while avoiding liquid-liquid separation. A 2
model has been selected for simulation speed and, more
portantly, the relative ease with which collective motions c
be analyzed. As the role of dimensionality on the glass tr
sition is currently an open question, we begin our report w
an analysis of what is required of abone fideglass-forming
liquid and the degree to which the 2D mixture meets th
criteria. This is followed by an identification of the therm
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dynamically stable phases, the properties of the amorph
ground state and the nature of the low temperature fluc
tions out of this state. We are unaware of any previous sim
lation study of a glass-forming liquid that has included p
allel studies of the relaxation dynamics and t
thermodynamics of the model.

The binary mixture in 2D has, over recent years, beco
a popular model system for studying collective behavior
supercooled liquids. Deng, Argon, and Yip@3–6# have ex-
amined the topological features of a supercooled mixture
Lennard-Jones particles in 2D via MD simulations. In ad
tion to characterizing the distribution of local environmen
these workers also studied the kinetics of the structure du
aging and shear flow. Muranaka and Hiwatari@7# have pub-
lished MD results on the same softcore mixture as used
this paper. They observed large regions of highly correla
particle trajectories occurring on the same time scale as thb
relaxation and proposed that such motions were the origi
the fast secondary relaxation. Nonequilibrium MD simu
tions of this same system have been carried out by Ya
moto and Onuki @8#, who studied the dynamics of th
equimolar mixture at equilibrium and under shear. They
ported an increase in the characteristic length scale of
distribution of ‘‘fast’’ particles with decreasing temperatur
The effect of an applied shear flow on these dynamic hete
geneities was found to be similar to that of an increase in
temperature. These workers have also established a qu
tive similarity between the glassy phenomenology in 2D a
3D mixture models. Mel’cuket al. @9# have also presente
MD results of the existence of long-lived clusters, charact
ized by crystal-like environments, near the glass transition
a 2D binary mixture of Lennard-Jones~LJ! particles. Finally,
Sadr-Lahijany et al. @10# have examined the process
dispersion-induced disordering in a 2D system, first exa
ined by Bocquet and co-workers@11#. In this MD study, a
phase diagram is presented in the space of density and
dispersion in the size of the Lennard-Jones discs. A crit
ic
5721 ©1999 The American Physical Society
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5722 PRE 59DONNA N. PERERA AND PETER HARROWELL
dispersion is associated with a continuous phase trans
between crystal and liquid.

The literature on glassy alloys is extensive. The prop
sity of a mixture to sidestep crystallization is typically foun
to be enhanced in the vicinity of the maximal freezing po
depression afforded by a eutectic point. Such features
commonly attributed to interaction potentials that favor t
association of unlike species and hence resist the segreg
necessary for crystallization@12#. In this paper we shall pro
vide evidence of a deep eutectic in a binary alloy in t
absence ofany attractive interactions.

The paper is arranged as follows. Following the desc
tion of computational details in Sec. II, we shall demonstr
the slowing down of structural relaxation on cooling of t
mixture and examine the various types of structural corre
tions for signs of long-range order in Sec. III. Next, we e
amine the relative stability of the amorphous phase to p
crystals of each component through the fate of hetero
neous simulations. In Sec. IV, we determine the equation
state for the mixture and calculate the chemical poten
difference between liquid and ordered crystals. The objec
this section is twofold, to establish at what point the liqu
mixture should be regarded as a metastable state, and t
and understand the origin of the stability of this disorde
state. In Sec. V, we study the amorphous phase: the temp
ture dependence of its extensive properties, its topolog
structure, the properties of its ground state, and the natur
its elementary fluctuations through the heat capacity
thermal expansivity.

II. MODEL AND COMPUTATIONAL DETAILS

The 2D system consists of an equimolar mixture of t
types of particles with diameterss251.4 ands151, respec-
tively, but with the same massm. The three pairwise additive
interactions are given by the purely repulsive softcore pot
tials

uab~r !5eFsab

r G12

, a,b51,2, ~1!

where saa5sa and sab5(sa1sb)/2. The cutoff radii of
the interactions are set at 4.5sab . The units of mass, length
and time arem, s1, andt5s1Am/e, respectively.

A total of N51024 particles were enclosed in a squa
box with periodic boundary conditions. The simulatio
were carried out at constant number of particles, press
(P* 5Ps1

2/e) and temperature (T* 5kBT/e, where kB is
Boltzmann’s constant!, using the constraint MD algorithm o
Evans and Morriss@13,14#. In this method, the instantaneou
temperature and pressure are strict constants of the mo
The system is initially driven to the desired temperature
velocity scaling and to the desired pressure by the use
Newton-Raphson convergence scheme. A third-order~four-
value! Gear predictor-corrector algorithm was used to in
grate the equations of motion@14#. The time step employed
was 0.0025t for T* .1, and 0.005t for T* <1. In argon
units ofe5120kB , m56.6310223 g, ands153.4 Å, these
time steps correspond to approximately 5 and 10 fs, res
tively.
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The pressure was fixed atP* 513.5 and temperatures i
the rangeT* P@0.1,5# were studied. The freezing temper
ture of the single component system of small particles at
pressure isTf ,1* 50.95, and the corresponding temperature
the large particles isTf ,2* 51.7. The starting configuration o
the run atT* 55 was a square lattice of alternating large a
small particles whereas, for each of the lower temperatu
the initial configuration for the equilibration run came fro
the final configuration of the preceding higher temperat
run. For T* >0.4, the equilibration times were longer tha
the times taken for all the dynamic correlation functions
vestigated to decay to zero. BelowT* 50.4, however, the
system is no longer able to reach equilibrium within the
nite time scale of the experiment. For these low tempe
tures, the equilibration run was taken out until steady st
was achieved, i.e., when the average thermodynamic pro
ties remained constant. Table I lists the equilibration a
production times.

III. IS THE 2D BINARY MIXTURE A GLASS FORMER?

Experimentally, finding an amorphous configuratio
which is unable to relax on the observational time scales
nontrivial result. The same cannot be said, however,
simulations of liquids where it is trivial to reduce the obse
vation time to the point where relaxation is not possib
Criteria are needed, therefore, to distinguish a metastable
uid capable of forming a glass from an unstable one wh
has simply not been observed long enough to detect the
dering transition. In this paper, we apply the following tw
criteria.

~i! A glass-forming liquid must exhibit relaxation time
which grow rapidly on cooling without the development
long-range correlations associated with established ord
phases.

~ii ! In a glass-forming liquid, the disordered or amorpho
state must represent a stationary state in the sense tha
stable over time scales at least an order of magnitude lon
than the relaxation time for fluctuations within that state.

Few would argue with the first criterion. We note that th
criterion implies that ‘‘disordered’’ or ‘‘amorphous’’~we
shall treat these as equivalent terms! includesall forms of
order minus the restricted set of ‘‘established’’ order
phases. The second criterion is necessary if we are to be
to speak about reproducible amorphous states. There are
tainly phenomena, such as aging and nonlinear respons
temperature jumps, which call for the study of nonstation
states. Such problems are not precluded by criterion~ii !
which simply allows us to establish whether a nonstation
state is relaxing to an amorphous state~as defined by our
criteria! or towards an ordered one. The distinction is
crucial for these nonstationary problems as for those invo
ing linear responses. A state which satisfies criterion~ii ! will
be referred to as being at equilibrium. Whilemetastable
equilibrium is more accurate, it is unwieldy and, given o
failure to observe any hint of crystallization in the equimo
mixture, unnecessary. As we shall demonstrate, the pro
ties of the supercooled mixtures exhibit a smooth contin
tion from the true equilibrium liquid at high temperature
We shall now consider the 2D binary mixture in the light
criteria ~i! and ~ii !.
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A. Incoherent scattering functions

It is straightforward to establish the rapid growth of t
time scales on cooling. In Fig. 1, we present the set of in
herent scattering functions

Fs,a~k,t !5
1

Na
K (

j 51

Na

exp$ ik•@r j~ t !2r j~0!#%L , a51,2,

~2!

for both particle species. The angular brackets denote an
erage over time origins and an angular average over the
rections of the wave vectork. The magnitude ofk was cho-
sen to bek157.17s1

21 for Fs,1(k,t) and k255.60s1
21 for

TABLE I. The thermodynamic averages and their root me
square~rms! deviations for all temperatures investigated for t
equimolar binary mixture withs2 /s151.4. Also shown are the
effective coupling constantGe defined in Eq.~4!, the compressibil-
ity factor Z5P* /(r* T* ), the equilibration timeteqlb, and the pro-
duction timet run for each of these states.

T* teqlb/t t run /t U* E* H* r*

5 846 375 3.0753 8.0753 31.527 0.5756
3 1443 375 3.0503 6.0503 27.353 0.6337
2 2040 375 3.0250 5.0250 25.175 0.6699
1 2040 2050 2.9830 3.9830 22.881 0.7143
0.9 2040 2050 2.9775 3.9775 22.642 0.719
0.8 2040 2050 2.9716 3.7716 22.401 0.724
0.7 2040 2050 2.9659 3.6659 22.161 0.729
0.6 4510 8100 2.9599 3.5599 21.919 0.735
0.55 6060 8100 2.9567 3.5067 21.797 0.738
0.5 7142 9100 2.9523 3.4523 21.666 0.741
0.46 23235 9100 2.9502 3.4102 21.571 0.743
0.4 52515 25010 2.9459 3.3459 21.421 0.746
0.35 17000 22050 2.9435 3.2935 21.303 0.749
0.3 10000 20500 2.9430 3.2430 21.205 0.751
0.2 10000 20500 2.9422 3.1422 20.996 0.756
0.1 10000 20500 2.9418 3.0418 20.792 0.760

T* Ge Z rms(U* ) rms(E* ) rms(H* ) rms(r* )

5 0.65164 4.6902 0.0223 0.0223 0.156 0.003
3 0.78102 7.1006 0.0141 0.0141 0.098 0.002
2 0.88338 10.075 0.0097 0.0097 0.068 0.001
1 1.0572 18.898 0.0052 0.0052 0.036 0.001
0.9 1.0836 20.850 0.0048 0.0048 0.034 0.001
0.8 1.1131 23.287 0.0042 0.0042 0.029 0.000
0.7 1.1464 26.422 0.0037 0.0037 0.026 0.000
0.6 1.1850 30.599 0.0032 0.0032 0.022 0.000
0.55 1.2068 33.256 0.0029 0.0029 0.021 0.000
0.5 1.2313 36.428 0.0027 0.0027 0.019 0.000
0.46 1.2521 39.481 0.0024 0.0024 0.017 0.000
0.4 1.2877 45.189 0.0021 0.0021 0.014 0.000
0.35 1.3215 51.457 0.0017 0.0017 0.012 0.000
0.3 1.3596 59.871 0.0014 0.0014 0.0098 0.000
0.2 1.4634 89.268 0.00092 0.00092 0.0064 0.000
0.1 1.6522 177.51 0.00045 0.00045 0.0032 0.000
-

v-
di-

Fs,2(k,t) . These correspond to the positions of the first pe
maximums in the respective partial structure factors, wh
are only weakly dependent on temperature. Figure 1 dem
strates that the scattering functions are able to decay to
for T* >0.4. Below this temperature, structural relaxati
cannot fully proceed to equilibrium due to the finite tim
scale of the simulations. We draw attention to the two-s
decay process of the relaxation functions at the lower te
peratures. The step is first observed atT* '0.5. Elsewhere
@2,15,16# we examine the changes in dynamics associa
with this crossover. As the temperature is lowered further

FIG. 1. Incoherent scattering functions~a! Fs,1(k1 ,t) and ~b!
Fs,2(k2 ,t) for the small and large particles, respectively. The wa
vectorsk157.17s1

21 andk255.60s1
21 are the first peak positions

in the respective partial structure factors. From left to right,
relaxation curves correspond to the following temperatures:T*
55, 3, 2, 1, 0.9, 0.8, 0.7, 0.6, 0.55, 0.5, 0.46, 0.4, 0.35, 0.3, 0.2,
0.1. Observe the appearance of a slower relaxation process aT*
50.5.

