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Stability and structure of a supercooled liquid mixture in two dimensions
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The structural and thermodynamic properties of a two-dimensional binary mixture of soft discs are reported
over a range of temperatures down to large supercoolings using cohdednimolecular dynamics simula-
tions. It is shown that the four orders of magnitude increase in the structural relaxation time is not accompanied
by any significant increase in translational or orientational order. The phase diagram, calculated in the
temperature/composition plane using thermodynamic integration, exhibits a deep eutectic point that is respon-
sible for stabilizing the amorphous state. Voronoi analysis of the low-temperature ground state reveals a
structure characterized by a network of linear arrays of fivefold and sevenfold sites. The heat dapacity
exhibits an asymmetric peak with a maximumTat=0.55. It is argued that the initial rapid drop @ for
T*<0.55 is an equilibrium result and, hence, the peak in the heat capacity corresponds to the existence of an
“enthalpy gap” with a characteristic temperature ®f ~0.35. This gap results from a minimum volume
change associated with an anharmonic fluctua{isa063-651X99)07705-3

PACS numbe(s): 64.70.Pf, 61.20.Lc, 02.70.Ns, 61.20.Ja

[. INTRODUCTION dynamically stable phases, the properties of the amorphous

Of all the puzzling features of glass-forming liquids, it is ground state and the nature of the low temperature fluctua-
the presence of mechanical stability without order that reptions out of this state. We are unaware of any previous simu-
resents the core problem. It is straightforward, after all, tdation study of a glass-forming liquid that has included par-
understand why particle configurations of high symmetry,allel studies of the relaxation dynamics and the
such as found in crystals, should correspond to potential erthermodynamics of the model.
ergy minima(or, at least, extremand hence represent rigid  The binary mixture in 2D has, over recent years, become
states[1]. Rigid amorphous configurations, on the othera popular model system for studying collective behavior in
hand, typ|Ca”y pI’OVide no such Simple clues as to Why the)gupercoo|ed ||qu|ds Deng1 Argon, and Yﬁﬁ_G] have ex-
have been “selected” from the huge space of possible conymined the topological features of a supercooled mixture of
figurations for the special status of stability. The presence of onnard-Jones particles in 2D via MD simulations. In addi-
these noncrystalline minima is the origin of the roughness ofj,, 1o characterizing the distribution of local environments,

the potential energy surface over the space of configurationgeqe \orkers also studied the kinetics of the structure during

and, in a general sense, the slow dynamics at low tempe;r%-gmg and shear flow. Muranaka and Hiwafaf have pub-

s " e : : "shed MD results on the same softcore mixture as used in

hidden” phase transitions, on cooling, into some low en- this paper. They observed large regions of highly correlated

ergy subset of these stable structures. paper. y ) large reg ighly
mechani_part|cle trajectories occurring on the same time scale agthe

In this paper we explore the nature of stability, . . -
cal and thermodynamical, in a two-dimensiofaD) glass- relaxation and proposed that such motions were the origin of

forming liquid through molecular dynamicID) simula- the fast sgcondary relaxation. Nonequilibr_ium MD simula-
tions. The system is a binary mixture of discs interacting viallons of this same system have been carried out by Yama-
a soft 112 repulsion with a diameter ratio of 1.4. Elsewhere M0to and Onuki[8], who studied the dynamics of the
[2], we present a study of the relaxation dynamics and itgduimolar mixture at equilibrium and under shear. They re-
spatial distribution in the same 2D liquid. The particle sizeported an increase in the characteristic length scale of the
ratio has been chosen so as to maximize disruption of crystalistribution of “fast” particles with decreasing temperature.
structures while avoiding liquid-liquid separation. A 2D The effect of an applied shear flow on these dynamic hetero-
model has been selected for simulation speed and, more ingeneities was found to be similar to that of an increase in the
portantly, the relative ease with which collective motions cantemperature. These workers have also established a qualita-
be analyzed. As the role of dimensionality on the glass trantive similarity between the glassy phenomenology in 2D and
sition is currently an open question, we begin our report with3D mixture models. Mel'cuket al. [9] have also presented
an analysis of what is required oftene fideglass-forming  MD results of the existence of long-lived clusters, character-
liquid and the degree to which the 2D mixture meets thesézed by crystal-like environments, near the glass transition of
criteria. This is followed by an identification of the thermo- a 2D binary mixture of Lennard-JonésJ) particles. Finally,
Sadr-Lahijany et al. [10] have examined the process of
dispersion-induced disordering in a 2D system, first exam-

*Electronic address: dperera@tamamori.nrim.go.jp ined by Bocquet and co-workef&1]. In this MD study, a
TAuthor to whom correspondence should be addressed. Electronghase diagram is presented in the space of density and the
address: peter@chem.usyd.edu.au dispersion in the size of the Lennard-Jones discs. A critical
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dispersion is associated with a continuous phase transition The pressure was fixed &* =13.5 and temperatures in
between crystal and liquid. the rangeT* €[0.1,5] were studied. The freezing tempera-
The literature on glassy alloys is extensive. The propenture of the single component system of small particles at this
sity of a mixture to sidestep crystallization is typically found pressure is'l'}*y1=0.95, and the corresponding temperature for
to be enhanced in the vicinity of the maximal freezing pointthe large particles i§%,=1.7. The starting configuration of
depression afforded by a eutectic point. Such features afe run aff* =5 was a square lattice of alternating large and
commonly attributed to interaction potentials that favor thegmg particles whereas, for each of the lower temperatures,
association of unlike species and hence resist the segregatigik initial configuration for the equilibration run came from
necessary for crystallizatigi2]. In this paper we shall pro- the final configuration of the preceding higher temperature
vide evidence of a deep eutectic in a binary alloy in theryn. For T*=0.4, the equilibration times were longer than
absence ofny attractive interactions. the times taken for all the dynamic correlation functions in-
The paper is arranged as follows. Following the descripyestigated to decay to zero. BeloW* = 0.4, however, the
tion of computational details in Sec. Il, we shall demonstratesystem is no longer able to reach equilibrium within the fi-
the slowing down of structural relaxation on cooling of the pjte time scale of the experiment. For these low tempera-
mixture and examine the various types of structural correlatyres, the equilibration run was taken out until steady state
tions for signs of long-range order in Sec. Ill. Next, we ex-\as achieved, i.e., when the average thermodynamic proper-

amine the relative stability of the amorphous phase to purges remained constant. Table | lists the equilibration and
crystals of each component through the fate of heterogeproduction times.

neous simulations. In Sec. IV, we determine the equation of

state for the mixture and calculate the chemical potential

difference between liquid and ordered crystals. The object of ll. IS THE 2D BINARY MIXTURE A GLASS FORMER?

th?s section is twofold, to establish at what point the liquid Experimentally, finding an amorphous configuration
mixiure should be reggrgied as a met??“"b'e sFate., and to Which is unable to relax on the observational time scales is a
and understand the origin of the stability of th|§ d'sordereqwontrivial result. The same cannot be said, however, for
state. In Sec. V, we SFUdy the amorphous pha;e. the temp_er imulations of liquids where it is trivial to reduce the obser-
ture dependence of its extensive properties, its topologic tion time to the point where relaxation is not possible.

itruclture, t?e prgpetrtlets of |t?hgr0urr1]d t?]tat?{ artwd the n_z:ture g:iteria are needed, therefore, to distinguish a metastable lig-
ItS elementary Tluctuations throug € heat capacity ang;q capable of forming a glass from an unstable one which

thermal expansivity. has simply not been observed long enough to detect the or-
dering transition. In this paper, we apply the following two
Il. MODEL AND COMPUTATIONAL DETAILS criteria.
i . ) (i) A glass-forming liquid must exhibit relaxation times
The 2D system consists of an equimolar mixture of twowhich grow rapidly on cooling without the development of
types of particles with diametets,=1.4 ando; =1, respec-  |ong-range correlations associated with established ordered
tively, but with the same mass. The three pairwise additive phases.
interactions are given by the purely repulsive softcore poten- jj) |n a glass-forming liquid, the disordered or amorphous
tials state must represent a stationary state in the sense that it is
stable over time scales at least an order of magnitude longer
T ap| than the relaxation time for fluctuations within that state.
T} , a,b=12, ) Few would argue with the first criterion. We note that this
criterion implies that “disordered” or “amorphous’{we
shall treat these as equivalent tejnrscludesall forms of
where 0,,= 0, and oap= (0, +01,)/2. The cutoff radii of  order minus the restricted set of “established” ordered
the interactions are set at 4:3,. The units of mass, length, phases. The second criterion is necessary if we are to be able
and time arem, ¢;, and 7= oM/ €, respectively. to speak about reproducible amorphous states. There are cer-
A total of N=1024 particles were enclosed in a squaretainly phenomena, such as aging and nonlinear response to
box with periodic boundary conditions. The simulationstemperature jumps, which call for the study of nonstationary
were carried out at constant number of particles, pressuretates. Such problems are not precluded by critefion
(P*= Paf/e) and temperature T* =kgT/e, wherekg is  which simply allows us to establish whether a nonstationary
Boltzmann’s constahtusing the constraint MD algorithm of state is relaxing to an amorphous stéts defined by our
Evans and Morris§13,14]. In this method, the instantaneous criteria) or towards an ordered one. The distinction is as
temperature and pressure are strict constants of the motiootucial for these nonstationary problems as for those involv-
The system is initially driven to the desired temperature bying linear responses. A state which satisfies critetiprwill
velocity scaling and to the desired pressure by the use of be referred to as being at equilibrium. Whiteetastable
Newton-Raphson convergence scheme. A third-oftterr-  equilibrium is more accurate, it is unwieldy and, given our
value Gear predictor-corrector algorithm was used to inte-failure to observe any hint of crystallization in the equimolar
grate the equations of motidi4]. The time step employed mixture, unnecessary. As we shall demonstrate, the proper-
was 0.0025 for T*>1, and 0.005 for T*<1. In argon ties of the supercooled mixtures exhibit a smooth continua-
units ofe=120kg, m=6.6x10 2 g, ando;=3.4 A, these tion from the true equilibrium liquid at high temperatures.
time steps correspond to approximately 5 and 10 fs, respe®e shall now consider the 2D binary mixture in the light of
tively. criteria (i) and (ii).

