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Tubular phase of self-avoiding anisotropic crystalline membranes

Mark Bowick* and Alex Travesset†

Physics Department, Syracuse University, Syracuse, New York 13244-1130
~Received 28 August 1998!

We analyze the tubular phase of self-avoiding anisotropic crystalline membranes. A careful analysis using
renormalization group arguments together with symmetry requirements motivates the simplest form of the
large-distance free energy describing fluctuations of tubular configurations. The non-self-avoiding limit of the
model is shown to be exactly solvable. For the full self-avoiding model we compute the critical exponents
using an« expansion about the upper critical embedding dimension for general internal dimensionD and
embedding dimensiond. We then exhibit various methods for reliably extrapolating to the physical point (D
52,d53). Our most accurate estimates aren50.62 for the Flory exponent andz50.80 for the roughness
exponent.@S1063-651X~99!04805-9#

PACS number~s!: 64.60.Fr, 05.40.2a, 82.65.Dp
m
te

t
e
llin
ita
he
n

th
a
t
x

th
a
p

o
-

on
ill
t t
s
im
a
ve
s-
p

la

ne

t
of

rical
in

his
era-

po-

ore
el
lar

by

is
ed

e.
is

first
of

i-
I. INTRODUCTION

The statistical mechanics of isotropic crystalline me
branes has been the subject of much work in the last
years@1,2#. In the absence ofself-avoidancethere is a finite-
temperaturecrumplingtransition from a low-temperature fla
~orientationally ordered! phase to a high-temperatur
crumpled phase. The novel flat phase of phantom crysta
membranes is by now quite well understood, both qual
tively and quantitatively. The effect of self-avoidance on t
phase diagram presents a much greater analytical and
merical challenge. While there is still some controversy,
bulk of evidence at present indicates that the crumpled ph
disappears. It is possible, however, that this is the resul
bending rigidity induced by next-to-nearest-neighbor e
cluded volume interactions.

Rather surprisingly, it has been shown@3# that anisotropy
has a remarkable effect on the global phase diagram of
class of membranes. For phantom membranes the flat
crumpled phases are isomorphic to those of the isotro
system~anisotropy is irrelevant in these phases! but there are
intermediate tubular phases in which the membrane is
dered in one extended direction~y! and crumpled in the re
maining transverse directions ('). Since self-avoidance is
less constraining for configurations that are crumpled in
direction only, it is very likely that the tubular phase w
survive in the more physical self-avoiding case, in contras
the situation for isotropic membranes. Besides their intrin
novelty, the study of membranes of this class may have
portant experimental and practical applications. First of
polymerized membranes with in-plane tilt order would ha
intrinsic anisotropy. In addition, polymerization in the pre
ence of an applied electric field should produce anisotro
membranes@4#.

The key critical exponents characterizing the tubu
phase are the size~or Flory! exponentn, giving the scaling
of the tubular diameterRg with the extendedLy and trans-
verseL' sizes of the membrane, and the roughness expo
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z associated with the growth of height fluctuationshrms ~see
Fig. 1!:

Rg~L' ,Ly!}L'
n SR~Ly /L'

z !,
~1!

hrms~L' ,Ly!}Ly
zSh~Ly /L'

z !.

HereSR andSh are scaling functions@3,5# andz5n/z is the
anisotropy exponent. In the phantom tubular phase~PTP! n
and z were computed in@3#, together with a self-consisten
determination of the anomalous elasticity. The existence
the tubular phase has also been confirmed by nume
simulations@6# and the critical exponents measured are
excellent agreement with the theoretical predictions. In t
paper we show that a careful analysis of the relevant op
tors in the free energy allows ana priori exact calculation of
the anomalous elasticity as well as the above critical ex
nents.

For self-avoiding membranes the model is much m
difficult to treat analytically. By adapting the Edwards mod
for self-avoiding membranes to the geometry of the tubu
phase, Radzihovsky and Toner@3# obtained a model free
energy to describe this system. This was further studied
Bowick and Guitter @7#, who utilized the multi-local-
operator-product expansion~MOPE! @8,9# to perform an«
[(dc

SA2d) expansion about the upper critical~embedding!
dimension dc

SA511. The phase diagram implied by th
analysis is shown in Fig. 2. Note the infrared stable fix
point @self-avoidance fixed point~SAFP!# with nonvanishing
self-avoidance couplingb associated with the tubular phas
Bowick and Guitter also showed that the bending rigidity
not renormalized and computed the critical exponents to
order in «. They noted, however, that the extrapolation

FIG. 1. A schematic illustration of a tubular configuration ind
cating the radius of gyrationRg and the height fluctuationshrms.
5659 ©1999 The American Physical Society
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5660 PRE 59MARK BOWICK AND ALEX TRAVESSET
these predictions to the physical tubule was not very rob
against higher-order perturbations.

Radzihovsky and Toner@5# have argued that the phas
diagram described above is actually more complicated~see
Fig. 3! for embedding dimensiond less than a critical value
d* , with d* .3. They argue that the physics belowd* is
controlled by a new fixed point@bending rigidity fixed point
~BRFP!# which is nonperturbative in«. This postulated fixed
point is quite distinct physically from the SAFP. In partic
lar, the bending rigidity picks up a nonzero anomalous ex
nent. Calculating critical exponents at the putative BR
would present the formidable challenge of a complete tre
ment of both self-avoidance and full nonlinear elastici
Reasonable estimates ofn may, however, be obtained withi
the Flory approximation.

In the present paper we begin with a careful analysis
the rotational symmetries of the tubular problem and th
realization within a Wilsonian renormalization group a
proach@10#. This constrains the possible operators that m
appear in the free energy and allows us to identify so
operators as definitely being irrelevant with respect to
broad category of fixed points. As a result of our analysis
can motivate the phase diagram Fig. 2, which follows fro
the free energy studied in@7#, with the incorporation of a
relevant operator involving in-plane phonon excitations. T
analysis of@5# assumes that nonlinear elasticity terms a
always irrelevant. It may therefore break down if new ter
in the free energy alter the renormalization group flow
While this may change the character of the fixed point abo
our analysis suggests that it is imperative to understand
SAFP in as much detail as possible. This is the focus of

FIG. 2. The phase diagram for self-avoiding anisotropic me
branes with the Gaussian fixed point~GFP!, the tubular phase fixed
point ~TPFP!, and the self-avoidance fixed point~SAFP!.

FIG. 3. The phase diagram for self-avoiding anisotropic me
branes with the Gaussian fixed point~GFP!, the tubular phase fixed
point ~TPFP!, the self-avoidance fixed point~SAFP!, and the bend-
ing rigidity fixed point ~BRFP!.
st

-
P
t-
.

f
ir

y
e
a
e

e
e
s
.
e,
he
e

present paper. Given the model we next turn to the ac
calculation of reliable critical exponents in the tubular pha
This is done by generalizing the calculation of@7# to mani-
folds of arbitrary internal dimensionD embedded in genera
dimensiond. We analyze a class of generalized« expansions
that allow us to determine an optimal path from the line«
50 to the physical point (D52,d53). Our most accurate
estimates are

n50.62,

z50.80. ~2!

