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Tubular phase of self-avoiding anisotropic crystalline membranes
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We analyze the tubular phase of self-avoiding anisotropic crystalline membranes. A careful analysis using
renormalization group arguments together with symmetry requirements motivates the simplest form of the
large-distance free energy describing fluctuations of tubular configurations. The non-self-avoiding limit of the
model is shown to be exactly solvable. For the full self-avoiding model we compute the critical exponents
using ane expansion about the upper critical embedding dimension for general internal diménhsiod
embedding dimensiod. We then exhibit various methods for reliably extrapolating to the physical pBint (
=2,d=3). Our most accurate estimates are 0.62 for the Flory exponent ang=0.80 for the roughness
exponent[S1063-651X99)04805-9

PACS numbdrs): 64.60.Fr, 05.40-a, 82.65.Dp

. INTRODUCTION ¢ associated with the growth of height fluctuatidng, (see
Fig. 2):
The statistical mechanics of isotropic crystalline mem-
branes has been the subject of much work in the last ten Ry(Ly ,Ly)ochSR(Ly/Lj),
years[1,2]. In the absence dfelf-avoidancehere is a finite- (1)
temperaturerumplingtransition from a low-temperature flat hemd L, ,Ly)och,Sh(Ly/Lj).

(orientationally ordered phase to a high-temperature
crumpled phase. The novel flat phase of phantom crystallinslere Sg and$S; are scaling functionf3,5] andz=»/{ is the
membranes is by now quite well understood, both qualita@nisotropy exponent. In the phantom tubular phd®eP v
tively and quantitatively. The effect of self-avoidance on theand { were computed iri3], together with a self-consistent
phase diagram presents a much greater ana|ytica| and ngetermination of the anomalous elasticity. The existence of
merical challenge. While there is still some controversy, th¢he tubular phase has also been confirmed by numerical
bulk of evidence at present indicates that the crumpled phasgmulations[6] and the critical exponents measured are in
disappears. It is possible, however, that this is the result ogxcellent agreement with the theoretical predictions. In this
bending rigidity induced by next-to-nearest-neighbor ex-Paper we show that a careful analysis of the relevant opera-
cluded volume interactions. tors in the free energy allows anpriori exact calculation of

Rather surprisingly, it has been shoy8] that anisotropy the anomalous elasticity as well as the above critical expo-
has a remarkable effect on the global phase diagram of thigents.
class of membranes. For phantom membranes the flat and For self-avoiding membranes the model is much more
crumpled phases are isomorphic to those of the isotropi€lifficult to treat analytically. By adapting the Edwards model
system(anisotropy is irrelevant in these phasbat there are  for self-avoiding membranes to the geometry of the tubular
intermediate tubular phases in which the membrane is oPhase, Radzihovsky and Tong3] obtained a model free
dered in one extended directigy) and crumpled in the re- energy to describe this system. This was further studied by
maining transverse directions . Since self-avoidance is Bowick and Guitter [7], who utilized the multi-local-
less constraining for configurations that are crumpled in on@perator-product expansiaiMOPE) [8,9] to perform ane
direction only, it is very likely that the tubular phase will =(dg*—d) expansion about the upper critic@mbeddingy
survive in the more physical self-avoiding case, in contrast ta@imension dez 11. The phase diagram implied by this
the situation for isotropic membranes. Besides their intrinsi@analysis is shown in Fig. 2. Note the infrared stable fixed
novelty, the study of membranes of this class may have impoint[self-avoidance fixed poirfSAFP] with nonvanishing
portant experimental and practical applications. First of allself-avoidance coupling associated with the tubular phase.
polymerized membranes with in-plane tilt order would haveBowick and Guitter also showed that the bending rigidity is
intrinsic anisotropy. In addition, polymerization in the pres- not renormalized and computed the critical exponents to first
ence of an applied electric field should produce anisotropiorder ine. They noted, however, that the extrapolation of
membrane$4].