Uap(r)=e€
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TABLE |. The thermodynamic averages and their root mean 1ol ' ]
square(rms) deviations for all temperatures investigated for the
equimolar binary mixture witho,/0y=1.4. Also shown are the 081 S TN %2
effective coupling constari, defined in Eq(4), the compressibil- 06 N 1
ity factor Z=P*/(p* T*), the equilibration timeq,, and the pro- :‘;0.4 I 05 ]
duction timet,, for each of these states. ’ o2
e r 0.46 0.4 )
T tege/T twn/r  U* E* H* p* oo @ TS =
—3 -2 —1 0 1 2 3 4
5 846 375 30753 80753 31527 057567 o et A
3 1443 375 3.0503 6.0503 27.353 0.63375
2 2040 375 3.0250 5.0250 25175 0.66997 %[ ]
1 2040 2050 2.9830 3.9830 22.881 0.71435 = 067 1
0.9 2040 2050 2.9775 3.9775 22.642 0.71943 w04t 1
0.8 2040 2050 29716 3.7716 22401 0.72466 " , | ' ]
0.7 2040 2050 2.9659 3.6659 22.161 0.72991 oo | (b) - 5 1
0.6 4510 8100 29599 35599 21.919 0.73532 [ . - a i L
0.55 6060 8100 2.9567 3.5067 21.797 0.73808 10 10 1 ° t(110) " " "
0.5 7142 9100 2.9523 3.4523 21.666 0.74118
0.46 23235 9100 2.9502 3.4102 21571 0.74334 FIG. 1. Incoherent scattering functiorta) F(k;,t) and (b)
04 52515 25010 2.9459 3.3459 21.421 0.74687 Fs2(Kz,t) for the small and large particles, respectively. The wave
035 17000 22050 29435 32935 21.303 074958 vectorsk,=7.17r; ! andk,=5.60r; * are the first peak positions
03 10000 20500 2.9430 3.2430  21.205 0.75162inlthet.respective partial strugtt:ret;act]?rlls. F.romt left to :igngts, the
02 10000 20500 2.9422 3.1422 20.996 0.75615 . aron curves correspond fo the foflowing temperatures.
=5,3,2,1,0.9,0.8,0.7,0.6,0.55, 0.5, 0.46, 0.4, 0.35, 0.3, 0.2, and
0.1 10000 20500 2.9418  3.0418  20.792  0.76054 1 QOpserve the appearance of a slower relaxation proceB$ at
=0.5.
™ Te Z mmsU*) msE*) msH*) msp*) Fso(k,t) . These correspond to the positions of the first peak
5 0.65164 4.6902 0.0223 0.0223 0.156 0.00329 maximums in the respective partial structure factors, which
3 078102 7.1006 00141 0.0141 0098 0.00252 are only weakly dependent on temperature. Figure 1 demon-
2 0.88338 10.075 0.0097 0.0097 0068 0.00194 Strates that the scattering functions are able to decay to zero
1 10572 18.898 00052 0.0052 0036 0.00117 for T*=0.4. Below this temperature, structural relaxation
09 10836 20850 0.0048 0.0048 0.034 0.00110 Cannot fully p'roceeq to equilibrium due .to the finite time
08 11131 23287 00042 00042 0029  0.00098 scale of the simulations. We_draw attention to the two-step
07 11464 26422 00037 0.0037 0026 0.00088 decaty proc?ﬁs OI the ref’.la):at't?” f””gggpsoa; ”;" Iowher tem-
peratures. The step is first observedTat=0.5. Elsewhere
8'25 i;gig ig"zgz gggg: (())'(())?)32)3 g'gi g'ggg;i [2_,15,1_(3 we examine the changes in (_lenamics associated
0:5 1:2313 36:428 0:0027 0:0027 0:019 0:00064 with this crossover. As the temperature is lowered further we
0.46 1.2521 39.481 0.0024 0.0024 0.017  0.00060 40 . . . .
0.4 1.2877 45.189 0.0021 0.0021 0.014 0.00051 )
035 1.3215 51.457 0.0017 00017 0.012  0.00042 351 |om, .
0.3 1.3596 59.871 0.0014 0.0014 0.0098 0.00035 30 |®T, o
0.2 1.4634 89.268 0.00092 0.00092 0.0064 0.00023 25
0.1 1.6522 177.51 0.00045 0.00045 0.0032 0.00012

2.0

A. Incoherent scattering functions

It is straightforward to establish the rapid growth of the
time scales on cooling. In Fig. 1, we present the set of inco-

herent scattering functions

1
Fa(kit) =~ > explik-[rj()—r;(0)]}), a=12,

a\j=1

Na

1.5
1.0
05
0.0
-0.5
-1.0
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)

FIG. 2. A log-linear plot of the structural relaxation times;

for both particle species. The angular brackets denote an ayndr,,, as defined in the text, againsfrt/for the small and large
erage over time origins and an angular average over the dparticles respectively. Note the positive deviation from Arrhenius

rections of the wave vectd. The magnitude ok was cho-
sen to bek;=7.1707 * for Fgy(k,t) andk,=5.600; " for

behavior for T*<0.55. The solid lines are linear regressions
through the data points in the ran@& [0.55,5].
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FIG. 3. Representative particle configurationgaatT* =1, (b) T*=0.6,(c) T* =0.4, and(d) T* =0.1 for the equimolar binary mixture

with o,/0,=1.4. The small and large particles are represented by the open and filled circles respectively and have been drawn slightly

smaller than their actual sizes to avoid significant overlapping that would obscure the pictures.

see the plateau height increase. A structural relaxation timean be simply accounted for by the presence of the two par-
Tea IS defined as the time required for the incoherent scatticle sizes in the mixture. Details of this analysis are pro-
tering funtionF4 4(k,t) to equal 1¢. Relaxation times for vided in Ref.[18]. Appearing, as this feature does, at a tem-
large and small particles are plotted again§t*lin Fig. 2.  perature T*~1.0) well above any glasslike behavior, we
We find a rapid non-Arrhenius increase 19, and 7., on  conclude that it has nothing to do with the glass transition. A
cooling, in accord with the first part of criteri@. A more  similar conclusion with respect to a 3D binary mixture of
comprehensive analysis of the dynamics of the 2D mixture i$ ennard-Jones particles has been reached by Betral.

provided elsewherg2]. [19] and Kob and AndersefR0].
The partial distribution functions are also sensitive mea-
B. Structural correlations sures of local compositional correlations. Integrating under

Is the slowing down associated with the appearance 0t1h¢ _first peak pf the distrib_ution fur_1cti<_)ns out to the first
some form of long-range order? In the single component 2BMNIMuM, provides the partial coordination numbagg(1)
liquid, for example, we find a significant slowing down on Which are plotted against* in Fig. 7(a). In decreasing the
approaching the freezing transition as a result of the steadil{emperature fronT™=0.5 to T* =0.4, we observe a small
growing domains of hexagonal ordgt7]. Comparison of Step increase imy;(1) andnyy(1), from approximately 2.6
particle configurations in the mixture a* =0.1, 0.4, 0.6, o0 2.9 and approximately 3.6 to 3.8, respectively, which is
and 1.0 in Fig. 3 certainly indicates an increasing tendencyccompanied by a corresponding dromig(1). This change
of the large particles to collect into hexagonal domains. Inrepresents a slight increase in the tendency to microsegrega-
what follows, we examine translational, compositional, andion and clear evidence of the absence of global demixing.

hexatic order in the equimolar mixture. The step is more pronounced in the second shell coordination
_ S _ numbersn,,(2) as shown in Fig. (b). We stress that these
1. Partial pair distribution functions distribution functions were found to be stable over the long

For the 2D equimolar binary mixture with,/o,=1.4, run times indicated in Table I. AT* =0.4, for example, the
we find no long-range translational order. The partial pairtotal run time corresponds ts 50 times the structural relax-
distribution functionsy,,(r) decay exponentially, as shown ation time 7, ,. We will consider the stability of the low-
in Figs. 4—6, even at the lowest temperatures. The splittingemperature disordered states further below. The stationary
of the second peak which we observe in all thigg(r)’'s  character of the local distributions, however, is one of the
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“ T'=0 l T =0.1

15 “w T =0 15 l“: T*=0.2
‘”\ T =0 M T =03

‘”“ *= 0 t‘ *=0

v“ *=0 “\‘\‘ "=0

. T* =046 i T* =048

10 T T =05 10 k‘ “=0
=S T*=0.55 = A T*=0.55
S T =06 o T =06
T _07 T =07

T =08 T =08

5 T =09 5 T =09

‘ T=2 T=2

| T*=3 T*=3

/\/v T*=5 ﬂ/\l T* =5

O 0 L b
o1 2 3 4 5 6 7 8 9 10 11 12 o1 2 3 4 5 6 7 8 9 10 11 12

r(c,) r(o,)

FIG. 4. The partial pair distribution functiagy4(r) as a function FIG. 6. The partial pair distribution functiag,(r) as a function
of distance froml* =5 down toT* =0.1 for the equimolar binary of distance fromT* =5 down toT* =0.1 for the equimolar binary
mixture with o, /o;=1.4. The pair distribution functions have been mixture with o,/o1=1.4. ForT* <3, each curve has been shifted
constructed with a spatial resolution of 01 For T*<3, each  upwards by one unit from the higher temperature curve directly
curve has been shifted upwards by one unit from the higher tempreceding it.
perature curve directly preceding it.

due to the action of a perturbing field with Fourier amplitude

strongest pieces of evidence that the amorphous liquids rep&{éb(k) acting on componertt is given by
resent stationary states.

8pa(K) = Xap(K) Sp(K). &)

. . o The susceptibilitieszp,(K) = — (pa/KgT) Sap(k). The partial
The mechanical stability of a liquid with respect to the gy cture factors are calculated as folloj@d]:
development of periodic order can be best defined in terms

of its susceptibility to a perturbing field with a wavelﬂen@th Sap(K) =XapOup+ XaXop* Pan(K),  ab=1,2, (&)

In the case of a binary mixture, the Fourier amplituig (k)

of the resulting perturbation in the density of componant whereh,(k) is the Fourier transform of the total correlation
function h,p(r)=0ap(r) —1. The Fourier transformations of

2. Partial structure factors

o A ' T Jan(r) were carried out using Filon's methd@2]. If an
instability is present, it will be identified by the divergence of
T =0.1 the appropriate partial structure factors.
15 T = In Figs. 8 and 9 we ploS;;(k) and Sy,(k) for all tem-
:= peratures investigated. The curves have been displaced ver-
T*: tically for clarity. The oscillations at smak below the first
T o4 maxima are artifacts of the Fourier transformation procedure
=10 . and should be ignored. In both partial structure factors, the
= T* =055 position of the first maximum is only very weakly dependent
© T =08 on temperature. F&,,(k), the second peak is also split into
T:=°7 two components at low temperatures, unlike the case for
T*:OQ Si1(k). The components of the bimodal second peak in
5 T 1 S,5(k) occur at wave vectors which coincide with the second
\/\N_ To2 and third peaks at~9.20; * andk~10.5s; %, respectively,
T*=3 in the static structure factor of @inglecomponent crystal of
(\/\# T=5 large particles. We conclude that this feature is due to the
00 1Ty e T s P TIET, presence of crystalline domains of large particles at low tem-

. (g ) peratures.
! Klein and co-worker$9,23] have propose¢i) that super-
FIG. 5. The partial pair distribution functiag,,(r) as a function ~ cooled liquids can exhibit a spinodal instability with respect
of distance fromT* =5 down toT* =0.1 for the equimolar binary t0 the crystalline phase an@) that such an instability is
mixture with o, /oy =1.4. ForT* <3, each curve has been shifted responsible for a rigid amorphous phase. To examine the
upwards by one unit from the higher temperature curve directlypehavior of the susceptibilities at low temperatures we plot,
preceding it. in Fig. 10, the height of the first peak & (k) andS,,(k)
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FIG. 8. Partial structure fact@®, (k) for all temperatures inves-
10.0 - . tigated for the equimolar binary mixture with, /o= 1.4. For clar-
—o n,,(2) ity, each curve belowl* =5 has been displaced vertically by 0.2
N g5l |2 Nn,(2) i units above the higher temperature curve directly preceding it.
8 ——+ n,,(2)
00 | 1 phase, evident only at low temperatures, would seem to ren-
' der any spinodal inferred from fits to higher-temperature
structure factors as physically irrelevant. Standard linear re-
85 ] sponse theory has the rate of structural relaxation propor-
tional to the corresponding susceptibility. The observed in-
8.0 . . ‘ . ‘ crease inS,,(k), for example, at the first peak therefore can
. 0.0 0.2 0.4 06 0.8 1.0 account for only a 1.5-fold increase 1, as opposed to the
() T observed increase of roughly 4.5 orders of magnitude over

FIG. 7. (8) The temperature dependence in the rafiges1 of ~ the temperature range 84*<5.0. We shall return to the

the first shell partial coordination numberg;(1), ny(1), and idea of cluster instabilities in Sec. V E. We conclude tfiat
n;5(1), calculated up to the position of the first minimumgpy(r),

0.2(r), andg,,(r), respectively, for the equimolar binary mixture 4.0 ' . .
with o, /0= 1.4. Also shown is the temperature dependence of the
average number of first nearest neighbors irrespective of particle 3.5
typeng, (1), calculated by integrating up to the position of the first
minimum in the total radial distribution functiog(r):xfgll(r) 3.0
+2xlx2g12(r)+x§g22(r). Observe that the average number of first
nearest neighbors is 6 fd* <1. (b) The temperature dependence

in the rangeT* <1 of the partial coordination numbers;;(2), 25
n,,(2), andny,(2), calculated by integrating,1(r), g.x(r), and =
g1(r), respectively, out to theecondminimum in each case. Note & 2.0
the distinct increase in the clustering of like species in going from n
T*=0.5 toT*=0.4 and the corresponding dropfiny(2). 1.5

against temperature. The temperature dependence of thes 1.0
peaksS, (maX can be reasonably described by a power law

of the form S, (max=T* " (with y;,=0.08 and y,, 05
=0.16) for T* =0.4. This extrapolation places any instabil-

ity at T*=0.0. The breakdown of these power laws at low 0.0 —
temperatures, however, must raise doubts about the validity

of such an extrapolation. The observed stability of the amor-

phous phase implies a “cap” on the magnitude of the struc-  F|G. 9. Partial structure fact®,,(k) for all temperatures inves-
ture factor peaks, leaving higher values &f;(max), tigated for the equimolar binary mixture with, /-y = 1.4. For clar-
Sis(max), and Sy(max) simply inaccessible to the super- ity, each curve below* =5 has been displaced vertically by 0.2
cooled liquid. This underlying stability of the amorphous units above the higher temperature curve directly preceding it.