Furthermore, we show that the critical exponents determi
in this method are extremely close to the Flory predictio
particularly ford.3. This may be regarded as strengtheni
the predictions of the otherwise uncontrolled Flory appro
mation.

The outline of our paper is as follows. The model is d
scribed in Sec. II along with an analysis of its symmetr
and their implementation in a Wilsonian renormalizati
group framework. This leads to a clarification of the glob
phase diagram and a proposal for the simplest free en
capturing the essential large-distance physics of the tub
phase. This is followed in Sec. III by a derivation of th
scaling relations connecting the fundamental critical ex
nents. The special case of the phantom tubule is treate
detail in Sec. IV. The full physical problem of the sel
avoiding tubule is tackled in Sec. V, where critical expone
are computed via a generalized« expansion. We also com
pute corrections to the Flory and Gaussian variational
proximations. A brief summary of our results is given in Se
VI. Finally, some technical details of the« expansion are left
to the Appendix.

II. MODEL

A membrane configuration may be characterized by g
ing the positionrW(x), in thed-dimensional embedding spac
of a point in the membrane labeled by aD-dimensional in-
ternal coordinatex. A physical membrane corresponds to t
cased53 andD52.

In @3,5# the most general Landau-Ginzburg-Wilson fr
energyF for this system is constructed by expandingF to
leading order in powers ofrW(x) and its gradients with respec
to internal spacex, taking into account global translation an
rotational invariance. We will consider the case in which t
membrane is isotropic inD21 membrane directions~de-
notedx') orthogonal to a distinguished directiony. The re-
sultant free energy is given by

F„rW~x!…5
1

2E dD21x'dyFk'~]'
2 rW !21ky~]y

2rW !2

1k'y]y
2rW•]'

2 rW1t'~]a
'rW !21ty~]yrW !2

1
u''

2
~]a

'rW•]b
'rW !21

uyy

2
~]yrW•]yrW !2

1u'y~]a
'rW•]yrW !21

v''

2
~]a

'rW•]a
'rW !2

-

-
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1v'y~]a
'rW !2~]yrW !2G

1
b

2E dDxE dDx8dd
„rW~x!2rW~x8!…, ~3!

where the parameters denote bending and elastic mo
Note the complexity of this model—it has 11 free para
eters. In mean field theory the non-self-avoiding limitb
50) yields a phase diagram with flat and crumpled pha
separated by a tubular phase@3#.

In this paper we will be mainly concerned with the tubu
phase~TP! beyond mean field theory. In this case we m
expandrW in the Monge representation:

rW~x!5„zyy1u~x!,hW ~x!…. ~4!

The free energy is now a function ofu and hW . Before sim-
plifying Eq. ~3! let us discuss the symmetries of the tubu
phase.

Since the free energy must be invariant under global
tations of the tubule it is expressible in terms of the compl
set of tubular rotationally invariant operators. These are

E~u,h!5]yu1
1

2
~]yhW !21

1

2
~]yu!2,

Fa~u,h!5]au1]yhW ]ahW 1]yu]au,

Fab~u,h!5]au]bu1]ahW ]bhW , ~5!

Gy~u,h!5~]y
2u!21~]y

2hW !2,

Gyab~u,h!5~]y
2u!~]abu!1]y

2hW ]abhW .

Indeed, Eq.~3! becomes

F~u,hW !5
1

2E dD21x'dyF2zy~ ty1uyyzy
2!E~u,h!

1kyzy
4Gy~u,h!1ky'Gya

a ~u,h!12uyyzy
4E2~u,h!

1~ t'1v'y!zy
2Fa

a1zy
4u'yFaFa

12v'yzy
2E~u,h!Fa

a1
u''

2
Fb

aFa
b1

v''

2
~Fa

a!2G
1

b

2E dD21x'dy dD21x'8 dy8dd21
„hW ~x' ,y!

2hW ~x'8 ,y8!…d„zy~y2y8!1u~x' ,y!2u~x'8 ,y8!….

~6!

Since we are interested in the critical properties of the f
energy Eq.~6!, we may simplify by dropping irrelevan
terms. Simple power counting around the Gaussian fi
point is usually enough to determine the relevancy of ope
tors but in this case the situation is more involved and
quires a careful analysis of the symmetries of the problem
which we turn now.
li.
-

s

r

-
e

e

d
-
-
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A. Wilson renormalization group in the tubular phase

We apply the renormalization group~RG! à la Wilson and
Kogut @10# to the free energy Eq.~6!. While this approach is
usually more involved for extracting actual numbers than
more conventional field theory approach@11#, it is more gen-
eral and allows an easier analysis of the irrelevant operat
key to deciding which terms to retain in the free energy. T
crucial point in Wilson RG is the RG transformation. This
a two-step procedure: theblockingand therescaling.

There is considerable freedom in the choice of blockin
We chose decimation in momentum space, where in orde
simplify the calculations an anisotropic spherical moment
regularization is assumed. The blocking just consists in in
grating over an anisotropic shell of thicknesse2 l ,l P@0,
1`). That is,

e2Fl ~u,hW !5E )
$uq'u,uqyu%PB

du~q' ,qy!dhW ~q' ,qy!e2F~u,h!.

~7!

The regionB consists of three sectors

B5H 1.uq'u.e2 l , e2zl.uqyu.0

1.uq'u.e2 l , 1.uqyu.e2zl

e2 l uq'u,0, 1.uqyu.e2zl

~8!

where the exponentz accounts for the anisotropy of the sy
tem. This blocking is very similar to the one used in@5#.

The rescaling is anisotropic as well and is given by

q'8 5elq' , h8~q8!5e2~D211z1n!lh~q!,

qy85ezlqy , u8~q8!5e2~D2112n!lu~q!, ~9!

wheren is the other exponent that appears in the theory.
The result of performing a renormalization group tran

formation up to timel is the Wilsonian free energy

Fl~u8,hW 8!, ~10!

where theu8 andhW 8 fields have the same range as the ori
nal ones. The free energy evaluated atl 50 is, by definition,
Eq. ~6!.

For future reference, let us work out the simplest fix
point in Eq.~6!, the Gaussian fixed point. Although this fixe
point is not of direct physical interest it plays a central role
many considerations~see Fig. 2!. This fixed point may be
studied by retaining only the quadratic terms in the free
ergy Eq. ~6!, and applying the RG transformation just d
fined. We easily get~hereafter dropping all primes in th
rescaling!