FIG. 2. A log-linear plot of the structural relaxation timeste,1

andte,2 , as defined in the text, against 1/T* for the small and large
particles respectively. Note the positive deviation from Arrhen
behavior for T* ,0.55. The solid lines are linear regressio
through the data points in the rangeT* P@0.55,5#.

n
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FIG. 3. Representative particle configurations at~a! T* 51, ~b! T* 50.6, ~c! T* 50.4, and~d! T* 50.1 for the equimolar binary mixture
with s2 /s151.4. The small and large particles are represented by the open and filled circles respectively and have been draw
smaller than their actual sizes to avoid significant overlapping that would obscure the pictures.
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see the plateau height increase. A structural relaxation t
te,a is defined as the time required for the incoherent sc
tering funtion Fs,a(k,t) to equal 1/e. Relaxation times for
large and small particles are plotted against 1/T* in Fig. 2.
We find a rapid non-Arrhenius increase inte,1 and te,2 on
cooling, in accord with the first part of criteria~i!. A more
comprehensive analysis of the dynamics of the 2D mixtur
provided elsewhere@2#.

B. Structural correlations

Is the slowing down associated with the appearance
some form of long-range order? In the single component
liquid, for example, we find a significant slowing down o
approaching the freezing transition as a result of the stea
growing domains of hexagonal order@17#. Comparison of
particle configurations in the mixture atT* 50.1, 0.4, 0.6,
and 1.0 in Fig. 3 certainly indicates an increasing tende
of the large particles to collect into hexagonal domains.
what follows, we examine translational, compositional, a
hexatic order in the equimolar mixture.

1. Partial pair distribution functions

For the 2D equimolar binary mixture withs2 /s151.4,
we find no long-range translational order. The partial p
distribution functionsgab(r ) decay exponentially, as show
in Figs. 4–6, even at the lowest temperatures. The split
of the second peak which we observe in all threegab(r )’s
e
t-

is

of
D

ily

y
n
d

ir

g

can be simply accounted for by the presence of the two p
ticle sizes in the mixture. Details of this analysis are p
vided in Ref.@18#. Appearing, as this feature does, at a te
perature (T* '1.0) well above any glasslike behavior, w
conclude that it has nothing to do with the glass transition
similar conclusion with respect to a 3D binary mixture
Lennard-Jones particles has been reached by Bernuet al.
@19# and Kob and Andersen@20#.

The partial distribution functions are also sensitive me
sures of local compositional correlations. Integrating un
the first peak of the distribution functions out to the fir
minimum, provides the partial coordination numbersnab(1)
which are plotted againstT* in Fig. 7~a!. In decreasing the
temperature fromT* 50.5 to T* 50.4, we observe a sma
step increase inn11(1) andn22(1), from approximately 2.6
to 2.9 and approximately 3.6 to 3.8, respectively, which
accompanied by a corresponding drop inn12(1). This change
represents a slight increase in the tendency to microsegr
tion and clear evidence of the absence of global demixi
The step is more pronounced in the second shell coordina
numbersnab(2) as shown in Fig. 7~b!. We stress that thes
distribution functions were found to be stable over the lo
run times indicated in Table I. AtT* 50.4, for example, the
total run time corresponds to'50 times the structural relax
ation time te,1 . We will consider the stability of the low-
temperature disordered states further below. The station
character of the local distributions, however, is one of
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PRE 59 5725STABILITY AND STRUCTURE OF A SUPERCOOLED . . .
strongest pieces of evidence that the amorphous liquids
resent stationary states.

2. Partial structure factors

The mechanical stability of a liquid with respect to th
development of periodic order can be best defined in te
of its susceptibility to a perturbing field with a wavelengthk.
In the case of a binary mixture, the Fourier amplitudedr̂a(k)
of the resulting perturbation in the density of componena

FIG. 4. The partial pair distribution functiong11(r ) as a function
of distance fromT* 55 down toT* 50.1 for the equimolar binary
mixture withs2 /s151.4. The pair distribution functions have bee
constructed with a spatial resolution of 0.01s1. For T* <3, each
curve has been shifted upwards by one unit from the higher t
perature curve directly preceding it.

FIG. 5. The partial pair distribution functiong22(r ) as a function
of distance fromT* 55 down toT* 50.1 for the equimolar binary
mixture with s2 /s151.4. ForT* <3, each curve has been shifte
upwards by one unit from the higher temperature curve dire
preceding it.
p-

s

due to the action of a perturbing field with Fourier amplitu
df̂b(k) acting on componentb is given by

dr̂a~k!5xab~k!df̂b~k!. ~3!

The susceptibilitiesxab(k)52(ra /kBT)Sab(k). The partial
structure factors are calculated as follows@21#:

Sab~k!5xabdab1xaxbr* ĥab~k!, a,b51,2, ~4!

whereĥab(k) is the Fourier transform of the total correlatio
function hab(r )5gab(r )21. The Fourier transformations o
gab(r ) were carried out using Filon’s method@22#. If an
instability is present, it will be identified by the divergence
the appropriate partial structure factors.

In Figs. 8 and 9 we plotS11(k) and S22(k) for all tem-
peratures investigated. The curves have been displaced
tically for clarity. The oscillations at smallk below the first
maxima are artifacts of the Fourier transformation proced
and should be ignored. In both partial structure factors,
position of the first maximum is only very weakly depende
on temperature. ForS22(k), the second peak is also split int
two components at low temperatures, unlike the case
S11(k). The components of the bimodal second peak
S22(k) occur at wave vectors which coincide with the seco
and third peaks atk'9.2s1

21 andk'10.5s1
21, respectively,

in the static structure factor of asinglecomponent crystal of
large particles. We conclude that this feature is due to
presence of crystalline domains of large particles at low te
peratures.

Klein and co-workers@9,23# have proposed~i! that super-
cooled liquids can exhibit a spinodal instability with respe
to the crystalline phase and~ii ! that such an instability is
responsible for a rigid amorphous phase. To examine
behavior of the susceptibilities at low temperatures we p
in Fig. 10, the height of the first peak ofS11(k) andS22(k)

-

y

FIG. 6. The partial pair distribution functiong12(r ) as a function
of distance fromT* 55 down toT* 50.1 for the equimolar binary
mixture with s2 /s151.4. ForT* <3, each curve has been shifte
upwards by one unit from the higher temperature curve dire
preceding it.
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against temperature. The temperature dependence of
peaksSaa~max! can be reasonably described by a power l
of the form Saa~max!}T*

2gaa ~with g1150.08 and g22
50.16) for T* >0.4. This extrapolation places any instab
ity at T* 50.0. The breakdown of these power laws at lo
temperatures, however, must raise doubts about the val
of such an extrapolation. The observed stability of the am
phous phase implies a ‘‘cap’’ on the magnitude of the str
ture factor peaks, leaving higher values ofS11~max!,
S12~max!, and S22~max! simply inaccessible to the supe
cooled liquid. This underlying stability of the amorphou

FIG. 7. ~a! The temperature dependence in the rangeT* <1 of
the first shell partial coordination numbersn11(1), n22(1), and
n12(1), calculated up to the position of the first minimum ing11(r ),
g22(r ), andg12(r ), respectively, for the equimolar binary mixtur
with s2 /s151.4. Also shown is the temperature dependence of
average number of first nearest neighbors irrespective of par
typenall(1), calculated by integrating up to the position of the fir
minimum in the total radial distribution functiong(r )5x1

2g11(r )
12x1x2g12(r )1x2

2g22(r ). Observe that the average number of fi
nearest neighbors is 6 forT* <1. ~b! The temperature dependenc
in the rangeT* <1 of the partial coordination numbersn11(2),
n22(2), andn12(2), calculated by integratingg11(r ), g22(r ), and
g12(r ), respectively, out to thesecondminimum in each case. Note
the distinct increase in the clustering of like species in going fr
T* 50.5 toT* 50.4 and the corresponding drop inn12(2).
ese

ity
r-
-

phase, evident only at low temperatures, would seem to
der any spinodal inferred from fits to higher-temperatu
structure factors as physically irrelevant. Standard linear
sponse theory has the rate of structural relaxation prop
tional to the corresponding susceptibility. The observed
crease inS22(k), for example, at the first peak therefore c
account for only a 1.5-fold increase inte,2 , as opposed to the
observed increase of roughly 4.5 orders of magnitude o
the temperature range 0.4<T* <5.0. We shall return to the
idea of cluster instabilities in Sec. V E. We conclude that~i!

e
le

FIG. 8. Partial structure factorS11(k) for all temperatures inves
tigated for the equimolar binary mixture withs2 /s151.4. For clar-
ity, each curve belowT* 55 has been displaced vertically by 0.
units above the higher temperature curve directly preceding it.

FIG. 9. Partial structure factorS22(k) for all temperatures inves
tigated for the equimolar binary mixture withs2 /s151.4. For clar-
ity, each curve belowT* 55 has been displaced vertically by 0.
units above the higher temperature curve directly preceding it.
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PRE 59 5727STABILITY AND STRUCTURE OF A SUPERCOOLED . . .
the observed slowing down is not the result of the devel
ment of long-range translational order and~ii ! the increase
local structure is insufficient to account for the increas
relaxation time without a physical picture of thekinetic cor-
relations between structurally uncorrelated regions.

3. Orientational order and its spatial correlation

Having established the absence of long-range translati
order in the 2D mixture down to temperatures ofT* 50.1,
we must also test for long-range orientational correlation
the local hexagonal domains. The existence of a hex
phase in the one component soft disc liquid, lying betwe
the liquid and the crystal, has been established in simulat
of large systems (N.16 000) over a very narrow range o
densities@24#. The effect on this transition by quenched d
order is a topic of considerable current interest, particula
due to its connection with the ordering of flux lines in hig
Tc superconductors. Nelson@25# has suggested that such di
order would suppress the freezing temperature to a gre
extent than the liquid-hexatic transition, thereby expand
the range of the orientationally ordered phase. Above a
tain critical amount of disorder, the crystal would not form
In the case where disorder arises from a distribution of p
ticles sizes, a recent 2D simulation@10# identifies a critical
size dispersity~roughly density independent!, above which
ordered phases are unstable.