15 20 25 30 35 40 45 50
ko,

o
3]
—
(=]
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0.70 We shall return to the question of phase transitions in the
2D mixture(see Sec. V E Our prime interest here is simply
0.65 to establish whether our low-temperature mixture exhibits

local hexagonal order and the spatial correlations of the ori-
entation of this order. Following Broughton and co-workers
[27], an orientational order parameté(r;) is defined for
the jth particle
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FIG. 10. The temperature dependence of the heights of the first .
peak,(a) S;;(max and(b) S,,(max), in the partial structure factors V= N. E |‘1’(rj)| with a=1,2. (7)
S1(K) and S,5(Kk), respectively. The solid lines are power law fits al=1
of the forms (a) S;;(max)=0.5892* 00795 gnd (b) S,,(max)
=0.7164* ~%16%4 The insets show the peak heights fof<1.
Observe the steplike increase in the peak heights balbw0.5.
The dashed lines are linear regressions through the MD data poinfs
in the temperature intervals GsIT*<0.3 and 0.5 T*<1.

The angular brackets denote an average over various con-
figurations separated in time. These order parameters mea-
ure the average degree of local hexagonal order in the mix-
ure. The spatial correlation of the orientation of these
hexagonal environments is measured by the associated cor-

the observed slowing down is not the result of the developfelation functions
ment of long-range translational order atij the increase
local structure is insufficient to account for the increasing <

relaxation time without a physical picture of thnetic cor-
relations between structurally uncorrelated regions.
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3. Orientational order and its spatial correlation q
an
Having established the absence of long-range translational
order in the 2D mixture down to temperaturesT6f=0.1, Na Na
we must also test for long-range orientational correlation of Ca(r) Z W(rj)Ww*(ry)
the local hexagonal domains. The existence of a hexatic *Xg =1 k7

phase in the one component soft disc liquid, lying between

the liquid and the crystal, has been established in simulations X 8(r—|r— fk|)> a=1,2. )

of large systemsN>16 000) over a very narrow range of

densitieq 24]. The effect on this transition by quenched dis-

order is a topic of considerable current interest, particularly In Fig. 11 we present the values of the average bulk order
due to its connection with the ordering of flux lines in high parametersV, ¥,, and¥, over the range of temperatures
T. superconductors. Nels$85] has suggested that such dis- studied. For comparison, we have included the analogous
order would suppress the freezing temperature to a greaterder parameter for a single component liquid of soft discs
extent than the liquid-hexatic transition, thereby expandingvith diametero;. We note the following featuregl) A

the range of the orientationally ordered phase. Above a cesignificant amount of local hexagonal order is present even
tain critical amount of disorder, the crystal would not form. in high-temperature liquids. FoF* >1.0 single and binary

In the case where disorder arises from a distribution of parmixtures have similar amounts of local order, despite the
ticles sizes, a recent 2D simulatiphO] identifies a critical ~ structural incompatability of the two components in the mix-
size dispersity(roughly density independgntabove which ture. This is the result of a degree of microsegregation in the
ordered phases are unstable. mixture which allows for relatively unimpeded local order-
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(rmg) deviations of the local hexagonal order parametrgr;)
FIG. 11. (a) The temperature dependence of the bulk averageénd Wy(r;) for the equimolar binary mixture.
hexagonal order parametér as defined in Eq(6) for the equimo-

lar (x;=0.5) binary mixture witho,/o;=1.4 and for the mono- . .
component system of small particles,&1). (b) The temperature  '€main shortranged over the entire temperature range stud-

dependence in the rangé <1 of the small ;) and large ¥'>) ied. While reminding the reader that, for <0.4 these val-
particle contributions to the hexagonal order paramateof the  ues do not correspond to equilibrium results, we can con-
equimolar binary mixture shown ife). ¥, has been shifted up- clude that the structural arrest observed in our simulations
wards by 0.1 units for clarity. The results (a) and(b) have been  does not arise from the appearance of any observable form of
averaged over 1000 equally spaced configurations along the produfang-range order.
tion run for each temperature. The error bars are twice the standard The absence of long-range orientational order at low tem-
deviation about the average. peratures presents a picture different from that described by
Mel'cuk et al. [9]. Reference[9] reports the presence of
crystalline clusters whose size increases with cooling in a
inary mixture of Lennard-Jones discs. The key difference in
the two methods of analyzing extended structure is that the
approach of Ref[9] includes clusters made up of orienta-
'gionally uncorrelated domains of hexagonal order.

ing. (2) As the one component liquid orders on cooling, the
mixture order parameter increases slowly and steadily in
smooth continuation of the high-temperature behayRrAt
0.5<T*<0.6, we see a small step i, corresponding to a
slight increase in structure among the large particles. Thi
temperature coincides, roughly, with that predicted to be th
freezing point in the mixturgsee Sec. IVR (4) As T*

—0, the hexagonal order in the amorphous mixture ap- 6.0 T
proaches 65% of that of the zero-temperature single compo- 56 [ . ]
nent crystal. 5.2 T =01

While the average local order parameters only increase 48 ﬁ/M&/\A&/\M—-—'ﬁ—
gradually on cooling, it is possible that there might be a more 4.4 Jw
abrupt increase in the order wfdividual domains, offset in 4.0 ﬁ/J\vvwWw 0.4
the bulk averaging by regions of low order. This would show __ 36 J\/\«/\M 0.46
up as an abrupt increase in the width of the distribution of X 32 J/\/\A/W 05
the local order parameters on cooling. To test this idea we 2 AN 0.6
have plotted the temperature dependence of the root mean = 28 ﬁﬂ/\w 07
square deviation/([W,(r;) —(W,(r;))]°) of the local hex- O 24 08
agonal order parameter far=1 and 2 in Fig. 12. We find 2.0 ﬁ/\J\/\A 0'9
only a continuous increase in the width of the distributions 16— '
on cooling, with no sign of any sudden increase in the bimo- 12 —/ e !
dal character of the structural distribution. 08 2

The hexatic correlation functior@(r), C,(r), andCy(r) 04 " 3
provide an explicit measure of the spatial extent of the ori- 0.0 5
entational correlation between local hexagonal environments 01 2345867809101112131415
as measured by the analogous hexatic order parameter. The r (o)

orientational correlation functions defined in E¢®. and(9)

are weighted by the translational correlations. To see the F|G. 13. The orientational correlation functi®®(r)/g(r), as
orientational correlations free of this bias, we have plottechefined in the text, calculated for GsI'* <5.0. For very short

the ratiosC(r)/g(r), C1(r)/g11(r), andCy,(r)/g,,(r) overa distances less than interparticle separations, the function is unde-
range of temperatures in Figs. 13, 14, and 15, respectively. Ifined and has been set equal to zero. For clarity, functions have
the mixtures we find that all hexatic correlation functionsbeen offset vertically by 0.4 units above the preceding curve.
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6.0 T T . Spontaneous melting and mixing provides a clear indication
56 [ ] of thermodynamic stability of the amorphous state. Snap-
5.2 T =01 shots of the time evolution of a representative runTat
4.8 W =0.7 are shown in Fig. 16. The initial configuration, with
44 W velocities taken from a disordered liquid at the same tem-
4.0 ﬁ/\vw 0.4 perature, began with a high pressi®é~15.7 for theT*
- 36 ﬁ/\«w 0.46 =0.7 run. The initial several hundred time steps of the run,
= 3.2 M 05 therefore, involve the mechanical equilibration of the pres-
=) ‘/\N/\N 0.6 sure toP* =13.5. As can be seen in Fig. 16, the crystalline
,:\ 2.8 ﬁA/\/\A, 0.7 configurations are eventually disrupted. The resulting amor-
= 24 phous state appears identical, in terms of the average struc-
O 20 ﬁAV\/\A 08 tural parameters and thermodynamical properties, to that ob-
1.6 ﬁ/\/\/\’v 0.9 tained by a quench to the same temperature from the high
1.2 ﬁ/\v\/V\ 1 temperature liquid. We find complete recovery of the amor-
0.8 2 phous state fol* =0.6. This melting and mixing is remark-
04 /o 3 able. Well below the freezing points of either crystal, we
0.0 5 have spontaneous melting driven solely by the entropy of

mixing. Work is done by this mixing as the density of the
system drops with the disordering by2% of the initial
density.

FIG. 14. The partial orientational correlation function FOr T*=<0.5, we observe no disordering of any kind from
C1(r)/gu(r) for the small particles, as defined in the text, calcu- the crystal-crystal simulations. This change in behavior is

lated for 0.k T* <5.0. For clarity, functions have been offset ver- quite distinct. Despite the long time required for the large
tically. particle crystal to dissolve completely &t =0.7, perme-

ation of some of the particles of both species across the in-
C. The fate of crystak+crystal configurations tercrystal boundaries is already observed for times less than
] o ) ) 10000r. This is also true for a lower temperature of
To conclude this examination of the 2D binary mixture’'s _ g g However. af* =0.5. the particles of the two crystal-
glass-forming credentials, we consider here the stability ofj,e phases in contact showed no tendency to move across
. . .
the amorphous state. FAr*=0.4 we find the disordered hqo interphase and to penetrate the solid phase of the other,
state to show no sign of ordering or demixing over timegyen on time scales about two orders of magnitude longer
intervals in excess of 1 ,. No sign of either instability has  han the time taken for the incoherent and intermediate scat-
been observed at any temperature. To try and separate thgkying functions of the disordered mixture at this temperature
modynamic from kinetic stability in the amorphous state, we;q decay to zergsee Fig. 1 The simulation run was stopped

have carried out a series of runs over a range of temperaturgs; — 56 000- for T* = 0.5 due to this absence of any sign of
which start from slabs of the two pure crystals in contact.mixing between the two particle species.

Clearly, forT* =0.6 the liquid state is thermodynamically
6.0 T T ' stable. The change in behavior&t=0.5 could be due to a

012345678 9101112131415
r(c,

5.6 rapid increase in relaxation times of the crystal with respect

52 to the relaxation time of the amorphous phase at this tem-

4.8 perature, or to the crystals becoming thermodynamically

4.4 stable. To see if we could observe crystal growthTét

4.0 =0.5 we stopped a melting run &t = 0.7 half way through
36 and quenched it down t&* =0.5. The remaining “chunk”
:51 3.2 of large particle crystal showed no signs of growing or melt-
o ing despite the run continuing for times 3 orders of magni-
,:\ 28 tude longer than the appropriate structural relaxation time
= 24 (7¢,2). We conclude that the kinetics of melting and freezing
O 20 slow down more quickly than the structural relaxation of the

16 “equilibrated” amorphous phase. This result means that, be-

1.2 low T* =0.6, these heterogeneous simulations can no longer

0.8 help us to identify the thermodynamically stable phase.