Fl5
1

2E dD21q̂'dq̂y@~e~D2123z12n!lkqy
4

1e~D231z12n!l tq'
2 !h~q!h~2q!

1~e~D2123z14n!lgyqy
2

1e~D232z14n!lg'q'
2 !u~2q!u~q!#. ~11!
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5662 PRE 59MARK BOWICK AND ALEX TRAVESSET
Imposing that the Gaussian fixed point is given by the ter
involving hW , the exponentsz andn are readily computed to
be

z5
1

2
, 2n5

5

2
2D ~12!

and the exponents for the operators associated with the
plings are uniquely determined. The Gaussian fixed poin
thusgy5g'50. The couplingg' defines an irrelevant direc
tion for D.3/2, with exponent32 2D, while gy defines a
relevant direction forD,5/2, with exponent5

2 2D. The
Gaussian fixed point is therefore infrared unstable.

B. The rotations of the tubule

For the general free energy of Eq.~6! the rotations of the
tubule are implemented by

u→u cosu1 sinuh1~cosu21!y,
~13!

h→h cosu2 sinuu2 sinuy,

where we have simplified by rotating just one componen
hW . The symmetry transformation above is unusual in tha
changes under the action of the renormalization group. T
happens because rotations of the tubule mix two sets
fields—the in-plane and out-of-plane phonons—having d
ferent scaling dimensions. In fact, it is straightforward
show that Eq.~13! is realized at timel by

u→u cosu1e2~n2z!lh sinu1e22~n2z!l~cosu21!y,
~14!

h→h cosu2e~n2z!lu sinu2e2~n2z!l sinuy.

The above transformation is an exact symmetry of the f
energy Eq.~10!. This transformation depends explicitly onl
and prevents a simple construction of invariant free energ
At large l, however, we may derive anl-independent version
Defineu5Ae(n2z) l and assume that the condition

n~ l !2z~ l !,0 ~15!

is satisfied. Near the fixed point, scaling relations to be
rived later show that

n2z5 1
3 ~n2D11! ~16!

and thereforen2z,0 for all n,D21. The physical case
D52 requiresn,1, which is always valid.

Equation~14! is then, for largel,

u→u1Ah2 1
2 A2y1O~e2~n2z!l !,

~17!
h→h2Ay1O~e2~n2z!l !.

The generalization of this symmetry to an arbitrary rotat
involving hW is

u→u1AW hW 2 1
2 AW 2y1O~e2~n2z!l !,

~18!
hW→hW 2AW y1O~e2~n2z!l !,
s

u-
is

f
it
is
of
-

e

s.

-

which is the tubular phase version of a symmetry noted e
lier in @12# for the free energy describing the large-distan
properties of the flat phase.

C. The large-distance free energy of the phantom tubule

Let us apply the previous considerations to the constr
tion of the free energy for the large-distance properties
phantom tubules@Eq. ~6! with b50].

In @3,5#, the free energy

F~u,hW !5
1

2 E dD21x'dy$k~]y
2hW !21t~]ahW !2

1g'~]au!21gy@]yu1 1
2 ~]yhW !2#2% ~19!

is given as that describing the right large-distance proper
of the TP.

The first thing to notice is that this free energy is n
invariant under the symmetry Eq.~18!. The free energy with
the correct invariances is given by

F~u,hW !5
1

2 E dD21x'dy$k~]y
2hW !21t~]ahW !2

1g'~]au1]ahW ]yhW !21gy@]yu1 1
2 ~]yhW !2#2%,

~20!

since the operator]au1]ahW ]yhW is rotationally invariant.
It is important at this point to recall that the symmetry E

~18! is exact up to ‘‘irrelevant’’ terms, and the couplingg' is
irrelevant for the entire range ofD ~including D52) in
which the TP exists. If we therefore insist on including irre
evant operators around the Gaussian fixed point, our
energy would certainly contain a noninvariant term und
Eq. ~18!,

F~u,hW !5
1

2 E dD21x'dy$k~]y
2hW !21t~]ahW !2

1g'
~1!~]au1]ahW ]yhW !21g'

~2!~]au!2

1gy@]yu1 1
2 ~]yhW !2#2%. ~21!

Indeed, this is the combination that appears, up to hig
irrelevant terms, in the general expression for the free ene
Eq. ~6!, asg'

(1) is the coupling to theFaFa operator, andg'
(2)

is the coupling toFa
a .

The usual strategy, nevertheless, is to keep just those
erators that define relevant directions of the Gaussian fi
point. It is these directions that flow towards new infrar
fixed points, unless a first-order transition occurs. Adopt
this approach the relevant free energy for the phantom tub
would be

F~u,hW !5
1

2E dD21x'dyH k~]y
2hW !21t~]ahW !2

1gyF]yu1
1

2
~]yhW !2G2J , ~22!
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wheregy defines a relevant direction forD,5/2 which ter-
minates in the tubular phase fixed point~TPFP! as shown in
Fig. 2. Note that the symmetry in Eq.~18! is, indeed, pre-
served.

D. The large-distance free energy for the self-avoiding tubule

Now let us return to the more physical model with t
self-avoidance term

b

2E dy dD21x'E dy8dD21x'8 dd
„rW~x' ,y!2rW~x'8 ,y8!…

~23!

restored.
Following the discussion in Sec. II B, we simplify th

self-avoiding term Eq.~23! by demanding invariance unde
the symmetry Eq.~18!,

b

2E dy dD21x'dD21x'8 dd21
„hW ~x' ,y!2hW ~x'8 ,y!…,

~24!

with irrelevant terms dropped.
The scaling dimension of the new perturbation Eq.~24! at

the Gaussian fixed point is«53D2 1
2 2( 5

2 2D)d. The b
coupling therefore defines a new relevant direction forD
tubules embedded in dimensionsd,dc

SA, where

dc
SA~D !5

6D21

522D
. ~25!

Below the upper critical dimensiondc
SA the Gaussian fixed

point is infrared unstable under this perturbation, and
large-distance properties of the self-avoiding tubule are
scribed by a new fixed point~SAFP!. This new fixed point
merges with the Gaussian fixed point at the upper crit
dimension where self-avoidance becomes a marginal pe
bation. We therefore expect the critical properties of the s
avoiding tubule to be perturbative in«, as pointed out in@7#
~see Fig. 2!.

In @5#, however, it is claimed that this simple scenario
valid only for tubules embedded in dimensionsd close to
dc

SA(D). For any dimensiond lower than d* ~where d*
,dc

SA), they argue for the existence of a distinct fixed poi
the bending rigidity fixed point~see Fig. 3!. This fixed point
is postulated to describe the actual critical properties of
self-avoiding tubule for the regimed,d* , including the
physical case of theD52 tubule embedded ind53. If this
scenario is true, the critical properties of the self-avoid
tubule are not perturbative in«. Analytical predictions be-
come then extremely difficult, as there is no evident sm
perturbative parameter.