FIG. 10. The temperature dependence of the heights of the
peak,~a! S11~max! and~b! S22~max!, in the partial structure factors
S11(k) andS22(k), respectively. The solid lines are power law fi
of the forms ~a! S11~max!50.5892T* 20.07995 and ~b! S22~max!
50.7164T* 20.1604. The insets show the peak heights forT* <1.
Observe the steplike increase in the peak heights belowT* 50.5.
The dashed lines are linear regressions through the MD data p
in the temperature intervals 0.1<T* <0.3 and 0.5<T* <1.
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We shall return to the question of phase transitions in
2D mixture~see Sec. V E!. Our prime interest here is simpl
to establish whether our low-temperature mixture exhib
local hexagonal order and the spatial correlations of the
entation of this order. Following Broughton and co-worke
@27#, an orientational order parameterC(r j ) is defined for
the j th particle

C~r j !5
1

nj
(
k51

nj

ei6Q jk ~5!

whereQ jk is the angle~in radians! made by the bond be
tween particlej and particlek ~one of j ’s nj nearest neigh-
bors!, and an arbitrary direction~here chosen to be thex
axis!. For computational efficiency, the number of near
neighbors was determined using a cutoff distance take
the first minimum in the total radial distribution function fo
each temperature. The order parameter equals one if par
j lies at the center of a perfect hexagon made up of its ne
bors. We shall define a set of bulk averaged hexagonal o
parameters as follows:

C5K 1

N (
j 51

N

uC~r j !u L ~6!

and

Ca5K 1

Na
(
j 51

Na

uC~r j !u L with a51,2. ~7!

The angular brackets denote an average over various
figurations separated in time. These order parameters m
sure the average degree of local hexagonal order in the m
ture. The spatial correlation of the orientation of the
hexagonal environments is measured by the associated
relation functions

C~r !5K 1

Nr*
(
j 51

N

(
kÞ j

N

C~r j !C* ~r k!d~r 2ur j2r ku)L
~8!

and

Ca~r !5K 1

Nr* xa
2 (

j 51

Na

(
kÞ j

Na

C~r j !C* ~r k!

3d~r 2ur j2r ku)L , a51,2. ~9!

In Fig. 11 we present the values of the average bulk or
parametersC, C1, andC2 over the range of temperature
studied. For comparison, we have included the analog
order parameter for a single component liquid of soft dis
with diameters1. We note the following features:~1! A
significant amount of local hexagonal order is present e
in high-temperature liquids. ForT* .1.0 single and binary
mixtures have similar amounts of local order, despite
structural incompatability of the two components in the m
ture. This is the result of a degree of microsegregation in
mixture which allows for relatively unimpeded local orde

st

nts



he
n

h
th

ap
p

as
or

w
o

w
e

n
o

r
n

. T

th
te

y.
ns

tud-

on-
ons
m of

m-
by

f
n a

in
the

a-

ge

-

d
da

uare

nde-
ave

5728 PRE 59DONNA N. PERERA AND PETER HARROWELL
ing. ~2! As the one component liquid orders on cooling, t
mixture order parameter increases slowly and steadily i
smooth continuation of the high-temperature behavior.~3! At
0.5,T* ,0.6, we see a small step inC2 corresponding to a
slight increase in structure among the large particles. T
temperature coincides, roughly, with that predicted to be
freezing point in the mixture~see Sec. IV B!. ~4! As T*
→0, the hexagonal order in the amorphous mixture
proaches 65% of that of the zero-temperature single com
nent crystal.

While the average local order parameters only incre
gradually on cooling, it is possible that there might be a m
abrupt increase in the order ofindividual domains, offset in
the bulk averaging by regions of low order. This would sho
up as an abrupt increase in the width of the distribution
the local order parameters on cooling. To test this idea
have plotted the temperature dependence of the root m
square deviationA^@Ca(r j )2^Ca(r j )&#2& of the local hex-
agonal order parameter fora51 and 2 in Fig. 12. We find
only a continuous increase in the width of the distributio
on cooling, with no sign of any sudden increase in the bim
dal character of the structural distribution.

The hexatic correlation functionsC(r ), C1(r ), andC2(r )
provide an explicit measure of the spatial extent of the o
entational correlation between local hexagonal environme
as measured by the analogous hexatic order parameter
orientational correlation functions defined in Eqs.~8! and~9!
are weighted by the translational correlations. To see
orientational correlations free of this bias, we have plot
the ratiosC(r )/g(r ), C1(r )/g11(r ), andC2(r )/g22(r ) over a
range of temperatures in Figs. 13, 14, and 15, respectivel
the mixtures we find that all hexatic correlation functio

FIG. 11. ~a! The temperature dependence of the bulk avera
hexagonal order parameterC as defined in Eq.~6! for the equimo-
lar (x150.5) binary mixture withs2 /s151.4 and for the mono-
component system of small particles (x151). ~b! The temperature
dependence in the rangeT* <1 of the small (C1) and large (C2)
particle contributions to the hexagonal order parameterC of the
equimolar binary mixture shown in~a!. C2 has been shifted up
wards by 0.1 units for clarity. The results in~a! and ~b! have been
averaged over 1000 equally spaced configurations along the pro
tion run for each temperature. The error bars are twice the stan
deviation about the average.
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remain shortranged over the entire temperature range s
ied. While reminding the reader that, forT* ,0.4 these val-
ues do not correspond to equilibrium results, we can c
clude that the structural arrest observed in our simulati
does not arise from the appearance of any observable for
long-range order.

The absence of long-range orientational order at low te
peratures presents a picture different from that described
Mel’cuk et al. @9#. Reference@9# reports the presence o
crystalline clusters whose size increases with cooling i
binary mixture of Lennard-Jones discs. The key difference
the two methods of analyzing extended structure is that
approach of Ref.@9# includes clusters made up of orient
tionally uncorrelated domains of hexagonal order.

d

uc-
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FIG. 12. The temperature dependence of the root mean sq
~rms! deviations of the local hexagonal order parametersC1(r j )
andC2(r j ) for the equimolar binary mixture.

FIG. 13. The orientational correlation functionC(r )/g(r ), as
defined in the text, calculated for 0.1<T* <5.0. For very short
distances less than interparticle separations, the function is u
fined and has been set equal to zero. For clarity, functions h
been offset vertically by 0.4 units above the preceding curve.
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C. The fate of crystal1crystal configurations

To conclude this examination of the 2D binary mixture
glass-forming credentials, we consider here the stability
the amorphous state. ForT* >0.4 we find the disordered
state to show no sign of ordering or demixing over tim
intervals in excess of 10te,a . No sign of either instability has
been observed at any temperature. To try and separate
modynamic from kinetic stability in the amorphous state,
have carried out a series of runs over a range of tempera
which start from slabs of the two pure crystals in conta

FIG. 14. The partial orientational correlation functio
C1(r )/g11(r ) for the small particles, as defined in the text, calc
lated for 0.1<T* <5.0. For clarity, functions have been offset ve
tically.

FIG. 15. The partial orientational correlation functio
C2(r )/g22(r ) for the large particles, as defined in the text, calc
lated for 0.1<T* <5.0. For clarity, functions have been offset ve
tically.
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Spontaneous melting and mixing provides a clear indicat
of thermodynamic stability of the amorphous state. Sn
shots of the time evolution of a representative run atT*
50.7 are shown in Fig. 16. The initial configuration, wi
velocities taken from a disordered liquid at the same te
perature, began with a high pressureP* '15.7 for theT*
50.7 run. The initial several hundred time steps of the r
therefore, involve the mechanical equilibration of the pre
sure toP* 513.5. As can be seen in Fig. 16, the crystalli
configurations are eventually disrupted. The resulting am
phous state appears identical, in terms of the average s
tural parameters and thermodynamical properties, to that
tained by a quench to the same temperature from the h
temperature liquid. We find complete recovery of the am
phous state forT* >0.6. This melting and mixing is remark
able. Well below the freezing points of either crystal, w
have spontaneous melting driven solely by the entropy
mixing. Work is done by this mixing as the density of th
system drops with the disordering by'2% of the initial
density.

For T* <0.5, we observe no disordering of any kind fro
the crystal-crystal simulations. This change in behavior
quite distinct. Despite the long time required for the lar
particle crystal to dissolve completely atT* 50.7, perme-
ation of some of the particles of both species across the
tercrystal boundaries is already observed for times less
10000t. This is also true for a lower temperature ofT*
50.6. However, atT* 50.5, the particles of the two crysta
line phases in contact showed no tendency to move ac
the interphase and to penetrate the solid phase of the o
even on time scales about two orders of magnitude lon
than the time taken for the incoherent and intermediate s
tering functions of the disordered mixture at this temperat
to decay to zero~see Fig. 1!. The simulation run was stoppe
at t556 000t for T* 50.5 due to this absence of any sign
mixing between the two particle species.

Clearly, forT* >0.6 the liquid state is thermodynamicall
stable. The change in behavior atT* 50.5 could be due to a
rapid increase in relaxation times of the crystal with resp
to the relaxation time of the amorphous phase at this te
perature, or to the crystals becoming thermodynamica
stable. To see if we could observe crystal growth atT*
50.5 we stopped a melting run atT* 50.7 half way through
and quenched it down toT* 50.5. The remaining ‘‘chunk’’
of large particle crystal showed no signs of growing or me
ing despite the run continuing for times 3 orders of mag
tude longer than the appropriate structural relaxation ti
(te,2). We conclude that the kinetics of melting and freezi
slow down more quickly than the structural relaxation of t
‘‘equilibrated’’ amorphous phase. This result means that,
low T* 50.6, these heterogeneous simulations can no lon
help us to identify the thermodynamically stable phase.

IV. INVESTIGATING THE PHASE DIAGRAM

A. Equation of state

One advantage of studying systems with inverse po
potentials that has long been recognized is the inherent s
ing of thermodynamic properties@28,29#. All the reduced
excess static properties depend on two independent varia
only, which are chosen to be the number concentrationx1

-

-
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FIG. 16. Time evolution of a crystal-mixing simulation atT* 50.7 andP* 513.5 for the equimolar binary mixture withs2 /s151.4. The
small and large particles are represented by the open and filled circles, respectively. The discs are not drawn to scale.
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5N1 /N ~whereN5N11N2 andx2512x1), and a compos-
ite density-temperature variableG5r* (T* )2d/n, whered is
the dimension of the system,n is the exponent in the poten
tial, and r* 5Ns1

d/Vd is the reduced number density, wit
Vd the volume ind dimensions. The composite variableG is
often referred to as a coupling constant. For the inve
twelfth power potential of Eq.~1! in 2D, G is given by

G5r* ~T* !21/6, ~10!

wherer* 5Ns1
2/A andA is the total area of the simulatio

box. In the treatment of binary mixtures of spherical p
ticles, the equation of state of the mixture can be appro
mated quite well by an effective one component system
particles with diameterse @19,29#. The corresponding effec
tive coupling constant for the 2D binary mixture is

Ge5GFse

s1
G2

. ~11!

We have chosen the effective diameter to be

se
25x1s1

21x2s2
2 , ~12!

instead of the more commonly used diameter

se8
25(

i
(

j
xixjs i j

2

5x1
2s1

212x1x2s12
2 1x2

2s2
2 , ~13!
e

-
i-
f

for reasons outlined below. For the equimolar binary mixtu
with s2 /s151.4, se

251.48, andse8
251.46. Although this

difference is small, the corresponding equations of state
differ significantly in the precision in which they are able
fit the MD results as described below.