The key critical exponents characterizing the tubular
phase are the siz@r Flory) exponentr, giving the scaling
of the tubular diameteR, with the extended., and trans-
verselL, sizes of the membrane, and the roughness exponent

*Electronic address: bowick@physics.syr.edu FIG. 1. A schematic illustration of a tubular configuration indi-
TElectronic address: alex@suhep.phy.syr.edu cating the radius of gyratioRy and the height fluctuations,,s.
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b present paper. Given the model we next turn to the actual
SAFP calculation of reliable critical exponents in the tubular phase.
This is done by generalizing the calculation[@] to mani-
folds of arbitrary internal dimensioD embedded in general
dimensiond. We analyze a class of generalizegxpansions
that allow us to determine an optimal path from the line
g, =0 to the physical point=2,d=3). Our most accurate
)/%ry TPFP estimates are
g v=0.62,
FIG. 2. The phase diagram for self-avoiding anisotropic mem- ¢=0.80. 2
branes with the Gaussian fixed poi@FP), the tubular phase fixed
point (TPEP, and the self-avoidance fixed poi(8AFP. Furthermore, we show that the critical exponents determined

in this method are extremely close to the Flory prediction,
these predictions to the physical tubule was not very robugparticularly ford>3. This may be regarded as strengthening

against higher-order perturbations. the predictions of the otherwise uncontrolled Flory approxi-
Radzihovsky and Ton€5] have argued that the phase mation.
diagram described above is actually more complicatesd The outline of our paper is as follows. The model is de-

Fig. 3) for embedding dimensiod less than a critical value scribed in Sec. Il along with an analysis of its symmetries
d, , with d, >3. They argue that the physics belal¥ is and their implementation in a Wilsonian renormalization
controlled by a new fixed poirfbending rigidity fixed point group framework. This leads to a clarification of the global
(BRFP] which is nonperturbative in. This postulated fixed phase diagram and a proposal for the simplest free energy
point is quite distinct physically from the SAFP. In particu- capturing the essential large-distance physics of the tubular
lar, the bending rigidity picks up a nonzero anomalous expophase. This is followed in Sec. Il by a derivation of the
nent. Calculating critical exponents at the putative BRFPscaling relations connecting the fundamental critical expo-
would present the formidable challenge of a complete treathents. The special case of the phantom tubule is treated in
ment of both self-avoidance and full nonlinear elasticity.detail in Sec. IV. The full physical problem of the self-
Reasonable estimates oimay, however, be obtained within avoiding tubule is tackled in Sec. V, where critical exponents
the Flory approximation. are computed via a generalizedexpansion. We also com-

In the present paper we begin with a careful analysis opute corrections to the Flory and Gaussian variational ap-
the rotational symmetries of the tubular problem and theiproximations. A brief summary of our results is given in Sec.
realization within a Wilsonian renormalization group ap- VI. Finally, some technical details of tleexpansion are left
proach[10]. This constrains the possible operators that mayto the Appendix.
appear in the free energy and allows us to identify some
operators as definitely being irrelevant with respect to a Il. MODEL
broad category of fixed points. As a result of our analysis we
can motivate the phase diagram Fig. 2, which follows from A membrane configuration may be characterized by giv-
the free energy studied if7], with the incorporation of a ing the positiorr (x), in the d-dimensional embedding space,
relevant operator involving in-plane phonon excitations. Theof a point in the membrane labeled byDadimensional in-
analysis of[5] assumes that nonlinear elasticity terms areternal coordinate. A physical membrane corresponds to the
always irrelevant. It may therefore break down if new termscased=3 andD =2.
in the free energy alter the renormalization group flows. In [3,5] the most general Landau-Ginzburg-Wilson free
While this may change the character of the fixed point abovegnergyF for this system is constructed by expandiRgo
our anglysis suggests _that it is imperati\./e.to understand thl%ading order in powers o?(x) and its gradients with respect
SAFP in as much detail as possible. This is the focus of thg, jnternal space, taking into account global translation and
rotational invariance. We will consider the case in which the
membrane is isotropic ilD—1 membrane directiongde-
notedx, ) orthogonal to a distinguished directign The re-
sultant free energy is given by

- 1 - -
FEO0)= | 0.y, (92074 (577

+ KLy 0or - T+ (502 H 1y (0y1)?