0.4

0.0 — 3 IV. INVESTIGATING THE PHASE DIAGRAM

01234586 (7 ? 9101112131415 A. Equation of state
r (o,

One advantage of studying systems with inverse power
FIG. 15. The partial orientational correlation function Potentials that has long been recognized is the inherent scal-
C,(r)/g(r) for the large particles, as defined in the text, calcu-ing of thermodynamic propertief28,29. All the reduced
lated for 0..T*<5.0. For clarity, functions have been offset ver- excess static properties depend on two independent variables
tically. only, which are chosen to be the number concentratipn
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FIG. 16. Time evolution of a crystal-mixing simulation®t =0.7 andP* = 13.5 for the equimolar binary mixture with, /o= 1.4. The
small and large particles are represented by the open and filled circles, respectively. The discs are not drawn to scale.

=N;/N (whereN=N;+N, andx,=1-Xx,), and a compos- for reasons outlined below. For the equimolar binary mixture
ite density-temperature variable= p* (T*) %" whered is  with o,/0,=1.4, aﬁz 1.48, ando,?=1.46. Although this

the dimension of the system,is the exponent in the poten- difference is small, the corresponding equations of state can
tial, and p* = Na‘l’/Vd is the reduced number density, with differ significantly in the precision in which they are able to
V4 the volume ind dimensions. The composite varialileis  fit the MD results as described below.

often referred to as a coupling constant. For the inverse From our MD data for the equimolar binary mixture in the

twelfth power potential of Eq(l) in 2D, I" is given by rangeT* =0.4 to 5 where equilibrium can be reached within
1/ the simulations, we fit an eighth degree polynomial to the
F=p*(T*) "%, (100 compressibility factorz=P*/(p*T*), as a function of '

using the effective diameter, in Eq. (12). The resulting
wherep* = Nai/A andA is the total area of the simulation polynomial is

box. In the treatment of binary mixtures of spherical par-
ticles, the equation of state of the mixture can be approxi-
mated quite well by an effective one component system of
particles with diametes, [19,29. The corresponding effec- —16.23890°2+27.9908T 5 — 16.86430" .
tive coupling constant for the 2D binary mixture is

Z,=1+1.77308 o+ 2.3624T'3+2.10798 3+ 7.6948T

+5.46998°8, (14)

Uez

=T (11

with the second and third coefficients being constrained to be
the exact second and third virial coefficients of a single com-
We have chosen the effective diameter to be ponent 2D system with this potential, as given by Broughton,
Gilmer, and Week$27]. If the effective diameterr, of Eq.

(13) is used instead, then the following polynomial, with the
second and third coefficients constrained as before, is ob-
tained:

g1

0'2=X10'§+X20'§, (12)

instead of the more commonly used diameter

Zpy=1+1.77306 o+ 2.36241'5— 4.34023 3+ 26.92186 ¢

O'éZZZ 2 XinO'iZj

=X302+ 2X X024 X505, (13 —4.9419%°8. (15)

—20.88440°>—3.4050T° S+ 17.58996"/
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FIG. 17. The main figure shows our MD results for the com-

pressibility factorZ=P*/(p* T*) of the equimolar binary mixture
with o, /01=1.4, as a function oF ., wherel’, is calculated using
the effective diameteo, of Eq. (12) (solid circles and o of Eq.
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effective diametew, of Eq. (12) and to represent the equa-
tion of state of the entire liquid and amorphous branch of the
effective one component system by the polynorZigl. The
success of Eq(12) over Eq.(13) may reflect the local de-
mixing which we find, particularly at low temperatures. The
effective diameter of Eq(13) corresponds to a random mix-
ing approximation.

We find that the polynomiaZ,, is able to fit the full
range of our simulated states for the equimolar mixture from
T*=5 (I';=0.6516) toT* =0.1 (',=1.6521). The continu-
ous variation of this equation of state indicates that there is
no phase transition, since such a transition would result in a
departure from this continuous curve.

We have tested the effective one component approxima-
tion for other 2D binary mixtures witlr,=1.2, 1.6, and 2,
either as a function of composition at fixed temperature, or as
a function of temperature at fixed composition, all at the
same constant pressure Bf =13.5[18]. For the binary
mixture of o,=1.4, we have also simulated states at a fixed
temperature ofl* =0.8 for compositions ranging from,
=0 to 0.9 in steps of 0.1. It is found that up te,/o;

(13) (open circles These two sets of data are fitted using the poly- = 1.6, binary mixtures that are not too concentrated with the

nomials Zy;, of Eq. (14) (solid line) and Z,, of Eg. (15 (dotted

larger particles, i.e., not too close #g=1, seem to obey

line), respectively. Also shown are our simulation results for thevery well the effective one component equation of state

monocomponent system of small particles,€1,0,=1) (aster-

given byZ,,. However, forx,—1, the compressibility fac-

iskg). The equation of state for the crystalline branch of the puretors for these diameter ratios tend to deviate away from the

liquid, as shown by the dashed line, is from Brough&ral. [27]
and is given by Eq(16). Note that for the pure systef,=1". The

liquid curve and approach the crystalline branch. The effec-
tive one component approximation breaks down dgr o

inset shows thaZ for the equimolar binary mixture can also be =2, even for a concentration of large particles as low as

expressed as a simple power & AT*® with A=19.4178 and

B=—-0.9311, as determined from the solid line which is a linear

regression through all the data points.

In Fig. 17 is plotted our MD results foZ for the equimolar
binary mixture as a function df ; using o, (solid circles

anda (open circleg and the corresponding polynomial fits

Z,; (solid line) and Z,, (dotted ling. Also shown are our

X,=0.1 atT*=1.

The equation of state for the single component crystal, as
shown by the dashed line in Fig. 17, is a polynomial fit from
Broughton and co-worker7] expressed as

Z=7+7.60602"°—1.24044"~®+0.64663 2. (16)

simulation results for the single component system of small

particles &;=1,0,=1) at the same pressuf®* =13.5. It

We find that this empirical function is able to fit our own

can be seen that the MD results for the binary mixture usingimulation results for the monocomponent cryses shown
o extend continuously below the freezing point of the singleby the asterisks in Fig. 3#ith an accuracy of greater than

component system which occurslat=1=0.986 as deter-
mined by Broughton and co-workef&7]. The polynomial

9%.
The freezing temperature of the single component system

Z,, is able to fit the entire liquid branch of the single com- Of small particles ¢;=1) at the constant pressure Bf
ponent system with a deviation of less than 2%. In fact,=13.5 has already been determined by Broughebral.
below T* =2, as the freezing transition is approached, thd 26,27 to be Tf,=0.95 which is why we have chosen to
accuracy ofZ,,; in fitting the MD data of the monocompo- perform our simulations at this pressure. The statd gt

nent system increases, becoming better than 99.6%" at

corresponds td';=0.986 and a compressibility factor of

= 1. With regards to the equimolar binary mixture, this poly-Z,=14.493. This agrees with our own simulation results

nomial Z,,; is able to fit the MD results down t®* =0.2
with a deviation of less than 0.3%.

The second polynomia, fits the results of the single
component liquid just as well agy; at high temperatures.
However, unlikeZ,,, for T* <2, Z,, tends to overestimate

which show a hysteresis region for the thermodynamic prop-
erties betweed* ~0.94 and 0.96. From the scaling proper-
ties of the softcore potentifiEgs.(10) and(11)], the freezing
temperature of the monocomponent system of large particles
(o,=1.4) at the same pressure Bf = 13.5, where the unit

the compressibility factor with deviations greater than 2%,0f length is still constrained at,=1, can be calculated by
and appears to depart further away from the single compcgquating the compressibility factor of this systeé) to Z,,
nent MD results as the freezing point is approached as showand by settingl',=T'(0,/04)?=T; at the freezing point.

in Fig. 17. For example, at*=1, Z,, overestimates the

The solution yields a freezing temperatureTgf,=1.70 for

compressibility factor of the monocomponent system bythe large particles, also in agreement with our simulation
more than 4.5%. For this reason, we have chosen to use thesults.
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B. The phase diagram component are extremely unlikely for any significant con-

Following the procedure by Broughtoet al. [27], the centration of the large particles due to the choice of particle
chemical potential of the binary mixture in the effective oneSiZeS: This, of course, was the very purpose of choosing the

component framework . relative to that of the ideal gas ratio 1:1.4. As a consequence, we c.hoos'e a single component
and excluding the ideal mixing term is given by hexagonal crystal as the small particle-rich ordered phase.

The ordered phase in the large particle-rich part of the
Fe| 1 &[(Zpl—l)l“é]] phase diagram offers more possibilities. Our simulations
,BA,uL=f —————dI', (170  suggest that number ratios up to 0.1 of small particles might
Le al'g be accommodated within a substitutionally disordered hex-
agonal crystal of large particles. Xu and Bd@4], using a
density functionalDF) theory, have found that a binary al-
loy of hard discs with a diameter ratio of 1.176 can freeze
into a substitutionally disordered crystal with no sign of a
eutectic phase. We have found a similar result in simulations

where 8=1/(kgT). Substituting Eq(14) into the above and
performing the integration gives

BA pe=3.5461T .+ 3.54361'2+2.81064'2+9.61859"2

—10.48668 %+ 32.6560T°—19.27348 of the soft disc mixture with a diameter ratio of 1(Zhis
€ € ¢ result, we note, is in contradiction to the recent calculations
+6.15373°8. (180  of Wheatley[32].) Deng et al. [3] also observe a freezing

transition in an equimolar mixture with a diameter ratio of
In order to calculate the chemical potential relative to that of1.244. They find that a supercooled liquid can be obtained
the ideal gas for the individual components in the liquidwith a sufficiently fast temperature quench.
mixture, Au , Where a=1,2, we assume that, since the  With no other calculations of crystal free energies in 2D
equation of stat&, for the effective one component system mixtures with a glass-forming diameter ratio, we turn to data
fits the temperature dependence of the compressibility factasn spheres for some indication of the ordered large particle-
for the binary mixture witho, /o, =1.4 very well, the Gibbs rich phase in a glass-forming mixture. The phase diagrams of

free energyG, of this mixture can be written as binary hard sphere mixtures have been determined by
. ox . Kranendonk and Frenk¢B3] via Monte Carlo simulations
GL(Ng, N2, T*,P*)=Ge(N, T*, Pgy) for diameter ratios in the range<lo,/o;<1.176. As soft

sphere mixtures with a diameter ratio of 1dd appear to
form glasse$34,35, the phase diagram for the diameter ra-
whereG, is the free energy of the effective one componenttio of 1.176 for the spheres is r_ele_vant. Th_e ordered phases in
liquid andP,= P* (7o /0,)? is the reduced pressure for this the 1.176 systerf833] are substitutionally disordered crystals

. " o
effective liquid in units ofaé/e. The chemical potential of which extend over compositional ranges of 10 and % in

. . e . : . the minority species for the large and small-rich regions,
the small particles in the liquid mixture is then given by respectivelgll. Upsing 2 DE theorygDenton and Ashcfeg]

have investigated the relative stabilities of various crystalline

+ B Y% Inx;+%X,InX,), (19)

ﬂAMu:B% structures in coexistence with the equimolar composition of
1 binary hard sphere mixtures for large size ratios. They con-
9G aN 9G op* clude that foro,/01>1.31 the miscibility gap between the
— gt % pr eff e N X1 small and large spheres becomes so great that a mechanically
IN |7 et dNy T P, e O stable substituted solid is no longer possible and that the

most stable structure is the single component face centered
cubic crystal. Taking these results, along with our own, into
+Inx, consideration, we conclude that a substitutionally disordered
crystal is probably stable for small concentrations of small
o2 Ug particles. As the solubility of small particles in the large
5 ) +InXy, (20) particle crystal is expected to be small, however, we believe
Oe that the pure hexagonal crystal of large particles will provide
a reasonable approximation of the coexistence temperature
where Gt/ IPsln, 1+ = Ver=V* (d1/0¢)* and V* is the  for crystal and liquid mixture. The coexistence lines calcu-
area of the simulation box in units aff. Similarly, the lated using the pure crystals can be considered as lower
chemical potential for the large particles in the mixture isbounds on the correct value. If more stable two component
given by crystals exist, these will freeze at higher temperatures.
For the single component crystal, the chemical potential
o5—o? relative to that of the ideal gas and corresponding to the
BApL2=BApenTZx > | tInxs. (21)  equation of stateZ, in Eq. (16), is derived by Broughton
Te et al.[27] to be