From our MD data for the equimolar binary mixture in th
rangeT* 50.4 to 5 where equilibrium can be reached with
the simulations, we fit an eighth degree polynomial to t
compressibility factorZ5P* /(r* T* ), as a function ofGe
using the effective diameterse in Eq. ~12!. The resulting
polynomial is

Zp15111.77306Ge12.36241Ge
212.10798Ge

317.69487Ge
4

216.23890Ge
5127.99087Ge

6216.86430Ge
7

15.46998Ge
8 , ~14!

with the second and third coefficients being constrained to
the exact second and third virial coefficients of a single co
ponent 2D system with this potential, as given by Brought
Gilmer, and Weeks@27#. If the effective diameterse8 of Eq.
~13! is used instead, then the following polynomial, with th
second and third coefficients constrained as before, is
tained:

Zp25111.77306Ge12.36241Ge
224.34023Ge

3126.92186Ge
4

220.88440Ge
523.40501Ge

6117.58996Ge
7

24.94193Ge
8 . ~15!
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In Fig. 17 is plotted our MD results forZ for the equimolar
binary mixture as a function ofGe using se ~solid circles!
andse8 ~open circles!, and the corresponding polynomial fi
Zp1 ~solid line! and Zp2 ~dotted line!. Also shown are our
simulation results for the single component system of sm
particles (x151,s151) at the same pressureP* 513.5. It
can be seen that the MD results for the binary mixture us
se extend continuously below the freezing point of the sin
component system which occurs atGe5G50.986 as deter-
mined by Broughton and co-workers@27#. The polynomial
Zp1 is able to fit the entire liquid branch of the single com
ponent system with a deviation of less than 2%. In fa
below T* 52, as the freezing transition is approached,
accuracy ofZp1 in fitting the MD data of the monocompo
nent system increases, becoming better than 99.6% aT*
51. With regards to the equimolar binary mixture, this po
nomial Zp1 is able to fit the MD results down toT* 50.2
with a deviation of less than 0.3%.

The second polynomialZp2 fits the results of the single
component liquid just as well asZp1 at high temperatures
However, unlikeZp1, for T* ,2, Zp2 tends to overestimate
the compressibility factor with deviations greater than 2
and appears to depart further away from the single com
nent MD results as the freezing point is approached as sh
in Fig. 17. For example, atT* 51, Zp2 overestimates the
compressibility factor of the monocomponent system
more than 4.5%. For this reason, we have chosen to use

FIG. 17. The main figure shows our MD results for the co
pressibility factorZ5P* /(r* T* ) of the equimolar binary mixture
with s2 /s151.4, as a function ofGe , whereGe is calculated using
the effective diameterse of Eq. ~12! ~solid circles! andse8 of Eq.
~13! ~open circles!. These two sets of data are fitted using the po
nomials Zp1 of Eq. ~14! ~solid line! and Zp2 of Eq. ~15! ~dotted
line!, respectively. Also shown are our simulation results for
monocomponent system of small particles (x151,s151) ~aster-
isks!. The equation of state for the crystalline branch of the p
liquid, as shown by the dashed line, is from Broughtonet al. @27#
and is given by Eq.~16!. Note that for the pure systemGe5G. The
inset shows thatZ for the equimolar binary mixture can also b

expressed as a simple power lawZ5AT*
B

with A519.4178 and
B520.9311, as determined from the solid line which is a line
regression through all the data points.
ll
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e
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effective diameterse of Eq. ~12! and to represent the equa
tion of state of the entire liquid and amorphous branch of
effective one component system by the polynomialZp1. The
success of Eq.~12! over Eq.~13! may reflect the local de-
mixing which we find, particularly at low temperatures. Th
effective diameter of Eq.~13! corresponds to a random mix
ing approximation.

We find that the polynomialZp1 is able to fit the full
range of our simulated states for the equimolar mixture fr
T* 55 (Ge50.6516) toT* 50.1 (Ge51.6521). The continu-
ous variation of this equation of state indicates that there
no phase transition, since such a transition would result
departure from this continuous curve.

We have tested the effective one component approxi
tion for other 2D binary mixtures withs251.2, 1.6, and 2,
either as a function of composition at fixed temperature, o
a function of temperature at fixed composition, all at t
same constant pressure ofP* 513.5 @18#. For the binary
mixture of s251.4, we have also simulated states at a fix
temperature ofT* 50.8 for compositions ranging fromx1
50 to 0.9 in steps of 0.1. It is found that up tos2 /s1
51.6, binary mixtures that are not too concentrated with
larger particles, i.e., not too close tox251, seem to obey
very well the effective one component equation of st
given byZp1. However, forx2→1, the compressibility fac-
tors for these diameter ratios tend to deviate away from
liquid curve and approach the crystalline branch. The eff
tive one component approximation breaks down fors2 /s1
52, even for a concentration of large particles as low
x250.1 atT* 51.

The equation of state for the single component crystal
shown by the dashed line in Fig. 17, is a polynomial fit fro
Broughton and co-workers@27# expressed as

Zs5717.60602G621.24044G2610.64663G212. ~16!

We find that this empirical function is able to fit our ow
simulation results for the monocomponent crystal~as shown
by the asterisks in Fig. 17! with an accuracy of greater tha
99%.

The freezing temperature of the single component sys
of small particles (s151) at the constant pressure ofP*
513.5 has already been determined by Broughtonet al.
@26,27# to be Tf ,1* 50.95 which is why we have chosen t
perform our simulations at this pressure. The state atTf ,1*
corresponds toG150.986 and a compressibility factor o
Z1514.493. This agrees with our own simulation resu
which show a hysteresis region for the thermodynamic pr
erties betweenT* '0.94 and 0.96. From the scaling prope
ties of the softcore potential@Eqs.~10! and~11!#, the freezing
temperature of the monocomponent system of large parti
(s251.4) at the same pressure ofP* 513.5, where the unit
of length is still constrained ats151, can be calculated by
equating the compressibility factor of this systemZ2, to Z1,
and by settingG25G(s2 /s1)25G1 at the freezing point.
The solution yields a freezing temperature ofTf ,2* 51.70 for
the large particles, also in agreement with our simulat
results.
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B. The phase diagram

Following the procedure by Broughtonet al. @27#, the
chemical potential of the binary mixture in the effective o
component frameworkDmeff relative to that of the ideal ga
and excluding the ideal mixing term is given by

bDmL5E
0

GeH 1

Ge8

]@~Zp121!Ge8#

]Ge8
J dGe8 , ~17!

whereb51/(kBT). Substituting Eq.~14! into the above and
performing the integration gives

bDmeff53.54612Ge13.54361Ge
212.81064Ge

319.61859Ge
4

219.48668Ge
5132.65601Ge

6219.27348Ge
7

16.15373Ge
8 . ~18!

In order to calculate the chemical potential relative to tha
the ideal gas for the individual components in the liqu
mixture, DmLa where a51,2, we assume that, since th
equation of stateZp1 for the effective one component syste
fits the temperature dependence of the compressibility fa
for the binary mixture withs2 /s151.4 very well, the Gibbs
free energyGL of this mixture can be written as

GL~N1 ,N2 ,T* ,P* !5Geff~N,T* ,Peff* !

1b21~x1 ln x11x2 ln x2!, ~19!

whereGeff is the free energy of the effective one compone
liquid andPeff* 5P* (se /s1)2 is the reduced pressure for th
effective liquid in units ofse

2/e. The chemical potential o
the small particles in the liquid mixture is then given by

bDmL15b
]GL

]N1

5b
]Geff

]N UT* ,P
eff*

]N

]N1
1b

]Geff

]Peff* U
N,T*

]Peff*

]N1
1 ln x1

5bDmeff1bV* P* x2S s1
22s2

2

se
2 D 1 ln x1

5bDmeff1Zx2S s1
22s2

2

se
2 D 1 ln x1 , ~20!

where ]Geff /]Peff* uN,T* 5Veff* 5V* (s1 /se)
2 and V* is the

area of the simulation box in units ofs1
2. Similarly, the

chemical potential for the large particles in the mixture
given by

bDmL25bDmeff1Zx1S s2
22s1

2

se
2 D 1 ln x2 . ~21!

To construct the phase diagram, we must first decide u
the composition and structure of the crystal phases. We h
chosen to use single component hexagonal crystals for
ordered phases. Our reasons are as follows. Substitutio
disordered crystals with the large particles as the mino
f

or

t

n
ve
th
lly
y

component are extremely unlikely for any significant co
centration of the large particles due to the choice of part
sizes. This, of course, was the very purpose of choosing
ratio 1:1.4. As a consequence, we choose a single compo
hexagonal crystal as the small particle-rich ordered phas

The ordered phase in the large particle-rich part of
phase diagram offers more possibilities. Our simulatio
suggest that number ratios up to 0.1 of small particles mi
be accommodated within a substitutionally disordered h
agonal crystal of large particles. Xu and Baus@31#, using a
density functional~DF! theory, have found that a binary a
loy of hard discs with a diameter ratio of 1.176 can free
into a substitutionally disordered crystal with no sign of
eutectic phase. We have found a similar result in simulati
of the soft disc mixture with a diameter ratio of 1.2.~This
result, we note, is in contradiction to the recent calculatio
of Wheatley@32#.! Deng et al. @3# also observe a freezing
transition in an equimolar mixture with a diameter ratio
1.244. They find that a supercooled liquid can be obtain
with a sufficiently fast temperature quench.

With no other calculations of crystal free energies in 2
mixtures with a glass-forming diameter ratio, we turn to da
on spheres for some indication of the ordered large parti
rich phase in a glass-forming mixture. The phase diagram
binary hard sphere mixtures have been determined
Kranendonk and Frenkel@33# via Monte Carlo simulations
for diameter ratios in the range 1<s2 /s1<1.176. As soft
sphere mixtures with a diameter ratio of 1.2do appear to
form glasses@34,35#, the phase diagram for the diameter r
tio of 1.176 for the spheres is relevant. The ordered phase
the 1.176 system@33# are substitutionally disordered crysta
which extend over compositional ranges of 10 and,5 % in
the minority species for the large and small-rich regio
respectively. Using a DF theory, Denton and Ashcroft@36#
have investigated the relative stabilities of various crystall
structures in coexistence with the equimolar composition
binary hard sphere mixtures for large size ratios. They c
clude that fors2 /s1.1.31 the miscibility gap between th
small and large spheres becomes so great that a mechan
stable substituted solid is no longer possible and that
most stable structure is the single component face cent
cubic crystal. Taking these results, along with our own, in
consideration, we conclude that a substitutionally disorde
crystal is probably stable for small concentrations of sm
particles. As the solubility of small particles in the larg
particle crystal is expected to be small, however, we beli
that the pure hexagonal crystal of large particles will prov
a reasonable approximation of the coexistence tempera
for crystal and liquid mixture. The coexistence lines calc
lated using the pure crystals can be considered as lo
bounds on the correct value. If more stable two compon
crystals exist, these will freeze at higher temperatures.

For the single component crystal, the chemical poten
relative to that of the ideal gas and corresponding to
equation of stateZs in Eq. ~16!, is derived by Broughton
et al. @27# to be

bDmS159.910516 lnG18.87369G621.03370G26

10.592744G212, ~22!

whereG is defined in Eq.~10!. The corresponding expressio
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for the chemical potential of the large particle crystalli
phasebDmS2 is obtained by replacingG in the above equa
tion with G25G(s2 /s1)2.

Thermodynamic equilibrium requires thatbDmL1
5bDmS1 along the coexistence line on the largex1 side, and
bDmL25bDmS2 on the largex2 side. The intersection o
these two coexistence lines denotes the eutectic point for
phase diagram as shown in Fig. 18. The eutectic point oc
at x1'0.75 andT* '0.54. The presence of the eutectic
consistent with the hard disc mixture DF calculations of
and Baus @31# who observe a trend from spindle- t
azeotrope- to eutectic-type phase diagrams as the diam
ratio increases. It is interesting that the hard sphere mixtu
@33,36# show a similar trend in phases occurring at appro
mately the same diameter ratios. Recent simulations
Speedy@37# for the binary hard disc mixture with a diamet
ratio of 1.4 suggest that this system also exhibits a eute

The considerable depth of the eutectic, central to the
bility of the glassy state, is something of a surprise in light
the almost continuous character of the one component fr
ing transition. The magnitudede of the freezing point de-
pression at the eutectic point can be defined in terms of
lower of the freezing points of the pure components~i.e.,
Tf ,1* , the freezing point of the small particles!:

de5
Tf ,1* 2Te*

Tf ,1*
, ~23!