At this stage, therefore, we need to understand better
topology of the RG flows in the case where self-avoidanc
included. Let us review the arguments of@5#. They consider
the free energy Eq.~19!, together with the self-avoiding term
Eq. ~24!. They include all relevant directions from th
Gaussian fixed point, and an irrelevant one defined byg' .
They apply the infinitesimal renormalization group a` la
e
e-

l
r-

f-

,

e

g

ll

he
is

Wilson to derive an equation for the evolution of coupling
The crucial equation in their analysis is the RG flow equat
for g' ,

dg'

dl
5@4n2z1D23#g' . ~26!

Now, as the RG is iterated starting near the Gaussian fi
point,g' decreases to zero while the rescalingsn( l ) andz( l )
flow towards their SAFP values. For sufficiently small em
bedding dimensiond and large enoughl the sign of theb
function forg' changes sign. The couplingg' then flows to
the BRFPg'

* 5` ~see Fig. 3!. This argument can be mad
more quantitative. Under very reasonable assumptions,
~26! leads to a lower bound ford* , the highest embedding
dimension in which the BRFP prevails,

d* ~D !.
4D21

42D
. ~27!

In particular, d* (2).7/2.3, so the physical tubule (D
52,d53) is, according to@5#, described by the BRFP.

It is apparent that the operator

]au]au ~28!

plays a fundamental role in this argument. Let us examin
more closely. In an expansion in irrelevant operators aro
the Gaussian fixed point, it appears in two ways, which
labeledg'

(1) andg'
(2) in Eq. ~21!.

First of all, the operator associated tog'
(1) is invariant

under the symmetry Eq.~18!, as it appears in the invarian
combination

]au1]ahW ]yhW . ~29!

In contrastg'
(2) couples to a subdominant piece of the ope

tor Fa
a[]au]au1]ahW ]ahW @see Eq.~5!#. In fact, from our

earlier symmetry arguments, it is suppressed by a fa
O(e2(n2z)) with respect to the dominant piece (]ahW )2 which
couples to the marginal directiont. Providedn2z,0 the
couplingg'

(2) is thus irrelevant and may be dropped from t
free energy.

We have argued that the most general free energy dic
ing the large-distance properties of the tubule is given by
~20! together with self-avoidance@Eq. ~24!#. For g' vanish-
ing, the infrared stable fixed point of the theory is the SAF
The key issue is now whether this fixed point is stable w
respect to perturbations byg' . Since the properties of the
SAFP are perturbative in«, the same applies to the critica
exponents. Experience with typical multicritical behavi
suggests that we should not expect the exponent assoc
with the g' direction to change so much from its Gaussi
value 3/22D that it changes sign@11#.

In conclusion, the simplest free energy describing
large-distance properties of the self-avoiding tubule is giv
by
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5664 PRE 59MARK BOWICK AND ALEX TRAVESSET
F~u,hW !5
1

2E dD21x'dyFk~]y
2hW !21t~]ahW !2

1gyS ]yu1
1

2
~]yhW !2D 2G

1
b

2E dy dD21x'dD21x'8 dd21
„hW ~x' ,y!

2hW ~x'8 ,y!…. ~30!

This is the starting point of all our subsequent analysis.

III. THE SCALING RELATIONS

Having identified the right free energy, we turn now to t
derivation of the different critical exponents of the theo
We use the conventional field theory formalism@11#, follow-
ing @7#.

The scaling dimensions of the fields and coordinates

@y#51, @x'#52, @hW #5 5
2 2D, and @u#5422D. This im-

plies

@b#52«, @gy#52D25, ~31!

with

«53D2
1

2
2

522D

2
d. ~32!

Following the arguments in@7#, one can show that the fre
energy Eq.~30! renormalizes onto itself with

F~u,hW !5
1

2E dD21x'
RdyFZk~]y

2hW R!21Z't~]a
RhW R!2

1gy
Rm2512DS ]yu

R1
1

2
~]yhW

R!2D 2G
1

bRZbm«

2 E dD21x'
RdD21x'

Rdydd21
„hW R~x'

R ,y!

2hW R~x'8
R ,y!…, ~33!

where the Ward identity implied by Eq.~18! is used so that
there is no independent wave function renormalization
the fieldu. Furthermore, it is not difficult to show, using th
MOPE formalism@9#, that the bending rigidity is not renor
malized soZ51, as first pointed out in@7#. Thus we have

hW R~x'
R ,y!5Z'

~12D !/4hW ~x' ,y!,

x'
R5Z'

1/2x',
~34!

bR5bm2«Zb
21Z~12D !~d13!/4,

gy
R5m522DgyZ'

~D21!/2 .

Using these definitions we will consider two correlato
which enable us to determine the exponents of the theory
the original paper@7#, the correlator
.

re

r

,
In

Gh~x' ,y![2
1

2~d21!
^@hW ~x' ,y!2hW ~0,0!#2& ~35!

was considered as well as the correlator involving theu
fields,

Gu~x' ,y![^]yu~x' ,y!]yu~0,0!&. ~36!

At the fixed point, the first correlator satisfies

H m
]

]m
1

d

2
x'

]

]x'

1
D21

2
dJ Gh

R~x' ,y!50, ~37!

which, combined with simple scaling law

H m
]

]m
2y

]

]y
22x'

]

]x'

1~522D !J Gh
R~x' ,y!50,

~38!

gives us the fixed point renormalization group equation,

H y
]

]y
1

1

z
x'

]

]x'

22zJ Gh
R~x' ,y!50. ~39!

A renormalization group equation may also be derived
Gu . To do so we must use once again the Ward identity t
fixes the wave function renormalization foru. Equation~37!
is now

H m
]

]m
1

d

2
x'

]

]x'

1~D21!dJ Gu
R~x' ,y!50, ~40!

Eq. ~38! reads for theu case

H m
]

]m
2y

]

]y
22x'

]

]x'

1~624D !J Gu
R~x' ,y!50,

~41!

leading finally to

H y
]

]y
1

1

z
x'

]

]x'

22zuJ Gh
R~x' ,y!50, ~42!

where

d5m
d

dm U
0

ln Z' ,

z5
2

41d
,

~43!

z5
522D

2
1

12D

4
d,

zu511
12D

z
.

Both Eqs.~39! and ~42! may be solved explicitly, yielding
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Gh~x' ,y!5y2zF1S y

ux'uzD 5ux'unF2S y

ux'uz
D ,

~44!

Gu~x' ,y!5y2zuF18S y

ux'uz
D 5ux'u2zu /zF28S y

ux'uzD ,

where n5z/z. Transforming Eq.~44! to momentum space
gives

Gh~p' ,q!215up'u21h' f S q

up'u D ,

~45!