To construct the phase diagram, we must first decide upon _ 6 _6
the composition and structure of the crystal phases. We have PAwms1=9.9105¢6 InT'+8.873697°—1.03370
chosen to use single component hexagonal crystals for both +0.5927484 ~12 (22
ordered phases. Our reasons are as follows. Substitutionally
disordered crystals with the large particles as the minoritywherel is defined in Eq(10). The corresponding expression

_0.3

g
=LA pesit BV*P* XZ( : 2

Te

= BA pes+ ZX;
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- _1701-846 A where T3 =0.54 is the eutectic temperature. This depth,
e e L ] which is equal to 0.43, exceeds those of real binary alloy

L systems such as Ge-S.&0.061), Ge-Zn §.=0.061),

] Ni-P (6,=0.093), and Cd-Bi §,=0.32), but is shallower
than the very deep Au-Si eutectic poiri.& 0.66) [38]. The
presence of a deep eutectic in the 2D softcore mixture with

- 1.0 . *T*. =095 purely repulsiveinteractions is particularly striking in light
'lQ“e""“ " of the general consensi89—47 that substantial freezing
08 | . . . . . . .
L+S, point depressions require largetractive interactions be-
06 [ N tweenunlike species, as is the case for the real binary alloys
__________________ Qo T e o - - . . . .
9 mentioned above. The explanation for the deep eutectics in
04t ‘8’ the mixtures of purely repulsive particlésard spheres show
02| o S,+8, b similarly large freezing point depressiofg3]) may lie in the
o relatively small values ofAH;, the enthalpy of fusion, in
0000 01 02 03 04 05 06 07 08 09 10 these systems. For small concentratidnef solute, immis-
X, cible in the crystal phase of the major species, the freezing

point depression is given 4y3]
FIG. 18. The approximate phase diagram for the binary soft disc

mixture with o,/0,=1.4 for a fixed pressure dP* =13.5. The 5T~(T2/AH )(1—X) (24)
symbolsL, S,;, andS, represent the liquid mixture, and the small f f

and large particle crystals, respectively. The freezing temperatures . . .
of the single component systeriT§ ; and T#,, are shown by the and a small value ah H; will result in the entropy of mixing

asterisks. The solid lines are the coexistence curves calculated usirq?mg dominant with a resulting large freezing point depres-
Egs. (20) to (22) by assuming that only one or the other of the sion. . . . . .
monocomponent solids is in equilibrium with the liquid mixture at 1€ mutual disruption of crystalline order which gives
the coexistence temperatures. The eutectic point is given by thES€ to the eutectic point also has consequences for the dy-
intersection of the two coexistence curves. It occurs at a composfamics in the liquid phase in 2D, well above the eutectic
tion of x,=0.75 and a temperature & =0.54. The error bars are temperature. We have observétl8,44 in simulations at
the temperature intervals where a discontinuous change is observdd =1.0 that by adding large solute particles,&1.4) to
in the temperature dependence of thermodynamic properties in tH&ie pure solvent of small particles, the self-diffusion con-
MD simulations at low solute concentrations. Also shown are thestants of both the small and large particles increase, reaching
temperatures at which the simulated states of the quenched equima- maximum atx;~0.7-0.8 and decreasing from then on-
lar binary mixture forT* <1 arethermodynamicallysolid circle3 ~ wards asx, decreases. Enhanced diffusion at small solute
andkinetically (open circleg stable as determined from the crystal- concentrations has been directly linkigdf] with the disrup-
mixing simulations described in Sec. Il C. tion of the local solvent structure about the larger solute par-
for the chemical potential of the large particle crystallinet'de.s' The decrease in the (.jlffu.smn constants of both species
phaseBA us, is obtained by replacing in the above equa- at higher solute concentration is the resu_lt_ of solute_cluster-
tion with T,=T (/1) ing [1_8]. The coincidence of t_he composmon at which the
Thermodynamic equilibrium requires  thaiBA u, , diffusion constants reach their maximum with that of the

= BA ug along the coexistence line on the langeside, and eutecti.c point are, we suggest, manifestations of the same

BAu, o= BAus, on the largex, side. The intersection of local disruption of strgcture. We are unaware of any previous

these two coexistence lines denotes the eutectic point for thi€POrts on a connection between solute enhanced dynamics

phase diagram as shown in Fig. 18. The eutectic point occudd freezing point suppression.

at x;~0.75 andT* ~0.54. The presence of the eutectic is At a composition ok=0.5, we predict that the large par-

consistent with the hard disc mixture DF calculations of Xuticles should freeze at* =0.7 (see Fig. 18 while we find in

and Baus[31] who observe a trend from spindle- to the simulations starting from the two pure crystals that both

azeotrope- to eutectic-type phase diagrams as the diametenystals melt aff* =0.6. This difference could be accounted

ratio increases. It is interesting that the hard sphere mixturefor as a consequence of the constraint of fixed numbers of

[33,36 show a similar trend in phases occurring at approxi-particles. Coexistence at* =0.7 requires the large particle

mately the same diameter ratios. Recent simulations byrystal to be in contact with an equimolar liquid mixture. The

Speed)[37] for the binary hard disc mixture with a diameter production of this mixture exhausts our supply of large par-

ratio of 1.4 suggest that this system also exhibits a eutectigicles. As we lower the temperature we also decrease the
_ The considerable depth of the eutectic, central to the stasoncentration of large particles needed in the liquid phase.

bility of the glasgy state, is something of a surprise in light of o effect of the fixed values &8, andN, is to lower the

the almost continuous character of the one component fréezg.y o transition temperature so that 6t =0.6 the liquid

ing transition. The magnitudé, of the freezing point de- mixture is the equilibrium phase.

pression at the eutectic point can be defined in terms of the In the phase diagram of Fig. 18 we also show, by way of

lower of the freezing points of the pure componefits., error bars, the temperature ranges at low solute concentra
* H i : ) -
Tt the freezing point of the small particles tions corresponding t®;=0.05, 0.1, and 0.95 where a dis-
* T continuous change is observed in the temperature depen-
f,1 e . . .
= (23 dence of average thermodynamic properties measured in our

e
f1 MD simulations. These results suggest a first-order phase
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2.990 — T T T erage potential energy departs from the high temperature ex-
o Slow quench trapolation as the system is no longer able to relax
* Fast quench K completely within the simulation run. This departure to a
2980 1 Instantaneous quench ﬁ'/ 1 smaller slope at the very lowest temperatures is also mirrored
in E*, H*, and p*, and gives rise to rounded steps in the
2970 | ¥ ] first order temperature derivatives of these properties as de-
£ é/ scribed later below. If the computer glass transition tempera-
L ture T; is defined to be the temperature at which the high-
2.960 ,é/ 1 and low-temperature extrapolated lines intersect, tfﬁgn
Q/P’ =0.35. This change in slope of the thermodynamic averages
4 o in the vicinity of T; is not, however, reflected in the com-
2950 , a & F 1 g > : ;
. 4 pr'eSS|b|I|ty factorz yvh|ch'var|es smooth'ly and continuously
x K with "¢ through this region as shown in Fig. 17. We have
2940 [ ° © i found that, within the range 0T* <5.0, the compressibil-
0.0 01 0.2 0.3 04 05 06 0.7 0.8 09 1.0 1.1 ity factor can be approximated very well by a simple power
T law (see Fig. 1Y
FIG. 19. The temperature dependence of the potential energy Z=AT* B, (25)

per particleU* of the equimolar binary mixtured,/o,=1.4) for
three different cooling rates as described in Sec. V B. The MD dat%vh _ _

reA=19.4178 andBB=
for the slow quench is also listed in Table I. The dashed line is 3 ere 9 8 ands
linear regression through the results for the slow quench in th
temperature range O4T* <1 where the system is able to reach
equilibrium.

—0.9311. This apparent continu-

ty between liquid and glass has been questioned recently by
PSpeed;[45] in a careful study of the hard sphere glass. Note
that the power law above is slightly less accurate than the
polynomial Z,; of Eg. (14) in fitting the MD data for the

transition from the dilute liquid mixture to a substitutionally binary mixture. The power law deviates from the MD results

i * *
disordered solid. A change in the temperature dependence 8?" less thaﬂ _3% in the range &1~ <5, where?s ar
the thermodynamic properties is observed fgr-0.1. As O+ andT* =5, the deviation is 6.7 and 7.5%, respec-
the number of small solute particles increase, we can ngvely.
longer detect the abrupt changes in average density and po-
tential energy which mark the freezing transition. As the B. Dependence on thermal history

concentration of small particles apprqaches 50% it seems T4 establish the dependence of the thermodynamic prop-
reasonable to regard the polycrystalline character of th@ties on the quench rate, we have investigated the tempera-
ground state obtained a&=0.9 as continuously transform- ,re dependence of the thermodynamic properties at two
ing into the amorphous ground state in which the extent ofigher cooling rates. The first, which we term dostanta-

any ordered domain is suppressed to a size similar to thﬁeousquench, was performed by always starting at a same

liquid equilibrium correlation length. equilibrium configuration aff* =5 and changing the tem-
perature of the system at the very first time step to the final
V. PROPERTIES OF THE AMORPHOUS PHASE desired temperature in the rangé <[0.1,1]. The system

was then allowed to equilibrate for 5@&nd thermodynamic
averages calculated over the next 25Bor the second cool-

The thermodynamic averages for the potential energy peing program, which we call thiastquench, the starting con-
particleU* =U/(Ne¢), energy per particl&* =E/(Ne), en-  figuration was the final configuration @t =1 from the in-
thalpy per particleH* =H/(Ne¢), and number density*, are  stantaneous quench. The system was then cooled in steps of
summarized in Table | for the range of temperatures invesAT* =0.1 down toT* =0.1, with an equilibration time of
tigated. Also tabulated are the compressibility facfothe 507 and a production run of 150at each step. In this cool-
effective coupling constart, defined in Eq(11), as well as  ing sequence, the initial configuration for each temperature
the root mean squargms) deviations of the instantaneous step came from the final configuration of the directly preced-
thermodynamic properties from their averages, calculated a@sg higher-temperature run.

V(p?) —(p)? wherep is the property of interest and the an-  The temperature dependenceldt for both the fast and
gular brackets denote an average over time. The rms devi#stantaneous quench are shown as asterisks and triangles,
tions are, of course, system-size dependent, increasing witlespectively, in Fig. 19, in comparison with our previous
decreasing number of particles. The results in Table | are foslow quench results that are listed in Table | and shown as
N=1024. We have also investigated a smaller systerd of circles in Fig. 19. We find that the higher the cooling rate,
=512 and find that the average thermodynamic propertiethe earlier the departure &f* from the equilibrium liquid

are equal to those of the larger system within statistical errofine and the higher the glass transition temperafjje de-

The potential energy per particlé* is plotted as open fined as the intersection temperature of the extrapolated lig-
circles in Fig. 19 for 0.£T*<1. For 1<T*<5, U* in- uid and glass lines. The glass transition region is also much
creases with decreasing slope 8% increases. However, broader for the instantaneous quench compared with the
within the temperature range @&4&* <1, U* varies ap- slow quench. Figure 19 also shows that the faster the cooling
proximately linearly with temperature. Fa* <0.3, the av- rate, the higher the potential energy of the quenched low-

A. Temperature dependence of the extensive properties
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temperature nonequilibrium states. ' ' '
P a ——o X, =0.5

A number of workers[46,47 have suggested that the
landscape of the potential energy surface over the configura-
tion space has a “top” to it which is the average energy of ST
the transition states between local minima. For temperatures o4 [
above the characteristic temperature of this top, relaxation
would occur without activation, while below this tempera-
ture dynamics becomes dominated by the local energyfp
minima. One way of exploring this general attribute of the
energy landscape is to study the outcomes of various g2}
guenches. Rapid quenchesTtb=0.0 from initial states pre-
pared afT* <0.3 end up in low-energy statd$nterestingly,