FIG. 18. The approximate phase diagram for the binary soft d
mixture with s2 /s151.4 for a fixed pressure ofP* 513.5. The
symbolsL , S1, andS2 represent the liquid mixture, and the sma
and large particle crystals, respectively. The freezing temperat
of the single component systemsTf ,1* and Tf ,2* , are shown by the
asterisks. The solid lines are the coexistence curves calculated
Eqs. ~20! to ~22! by assuming that only one or the other of th
monocomponent solids is in equilibrium with the liquid mixture
the coexistence temperatures. The eutectic point is given by
intersection of the two coexistence curves. It occurs at a comp
tion of x150.75 and a temperature ofT* 50.54. The error bars are
the temperature intervals where a discontinuous change is obse
in the temperature dependence of thermodynamic properties in
MD simulations at low solute concentrations. Also shown are
temperatures at which the simulated states of the quenched equ
lar binary mixture forT* <1 arethermodynamically~solid circles!
andkinetically ~open circles! stable as determined from the crysta
mixing simulations described in Sec. III C.
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where Te* 50.54 is the eutectic temperature. This dep
which is equal to 0.43, exceeds those of real binary al
systems such as Ge-Sb (de50.061), Ge-Zn (de50.061),
Ni-P (de50.093), and Cd-Bi (de50.32), but is shallower
than the very deep Au-Si eutectic point (de50.66) @38#. The
presence of a deep eutectic in the 2D softcore mixture w
purely repulsiveinteractions is particularly striking in ligh
of the general consensus@39–42# that substantial freezing
point depressions require largeattractive interactions be-
tweenunlikespecies, as is the case for the real binary allo
mentioned above. The explanation for the deep eutectic
the mixtures of purely repulsive particles~hard spheres show
similarly large freezing point depressions@33#! may lie in the
relatively small values ofDH f , the enthalpy of fusion, in
these systems. For small concentrationsX of solute, immis-
cible in the crystal phase of the major species, the freez
point depression is given by@43#

dT'~Tf
2/DH f !~12X! ~24!

and a small value ofDH f will result in the entropy of mixing
being dominant with a resulting large freezing point depr
sion.

The mutual disruption of crystalline order which give
rise to the eutectic point also has consequences for the
namics in the liquid phase in 2D, well above the eutec
temperature. We have observed@18,44# in simulations at
T* 51.0 that by adding large solute particles (s251.4) to
the pure solvent of small particles, the self-diffusion co
stants of both the small and large particles increase, reac
a maximum atx1'0.7–0.8 and decreasing from then o
wards asx1 decreases. Enhanced diffusion at small sol
concentrations has been directly linked@44# with the disrup-
tion of the local solvent structure about the larger solute p
ticles. The decrease in the diffusion constants of both spe
at higher solute concentration is the result of solute clus
ing @18#. The coincidence of the composition at which th
diffusion constants reach their maximum with that of t
eutectic point are, we suggest, manifestations of the s
local disruption of structure. We are unaware of any previo
reports on a connection between solute enhanced dyna
and freezing point suppression.

At a composition ofx50.5, we predict that the large pa
ticles should freeze atT* 50.7 ~see Fig. 18!, while we find in
the simulations starting from the two pure crystals that b
crystals melt atT* 50.6. This difference could be accounte
for as a consequence of the constraint of fixed number
particles. Coexistence atT* 50.7 requires the large particl
crystal to be in contact with an equimolar liquid mixture. Th
production of this mixture exhausts our supply of large p
ticles. As we lower the temperature we also decrease
concentration of large particles needed in the liquid pha
The effect of the fixed values ofN1 andN2 is to lower the
actual transition temperature so that forT* >0.6 the liquid
mixture is the equilibrium phase.

In the phase diagram of Fig. 18 we also show, by way
error bars, the temperature ranges at low solute concen
tions corresponding tox150.05, 0.1, and 0.95 where a dis
continuous change is observed in the temperature de
dence of average thermodynamic properties measured in
MD simulations. These results suggest a first-order ph
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transition from the dilute liquid mixture to a substitutional
disordered solid. A change in the temperature dependenc
the thermodynamic properties is observed forx1.0.1. As
the number of small solute particles increase, we can
longer detect the abrupt changes in average density and
tential energy which mark the freezing transition. As t
concentration of small particles approaches 50% it se
reasonable to regard the polycrystalline character of
ground state obtained atx250.9 as continuously transform
ing into the amorphous ground state in which the exten
any ordered domain is suppressed to a size similar to
liquid equilibrium correlation length.

V. PROPERTIES OF THE AMORPHOUS PHASE

A. Temperature dependence of the extensive properties

The thermodynamic averages for the potential energy
particleU* 5U/(Ne), energy per particleE* 5E/(Ne), en-
thalpy per particleH* 5H/(Ne), and number densityr* , are
summarized in Table I for the range of temperatures inv
tigated. Also tabulated are the compressibility factorZ, the
effective coupling constantGe defined in Eq.~11!, as well as
the root mean square~rms! deviations of the instantaneou
thermodynamic properties from their averages, calculate
A^p2&2^p&2 wherep is the property of interest and the a
gular brackets denote an average over time. The rms de
tions are, of course, system-size dependent, increasing
decreasing number of particles. The results in Table I are
N51024. We have also investigated a smaller system oN
5512 and find that the average thermodynamic proper
are equal to those of the larger system within statistical er

The potential energy per particleU* is plotted as open
circles in Fig. 19 for 0.1<T* <1. For 1,T* <5, U* in-
creases with decreasing slope asT* increases. However
within the temperature range 0.4<T* <1, U* varies ap-
proximately linearly with temperature. ForT* <0.3, the av-

FIG. 19. The temperature dependence of the potential en
per particleU* of the equimolar binary mixture (s2 /s151.4) for
three different cooling rates as described in Sec. V B. The MD d
for the slow quench is also listed in Table I. The dashed line
linear regression through the results for the slow quench in
temperature range 0.4<T* <1 where the system is able to reac
equilibrium.
of

o
o-

s
e

f
e

er

s-

as

ia-
ith
or

s
r.

erage potential energy departs from the high temperature
trapolation as the system is no longer able to re
completely within the simulation run. This departure to
smaller slope at the very lowest temperatures is also mirro
in E* , H* , andr* , and gives rise to rounded steps in th
first order temperature derivatives of these properties as
scribed later below. If the computer glass transition tempe
ture Tg* is defined to be the temperature at which the hig
and low-temperature extrapolated lines intersect, thenTg*
.0.35. This change in slope of the thermodynamic avera
in the vicinity of Tg* is not, however, reflected in the com
pressibility factorZ which varies smoothly and continuous
with Ge through this region as shown in Fig. 17. We ha
found that, within the range 0.1,T* ,5.0, the compressibil-
ity factor can be approximated very well by a simple pow
law ~see Fig. 17!:

Z5AT*
B
, ~25!

whereA519.4178 andB520.9311. This apparent continu
ity between liquid and glass has been questioned recentl
Speedy@45# in a careful study of the hard sphere glass. No
that the power law above is slightly less accurate than
polynomial Zp1 of Eq. ~14! in fitting the MD data for the
binary mixture. The power law deviates from the MD resu
by less than 3% in the range 0.1,T* ,5, whereas atT*
50.1 andT* 55, the deviation is 6.7 and 7.5 %, respe
tively.

B. Dependence on thermal history

To establish the dependence of the thermodynamic p
erties on the quench rate, we have investigated the temp
ture dependence of the thermodynamic properties at
higher cooling rates. The first, which we term ourinstanta-
neousquench, was performed by always starting at a sa
equilibrium configuration atT* 55 and changing the tem
perature of the system at the very first time step to the fi
desired temperature in the rangeT* P@0.1,1#. The system
was then allowed to equilibrate for 50t and thermodynamic
averages calculated over the next 150t. For the second cool-
ing program, which we call thefastquench, the starting con
figuration was the final configuration atT* 51 from the in-
stantaneous quench. The system was then cooled in ste
DT* 50.1 down toT* 50.1, with an equilibration time of
50t and a production run of 150t at each step. In this cool
ing sequence, the initial configuration for each temperat
step came from the final configuration of the directly prece
ing higher-temperature run.

The temperature dependence ofU* for both the fast and
instantaneous quench are shown as asterisks and trian
respectively, in Fig. 19, in comparison with our previo
slow quench results that are listed in Table I and shown
circles in Fig. 19. We find that the higher the cooling ra
the earlier the departure ofU* from the equilibrium liquid
line and the higher the glass transition temperatureTg* , de-
fined as the intersection temperature of the extrapolated
uid and glass lines. The glass transition region is also m
broader for the instantaneous quench compared with
slow quench. Figure 19 also shows that the faster the coo
rate, the higher the potential energy of the quenched lo
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temperature nonequilibrium states.
A number of workers@46,47# have suggested that th

landscape of the potential energy surface over the config
tion space has a ‘‘top’’ to it which is the average energy
the transition states between local minima. For temperat
above the characteristic temperature of this top, relaxa
would occur without activation, while below this temper
ture dynamics becomes dominated by the local ene
minima. One way of exploring this general attribute of t
energy landscape is to study the outcomes of vari
quenches. Rapid quenches toT* 50.0 from initial states pre-
pared atT* <0.3 end up in low-energy states.~Interestingly,
we find in these runs that the higher the initi
temperature—in the rangeT* <0.3—the lower the resulting
energy on quenching.! For T* >0.4, however, we find the
system typically quenches into a relatively high energy m
mum. This would suggest that the characteristic tempera
of the landscape top~or, at least, an energy above a signi
cant number of transition states! in the 2D mixture isT*
'0.35.

C. Voronoi analysis of particle topologies

A discussion of the structure of a condensed phase
volves separating the long-lived structural features fr
those transients associated with local oscillations. In the c
of glassy states, we lack the simple broken symmet
which make the identification of the long-lived structure
crystals or hexatics so simple. The topology of particle po
tions provides an alternative reduced description of a c
figuration while still allowing amorphous arrangements to
characterized and differentiated from one another. Glaser
Clark @48# have presented a thoughtful discussion of the v
ous ways such reduced descriptions can be obtained for
liquid. We have used the Voronoi polygon construction@49#
similar to that used by Denget al. @3–6#. A Voronoi polygon
associated with any particle contains all points closest to
particle than to any other particle. The edges of such a p
gon are the perpendicular bisectors of the vectors joining
central particle to its nearest neighbors and the numbe
these edges is equal to the number of geometric neigh
for the associated particle. While the Voronoi construct
provides a well defined algorithm for determining the top
ogy of a given configuration, it does not necessarily acco
plish as clean a separation of long-lived and transient st
tural fluctuations as we would wish. Specifically, a particle
coordination number as determined by its Voronoi polyg
can sometimes undergo rapid changes due to thermal o
lations. AboveT* 50, then, we shall refer only to the gen
eral trends in coordination numbers.