Gu~p' ,q!215up'uzhuhS q

up'u D ,

with

h'52214z,
~46!

hu5
2n

z
.

These scaling laws were first derived in@7# and @3#, respec-
tively.

We conclude that all the critical exponents of our fr
energy Eq.~30! at any putative fixed point may be express
in terms of a single parameter, sayd. The task of computing
critical exponents translates into the task of evaluatingd at
the corresponding fixed point.

IV. THE PHANTOM TUBULE

The theoretical considerations in Sec. II C lead us to c
sider Eq.~22! as the right free energy describing the larg
distance properties of the phantom tubule. In fact they al
us to solve the phantom tubule phase exactly, simply
performing the shift

u→u82
1

2E0

y

dz~]zhW !2, ~47!

where the lower bound for the integral is arbitrary and c
responds to translations of the zero mode. The free en
Eq. ~22! is then a sum of Gaussian terms. Let us compute
anomalous elasticity, determined by the correlator Eq.~36!,

Gu~x2z!5^]yu~x!]yu~z!&,
~48!

Gu~p!5E d~x2z!e2p•~x2z!G~x2z!.

The elasticity constant is given by

gy~p!5
1

Gu~p!
. ~49!

At tree levelgy(p)5gy .
The general case amounts to performing the shift

~47!. Equivalently the loop expansion may be performed
all orders. The diagram consists of a necklace ofhW loops
which can be resummed, yielding
-
-
w
y

-
gy
e

.
o

1

gy~p!
5

1

gy
1

d21

2 E dD21q̂'dq̂y

3
qy

2~p2q!y
2

~kqy
41tq'

2 !@k~qy2py!41t~q'2p'!2#

1S d21

2 E dD21q̂'dq̂y

qy
2

k~qy
2!21tq'

2 D 2

d~p!,

~50!

which for pÞ0 is

gy~p!5
gy

11@~d21!gy/2t2# f ~D21!py
2D25C~py/up'uz!

,

~51!

where f (d)5*ddt̂1/(t211)4,

C~y!5E
2`

1`

dẑE
0

1

dxS x~12x!

y4

1
k

t
@x~12z!41~12x#z4!D ~D25!/2

, ~52!

and the exponentz is

z51/2. ~53!

Recall that Eq.~51! is valid for any value ofgy . The Gauss-
ian fixed point (gy50) is unstable to perturbations along th
direction, and the couplinggy is driven togy5` in the in-
frared, which is the fixed point describing the physics of t
phantom tubule~PTFP!. At the PTFPgy(p) has the form
py

hug(py /up'uz), as predicted by Eq.~44! at any fixed point.
We can easily recover now the results in@3,5# from our

exact solution Eq.~51! and Eq.~52! at the PTFP.
~1! For y[py /up'uz→` we have

C~y!y→`;S k

t D ~D25!/2 2

D23E2`

1`

dẑz2~12z!2

3
~12z!2~D23!2z2~D23!

~12z!42z4
, ~54!

which converges, both in the infrared and the ultraviolet,
3
2 ,D, 5

2 ~the dimensions in which the tubular phase exist!.
For smallpy

gy~p!;py
hu ,hu5522D. ~55!

~2! For y[py /up'uz→0 we have

C~y!y→0;
y22D15

2 S t

k D DE
0

1

@x~12x!#~2D25!/2

3E
0

1`

dẑz1/4~11z!~D25!/2 ~56!



ra

he
is

-
k
sy

F

o
x

hi

ee
e
in
fe
e

.

in

sult

se

his
ia-

-

ion

5666 PRE 59MARK BOWICK AND ALEX TRAVESSET
soC(y)→0;yhu3const where const is a convergent integ
for 3

2 ,D, 5
2 . For smallp' at D52

gy~p!;p'
1/2. ~57!

To conclude let us connect with the results in Sec. III. At t
PTFP we haved50, and the rest of the exponents from th
result and scaling relations.

V. THE SELF-AVOIDING TUBULE

We have argued that Eq.~30! is the appropriate free en
ergy to consider once self-avoidance is included. The tas
computing the critical exponents of this theory is not ea
since from@7# we know that the results of the«(d) expan-
sion are not very robust to higher-order perturbations.

In order to get an estimate for the exponents at the SA
we compute the critical exponents to lowest order in«(D,d)
for arbitrary internal dimensionD. Existing techniques
@13,14# then allow us to perform more sophisticated extrap
lations which produce reliable estimates for the critical e
ponents.

A. The computation of d

We follow the MOPE formalism@9#, employing dimen-
sional regularization and minimal subtraction, used in t
problem in@7#, to compute thed exponent.

Within the MOPE formalism, one may prove that the fr
energy Eq.~30! renormalizes onto itself. It also identifies th
diagrams to compute that yield the RG functions determin
the critical exponents. For details on this formalism we re
to @8,9#, and for its implementation in the tubular case, w
refer to the original Bowick-Guitter~BG! @7# calculation.

The first step is to compute the two-point functionGh for
arbitraryD at b50. The result is

Gh
0~x' ,y!52

ux'u22D

~ 5
2 2D !~2p!~D11!/2

3F ux'u1/2E
0

1`

dt tD/221K ~12D !/2~ t !cos~ t1/2w!

1
y

2E0

1`

dt t~D23!/2K ~32D !/2~ t ! sin~ t1/2w!G ,
~58!

where w5y/ux'u1/2 and Kn is a modified Bessel function
There are two particular cases of interest. Aty50 we have

Gh
0~x',0!52

ux'u5/22DGS 1

4DG~D/22 1
4 !

~ 5
2 2D !p~D11!/225/2

. ~59!

For the physical valueD52 it follows from K1/2(t)
5K21/2(t)5(p/2t)1/2e2t that

Gh
0~x,y!52

uxu1/2

2p1/2
e2w2/42

y

4
erfS w

2 D , ~60!
l

of
,

P,

-
-

s

g
r

where erf(x) denotes the error function. This result is
complete agreement with that quoted in@7#. The next step is
to perform the MOPE for the operator

f$x' ,x'8 ,y%5d~d21!
„hW ~x' ,y!2hW ~x'8 ,y!…. ~61!

This is easily done using standard techniques, with the re

f$x' ,x'8 ,y%5Cf
1 ~x'2x'8 !1Cf

ab~x'2x'8 !:

3“ahW ~x'
0 ,y!“bhW ~x'

0 ,y!:1•••, ~62!

wherex'
0 5(x'1x'8 )/2, and the Wilson coefficients are

Cf~u!5
1

~4p!~d21!/2@2Gh
0~u,0!#~d21!/2

,

~63!

Cf
ab~u!52

uaub

4~4p!~d21!/2@2Gh
0~u,0!#~d11!/2

.