0.5

03 1

01 r

we find in these runs that the higher the initial ‘

temperature—in the range* <0.3—the lower the resulting { 00056 10 20 30 40 50
energy on quenchingFor T*=0.4, however, we find the 00f =% . ‘ T ‘ B
system typically quenches into a relatively high energy mini- 0.0 0.5 1.0 15 2.0 25 3.0
mum. This would suggest that the characteristic temperature T

of the landscape tofor, at least, an energy above a signifi- i
cant number of transition staje# the 2D mixture isT* FIG. 20. The temperature dependence of the number fraction of
~0.35 defects f, for the equimolar X;=0.5) binary mixture with

o,/01=1.4 and for the monocomponent system of small particles
(xy=1). The error bars are twice the standard deviation about the
average data points. The results are averages over 1000 configura-
A discussion of the structure of a condensed phase intions during the production runs. The temperature dependence of
volves Separating the |0ng_|ived structural features fron‘ihe standard deVlathﬂmS) of the defect fraction for the equimolar
those transients associated with local oscillations. In the cagénary mixture is shown in the insert. Note the abrupt decrease in
of glassy states, we lack the simple broken Symmetriegqe amplitude of configurational fluctuations f&f <0.5.
which make the identification of the long-lived structure in
crystals or hexatics so simple. The topology of particle posi_\NI” bel referreq to as dgfects, although rea}ders should note
tions provides an alternative reduced description of a conthat this label is something of an anachronism, chosen so as
figuration while still allowing amorphous arrangements to bel® connect with ideas from single component systems only.
characterized and differentiated from one another. Glaser arfds We shall see, these “defects” are an integral part of the
Clark[48] have presented a thoughtful discussion of the variStable amorphous ground states and should be regarded on
ous ways such reduced descriptions can be obtained for a 2gflual footing with the hexagonal environments. Nearly all of
liquid. We have used the Voronoi polygon constructiag] the d.efects have coordination numbers of either 5 or 7, and,
similar to that used by Denet al.[3—6]. A Voronoi polygon V€Y mfrequgntly, 4 or 8. Atvery low temperatures, all of the
associated with any particle contains all points closest to that€ven-coordinated particles are large and all of the five-
particle than to any other particle. The edges of such a polycoordinated ones are small. _
gon are the perpendicular bisectors of the vectors joining the 1he temperature dependence of the fraction of defects,
central particle to its nearest neighbors and the number dfo=Np/N, whereNp is the total number of defects in the
these edges is equal to the number of geometric neighbo?é_’Stem’ is plotted in Fig. 20 and compar_ed with that for the
for the associated particle. While the Voronoi constructionSingle component system of small particles. For the pure
provides a well defined algorithm for determining the topol-!iquid, fp decreases substantially as the temperature drops
ogy of a given configuration, it does not necessarily accombelow Tf, and has values close to zero in the crystalline
plish as clean a separation of long-lived and transient strucsolid at the very lowest temperatures. On the other hand, for
tural fluctuations as we would wish. Specifically, a particle’sthe binary mixture, although there is a small decrease from
coordination number as determined by its Voronoi polygonfo=0.52 atT*=5 to fp=0.42 atT* =1, below T*=1f,
can sometimes undergo rapid changes due to thermal oscllemains approximately constant &~0.43. In contrast,
lations. AboveT* =0, then, we shall refer only to the gen- Denget al.[3,4] observe a significant reduction in the defect
eral trends in coordination numbers. concentration on cooling in a mixture of Lennard-Jones discs
We find that the average coordination number is 6 at alwith a diameter ratio of 1.244. Crystallization could be re-
temperatures without fluctuation, suggesting that this is agPonsible for the decrease in this latter case since the diam-
exact value rather than a statistical ofihis is not the case eter ratio is close to 1.2 for which it is not possible to prepare
if we use a cutoff distance taken from the first minimum of long-lived amorphous states in 2D.
the totalg(r) to determine the number of nearest neighbors, While the average value of the number of defects show
where small fluctuations about six average first nearedittle variation with temperature fof*<1, the root mean
neighbors are observed as shown in Figufta).y Several square fluctuation/(f 2)—(fp)?, as shown in the inset in
explanations of why the average coordination number in 20Fig. 20, exhibits a distinctive steplike increase as the tem-
should be exactly 6 are provided in Refd9-51]. The as- perature rises abovE* =0.5. This rather abrupt increase in
sumptions on which these arguments are based are presenfadtuations of the defect number coincides with similar fea-
in the Appendix. Local coordination numbers other than 6tures observed in the fluctuations of the enthalpy and vol-

C. Voronoi analysis of particle topologies
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FIG. 21. The final configuration of the equimolar binary mixture FIG. 22. The temperature dependence of the constant pressure

(oy/01=1.4) atT*=0.1, showing only the positions of the par- o . : . . .
ticles which are not six-coordinated as determined by the Voron0|Specmc heat capacitgp for the equimolar binary mixture with

. . . . o,/o0,=1.4 (O), and for the single component systems of small
analysis desgrlbed in Se.c. VvV C. At this temperatur.e, all of theseif) aéd Iarge( (A)) particles. For th?e pure Iiguidﬁ;* d?(/erges at the
defects consist of only five-coordinated small particles) (and ) P

- . freezing pointsT} ,=0.95 andT},=1.7, respectively, as shown by

- I les). . LT f.2 . .
seven-coordinated large particles) the “spikes” in the figure where the data points just above and
) ) ) ] below the freezing transitions have been connected. The inset
ume. Th|S connection W|" be explored N SeC. VE |atel’ be'showsc;(T*) for the binary mixture in more detail.
low.

As already noted, the defects at low temperatures consist

exclusively of equal numbers of sevenfold sites centered on ot =
large particles and fivefold sites centered on small particles. P
We find that these defects are strongly correlated spatially
with every sevenfold defect adjacent to at least one fivefold Ny =D . .
defect for T*<0.3. Most of the sevenfold sites have two where V" =Vo, ” is the area(volume in 20 in reduced

H * _ g% _ * * _\/* _ *
adjacent fivefold sites, a correlation which results in theun'ts’ and AH ._H. (1) <.H ) and AVF=V* (1) —(V*) .
dense network of defect chains throughout the sample, & re the fluctuations in the instantaneous enthalpy per particle

. ik " :
shown in Fig. 21. The relationship between these correla‘:’lmjdarea rgts.pecfll_\t/]ely, W'tﬁH g anl((:l <tv'> tt;]emg thedgver-
tions in the mixture and the melting models in 2D involving aged quantiies. The angular brackets In thé preceding equa-

- - : L tions denote an average over time. In E2f), the constant 1
Sslﬁcgi%n[\?zéﬂ or grain boundary54] unbinding is taken has to be added in order to correct for the lack of fluctuations

in the kinetic energy due to the constant temperature con-
, , _ , straint. In our MD simulations, the instantaneous thermody-
D. Fluctuations and the associated material properties namic properties were written out at regular short time inter-
The essential difference between the amorphous and theals, enabling us to calculate the first order thermodynamic
crystalline ground states lies in the very different kinds ofderivatives over a number of consecutive long time intervals.
low-temperature fluctuations each ground state supports. Ifhe results from the different time spans were then averaged
this section we look at the fluctuations in enthalpy, volume,and error estimates obtained.

ape  N(AV*AH*)

kB V*T*2 ’ (28)

and stress in the amorphous mixture. The results foIC§ are shown in Fig. 22 for the equimolar
_ B binary mixture(circles, as well as the monocomponent sys-
1. The heat capacity and related quantities tems of small(asterisk$ and large(triangles particles. For

In the isothermal-isobaric ensemble, the constant pressutBe single component systenSy diverges at the freezing
specific heat capacit€p=(dH/dT)p, the isothermal com- temperature, as shown by the “spikes” in Fig. 22. At the
pressibility k1= —V~(dV/dP);, and the thermal expan- lowest temperatures we have studied, the reduced heat ca-
sion coefficientap=V~1(dV/dT)p, can be calculated in re- Pacities per particle of the amorphous mixture equal those of

duced units from the following equatiofi5]: the single component _cryste}ls, i.e.,. 2.0, the yalue expected
for N classical harmonic oscillators in 2D. At high tempera-

tures, the heat capacities of the mixture and single compo-

« Cp N(AH*2> nent mixtures again converge. Eventually, they must all
CP_N_kB_ TJFL (26) reach the same ideal gas heat capacity per partc® in
these units It is in the temperatures between these limits
that the supercooled mixture reveals the signature of its par-
kre  (AV* 2> ticular fluctuations.
Ky =—F = (27 For the binary mixture, th€} curve, as shown in more

op  V*T* detail in the inset of Fig. 22, consists of a highly asymmetric
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peak with height~2.44 at T*=0.55+0.05, roughly the 0.005
same temperature at which therelaxation step first appears 0.004
in the coherent and intermediate scattering functions. The

abrupt decrease in the heat capacity below the peak tempera- x
ture is generally attributed to the freezing out of modes as the 0.002
system falls out of equilibrium. There is certainly clear evi-

0.003

dence of failure to equilibrate fofr* <0.35(see Fig. 1 The 0.001
decrease ilC§ betweenT* =0.55 and 0.4, however, occurs 0.000, 5
at temperatures for which we believe that the amorphous 0.07
mixture is properly equilibrated. We conclude that the peak

is an equilibrium feature and that the temperature at which it 0.06
occurs reflects a characteristic temperafiite=0.35 of the o

thermal fluctuations out of the amorphous ground state.
Can we identify the specific fluctuations which give rise
to the main features o€} for the mixture? While the details

0.05

0.04 L L L L L L

of the shape of the peak @% cannot be resolved, the sharp 0.0 0.5 1.0 1.5 20 25 3.0
drop belowT* =0.5 is substantial. We can resolve the fluc- ™

- . . -
tuatlon_sl in the er;lthalpy-! into tlhe Cofrl\trlbutlc_ms duedtoh FIG. 23. The temperature dependences of the isothermal com-
potential energy fluctuations, volume fluctuations, and t Ef)ressibility «¥ and the thermal expansion coefficiemf for the

cross term as follows: equimolar binary mixture withr,/o1=1.4.

N(AH*") tity to b d, instead, by the load-bearing domains of
=—5 y 10 be governe ,|nStea , yt € loaa-pearing domains o

T high local rigidity. In our model of fluctuations, it is the
additional volume change of the anharmonic regions which
provides the sustained exce3§ at higher temperatures. The
steady decrease with increasing temperature can be put down
to the general decrease in the vibrational contribution with
(29 decreasing density. The increase in large amplitude motions
associated with such anharmonicities would also account for
At T*=0.5, the contributions t€; from the first, second, the increase in the defect number fluctuations abdve
and third terms in the equation above are 0.030, 0.34, ane:0.5 as shown in Fig. 20. The proposal that the discreteness
1.06, respectively. At all temperatures, the volume term ignherent in dense random packings can give rise to an “en-
approximately 3 times greater than the cross term which inhalpy gap” in a classical system warrants further study.
turn is one order of magnitude greater than the contribution |t is interesting to reflect on what “heat capacity” means
from the fluctuations in the potential energy. The dominancen the unequilibrated glassy states for which relaxation is no
of the component due to the volume fluctuations in the healonger observed. The heat capacity at constant pressure can
capacity peak is consistent with the importance of packinge defined in two ways: in terms of the enthalpy fluctuations
effects in this essentially steric model systdfhseems rea- as in Eq.(26), and as the temperature derivative of the aver-
sonable to speculate that the low-temperature heat capacifige enthalpy. In a system at equilibrium the two definitions
of weakly interacting particles, i.e., “fragile” liquids, will are equivalent but what happens in the glassy states? We
generally be dominated by density fluctuations. have compared the two formulas f6% calculated over the
The step inCy requires that there be some sort of en-entire temperature range studied. Due to the finite number of
thalpy gap separating the ground state and the lowest “excidata points, we are not able to accurately calculate the de-
tation.” The following simple model can account for this rivative d(H*)/dT* at a given temperature, but we can es-
feature in a physically consistent fashion. With increasingimate this quantity by the finite difference slopéi*/AT*
thermal energy, the particle oscillations in the amorphousyithin a small temperature interval about the temperature of
ground state will eventually develop anharmonic characterinterest. This approximate derivative of the enthalpy is com-
We shall assume that this anharmonicity occurs at localize@ared with the value of the heat capacity from the fluctuation
regions and requires a configurational rearrangement involMformula for a range of temperatures in Table Il. The two
ing a minimum volume increase. This minimal volume estimates ofC} are found to agree quite well over all tem-
changesV arises from the discreteness inherent in packingyeratures. The sloptH*/AT* also passes through a maxi-
and provides, in the form of the 6V term, an “excitation”  mum atT* ~0.55, although the height of this peak is slightly
enthalpy. These excitations, by virtue of their anharmonitigher than that calculated from E¢(R6). This unexpected
character, would be expected to contribute an enhanced eyersistence of equilibrium relationships into nonequilibrium
pansivity. This is consistent with the jump i , the ther-  states has also been noted by Evanal.[56] in an interest-
mal expansivity(see Fig. 2Bwhich occurs at the same tem- ing recent study of the configurational temperature. The sim-
perature as the jump i85 . The absence of any such feature plest rationalization of this result is that both measure€ pf
in the isothermal compressibility , also shown in Fig. 23, reflect the dynamically accessible space of enthalpy fluctua-
may reflect the relative insignificance of the local anharmotions and are dominated by the fastest fluctuations which
nicities on the compressibility. One would expect this quan+emain equilibrated at all™*.