We find that the average coordination number is 6 at
temperatures without fluctuation, suggesting that this is
exact value rather than a statistical one.@This is not the case
if we use a cutoff distance taken from the first minimum
the totalg(r ) to determine the number of nearest neighbo
where small fluctuations about six average first nea
neighbors are observed as shown in Figure 7~a!.# Several
explanations of why the average coordination number in
should be exactly 6 are provided in Refs.@49–51#. The as-
sumptions on which these arguments are based are pres
in the Appendix. Local coordination numbers other than
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will be referred to as defects, although readers should n
that this label is something of an anachronism, chosen s
to connect with ideas from single component systems o
As we shall see, these ‘‘defects’’ are an integral part of
stable amorphous ground states and should be regarde
equal footing with the hexagonal environments. Nearly all
the defects have coordination numbers of either 5 or 7, a
very infrequently, 4 or 8. At very low temperatures, all of th
seven-coordinated particles are large and all of the fi
coordinated ones are small.

The temperature dependence of the fraction of defe
f D5ND /N, whereND is the total number of defects in th
system, is plotted in Fig. 20 and compared with that for
single component system of small particles. For the p
liquid, f D decreases substantially as the temperature d
below Tf ,1* and has values close to zero in the crystalli
solid at the very lowest temperatures. On the other hand,
the binary mixture, although there is a small decrease fr
f D50.52 atT* 55 to f D50.42 atT* 51, belowT* 51 f D
remains approximately constant atf D'0.43. In contrast,
Denget al. @3,4# observe a significant reduction in the defe
concentration on cooling in a mixture of Lennard-Jones di
with a diameter ratio of 1.244. Crystallization could be r
sponsible for the decrease in this latter case since the d
eter ratio is close to 1.2 for which it is not possible to prepa
long-lived amorphous states in 2D.

While the average value of the number of defects sh
little variation with temperature forT* <1, the root mean
square fluctuationA^ f D

2 &2^ f D&2, as shown in the inset in
Fig. 20, exhibits a distinctive steplike increase as the te
perature rises aboveT* 50.5. This rather abrupt increase
fluctuations of the defect number coincides with similar fe
tures observed in the fluctuations of the enthalpy and v

FIG. 20. The temperature dependence of the number fractio
defects f D for the equimolar (x150.5) binary mixture with
s2 /s151.4 and for the monocomponent system of small partic
(x151). The error bars are twice the standard deviation about
average data points. The results are averages over 1000 confi
tions during the production runs. The temperature dependenc
the standard deviation~rms! of the defect fraction for the equimola
binary mixture is shown in the insert. Note the abrupt decreas
the amplitude of configurational fluctuations forT* ,0.5.
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ume. This connection will be explored in Sec. V E later b
low.

As already noted, the defects at low temperatures con
exclusively of equal numbers of sevenfold sites centered
large particles and fivefold sites centered on small partic
We find that these defects are strongly correlated spat
with every sevenfold defect adjacent to at least one fivef
defect for T* <0.3. Most of the sevenfold sites have tw
adjacent fivefold sites, a correlation which results in t
dense network of defect chains throughout the sample
shown in Fig. 21. The relationship between these corr
tions in the mixture and the melting models in 2D involvin
dislocation@52,53# or grain boundary@54# unbinding is taken
up in Sec. V E.

D. Fluctuations and the associated material properties

The essential difference between the amorphous and
crystalline ground states lies in the very different kinds
low-temperature fluctuations each ground state supports
this section we look at the fluctuations in enthalpy, volum
and stress in the amorphous mixture.

1. The heat capacity and related quantities

In the isothermal-isobaric ensemble, the constant pres
specific heat capacityCP5(]H/]T)P , the isothermal com-
pressibility kT52V21(]V/]P)T , and the thermal expan
sion coefficientaP5V21(]V/]T)P , can be calculated in re
duced units from the following equations@55#:

CP* 5
CP

NkB
5

N^DH*
2
&

T*
2 11, ~26!

kT* 5
kTe

s1
2

5
^DV*

2
&

V* T*
, ~27!

FIG. 21. The final configuration of the equimolar binary mixtu
(s2 /s151.4) at T* 50.1, showing only the positions of the pa
ticles which are not six-coordinated as determined by the Voro
analysis described in Sec. V C. At this temperature, all of th
defects consist of only five-coordinated small particles (3) and
seven-coordinated large particles~1!.
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aP* 5
aPe

kB
5

N^DV* DH* &

V* T*
2 , ~28!

where V* 5Vs1
22 is the area~volume in 2D! in reduced

units, and DH* 5H* (t)2^H* & and DV* 5V* (t)2^V* &
are the fluctuations in the instantaneous enthalpy per par
and area respectively, witĥH* & and ^V* & being the aver-
aged quantities. The angular brackets in the preceding e
tions denote an average over time. In Eq.~26!, the constant 1
has to be added in order to correct for the lack of fluctuatio
in the kinetic energy due to the constant temperature c
straint. In our MD simulations, the instantaneous thermo
namic properties were written out at regular short time int
vals, enabling us to calculate the first order thermodyna
derivatives over a number of consecutive long time interva
The results from the different time spans were then avera
and error estimates obtained.

The results forCP* are shown in Fig. 22 for the equimola
binary mixture~circles!, as well as the monocomponent sy
tems of small~asterisks! and large~triangles! particles. For
the single component systems,CP* diverges at the freezing
temperature, as shown by the ‘‘spikes’’ in Fig. 22. At th
lowest temperatures we have studied, the reduced hea
pacities per particle of the amorphous mixture equal thos
the single component crystals, i.e., 2.0, the value expe
for N classical harmonic oscillators in 2D. At high temper
tures, the heat capacities of the mixture and single com
nent mixtures again converge. Eventually, they must
reach the same ideal gas heat capacity per particle~2.0, in
these units!. It is in the temperatures between these lim
that the supercooled mixture reveals the signature of its
ticular fluctuations.

For the binary mixture, theCP* curve, as shown in more
detail in the inset of Fig. 22, consists of a highly asymmet

oi
e

FIG. 22. The temperature dependence of the constant pres
specific heat capacityCP* for the equimolar binary mixture with
s2 /s151.4 (s), and for the single component systems of sm
(*) and large (n) particles. For the pure liquids,CP* diverges at the
freezing pointsTf ,1* 50.95 andTf ,2* 51.7, respectively, as shown b
the ‘‘spikes’’ in the figure where the data points just above a
below the freezing transitions have been connected. The i
showsCP* (T* ) for the binary mixture in more detail.
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peak with height'2.44 at T* 50.5560.05, roughly the
same temperature at which thea relaxation step first appear
in the coherent and intermediate scattering functions.
abrupt decrease in the heat capacity below the peak temp
ture is generally attributed to the freezing out of modes as
system falls out of equilibrium. There is certainly clear e
dence of failure to equilibrate forT* <0.35~see Fig. 1!. The
decrease inCP* betweenT* 50.55 and 0.4, however, occur
at temperatures for which we believe that the amorph
mixture is properly equilibrated. We conclude that the pe
is an equilibrium feature and that the temperature at whic
occurs reflects a characteristic temperatureT* '0.35 of the
thermal fluctuations out of the amorphous ground state.

Can we identify the specific fluctuations which give ri
to the main features ofCP* for the mixture? While the details
of the shape of the peak inCP* cannot be resolved, the sha
drop belowT* 50.5 is substantial. We can resolve the flu
tuations in the enthalpyH* into the contributions due to
potential energy fluctuations, volume fluctuations, and
cross term as follows:

Cp* 215
N^DH*

2
&

T*
2

5
N

T*
2^DU*

2
&1

2NP*

T*
2 ^DU* DV* &1

NP*
2

T*
2 ^DV*

2
&.

~29!

At T* 50.5, the contributions toCP* from the first, second
and third terms in the equation above are 0.030, 0.34,
1.06, respectively. At all temperatures, the volume term
approximately 3 times greater than the cross term which
turn is one order of magnitude greater than the contribu
from the fluctuations in the potential energy. The dominan
of the component due to the volume fluctuations in the h
capacity peak is consistent with the importance of pack
effects in this essentially steric model system.~It seems rea-
sonable to speculate that the low-temperature heat cap
of weakly interacting particles, i.e., ‘‘fragile’’ liquids, will
generally be dominated by density fluctuations.!

The step inCP* requires that there be some sort of e
thalpy gap separating the ground state and the lowest ‘‘e
tation.’’ The following simple model can account for th
feature in a physically consistent fashion. With increas
thermal energy, the particle oscillations in the amorpho
ground state will eventually develop anharmonic charac
We shall assume that this anharmonicity occurs at locali
regions and requires a configurational rearrangement inv
ing a minimum volume increase. This minimal volum
changedV arises from the discreteness inherent in pack
and provides, in the form of thePdV term, an ‘‘excitation’’
enthalpy. These excitations, by virtue of their anharmo
character, would be expected to contribute an enhanced
pansivity. This is consistent with the jump inaP* , the ther-
mal expansivity~see Fig. 23! which occurs at the same tem
perature as the jump inCP* . The absence of any such featu
in the isothermal compressibilitykT* , also shown in Fig. 23,
may reflect the relative insignificance of the local anharm
nicities on the compressibility. One would expect this qua
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tity to be governed, instead, by the load-bearing domains
high local rigidity. In our model of fluctuations, it is th
additional volume change of the anharmonic regions wh
provides the sustained excessCP* at higher temperatures. Th
steady decrease with increasing temperature can be put d
to the general decrease in the vibrational contribution w
decreasing density. The increase in large amplitude mot
associated with such anharmonicities would also account
the increase in the defect number fluctuations aboveT*
50.5 as shown in Fig. 20. The proposal that the discreten
inherent in dense random packings can give rise to an ‘‘
thalpy gap’’ in a classical system warrants further study.

It is interesting to reflect on what ‘‘heat capacity’’ mean
in the unequilibrated glassy states for which relaxation is
longer observed. The heat capacity at constant pressure
be defined in two ways: in terms of the enthalpy fluctuatio
as in Eq.~26!, and as the temperature derivative of the av
age enthalpy. In a system at equilibrium the two definitio
are equivalent but what happens in the glassy states?
have compared the two formulas forCP* calculated over the
entire temperature range studied. Due to the finite numbe
data points, we are not able to accurately calculate the
rivative d^H* &/dT* at a given temperature, but we can e
timate this quantity by the finite difference slopeDH* /DT*
within a small temperature interval about the temperature
interest. This approximate derivative of the enthalpy is co
pared with the value of the heat capacity from the fluctuat
formula for a range of temperatures in Table II. The tw
estimates ofCP* are found to agree quite well over all tem
peratures. The slopeDH* /DT* also passes through a max
mum atT* '0.55, although the height of this peak is slight
higher than that calculated from Eq.~26!. This unexpected
persistence of equilibrium relationships into nonequilibriu
states has also been noted by Evanset al. @56# in an interest-
ing recent study of the configurational temperature. The s
plest rationalization of this result is that both measures ofCp
reflect the dynamically accessible space of enthalpy fluc
tions and are dominated by the fastest fluctuations wh
remain equilibrated at allT* .

FIG. 23. The temperature dependences of the isothermal c
pressibility kT* and the thermal expansion coefficientaP* for the
equimolar binary mixture withs2 /s151.4.
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TABLE II. The constant pressure specific heat capacityCP* for the 2D binary mixture at various tem
peratures calculated from~i! the slope of the average enthalpy over a temperature interval betweenT1* and
T2* and~ii ! the fluctuations in the enthalpy. The average enthalpy per particleH* for a range of temperature
is given in Table I.