We also need the MOPE for the product of two of the
operators. One finds

f$x1
' ,z1

' ,y1%f$x2
' ,z2

' ,y2%

5Cff
f ~x1

'2x2
' ,z1

'2z2
' ,y12y2!f$x' ,z' ,y%1•••,

~64!

wherex'5(x1
'1x2

')/2, y5(y11y2)/2, andz'5(z1
'1z2

')/2
and

Cff
f ~u,v,w!5

1

~4p!~d21!/2

1

@2Gh
0~u,w!2Gh

0~v,w!#~d21!/2
.

~65!

This is all we need to compute the critical exponents. T
MOPE corresponds to the diagrams in Fig. 4. The last d
gram for the renormalization ofb is not necessary to com
pute, as it cancels against the renormalization ofZ' .

Expanding the renormalized action Eq.~33!, and using the
MOPE Eq.~62!,

FIG. 4. One-loop diagrams contributing to the renormalizat
of the free energy.
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2
bRm«

2 E dD21x'dD21x'8 dyf$x' ,x'8 ,y%

52
bRm«

2 S E dD21x'dD21x'8 dy Cf
1 ~x'2x'8 !

1E dD21x'dD21x'8 dy Cf
a,b~x'2x'8 !

3“ahW ~x'
0 ,y!“bhW ~x'

0 ,y!1••• D . ~66!

The first term of Eq.~66! renormalizes the identity operato
and therefore may be neglected in computing expecta
values of operators. The second term determinesZ' , with
the result

Z'511
1

D21 S 5

2
2D D ~2D12!/~522D !

3
p~3D13!/~1024D !2~1123D !/~522D !

@G~ 1
4 !G~D/22 1

4 !#~2D12!/~522D !

bR

G@~D21!/2#

1

«
.

~67!

At one loop there is no renormalization forZ, a result that is
also true at any order in perturbation theory@7#.

Expanding thed function, and performing the MOPE in
Eq. ~64!, we find

~bRm«!2

8 E dD21x'
0 dD21x'

08dy0dd21
„hW ~x'

0 ,y0!

2hW ~x'
08 ,y0!…E dD21zdD21w dyCff

f ~z,w,y!,

~68!

where higher terms in the MOPE Eq.~64! are neglected as
they do not give rise to poles in«. To find Zb , we must
compute the last integral in Eq.~68!. This is done by per-
forming the angular integration and then changing variab
to u5uzu1/2/y andv5uwu1/2/y. The result is

E dD21zdD21w dyCff
f ~z,w,y!

5
8

~4p!~d21!/2 S 2p~D21!/2

G@~D21!/2#
D ~d21!/2

3F S 5

2
2D D ~2p!~D11!/2G ~d21!/2

3E
0

1/m

dy y«21E
0

1/my

duE
0

1/my

dv

3
u2D23v2D23

@ f ~u!1 f ~v !#~d21!/2
, ~69!

where
n

s

f ~u!5u422DH uE
0

1`

dt tD/221K ~12D !/2~ t !cosS t1/2

u D
1

1

2E0

1`

dt t~D22!/2K ~32D !/2~ t ! sinS t1/2

u D J . ~70!

Using

E
0

1/my

duE
0

1/my

dv
u2D23v2D23

@ f ~u!1 f ~v !#~d21!/2

5E
0

1`

duE
0

1`

dv
u2D23v2D23

@ f ~u!1 f ~v !#~d21!/2
1r~y!,

~71!

wherer(y) is a continuous function that vanishes aty50,
and adding a factor of 2 corresponding to the two ways o
can perform the MOPE in the diagram in Fig. 4, we g
finally

Zb511
~ 5

2 2D !~4D23!/~522D !2[ ~4D23!~D23!/2~522D !] 14

p27~D21!/2~522D !G@~D21!/2#2

3I ~D !
bR

«
, ~72!

with

I ~D !5E
0

1`

duE
0

1`

dv
u2D23v2D23

@ f ~u!1 f ~v !#~4D23!/~522D !
.

~73!

We have thus succeeded in renormalizing the theory at
one-loop level. The evaluation of this integral is discussed
the Appendix. The next step is to compute the exponend.
We begin with the computation of theb function. There are
two of them. Defininga1 andb1 via Z'511(bR/«)a1 and
Zb511(bR/«)b1, we have

bb~bR!52«bR1S a11
72«

2~522D !
b1D ~bR!2, ~74!

and

bgy
~bR,gy

R!5S 522D1
D21

2
D~bR! Dgy

R , ~75!

where D(bR)5m(d/dm)ln Z' . There is a nontrivial fixed
point ~the SAFP! at

bR* 5
«

a11@~72«!/2~522D !#b1
, ~76!

and, forD,@52D(bR* )/2#/@22D(bR* )/2#

gy
R51`. ~77!
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Using

d5D~bR* !5m
d

dm
ln Z'U

bR5bR*
~78!

we obtain the final result

d52
«

7/2~522D !1a1 /b1
. ~79!
oo

he
ic

it
la
nt

n
(

al
d
rv
Plugging Eq.~67! and Eq.~72! into Eq. ~79! yields

d52

S 5

2
2D D

7

4
1q~D !I ~D !

«, ~80!

where
q~D !5~D21!
$G~ 1

4 !G@~D/2!2 1
4 #%~2D12!/~522D !2~2D2225D/2127/2!/~522D !

pG@~D21!/2#
. ~81!
op

an-

the
The scaling relations after Eq.~42! and Eq.~46! determine
the rest of the critical exponents provided we have a g
determination ofd. As only the first term in the« expansion
is available this will require refined methods to improve t
perturbative expansion. This is an involved subject to wh
we now turn.

B. Analysis of the results

From Eq. ~80! and the scaling relations we get explic
forms for the critical exponents of the self-avoiding tubu
phase. For example, the radius of gyration or size exponen
reads

n~D !5
522D

4
1n1~D !«~D,d!1•••, ~82!

wheren1(D) is plotted as a function ofD in Fig. 5.
As already noticed in@7#, a direct application of Eq.~82!

to a physical membrane is not robust with respect to seco
order corrections. This is a consequence of the pointD
52,d53) being too far from the point (2,11) on the critic
curve«50. One can try, instead, to perform a generalize«
expansion around any other point on the critical cu

FIG. 5. Plot ofn1(D) as a function ofD.
d

h

r

d-

e

„D0 ,d05(6D021)/(522D0)… ~see Fig. 6! and hope to find
a new expansion in which the corrections to Eq.~82! are
minimized. In this case one may expect reliable one-lo
results.

As an example, let us rewrite Eq.~82! in terms of D
2D0, and keep the leading terms,

n~D !5
522D0

4
2

D2D0

2

1n1~D01D2D0!«~D,d!1O~«2!

5
522D0

4
2

D2D0

2
1n1~D0!«~D,d!