Uit = oo Yy o= =
+ ——(d r-d5r) + —=(dyr - o\r
FIG. 3. The phase diagram for self-avoiding anisotropic mem- 2 (a B ) 2 ( vy )
branes with the Gaussian fixed poi@FP), the tubular phase fixed
point (TPFB, the self-avoidance fixed poifBAFP, and the bend- + L2 5 2\2 Vi, Z L2
ing rigidity fixed point(BRFP). Uiy(dal-0yr)"+ 2 (Gal )
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T A. Wilson renormalization group in the tubular phase
FLy(0a1)(dyr) } We apply the renormalization groRG) ala Wilson and
b Kogut[10] to the free energy Eq6). While this approach is
s D Dy’ sA(eiv) _ riy! usually more involved for extracting actual numbers than the
* Zf d Xf dox’ () =T (x")), ® more conventional field theory approddi], it is more gen-
eral and allows an easier analysis of the irrelevant operators,
where the parameters denote bending and elastic modukey to deciding which terms to retain in the free energy. The
Note the complexity of this model—it has 11 free param-crucial point in Wilson RG is the RG transformation. This is
eters. In mean field theory the non-self-avoiding limit ( a two-step procedure: tHaockingand therescaling
=0) yields a phase diagram with flat and crumpled phases There is considerable freedom in the choice of blocking.
separated by a tubular phasd. We chose decimation in momentum space, where in order to
In this paper we will be mainly concerned with the tubular simplify the calculations an anisotropic spherical momentum
phase(TP) beyond mean field theory. In this case we mayregularization is assumed. The blocking just consists in inte-

expandF in the Monge representation: grating over an anisotropic shell of thickness',| e|[0,
+©). That is,
r(x)=(£yy +u(x),h(x)). 4 )
X e Rl = I  du(q, .q)dh(q, ,q)e FEM.
The free energy is now a function ofandh. Before sim- {lallayleB
plifying Eq. (3) let us discuss the symmetries of the tubular )
phase.

Since the free energy must be invariant under global roThe regions consists of three sectors
tations of the tubule it is expressible in terms of the complete

-1 -zl
set of tubular rotationally invariant operators. These are 1>[q,[>e”, e *>q,|>0
. . B=4 1>|q,|>e”!, 1>|qg/|>e7? (8)
E(u,h)=d,u+ E(ayﬁ)%r S (a2, e 'lq,[<0, 1>[qgy/>e"?

N where the exponertaccounts for the anisotropy of the sys-
F.(u,h)=d,u+dshd h+adud,u, tem. This blocking is very similar to the one used .
The rescaling is anisotropic as well and is given by
Fap(U,h)=d,udgu+d,hdgh, (5)
qj_:elqu hr(q/):e—(D—l+z+V)lh(q)’
_(92,\2 215\2
Gy(u,h)=(a5u)*+(dyh)*, (1421

q,=e”qy, u'(q’)=e" u(a), 9)

Gyap(U,h)=(d2u)(d,4u) + a2ha,gh. . .
yap(U;N) =(35U)(9,5u) + Ighd o wherev is the other exponent that appears in the theory.
The result of performing a renormalization group trans-

Indeed, Eq(3) becomes i ! . ! X
a3 formation up to timd is the Wilsonian free energy

.1 .
F(uh)= EJ d®7x, dy| 24,(ty+ Uy, E(u,h) F(u',h"), (10)
+ Ky lyGy(U,h) + Ky, Gy, (u,h) +2uyy £9E?(u,h) where theu’ andh’ fields have the same range as the origi-
« w nal ones. The free energy evaluated-a0 is, by definition,
+(t v ) GFa+ Lu, yF o F Eq. (6). ¥ ’
u,, o For future reference, let us work out the simplest fixed
+20Ly§§E(u,h)F§+TFgF§+ T(Fg)2 point in Eq.(6), the Gaussian fixed point. Although this fixed

point is not of direct physical interest it plays a central role in
b . many considerationgsee Fig. 2 This fixed point may be
+ EJ d®~x, dy d®x{dy’ 8% H(h(x, ,y) studied by retaining only the quadratic terms in the free en-
ergy Eqg.(6), and applying the RG transformation just de-
_ﬁ(xi Y NSy —y) Fulx, y)—u(xy"). fined. We easily gethereafter dropping all primes in the

rescaling
(6)
1 A A
Since we are interested in the critical properties of the free F, =§f d®~ g, dy[(eP 173+ 2 kqp
energy Eq.(6), we may simplify by dropping irrelevant
terms. Simple power counting a_round the Gaussian fixed +e(D‘3+Z+2”)'tqf)h(q)h(—q)
point is usually enough to determine the relevancy of opera-
tors but in this case the situation is more involved and re- +(ePm1m3zranlg g2

quires a careful analysis of the symmetries of the problem, to (D—3-ztdml 2
which we turn now. +e g q)u(=qiu(g)]. (11)
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Imposing that the Gaussian fixed point is given by the termsvhich is the tubular phase version of a symmetry noted ear-

involving h, the exponentg and v are readily computed to lier in [12] for the free energy describing the large-distance
be properties of the flat phase.