T* T1* T2*
CP* ~T* !5

dH* ~T* !

dT*
'

H* ~T1* !2H* ~T2* !

~T1*2T2* !
CP* ~T* !5

N^DH*
2
&

T*
2 11

3 2 5 2.12 2.12
1 0.9 2 2.30 2.33
0.7 0.6 0.8 2.41 2.38
0.6 0.55 0.7 2.43 2.42
0.55 0.5 0.6 2.53 2.44
0.5 0.46 0.55 2.51 2.43
0.4 0.35 0.46 2.44 2.36
0.35 0.3 0.4 2.16 2.17
0.2 0.1 0.3 2.07 2.08
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2. The high frequency shear modulus and stress fluctuations

In what ways do an amorphous ground state differ from
crystalline one on alocal level? Discussion of the absence
global order in the former, for example, is irrelevant here
is the differences in local properties that can be directly
lated to differences in particle mobility on heating. One s
nificant difference in the two types of stable ground state
the distribution of local stress. The contribution of particlei
in a single configuration to the componentsab of the stress
tensor (ab standing forxx, yy, or xy) can be calculated a
follows @57#:

sab~ i !5
1

V S piapib

mi
1

1

2 (
j Þ i

N

r i j aFi j bD , a, b5x or y,

~30!

wheremi is the atomic mass of particlei, pia , andpib are
thea andb components of the momentum of particlei, r i j a
is the a component of the vector joining particlesi and j,
Fi j b is theb component of the force exerted on particlei by
particle j, andV is the volume of the system. Note that in
2D system,sxy5syx .

In Fig. 24, we present the distribution of contributions p
particle to the reduced shear stresssxy* (5sxys1

2/e) of an
amorphous mixture and a single component crystal, bot
zero temperature. Note the substantial increase in the d
bution width of shear stress in the amorphous ground s
over that of the crystal. The distributions of local compre
sion (sxx* 1syy* )/2 for the two different systems are pre
sented in Fig. 25. Again the difference in width of the d
tributions is substantial. Our observations concerning
stress heterogeneities of the glassy configurations are as
lows. ~1! The stress distribution is very broad. Results fro
simulations of metallic alloys@58# and fused silica@59# in-
dicate that a substantial number of atoms can be under s
stress which exceeds the yield stress of the material.
have not yet established the yield stress of the amorphou
mixture. ~2! While the width of the stress distributions d
creases somewhat with lower cooling rates, the heterogen
is an unavoidable consequence of the disorder. The s
distribution, in other words, is an inherent property of t
a
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ss

amorphous ground state which cannot be ‘‘annealed’’
except by crystallization.~3! The sites of high compression
sxx* andsyy* , tend to form extended ‘‘backbones’’ along th
x and y directions, respectively. High shear stress, on
other hand, is distributed in local pockets without any ob
ous correlation.~4! We have been unable to find any corr
lation between local relaxation times and local stress. D
et al. @5# have observed similar stress heterogeneity in a
mixture, along with spatial fluctuations in volume and e
thalpy. These authors provide an interesting discussion of
role of these fluctuations in the response of the 2D glass
shear strain@6#.

The infinite frequency shear modulusG` is related to the
fluctuating shear stress by

FIG. 24. The distribution of local shear stresssxy* , as defined in
Eq. ~30!, for states of the~a! equimolar binary mixture and~b! the
single component crystal of small particles atT* 50. For the binary
mixture, the state atT* 50 was obtained by quenching the fin
configuration of the slow run atT* 50.1. The vertical axes denot
the fraction of particles with local shear stress lying betweensxy*
2D/2<sxy* ( i ),sxy* 1D/2. Observe, from the difference in th
scales of the horizontal axes, that the width of the distribution
much broader in the amorphous state compared to the pure cry
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G`5
V

kBT
^sxy~0!sxy~0!&,

where

sxy~0!5(
i 51

N

sxy~ i ! at t50. ~31!

In the case of a harmonic solidG`5E, whereE is the shear
modulus. The temperature dependence ofG*̀ 5G`s1

2/e is
shown in Fig. 26. Note its constancy down toT* 50.4 in
contrast to the increase in relaxation time of more tha
orders of magnitude over that same temperature interval~see
Fig. 2!. The rapid rise in the modulus at the lowest tempe
tures is puzzling, given that there is little change in dens

FIG. 25. The distribution of the local compression (sxx*
1syy* )/2 for the amorphous binary mixture and the pure crystall
state atT* 50. Again observe the difference in the horizon
scales.

FIG. 26. The infinite frequency shear modulusG*̀ , calculated
using Eq.~31!, for the equimolar mixture over 0.1<T* <1.0. The
insert shows the temperature dependence of the shear modulu
nus the contribution from the mean shear stress as discussed
text.
3

-
y

or structure over this temperature interval which could
count for the large increase. In fact, this increase is an a
fact, arising from the assumption in Eq.~31! that the mean
shear stress is zero. While always true for the equilibri
liquid, this condition breaks down once relaxation is t
slow to permit equilibration. The true shear modulus, c
rected for the frozen-in stress,G*̀ 85G*̀ 2V* ^sxy* (0)&2/
T* , is plotted in the inset of Fig. 26. Now we find the larg
increase in the shear modulus at low temperatures has
replaced by a decrease. Dyreet al. @60# have proposed tha
the non-Arrhenius temperature dependence of relaxation
supercooled liquid arises from the temperature dependen
crease in the infinite frequency shear modulus upon cool
In the case of the 2D mixture, we find a non-Arrhenius te
perature dependence for the relaxation time~Fig. 2! without

any such increase inG*̀ 8 .

E. Approaching the ground state: Phase transition
or continuous arrest?

Do the elementary fluctuations of the amorphous grou
state described in relation toCP interact sufficiently with one
another to result in a phase transition between an amorph
ground state and the relaxing liquid? There is, of course
considerable history of speculation concerning such a tra
tion @61#. In this section we consider how the mixture leav
the ground state on heating and the connection between
picture and those associated with various transition mod

The possible thermodynamic transitions can be broa
differentiated in terms of what is regarded as the elemen
fluctuation: an ordered cluster or a structural defect. T
model of glass formation presented in Ref.@9# involves the
former choice. Here, structural arrest is assumed to be
result of the instability~or near instability! of the liquid with
respect to crystal formation. The amorphous ground state
fused and kinetically frustrated mass of crystalline nuc
~Other cluster models have been proposed which are con
erably less explicit about the order parameters which de
the cluster@30# and therefore less available for direct tes
ing.! In Sec. III B 2 we noted the absence of any access
spinodal in the 2D mixture and, in the following sectio
demonstrated the absence of extended orientational cor
tions in the low-temperature amorphous phase. This la
observation does not necessarily preclude the existence
cluster made up of orientationallyuncorrelatedhexagonal
domains@9#. Elsewhere@2# we have found only a weak cor
relation between local relaxation time and local degree
hexagonal order. This bears out the general observation
hexagonal arrangements do not necessarily correspond t
most stable structure in a well dispersed mixture. While
spinodal model quite rightly places emphasis on the role
stable packings, it neglects the possibility of rigidity arisin
from configurations other than crystalline. The observat
of an extended and dense network of nonhexagonal envi
ments, as shown in Fig. 21, points to rigidity appearing a
property of an entire configuration, not just clusters of he
agonal sites.

The alternative picture is to start with the rigid amorpho
ground state and consider the fluctuations responsible for
heat capacity peak and, ultimately, structural relaxation. T
dislocation-unbinding transition of Kosterlitz and Thoule
~KT! @52# provides a well analyzed model of a transitio
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involving elementary structural fluctuations~defects! about a
2D ground state~hexagonal crystal!. Following our discus-
sion in Sec. V D 1, the role of defect is played by a loc
structural fluctuation associated with the appearance of
harmonic response. Whatever form this defect takes, i
unlikely to meet the key requirements of defects for the
transition. In the case of the single component crystal, di
cation energy depends logarithmically on the system size
to long-range strain fields. These defects interact via th
stain fields as well as through the renormalization of
elastic moduli. The high density of grain boundaries in t
equimolar binary mixture would be expected to screen
strain field of the proposed anharmonic fluctuations, res
ing in defect energies mainly due to the core rather than
extended field.~For small diameter ratios, such as that us
in Ref. @3#, a smaller defect density is possible. In such cas
the asymptotic interaction may play an important role.! The
core energy depends on the local packing efficiency ra
than the effective elastic modulus. This would seem to r
out a collective transition of the KT kind.

What is known about the transitions of disordered syste
in 2D is based entirely on the action of applied disorder
fields. It is standard to suggest that slowly relaxing degr
of freedom be treated as the source of a disordered fi
While this approximation may shed some light on the
sponse of the faster degrees of freedom, they can tell us
about the origin of the slow degrees of freedom themselv
Nelson@25# has examined the role of long wavelength d
order, noting that it lowers the melting point with increasi
amplitude of the disorder until, above a critical value of th
parameter, translational order is no longer possible. This
lier work leaves unanswered the description of the lo
temperature state above this critical disorder. More recen
it has been established@63,64# that an elastic solid undergoe
a pinning transition in the presence of a disordered poten
on cooling below some temperatureTg . This transition,
however, vanishes if the particles are permitted to relax th
topological connectivity@63#. Inclusion of thermal disloca-
tions and pinning disorder@65# appears to produce a ‘‘glass
regime’’ in which the liquid ‘freezes’ into a state withou
long-range order. This transition also appears to vanish
high pinning strengths, again leaving the nature of the lo
temperature disordered state above this critical pinn
strength unspecified. While it remains to be seen what
evance, if any, these models have for the amorphous bi
mixture, they do appear to provide an example of a transi
between two disordered phases.

One difficulty in the application of these pinning mode
to the 2D mixture is in the manner in which disorder
introduced. The mixture case would seem to be better
scribed by inclusion of a fixed concentration of local defe
rather than an external field with long wavelength corre
tions. The KT theory assumes that the energy of an isola
dislocation~the ‘‘core’’ energy! is large so that the transitio
is dominated by the unbinding of a relatively small numb
of defects. Saito@62#, following up on a proposal by Chu
@54#, examined the consequences of a small core ene
Given the high concentration of inherent ‘‘defects’’ in th
amorphous mixture, the binary system is closer to Sai
small core energy scenario. In the case of thermally exc
defects, this condition results in a first order transition, vi
l
n-
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mechanism similar to the grain boundary unbinding tran
tion proposed by Chui. The story is different in the equim
lar mixture for two reasons. First, the grain boundaries
already dense atT* 50 so, while there may be a transitio
from pinned to mobile boundaries, there is no significa
change in structure. Second, the defects are stabilized
local packing effects that owe little to the asymptotic elas
interaction used in previous defect models~see the Appen-
dix!. While this short-range interaction differs significant
from the long-range form typically assumed, we note tha
the high density of defects in the equimolar mixture, th
difference may not be significant. If the picture of a pinnin
transition for nonthermal grain boundaries seems to
progress, it should not. The ‘‘pinning’’ is self-imposed~not
the result of a fixed external field! and so is essentially the
same problem as that of describing the self-arrest of part
motions which we began with. What is more, this picture
based on the assumption that the topological defects ide
fied in Sec. V C are also the sites of the anharmonic exc
tions, i.e., that the mobility occurs at a defect line. T
equivalent notion that hexagonal order denotes stability s
ply is not correct in the binary mixture where, for examp
sixfold coordination of a large particle by small particles is
quite ‘‘loose’’ configuration. Progress along this line o
thinking will depend on establishing a clearer structural p
ture of the important anharmonic fluctuations.