C*

* *2

(AU*AV*)+ (AV*?).

N 2. 2NP
(AU )+

T T*" T*"
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TABLE II. The constant pressure specific heat capa@fy for the 2D binary mixture at various tem-
peratures calculated froi) the slope of the average enthalpy over a temperature interval befifeand
T3 and(ii) the fluctuations in the enthalpy. The average enthalpy per paktitléor a range of temperatures
is given in Table I.

™ T T2 dH* (%) H*(T$)—H*(T5) N(AH*)
CH(T)= CHT)=—— 7 +1
T ) ™
3 2 5 2.12 2.12
1 0.9 2 2.30 2.33
0.7 0.6 0.8 2.41 2.38
0.6 0.55 0.7 2.43 2.42
0.55 0.5 0.6 2.53 2.44
0.5 0.46 0.55 2.51 2.43
0.4 0.35 0.46 2.44 2.36
0.35 0.3 0.4 2.16 2.17
0.2 0.1 0.3 2.07 2.08

2. The high frequency shear modulus and stress fluctuations  amorphous ground state which cannot be “annealed” out
£xcept by crystallization(3) The sites of high compression,

oy, andoy, , tend to form extended “backbones” along the

crystalline one on éocal level? Discussion of the absence of d)_/y X . :
X and y directions, respectively. High shear stress, on the

global order in the former, for example, is irrelevant here. | S ; . .
is the differences in local properties that can be directly re—Other hand, is distributed in local pockets without any obvi-

lated to differences in particle mobility on heating. One sig—Ous correlation(4) We have been unable to find any corre-

nificant difference in the two types of stable ground state is!atlon between local relaxation times and local stress. Deng

O _ . t al. hav rv imilar str heterogeneity in a 2D
the distribution of local stress. The contribution of particle et al. [5] have observed similar stress heterogeneity in &

. inal f . h £ th mixture, along with spatial fluctuations in volume and en-
In @ single configuration to the component, of the Stress 4,y These authors provide an interesting discussion of the
tensor @B standing forxx, yy, or xy) can be calculated as

role of these fluctuations in the response of the 2D glass to a

In what ways do an amorphous ground state differ from

follows [57]: shear strairi6].
N The infinite frequency shear modul@s, is related to the
1 piupig 1 _ fluctuating shear stress by
Tapi)= G| ="+ 5 2 TiaFijs|, @ B=xory,
i I#i 012 e ‘

(30 % 0.10 - (a)x,=0.5 8
wherem,; is the atomic mass of particie p;,, andp;z are § 0.08 ]
the & and 8 components of the momentum of particle;; , 5 006 1
is the @ component of the vector joining particlésand j, § 0.04 - ]
Fijg is the 8 component of the force exerted on particley g 0.02 1
particlej, andV is the volume of the system. Note thatina ™ o0.00 ——

87 65-432-10123465678
10000,

0.12 ; . . .

010 - (b)x, =1

0.08 - 1

2D systemoy,,=oyy.

In Fig. 24, we present the distribution of contributions per
particle to the reduced shear stres§,(=oxya§/e) of an
amorphous mixture and a single component crystal, both atg
zero temperature. Note the substantial increase in the distri-§
bution width of shear stress in the amorphous ground states 0.06 | 1
over that of the crystal. The distributions of local compres- 0.04 1
sion (ot oy,)/2 for the two different systems are pre- 0.02 - 1
sented in Fig. 25. Again the difference in width of the dis- 0.00 — o5 50 YT e 5 54
tributions is substantial. Our observations concerning the ’ ’  10006* ’ '
stress heterogeneities of the glassy configurations are as fol- X
lows. (1) The stress distribution is very broad. Results from FIG. 24. The distribution of local shear stras,, as defined in

simulations of metallic alloy$58] and fused silicd59] in-  gq (30), for states of théa) equimolar binary mixture antb) the
dicate that a substantial number of atoms can be under sheghgle component crystal of small particlesTt=0. For the binary

stress which exceeds the yield stress of the material. Wgyixture, the state aT* =0 was obtained by quenching the final
have not yet established the yield stress of the amorphous 2nfiguration of the slow run a* =0.1. The vertical axes denote
mixture. (2) While the width of the stress distributions de- the fraction of particles with local shear stress lying betwegp
creases somewhat with lower cooling rates, the heterogeneity A/2<o% (i) <o}, +A/2. Observe, from the difference in the

is an unavoidable consequence of the disorder. The stressales of the horizontal axes, that the width of the distribution is
distribution, in other words, is an inherent property of themuch broader in the amorphous state compared to the pure crystal.

rticles

fraction
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, 008 . ' . ' . or structure over this temperature interval which could ac-
2 0.06 (@) x,=05 count for the large increase. In fact, this increase is an arti-
-l ] fact, arising from the assumption in E1) that the mean
Z 004 - i shear stress is zero. While always true for the equilibrium
c liquid, this condition breaks down once relaxation is too
-% 0.02 - 8 slow to permit equilibration. The true shear modulus, cor-
£ 0.00 , o rected for the frozen-in stresﬁ;ﬁEGi—V*(a:y(O))Z/
o 5 10 15 20 25 T*, is plotted in the inset of Fig. 26. Now we find the large
1000(c,;, + o, )/2 increase in the shear modulus at low temperatures has been
» 012 . replaced by a decrease. Dyeeal. [60] have proposed that
2 o10f (b)x,=1 ] the non-Arrhenius temperature dependence of relaxation in a
T o0s | i supercooled liquid arises from the temperature dependent in-
,g' 006 | ] crease in the infinite frequency shear modulus upon cooling.
S 0.04 | ] In the case of the 2D mixture, we find a non-Arrhenius tem-
‘§ 002 | 1 perature dependence for the relaxation tifRgy. 2) without
= 0,00 any such increase i6% .
13.182 13.183 13.184 13.185
1000(o,;, + 0, )/2 E. Approaching the ground state: Phase transition
FIG. 25. The distribution of the local compressiom}( or continuous arrest?

+ay,)/2 for the amo_rphous binary mixFure and tr_le pure cry_stalline Do the elementary fluctuations of the amorphous ground
state atT*=0. Again observe the difference in the horizontal gate described in relation @, interact sufficiently with one
scales. another to result in a phase transition between an amorphous
ground state and the relaxing liquid? There is, of course, a
G :L@T (0)0(0)) considerable history of speculation concerning such a transi-
 kgT' Y AN tion [61]. In this section we consider how the mixture leaves
the ground state on heating and the connection between this
where picture and those associated with various transition models.
The possible thermodynamic transitions can be broadly
, differentiated in terms of what is regarded as the elementary
ny(o):i; oxy(l) att=0. (3D fluctuation: an ordered cluster or a structural defect. The
model of glass formation presented in REd] involves the
In the case of a harmonic solid,, = E, whereE is the shear former choice. Here, structural arrest is assumed to be the
modulus. The temperature dependenceGdi= Gxofle is  resultof the instabilin(or. near instability of the liquid with .
shown in Fig. 26. Note its constancy down 6 =0.4 in respect to crystal formation. The amorphous ground state is a
contrast to the increase in relaxation time of more than Jused and kinetically frustrated mass of crystalline nuclei.
orders of magnitude over that same temperature intéseal  (Other cluster models have been proposed which are consid-
Fig. 2. The rapid rise in the modulus at the lowest tempera_erably less explicit about the order parameters which define

tures is puzzling, given that there is little change in densitﬁhe cluster[30] and therefore less available for direct te_st—
ing.) In Sec. Il B 2 we noted the absence of any accessible

100 , - spinodal in the 2D mixture and, in the following section,

N

demonstrated the absence of extended orientational correla-
90 . tions in the low-temperature amorphous phase. This latter
observation does not necessarily preclude the existence of a
80 | ] cluster made up of orientationallyncorrelatedhexagonal
domaing9]. Elsewherd2] we have found only a weak cor-
70 ] relation between local relaxation time and local degree of
v 60 & ] hexagonal order. This bears out the gene_ral observation that
O hexagonal arrangements do not necessarily correspond to the
50 [ 1 most stable structure in a well dispersed mixture. While the
spinodal model quite rightly places emphasis on the role of
40 . stable packings, it neglects the possibility of rigidity arising
from configurations other than crystalline. The observation
30 1 of an extended and dense network of nonhexagonal environ-
ments, as shown in Fig. 21, points to rigidity appearing as a
2090 01 02 03 04 05 06 07 08 09 10 1 property of an entire configuration, not just clusters of hex-
T agonal sites.
FIG. 26. The infinite frequency shear modul@ , calculated The alternative picture is to start with the rigid amorphous

using Eq.(31), for the equimolar mixture over 0T*=<1.0. The  ground state and consider the fluctuations responsible for the
insert shows the temperature dependence of the shear modulus rhieat capacity peak and, ultimately, structural relaxation. The
nus the contribution from the mean shear stress as discussed in tdéslocation-unbinding transition of Kosterlitz and Thouless
text. (KT) [52] provides a well analyzed model of a transition



5740 DONNA N. PERERA AND PETER HARROWELL PRE 59

involving elementary structural fluctuatiofdefect$ abouta  mechanism similar to the grain boundary unbinding transi-
2D ground statghexagonal crystal Following our discus- tion proposed by Chui. The story is different in the equimo-
sion in Sec. V D 1, the role of defect is played by a locallar mixture for two reasons. First, the grain boundaries are
structural fluctuation associated with the appearance of arflréady dense af* =0 so, while there may be a transition
harmonic response. Whatever form this defect takes, it i&OM Pinned to mobile boundaries, there is no significant
unlikely to meet the key requirements of defects for the KTC@Nge in structure. Second, the defects are stabilized by
transition. In the case of the single component crystal dislolrOcal packing effects that owe little to the asymptotic elastic