1 5 -di
7= > 2,=-_D (12) C. The large-distance free energy of the phantom tubule
Let us apply the previous considerations to the construc-

and the exponents for the operators associated with the cof]o" Of the free energy for the large-distance properties of
plings are uniquely determined. The Gaussian fixed point i@hantom tubule$Eq. (6) with b=0].

thusg,=g, =0. The couplingy, defines an irrelevant direc- " [3,5], the free energy

tion for D>3/2, with exponentt —D, while gg defines a 1

relevant direction forD<5/2, with exponent:—D. The F(u,h)== f d~2x, dy{x(32h)?+1(3,h)>

Gaussian fixed point is therefore infrared unstable. 2

B. The rotations of the tubule +gl(r?au)2+gy[(?yu+ %(&yh)Z]Z} (19

For the general free energy of E@) the rotations of the is given as that describing the right large-distance properties

tubule are implemented by of the TP.
) The first thing to notice is that this free energy is not
u—ucosf+ sinh+(cosf—1)y, invariant under the symmetry E¢L8). The free energy with

_ _ (13 the correct invariances is given by
h—h cosé— sinfu— sin by,

where we have simplified by rotating just one component of F(u ﬁ)zl f deledy{K(azﬁ)ert(a h)2
h. The symmetry transformation above is unusual in that it 2 g
changes under the action of the renormalization group. This

-0 R 2 1 V272
happens because rotations of the tubule mix two sets of +0.(9,u+ dohdyh)“+gy[ayu-+z(ayh)"]7,

fields—the in-plane and out-of-plane phonons—having dif- (20
ferent scaling dimensions. In fact, it is straightforward to
show that Eq(13) is realized at timd by since the operata#,u+ d,ha,h is rotationally invariant.

It is important at this point to recall that the symmetry Eq.
(18) is exact up to “irrelevant” terms, and the coupligg is
(14) irrelevant for the entire range dD (including D=2) in
which the TP exists. If we therefore insist on including irrel-
gvant operators around the Gaussian fixed point, our free
energy would certainly contain a noninvariant term under

u—ucos@+e " I'hsing+e 272 (cosh—1)y,
h—hcosd—e” P'using—e " ?'singy.

The above transformation is an exact symmetry of the fre
energy Eq(10). This transformation depends explicitly én
and prevents a simple construction of invariant free energiegq' (18),
At largel, however, we may derive drindependent version. 1

i =Aelr—2! iti > . .
Define 6=A¢ and assume that the condition F(u,h)=§ f dD‘ledy{K(&ih)ert(&ah)Z

v()—2z(1)<0 (15 o
+91Y(d,u+dahdyh) >+ g (d,u)°
is satisfied. Near the fixed point, scaling relations to be de- R
rived later show that +gy[dyu+3(dyh)?1%. (21)

v—z=3%(v—D+1) (16)  Indeed, this is the combination that appears, up to higher
irrelevant terms, in the general expression for the free energy
and thereforev—z<0 for all v<D—1. The physical case Eq (6)’ asg(il) is the Coup“ng to th@aFa operator, an@f)

D=2 requiresy<<1, which is always valid. is the coupling taF?.
Equation(14) is then, for largd, The usual strategy, nevertheless, is to keep just those op-
Lo 2(v—2)| erators that define relevant directions of the Gaussian fixed
u—u+Ah—3A%y+0(e ), point. It is these directions that flow towards new infrared
) | (17)  fixed points, unless a first-order transition occurs. Adopting
h—h—Ay+0(e*"~?". this approach the relevant free energy for the phantom tubule
would be
The generalization of this symmetry to an arbitrary rotation
involving his

L1 R "
F(u,h)=§f dD_ledy[K(aih)ant(aah)z
u—u+Ah— 1 A?y+0(e2»~ 21,

(18)
h—h—Ay+0(e?r~ 2, Ty

1 . 2
ayu+§(ayh)2} ] (22
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whereg, defines a relevant direction f@ <5/2 which ter- ~ Wilson to derive an equation for the evolution of couplings.
minates in the tubular phase fixed po{iiPFP as shown in  The crucial equation in their analysis is the RG flow equation
Fig. 2. Note that the symmetry in E(L8) is, indeed, pre- forg,,

served.
dg, 5
D. The large-distance free energy for the self-avoiding tubule W_[A'V_Z’L D-3]g, (26)
Now let us return to the more physical model with the
self-avoidance term Now, as the RG is iterated starting near the Gaussian fixed
point,g, decreases to zero while the rescalingk) andz(l)
Ef dy d®~1x f dy’ d® =1’ 4 (x, ,y)—r(x' ,y")) flow towards their SAFP values. For sufficiently small em-
2 * + = - bedding dimensiond and large enough the sign of theg

(23 function forg, changes sign. The coupling then flows to
the BRFPgT == (see Fig. 3 This argument can be made
restored. more guantitative. Under very reasonable assumptions, Eg.