VI. CONCLUSION

In this paper we have presented a study of the struct
and thermodynamic properties of a simulated supercoo
2D binary mixture. The mixture exhibits a metastable am
phous phase with a relaxation time that increases rap
with decreasing temperature in the absence of any long-ra
structural correlations. These results, taken with the dyn
ics of this same system@2#, establish the simulated 2D mix
ture as a member of the class of fragile glass formers wh
includes orthoterphenyl and salol. While questions may
main concerning the relevance of either 2D or simula
models in general to the origin of slow dynamics in oth
specific glass-forming liquids, there is no question that t
model exhibits the full range of glass phenomenology a
does so in a physically consistent fashion.

Here is a summary of the main results of this study.
~1! The equimolar binary mixture shows no evidence

long-range order, either translational or orientational, o
the entire temperature range studied. The average local
agonal order increases continuously from the equilibrium
uid to the arrested solid. Our results indicate considera
continuity between liquid and glass.

~2! The phase diagram for the binary mixture with diam
eter ratio of 1.4 has been calculated via thermodynamic
tegration with the assumption of immiscibility in both o
dered crystals. The most striking feature of this pha
diagram is the deep eutectic point atx150.75 and T*
50.54. This depression of the coexistence temperatur
quite substantial compared to the freezing temperaturesTf ,1*
50.95 andTf ,2* 51.7 of the single component system
small (x151) and large particles, respectively. The presen
of a deep eutectic in a system with only repulsive inter
tions indicates that a significant mismatch in particle size
sufficient to substantially depress the freezing transit
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without the need for large attractive interactions between
like particles. The stability of the metastable liquid is und
scored by the presence of substantial local crystalline fl
tuations.

~3! Below T* '0.5, the enthalpy and density were foun
to increase with increasing quench rate while above this t
perature, variation of the quench rate had little effect. Thi
consistent with a rapid increase in relaxation times be
T* 50.5. An alternative measure of the ‘‘top’’ of the energ
landscape, involving the minimum initial temperature nec
sary to quench into high-energy minima, resulted in a ch
acteristic temperature ofT* '0.35. These two values migh
be accounted for as reflecting the maximum and minim
transition state energies, respectively.

~4! Local topological ‘‘defects,’’ in the form of nonhex
agonal environments, are found to obey a number of n
trivial constraints. These are~i! the equality in numbers o
fivefold and sevenfold sites,~ii ! the near constancy of th
number of defects over the entire temperature range, and~iii !
the perfect ‘‘binding’’ of fivefold and sevenfold sites~i.e.,
each fivefold site has at least one sevenfold neighbor
vice versa! as the temperature approaches zero. The m
squared deviation in the number of defects was found
increase abruptly atT* '0.35, coinciding with a similar
abrupt increase inCP* .

~5! The zero-temperature configurations~referred to here
as the ground state! exhibited a broad distribution of loca
shear and compressional stress as compared to that fou
the single component crystal. It was argued that this inhe
stress heterogeneity is an unavoidable feature of the am
phous ground state, differentiating it qualitatively from t
crystal configuration. The mechanical and chemical con
quences of this stress heterogeneity remain unexplored@59#.
The high frequency shear modulus was found to be temp
ture independent in the range 0.4<T* <1.0. The apparen
increase belowT* 50.4 is a consequence of a nonzero sh
stress average, a consequence of structural arrest on
simulation time scale.

~6! The heat capacity at constant pressure of the mix
exhibits a highly asymmetric peak, similar in shape and m
nitude toCP for fragile liquids. The heat capacity undergo
a rapid rise with increasing temperature atT* '0.35, achiev-
ing a maximum value of 2.44 atT* 50.55 and then gradually
decreasing, roughly linearly with temperature, all the way
to the highest temperatures studied. The continued satis
tion of the equilibrium relationship between fluctuations a
derivatives in demonstrably unequilibrated liquids was de
onstrated. It is argued that this is a result of the separatio
times scale which ensures that those modes which are ki
cally able to participate as fluctuations at all are fast eno
to also be equilibrated.

~7! While the low value ofCp* below T* 50.4 certainly
includes the accepted nonequilibrium effect of ‘‘freezi
out’’ of configurational degrees of freedom, we argue th
the initial drop in the heat capacity for 0.4<T* <0.55 takes
place in equilibrated samples. This implies the presence
an ‘‘enthalpy gap’’ with a characteristic temperature ofT*
'0.35. It is proposed that this gap corresponds to the m
mum volume increase required to allow a local configurat
access to anharmonic motion. The fact that this minimal v
ume change is not zero is a consequence of the discrete
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of particle packing. The abrupt increase inCP* is attributed to
the increase in configurational fluctuations associated w
these larger amplitude motions. This also accounts for
increase in fluctuations in defect number. The sustained
cess heat capacity at high temperatures is the result of
increased expansivity~due to the anharmonic excitations!
which provides for enhanced density fluctuations over t
possible in the crystal.

The reduced dimensionality and its associated reduc
in the space of fluctuations holds out the possibility of d
veloping a satisfactory conceptual picture of the statisti
correlations in this particular glass-forming liquid. This pi
ture must address the two basic issues concerning the s
properties of a supercooled liquid: the structure and stab
of the ground states, and the nature of the thermal fluc
tions that first take us beyond harmonic fluctuations ab
such ground states. The progress made in assembling
picture is outlined above. Here, we need to note the sh
falls. We remain unable to identify any general structu
criteria associated with amorphous ground states. While
tures of crystalline clusters or pinned grain boundaries p
vide reassuring rationalizations for structural arrest, their s
nificance can only be understood within the framewo
provided by these unknown criteria for stability and, hen
rigidity. It also remains unclear whether the anharmonic
citations identified in this paper are associated with particu
types of local structure and, if so, what is the structural s
nature of these ‘‘soft’’ spots?

This difficulty in establishing the structural features re
evant to glass formation provides the motive for the study
dynamic heterogeneities in recent years@2,8,17,66–70#. In
the absence of any substantial changes in structure on su
cooling, we are left with only the changes in dynamics, bo
the dramatic and the subtle, to provide the clues as to
character of the underlying stability. Kinetic inhomogeneiti
currently provide the only sure means of characterizing
fluctuations involved in slow relaxation in the glass forme
In this sense the glass transition invites an inversion of
normal conceptual approach in condensed matter proble
Instead of proceeding from structure to dynamics, we
from dynamics to structure. The goal, of course, remains
same; to establish the functional connection between the
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APPENDIX

Here we present some discussion of two aspects of p
ing in a binary mixture of hard discs relating to the numb
and correlation of the defects as described in Sec. V C.

1. Why is the average number of neighbors 6?

While this question has been discussed already in the
erature@49–51#, important assumptions are sometimes l
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unstated. A configuration of discs can be reduced to a ti
of the plane using the following procedure. First, the neig
bors of each particle are established via a Voronoi const
tion as described in Sec. V C. Next, the centers of neighb
ing particles are joined by straight lines~a Delaunay
construction!. Each particle now replaced by a vertex
these lines oredges. The area enclosed by a set of edges i
face. The argument that the average number of edges
vertex is 6 goes as follows. The key assumption is that
faces are all triangular. This is the same as assuming
every pair of neighbors of a particle that are adjacent to
another are also neighbors of one another~i.e., joined by an
edge!. We are unaware of a proof of this proposal.

A relation, due to Euler@71#, exists between the numbe
of verticesV, facesF, and edgesE,

V2E1F52. ~A1!

Perhaps the easiest proof of this result can be found in
@71# in which it is shown that for a connected graph of edg
and vertices the quantityV2E1F is unchanged when a
edge is removed along with associated vertices necessa
ensure the new graph is also connected. Eventually one
out of edges~i.e., E50) and is left with a single face and
single vertex~this is ensured by the connectivity conditio!
so thatV2E1F52.

The assumption of only triangular faces implies that

2E53F. ~A2!

Substituting this result into Euler’s relation gives

3V5E16. ~A3!

As V ~equal to the number of particles! goes to infinity~and,
acknowledging that in this limit each edge contributes to
valency of two vertices!, we find that the average number
edges per vertex is 6, as observed.

2. What is the origin of the strong sevenfold-fivefold pairing
observed in the amorphous ground state?

The most likely alternative to sevenfold-fivefold pairin
would be to have the seven neighbors of a large particle
finding themselves in sixfold sites. To explore the likeliho
of this situation consider a large particle surrounded by o
small particles. It is possible to arrange seven small h
discs ~the first shell! about a large one so that each of t
cs
ng
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small discs is, in turn, surrounded by six discs. The arran
ment involves a high degree of heptagonal symmetry in b
the first, second, and third shells of small particles~as shown
in Fig. 27!. Perturb this symmetry and the probability o
finding a fivefold site among the 1st shell particles quick
rises. For example, if we push a third shell particle into co
tact with a first shell particle while maintaining as regular
packing as possible elsewhere we find roughly 76% of
configurations~as counted by generating the topologica
distinct graphs arising due to this perturbation! include a
fivefold site about one of the members of the first shell.

Now add one large particle to either the first, second,
third shell. It is still possible to pack the discs such that all
the first shell particles are sixfold coordinated. Add a seco
large particle to the second shell. If it is in contact with t
other ‘‘solvating’’ large disc then there will be a fivefold sit
among the first shell particles. Assuming an equimolar m
ture and neglecting compositional correlation, the probabi
of therenot being two large particles in contact in the thre
solvation shells~one of the large particles being in the se
ond shell! is 0.17. Factoring in the possibility of irregula
packings as considered above and the probability of therenot
being at least one fivefold site among the seven discs
rounding the central large particle drops to only 0.004. A
eraging over the possible compositions of the three solva
shells and we find the sevenfold-fivefold pairing becom
effectively unavoidable under close-packing conditions.

FIG. 27. Packing of hard discs about a large disc indicating
first, second, and third solvation shells as discussed in the Ap
dix.
.
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@61# J. Jäckle, Rep. Prog. Phys.49, 171 ~1986!.
@62# Y. Saito, Phys. Rev. B26, 6239~1982!.
@63# C. Carraro and D. R. Nelson, Phys. Rev. E56, 797 ~1997!.
@64# D. Carpentier and P. Le Doussal, Phys. Rev. B55, 12 128

~1997!.
@65# D. Carpentier and P. Le Doussal, Phys. Rev. Lett.81, 1881

~1998!.
@66# C. Donati, J. F. Douglas, W. Kob, S. J. Plimpton, P. H. Poo

and S. C. Glotzer, Phys. Rev. Lett.80, 2338~1998!; 79, 2827
~1997!.

@67# S. Butler and P. Harrowell, J. Chem. Phys.95, 4454 ~1991!;
95, 4466~1991!.

@68# P. Harrowell, Phys. Rev. E48, 4359~1993!.
@69# M. Foley and P. Harrowell, J. Chem. Phys.98, 5069~1993!.
@70# M. M. Hurley and P. Harrowell, J. Chem. Phys.105, 10 521

~1996!; 107, 8586~1997!.
@71# O. Ore,Graphs and Their Uses, revised and updated by R. J

Wilson ~The Mathematical Association of America, Washin
ton, 1990!, p. 114; D. Barnette,Map Coloring, Polyhedra and
the Four Color Problem, Vol. 8 of The Dolciani Mathematical
Expositions~Mathematical Association of America, 1983!; see
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