1O„«2,«~D2D0!,~D2D0!2
…. ~83!

One can expand around any point (D0 ,d0) in the «50
curve, but at the expense of dealing with the double exp
sion in « andD in Eq. ~83!. Furthermore, critical quantities
depend, in principle, on a new parameterD0, but should

FIG. 6. The solid line is the«50 curve. The naive« expansion
is marked with a dotted line. Other possible expansions from
physically interesting case (D52,d53) are marked with dashed
lines.
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obviously be independent of it. There are established te
niques to select the bestD0, such as the minimal sensitivit
method of Hwa@13#. Anyway, the expansion in«,D is just a
particular case of a more general situation@14#, as we may
choose any new set of variables$x(D,«),y(D,«)% and reex-
press Eq.~83! as an expansion around the critical curve„x0
5x(D0,0),y05y(D0,0)…,

n~D,«!5n~x,y!5n~x0 ,y0!1Dxn1,0~x0 ,y0!

1Dyn0,1~x0 ,y0!1•••, ~84!

whereDx5x(D,«)2x0 , Dy5y(D,«)2y0.
Now the goal is to choose a good set of variables$x,y%

from the infinite number of possibilities.
A good expansion variable must meet two basic requ

ments,~1! independence ofD0, at least in some interval o
D0’s, and ~2! within this region, results must be quantit
tively correct.

The way we choose to meet requirement~1! is to look for
n to plateau within some given accuracy for an interval
D0. To meet requirement~2!, we will systematically study
the (2,d) line, starting close tod511 where even the naive«
expansion is expected to work and agree well with the Fl
estimate. At larged a good expansion variable should exhib
a broad plateau around the Flory result. At this stage,
expansions that do not deliver accurate enough results ca
be trusted, and should therefore be rejected. Asd is de-
creased we check that the plateau remains stable for the
expansion variables, so that we have a reliable extrapola
at d53. In addition, we expect reasonable agreement w
the Flory estimate.

We examine then exponent as well as thez exponent
using the above techniques. The reason for analyzing b
exponents is that they have different dependencies ond, as
expressed in Eq.~43!. This may result in different expansio
variables being appropriate for different exponents.
course, results must be consistent with the scaling relat
expressed by Eq.~43!.

In this paper, we implement the Hwa minimal sensitiv
scheme@13#, and we explore the following distinct expan
sions: ~1! expansion A:$x5D,y5«%; ~2! expansion B:$x
5D,y5d%; ~3! expansion C:$x5D,y5D0(d)5(5d11)/
2(31d)%; and ~4! expansion D:$x5«,y5D0(d)%, which
have been previously used in a different context in@14#.

1. Corrections to mean field

The analysis leading to the extrapolation for then expo-
nent may be summarized in Fig. 7. At (D52,d58) all sets
of variables A,B,C,D give consistent results. Neverthele
the expansion D shows the flattest plateau which is in co
plete agreement with the Flory estimate. This singles
expansion D as the best, and in fact we have taken as
actualn its value at the middle of the plateau. Within the
expansion, results are largely independent ofD0. This allows
us to estimate the uncertainty inn from its deviations from
the plateau, which is the error bar quoted in the first colu
of Table I. Expansion C also yields compatible results but
apparent, it is not such a flat plateau. We find expansion B
be unreliable and the results are not even displayed. Fin
expansion A, almost equivalent to the naive« expansion,
h-
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e
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od
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shows a plateau coincident with D, but deviating slight
The Hwa technique shows two extrema, one slightly abo
the Flory result, the other slightly below, so although t
results are reasonable, we think we cannot apply it accura
as d decreases. At (2,7), the situation for the different e
trapolations is very similar; again, expansion D gives a n
flat plateau consistent with the Flory estimate, and we
trapolate the bestn in the same way as in the (2,8) cas
Expansion C gives a result completely consistent with
although with not such a flat plateau, while expansion
starts to deviate. The cases (2,6), (2,5), and (2,4) follow
same trends as the previous ones, as apparent from Fig. 7
the results are quoted in Table I. We conclude that expan
D is a reliable generalized« expansion that we can confi
dently apply to the physical case (2,3). Our final result
quoted in Table I. Let us recall that in@14# expansion D also
gave the most reliable results, and it is interesting to find
same situation here.

Concerning thez exponent, the situation is different. W
find the best results applying Hwa’s technique. For smad
any of the estimates A,B,C,D exhibits a large enough p
teau, and consequently, we are not confident enough of t
robustness. The estimates quoted in Table I are those
tained from the Hwa method. As shown in Fig. 8 we find tw
points where]n/]D050, one forD0,2, the other forD0
.2. Our actual estimate corresponds to the caseD0,2
since, on one hand, it agrees slightly better with the Fl
estimate for larged, and on the other, the curve«50 seems
intuitively closer to the actual point.

Finally, it is reassuring that the values we obtain forn and
z, although computed using different extrapolations,
compatible with the scaling relations Eq.~43!.

2. Corrections to the Flory estimate

The Flory approximation, which certainly works well fo
polymers, also provides valuable insight in the case of me
branes. The basic approximation assumes that elastic e
gies are comparable to self-avoiding energies. For s
consistency we then require thatZ'5Zb . This extra
condition fixesd andn to be

dF5
24«

41~D21!~d13!
,

~85!

nFlory5
D11

d11
.

It is also interesting to analyze the corrections to the Fl
result. We can write at the fixed point the following equiv
lent definition ford:

d5dF2
4

41~D21!~d13!
m

d

dm
lnS Zb

Z'
D . ~86!

Expanding to first order in« it follows that

nF~D !5
522D

4
1

1724D

3~D11!
n1~D !«, ~87!

wheren1(D) is defined in Eq.~82!. Coincidentally the extra
factor appearing on the right-hand side of the previous eq



e is A

5670 PRE 59MARK BOWICK AND ALEX TRAVESSET
FIG. 7. Calculation for then exponent. The long dashed line corresponds to the minimal sensitivity scheme, the dashed on
expansion, the dot-dashed line corresponds to expansion C, and the solid line is the D expansion.
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tion is just 1 atD52, so Eq.~82! and Eq.~87! give the same
result atD52, a result already noticed in@7#.

We can apply the usual machinery to extract critical e
ponents. We start by examining the (2,8) case. From Fig.
is clear that all expansions give compatible results, altho

TABLE I. Final results for critical exponents.

d n nFlory z zFlory

8 0.333(5) 0.333 0.60 0.600
7 0.374(8) 0.375 0.64 0.643
6 0.42(1) 0.429 0.68 0.692
5 0.47(1) 0.500 0.72 0.750
4 0.54(2) 0.600 0.76 0.818
3 0.62(2) 0.750 0.80 0.900
-
it
h

expansion C produces the flattest plateau. We use this ex
sion to extract our bestn within this approximation. Using
the fluctuations in the plateau, as a function ofD0, to esti-
mate errors, we realize that results in this case are no
accurate, although still compatible with previous estima
and with its Flory value. From analyzing this case we s
also that this expansion tends to give a slight overestim
The same situation holds asd decreases, as shown in Tab
II. Overall, results remain close to the Flory estimate
though with a larger uncertainty. They are still compatib
with the values quoted in Table I, which we regard as o
most accurate determinations.