Following the discussion in Sec. II B, we simplify the (2¢) |eads to a lower bound fad, , the highest embedding
self-avoiding term Eq(23) by demanding invariance under gimension in which the BRFP prevails,

the symmetry Eq(18),
4D-1

o [ dy i 0 b 82 )R ), P75 @
(24)
In particular, d, (2)>7/2>3, so the physical tubuleX
with irrelevant terms dropped_ =2,d=3) is, according t({5:|, described by the BRFP.
The scaling dimension of the new perturbation Exf) at It is apparent that the operator
the Gaussian fixed point is=3D—3—(3—D)d. The b
coupling therefore defines a new relevant direction for d,ud“u (28)
tubules embedded in dimensiods:d3*, where
plays a fundamental role in this argument. Let us examine it
SA 6D—-1 more closely. In an expansion in irrelevant operators around
d"(D)=z5p- (29 the Gaussian fixed point, it appears in two ways, which we

labeledg!? andg{® in Eq. (21).

Below the upper critical dimensiod:” the Gaussian fixed First of all, the operator associated géll) IS Invariant
point is infrared unstable under this perturbation, and thé/nder the symmetry Eq18), as it appears in the invariant
large-distance properties of the self-avoiding tubule are de€ombination

scribed by a new fixed poifiSAFP. This new fixed point

merges with the Gaussian fixed point at the upper critical (9au+(9aﬁ(gyﬁ_ (29)
dimension where self-avoidance becomes a marginal pertur-

bation. We therefore expect the critical properties of the self-I ¢ ) les t bdominant bi f th
avoiding tubule to be perturbative in as pointed out if7] n contrasig ;™ couples to a subdominant piece of the opera-

(see Fig. 2 tor F%=4,udu+d,ha*h [see Eq.(5)]. In fact, from our

In [5], however, it is claimed that this simple scenario is€arlier symmetry arguments, it is suppressed by a factor
valid only for tubules embedded in dimensiodsclose to  O(e?(*~2) with respect to the dominant piece, f)2 which
d34(D). For any dimensiord lower thand, (whered,  couples to the marginal direction Provided v—z<0 the
<d3%), they argue for the existence of a distinct fixed point,couplingg(f) is thus irrelevant and may be dropped from the
the bending rigidity fixed pointsee Fig. 3. This fixed point  free energy.
is postulated to describe the actual critical properties of the We have argued that the most general free energy dictat-
self-avoiding tubule for the regimd<d, , including the ing the large-distance properties of the tubule is given by Eg.
physical case of th® =2 tubule embedded id=3. If this  (20) together with self-avoidandé=q. (24)]. Forg, vanish-
scenario is true, the critical properties of the self-avoidinging, the infrared stable fixed point of the theory is the SAFP.
tubule are not perturbative ia. Analytical predictions be- The key issue is now whether this fixed point is stable with
come then extremely difficult, as there is no evident smalrespect to perturbations hy, . Since the properties of the
perturbative parameter. SAFP are perturbative in, the same applies to the critical

At this stage, therefore, we need to understand better thexponents. Experience with typical multicritical behavior
topology of the RG flows in the case where self-avoidance isuggests that we should not expect the exponent associated
included. Let us review the arguments[8f. They consider with the g, direction to change so much from its Gaussian
the free energy Eq19), together with the self-avoiding term value 3/2-D that it changes sighl1].
Eqg. (24). They include all relevant directions from the In conclusion, the simplest free energy describing the
Gaussian fixed point, and an irrelevant one definedypy large-distance properties of the self-avoiding tubule is given
They apply the infinitesimal renormalization groupla by
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-1 D-1 21272 ) 1 R N )
F(u,h)=5 | d°7"x,dy| x(dyh)*+1(dzh) Gh(Xl,Y)E—m([h(xb)/)—h(oﬂ)] ) (39
1 . \2 : . .