. oo . interaction used in previous defect modédgee the Appen-
cation energy depends logarithmically on the system size dugy) "\yhile this short-range interaction differs significantly

to long-range strain fields. These defects interact via thesgom the long-range form typically assumed, we note that at
stain fields as well as through the renormalization of thehe high density of defects in the equimolar mixture, this
elastic moduli. The high density of grain boundaries in thegifference may not be significant. If the picture of a pinning
equimolar binary mixture would be expected to screen anyransition for nonthermal grain boundaries seems to be
strain field of the proposed anharmonic fluctuations, resultprogress, it should not. The “pinning” is self-imposédot
ing in defect energies mainly due to the core rather than theéhe result of a fixed external fieldind so is essentially the
extended field(For small diameter ratios, such as that usedsame problem as that of describing the self-arrest of particle
in Ref.[3], a smaller defect density is possible. In such casesmotions which we began with. What is more, this picture is
the asymptotic interaction may play an important rolthe  based on the assumption that the topological defects identi-
core energy depends on the local packing efficiency rathefied in Sec. V C are also the sites of the anharmonic excita-
than the effective elastic modulus. This would seem to rul&ions, i.e., that the mobility occurs at a defect line. The
out a collective transition of the KT kind. equivalent notion that hexagonal order denotes stability sim-
What is known about the transitions of disordered systemsply is not correct in the binary mixture where, for example,
in 2D is based entirely on the action of applied disorderingsixfold coordination of a large particle by small particles is a
fields. It is standard to suggest that slowly relaxing degreeguite “loose” configuration. Progress along this line of
of freedom be treated as the source of a disordered fieldhinking will depend on establishing a clearer structural pic-
While this approximation may shed some light on the re-ture of the important anharmonic fluctuations.
sponse of the faster degrees of freedom, they can tell us little
about the origin of the slow degrees of freedom themselves. VI. CONCLUSION
Nelson[25] has examined the role of long wavelength dis-
order, noting that it lowers the melting point with increasing  In this paper we have presented a study of the structural
amplitude of the disorder until, above a critical value of thisand thermodynamic properties of a simulated supercooled
parameter, translational order is no longer possible. This ea?D binary mixture. The mixture exhibits a metastable amor-
lier work leaves unanswered the description of the low-Phous phase with a relaxation time that increases rapidly
temperature state above this critical disorder. More recentlyyith decreasing temperature in the absence of any long-range
it has been establish¢f3,64] that an elastic solid undergoes structural correlations. These results, taken with the dynam-
a pinning transition in the presence of a disordered potentidfs of this same systefi2], establish the simulated 2D mix-
on cooling below some temperatui,. This transition, ture asa member of the class of fragile glass formers which
however, vanishes if the particles are permitted to relax theifncludes orthoterphenyl and salol. While questions may re-
topological connectivity63]. Inclusion of thermal disloca- Main concerning the relevance of either 2D or simulated
tions and pinning disordd65] appears to produce a “glassy models in general to the origin of slow dynamics in othgr
regime” in which the liquid ‘freezes’ into a state without specific glass-forming liquids, there is no question that this
long-range order. This transition also appears to vanish dhodel exhibits the full range of glass phenomenology and
high pinning strengths, again leaving the nature of the low.does so in a physically consistent fashion.
temperature disordered state above this critical pinning Here is a summary of the main results of this study.
strength unspecified. While it remains to be seen what rel- (1) The equimolar binary mixture shows no evidence of
evance, if any, these models have for the amorphous binat@ng-range order, either translational or orientational, over

mixture, they do appear to provide an example of a transitiothe entire temperature range studied. The average local hex-
between two disordered phases. agonal order increases continuously from the equilibrium lig-

One difficulty in the application of these pinning models uid to the arrested solid. Our results indicate considerable
to the 2D mixture is in the manner in which disorder is continuity between liquid and glass.
introduced. The mixture case would seem to be better de- (2) The phase diagram for the binary mixture with diam-
scribed by inclusion of a fixed concentration of local defectseter ratio of 1.4 has been calculated via thermodynamic in-
rather than an external field with long wavelength correlaiegration with the assumption of immiscibility in both or-
tions. The KT theory assumes that the energy of an isolateglered crystals. The most striking feature of this phase
dislocation(the “core” energy is large so that the transition diagram is the deep eutectic point a{=0.75 and T*
is dominated by the unbinding of a relatively small number=0.54. This depression of the coexistence temperature is
of defects. Saitd62], following up on a proposal by Chui quite substantial compared to the freezing temperafiifgs
[54], examined the consequences of a small core energy=0.95 andTf,=1.7 of the single component system of
Given the high concentration of inherent “defects” in the small (x,=1) and large particles, respectively. The presence
amorphous mixture, the binary system is closer to Saito’®f a deep eutectic in a system with only repulsive interac-
small core energy scenario. In the case of thermally excitedons indicates that a significant mismatch in particle sizes is
defects, this condition results in a first order transition, via asufficient to substantially depress the freezing transition
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without the need for large attractive interactions between unef particle packing. The abrupt increased is attributed to

like particles. The stability of the metastable liquid is under-the increase in configurational fluctuations associated with

scored by the presence of substantial local crystalline flucthese larger amplitude motions. This also accounts for the

tuations. increase in fluctuations in defect number. The sustained ex-
(3) Below T*~0.5, the enthalpy and density were found C€SS heat capacity at high temperatures is the result of the

to increase with increasing quench rate while above this tenincreased expansivitydue to the anharmonic excitations

perature, variation of the quench rate had little effect. This igvhich provides for enhanced density fluctuations over that

consistent with a rapid increase in relaxation times belowP0SSible in the crystal. _ _ _
T*=0.5. An alternative measure of the “top” of the energy . The reduced dlmensllonallty and its assouat_eq_reductlon
landscape, involving the minimum initial temperature necesin the space of fluctuations holds out the possibility of de-

sary to quench into high-energy minima, resulted in a Charyeloplng a satisfactory conceptual picture of the statistical

. . : correlations in this particular glass-forming liquid. This pic-
acteristic temperature of .0'35' These_ two values r_nl_ght ture must address the two basic issues concerning the static
be accounted for as reflecting the maximum and minimu

- . X rTbroperties of a supercooled liquid: the structure and stability

transition state energies, respect!}/gly. of the ground states, and the nature of the thermal fluctua-

(4) Local topological “defects,” in the form of nonhex- tjong that first take us beyond harmonic fluctuations about
agonal environments, are found to obey a number of nongych ground states. The progress made in assembling this
trivial constraints. These ar@) the equality in numbers of picture is outlined above. Here, we need to note the short-
fivefold and sevenfold sitegji) the near constancy of the fa|ls. We remain unable to identify any general structural
number of defects over the entire temperature range(iaghd  criteria associated with amorphous ground states. While pic-
the perfect “binding” of fivefold and sevenfold sitege.,  tures of crystalline clusters or pinned grain boundaries pro-
each fivefold site has at least one sevenfold neighbor angide reassuring rationalizations for structural arrest, their sig-
vice versa as the temperature approaches zero. The meagificance can only be understood within the framework
squared deviation in the number of defects was found tgyovided by these unknown criteria for stability and, hence,
increase abruptly af*~0.35, coinciding with a similar rigidity. It also remains unclear whether the anharmonic ex-
abrupt increase iCs . citations identified in this paper are associated with particular

(5) The zero-temperature configuratiofreferred to here types of local structure and, if so, what is the structural sig-
as the ground stakeexhibited a broad distribution of local nature of these “soft” spots?
shear and compressional stress as compared to that found inThis difficulty in establishing the structural features rel-
the single component crystal. It was argued that this inheremdvant to glass formation provides the motive for the study of
stress heterogeneity is an unavoidable feature of the amogynamic heterogeneities in recent yef2s8,17,66—7Q In
phous ground state, differentiating it qualitatively from the the absence of any substantial changes in structure on super-
crystal configuration. The mechanical and chemical consecooling, we are left with only the changes in dynamics, both
quences of this stress heterogeneity remain unexpl&®d the dramatic and the subtle, to provide the clues as to the
The high frequency shear modulus was found to be temperaharacter of the underlying stability. Kinetic inhomogeneities
ture independent in the range &4*<1.0. The apparent currently provide the only sure means of characterizing the
increase below* =0.4 is a consequence of a nonzero sheafluctuations involved in slow relaxation in the glass formers.
stress average, a consequence of structural arrest on thethis sense the glass transition invites an inversion of the
simulation time scale. normal conceptual approach in condensed matter problems.

(6) The heat capacity at constant pressure of the mixturgnstead of proceeding from structure to dynamics, we go
exhibits a highly asymmetric peak, similar in shape and magfrom dynamics to structure. The goal, of course, remains the
nitude toCp for fragile liquids. The heat capacity undergoes same; to establish the functional connection between the two.
a rapid rise with increasing temperaturerat~0.35, achiev-
ing a maximum value of 2.44 at* =0.55 and then gradually ACKNOWLEDGMENTS
decreasing, roughly linearly with temperature, all the way up
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includes thg accgpted nonequilibrium effect of “freezing APPENDIX
out” of configurational degrees of freedom, we argue that _ _
the initial drop in the heat capacity for Gs4r* <0.55 takes Here we present some discussion of two aspects of pack-

place in equilibrated samples. This implies the presence dfng in a binary mixture of hard discs relating to the number
an “entha|py gap” with a characteristic temperaturerf and correlation of the defects as described in Sec. V C.

~0.35. It is proposed that this gap corresponds to the mini-
mum volume increase required to allow a local configuration
access to anharmonic motion. The fact that this minimal vol- While this question has been discussed already in the lit-
ume change is not zero is a consequence of the discretenasature[49-51, important assumptions are sometimes left

1. Why is the average number of neighbors 6?
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unstated. A configuration of discs can be reduced to a tiling
of the plane using the following procedure. First, the neigh-
bors of each particle are established via a Voronoi construc-
tion as described in Sec. V C. Next, the centers of neighbor-
ing particles are joined by straight line@ Delaunay
construction. Each particle now replaced by a vertex of
these lines oedges The area enclosed by a set of edges is a
face The argument that the average number of edges per
vertex is 6 goes as follows. The key assumption is that the
faces are all triangular. This is the same as assuming that
every pair of neighbors of a particle that are adjacent to one
another are also neighbors of one anotfer, joined by an
edge. We are unaware of a proof of this proposal.

A relation, due to Eulef71], exists between the number
of verticesV, facesF, and edge&, FIG. 27. Packing of hard discs about a large disc indicating the

first, second, and third solvation shells as discussed in the Appen-
V—-E+F=2. (A1) dix.

Perhaps the easiest proof of this result can be found in Ref.
[71] in which it is shown that for a connected graph of edgessmall discs is, in turn, surrounded by six discs. The arrange-
and vertices the quantity —E+F is unchanged when an mentinvolves a high degree of heptagonal symmetry in both
edge is removed along with associated vertices necessary tioe first, second, and third shells of small partidlas shown
ensure the new graph is also connected. Eventually one rums Fig. 27). Perturb this symmetry and the probability of
out of edgeqi.e., E=0) and is left with a single face and a finding a fivefold site among the 1st shell particles quickly
single vertex(this is ensured by the connectivity conditjon rises. For example, if we push a third shell particle into con-
so thatV—-E+F=2. tact with a first shell particle while maintaining as regular a
The assumption of only triangular faces implies that packing as possible elsewhere we find roughly 76% of the
configurations(as counted by generating the topologically

2E=3F. (A2) distinct graphs arising due to this perturbajianclude a

Substituting this result into Euler's relation gives fivefold site about one of the members of the first shell.
Now add one large particle to either the first, second, or
3V=E+6. (A3)  third shell. It is still possible to pack the discs such that all of

. oo the first shell particles are sixfold coordinated. Add a second
As V (equal to the number of particlegoes to infinity(and, . R ;

: o ot ; large particle to the second shell. If it is in contact with the
acknowledging that in this limit each edge contributes to the

) . other “solvating” large disc then there will be a fivefold site
valency of two verticels we find that the average number of . X . . ;
. among the first shell particles. Assuming an equimolar mix-
edges per vertex is 6, as observed.

ture and neglecting compositional correlation, the probability
. . , . of therenot being two large particles in contact in the three
2. What is the origin of the strong sevenfold-fivefold pairing solvation shellsone of the large particles being in the sec-
observed in the amorphous ground state? ond shel) is 0.17. Factoring in the possibility of irregular
The most likely alternative to sevenfold-fivefold pairing packings as considered above and the probability of there
would be to have the seven neighbors of a large particle albeing at least one fivefold site among the seven discs sur-
finding themselves in sixfold sites. To explore the likelihoodrounding the central large particle drops to only 0.004. Av-
of this situation consider a large particle surrounded by onlyeraging over the possible compaositions of the three solvation
small particles. It is possible to arrange seven small harghells and we find the sevenfold-fivefold pairing becomes
discs (the first shell about a large one so that each of the effectively unavoidable under close-packing conditions.
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