3. Corrections to the Gaussian variational approximation

Another approach that has been relatively successfu
dealing with problems with self-avoidance is the Gauss
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FIG. 8. Calculation for thez exponent. The conventions are the same as in the previous figure.
at
lf-

xi

th
rg

to

r

ss-
cu-
variational approximation@15#. It consists in approximating
the exact density functional by the best possible quadr
weight for the fieldhW . It amounts to assuming that the se
avoiding term is not renormalized, that is,Zb51. The quan-
tity d and the gyration radius exponent within this appro
mation were computed in@3# with the result

dV5
24«

~D21!~d13!
,

~88!

nvar5
7~D21!

~3d25!
.

The value for the physical tubule isnvar5
7
4 . This is clearly

unphysical, being larger than one, but the accuracy of
Gaussian variational approximation should improve for la
d, since it is essentially a large-d expansion. As with the
ic

-

e
e

Flory approximation, we may determine the corrections
the Gaussian variational approximation within the« expan-
sion. From

d5dV2
4

~D21!~d13!
m

d

dm
ln~Zb!, ~89!

which consistently at lowest order in« results in

nV~D !5
522D

4
1

n1~D !

D21
«, ~90!

wheren1(D) is defined in Eq.~82! and again the extra facto
appearing on the right-hand side is just 1 atD52, so Eq.
~82! and Eq.~90! are equal atD52, as reported in@7#.

Our extrapolations are summarized in Fig. 10. The Gau
ian variational approximation turns out to be the least ac



5672 PRE 59MARK BOWICK AND ALEX TRAVESSET
FIG. 9. Corrections to the Flory estimate forn.
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rate of our determinations. At (2,8) all different extrapo
tions deliver equivalent results, but the expansion C sho
the flattest plateau. The situation is the same for the ca
(2,7), (2,6), and (2,5), but at (2,4) and (2,3), there are
able variations and there is no clear plateau. For the sak

TABLE II. Comparison of the different extrapolations forn.

d n nF nV nFlory

8 0.333(5) 0.34(1) 0.34(1) 0.333
7 0.374(8) 0.39(2) 0.39(2) 0.375
6 0.42(1) 0.44(2) 0.44(4) 0.429
5 0.47(1) 0.51(3) 0.51(5) 0.500
4 0.54(2) 0.60(4) 0.60(6) 0.600
3 0.62(2) 0.71(6) 0.70(9) 0.750
s
es
-
of

completeness, we extrapolate our results from this pseu
plateau where variations are small, and quote an error
from its variations, which are the results quoted in Table

VI. CONCLUSIONS

In this paper our first task was to identify the simplest fr
energy containing all the relevant operators controlling
large-distance physics of the tubular phase of anisotro
membranes. In this analysis essential use was made of
tional symmetries. Although our analysis may be modifi
by the existence of more complicated phase diagrams w
non-perturbative fixed points in the spirit of@5#, we believe
that the model treated here reveals essential features o
physics of the anisotropic tubular phase.

Finally we completely characterized the phase diagr
and calculated the critical exponents by generalizing th«
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FIG. 10. Corrections to the variational estimate forn.
la
expansion introduced in@7#. For the physically self-avoiding
tubule we find

n50.62, ~91!

z50.80, ~92!

z50.75, ~93!

zu520.33, ~94!

hu51.65, ~95!

h'51.0. ~96!

Further improvement would necessitate a two-loop calcu
 -
FIG. 11. f (u) for different values ofD. The dashed line isD

51.7, the dotted lineD52.0, and the solid lineD52.3.
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tion for arbitraryD and would provide a valuable check o
our extrapolation.

These predictions may be tested via an extension of
numerical simulations described in@6# to the much more
demanding model with self-avoidance. These simulations
currently in progress. We hope the concreteness of the
culations presented here will inspire further work in the ri
field of the physics of anisotropic extended manifolds.
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APPENDIX

In this appendix we discuss the analytical properties
several functions that arise in the evaluation of the quan
I (D). We follow closely the methods of@7#, and rewrite Eq.
~73! as

I ~D !5
1

G@~4D23!/~522D !#
E

0

1`

dz F~z!2, ~A1!

with

F~z!5z~3D24!/~522D !E
0

`

du u2D23e2z f~u!, ~A2!

and

f ~u!5u422DH uE
0

1`

dt tD/221K ~12D !/2~ t !cosS t1/2

u D
1

1

2E0

1`

dt t~D23!/2K ~32D !/2~ t !sinS t1/2

u D J , ~A3!

TABLE III. Sample of values forI (D).

D I (D) D I (D)

1.6 0.07951 2.0 1.26391023

1.7 0.04643 2.1 1.07751024

1.8 0.02027 2.2 1.715571026

1.9 0.006434 2.3 4.0129810210
re
n-

ld
in
e

re
al-

n
er
d
-

f
y

whereKn is a modified Bessel function. We have not be
able to compute the integrals in Eq.~A3! explicitly, except in
the caseD52. Nevertheless, we know both thatf (u) is a
monotonically increasing function ofu and its asymptotic
behavior for small and largeu. For largeu we have the result

f ~u!u→`52D/222GS 1

4DGS D

2
2

1

4Du522D@11O~1/u!#

~A4!

while, for smallu, we have

lim
u→0

f ~u!5
pG@~32D !/2#

2~D11!/2

1

G~522D !sin@~p/2!~522D !#
,

~A5!

lim
u→0

f ~n!~u!50, n.0

wheren stands for any derivative ofu. The latter leads us to
conjecture that the corrections to Eq.~A5! are of the type
O(e21/4u2

), as explicitly seen atD52. A plot of f (u) for
different values ofD is given in Fig. 11.

The next step is to computeF(z), Eq. ~A2!. Its exact
analytical form seems hopeless to compute, but again we
find its asymptotic limits. For smallz we have

F~z!z→05
G@~2D22!/~522D !#

@2D/222G~1/4!G~D/221/4!#~2D22!/~522D !

3
z~D22!/~522D !

522D
@11O~z1/~522D !#, ~A6!

and for largez

F~z!;e2 f ~0!z, ~A7!

where f (0) is given by Eq.~A5!.
The asymptotics provide valuable cross checks for

numerical integrations, and we have also used them in sp
ing up the numerical integration algorithms. A sample
values forI (D) is provided in Table III.
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