+g,| 2 u+—(ayh)2) } \f/ivgzsconadered as well as the correlator involving the
b . _

5 f dy @~ 1x, d®~Ix! 5 1(R(x, ,y) Gu(X, ,Y)=(ayu(x, .y)3,u(0,0)). (36)
> At the fixed point, the first correlator satisfies

—h(x,y)). (30

J o J
This is the starting point of all our subsequent analysis. (

D-1 ] &
Pon T 2% 5 T2 G y)=0. (3D

lll. THE SCALING RELATIONS which, combined with simple scaling law

Having identified the right free energy, we turn now to the

derivation of the different critical exponents of the theory. i_ ‘7 J 2 4 (5-2D R _
We use the conventional field theory formaligii], follow- ( ﬂ,u y . X, (5 )[Gn(x.,¥)=0,
ing [7]. (38

The scaling dimensions of the fields and coordinates are
[y]=1, [x,]=2, [h] $_D, and[u]=4-2D. This im- gives us the fixed point renormalization group equation,

plies

J
—+ =X, — =2 GR(x, ,y)=0. 39
[b]=—¢, [g,]=2D-5, (31) [yay 2% 9%, g] n(Xc.Y) 39
with A renormalization group equation may also be derived for
G, . To do so we must use once again the Ward identity that
_3p— 1 5-2D 32) fixes the wave function renormalization for Equation(37)
e 2 2 is now
Following the arguments ifi7], one can show that the free a & 4 R
energy Eq(30) renormalizes onto itself with /L@+ §XLE+(D_1)5 Gu(x.,y)=0, (40

ZK(a)ZlﬁR)Z_{_ZLt(asﬁR)Z Eq. (38) reads for theu case

.1
F(u,h)=§f d®~xRdy

z? J
1 ..)\2 i 2 (66— R _
oo b | Y20 (64D G )0
(41
bRZpu® R o
+ zb'u f dP~xRdP~IxRdy s L(AR(XR y) leading finally to
> 0 1 Jd
—hR(x(Ry)), (33) g2 R _
L y yay + ZXL c?XJ_ 2§u Gh(xl 1y) 01 (42)
where the Ward identity implied by E@18) is used so that
there is no independent wave function renormalization foiwvhere
the fieldu. Furthermore, it is not difficult to show, using the
MOPE formalism[9], that the bending rigidity is not renor- s=u—!| Inz
malized soZ=1, as first pointed out ifi7]. Thus we have _'“d,u o Lo
RO y) =202 h(x, ,y), 2
7= —-—
R_ -1 445’
xR=zV 43
(34 5-2D 1-D
bR:blulfazglz(l*D)(dJr?:)M, _ -
2 4 7
R (D-1)/12
gh= 5 2Dgy 2. 1-D
. -~ . . =1+ .
Using these definitions we will consider two correlators, z

which enable us to determine the exponents of the theory. In
the original papef7], the correlator Both Eqgs.(39) and (42) may be solved explicitly, yielding
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27 y y 1 1 +d_1J dD_la da
G , = F —_ | = VF —, e
h(XL y) y 1 |XJ_|Z |XL| 2 |XJ_|Z gy(p) gy 2 L y
, , (44) y q2(p—q)?
Gu(x, ,y)=y25uF1( x |z> =|XL|25“’ZF5<W), (kqy+ta?)[ x(dy—py)*+t(d, —p.)?%]
an L
W_here v={/z. Transforming Eq(44) to momentum space + dle delehday% s(p),
gives k(Qy)“+tap
-1__ 2+ a (50)
Gn(p.,q) *=[py[*" ™1 o)’ _ .
P. which for p#0 is
(45)
_ q
Gu(vaq) 1=|pi|zﬂuh(m), g (p): gy
T 14 [(d=1)gy221f (D= 1)p;°°C(p,/Ip. [
with (51
7.=—2+4z, wheref(d) = fd9t1/(t2+1)%,
(46)
2v
M=—. (A, [ X(1=X)
z C(y)= dz| dx 2
— % 0 y

These scaling laws were first derived[if] and[3], respec-

(D-5)12
tively. K 4 4
We conclude that all the critical exponents of our free Fyxd=27 (1 =x]z )) (82
energy Eq(30) at any putative fixed point may be expressed
in terms of a single parameter, sdyThe task of computing and the exponent is
critical exponents translates into the task of evaluatinag
the corresponding fixed point. z=1/2. (53)
IV. THE PHANTOM TUBULE Recall that Eq(51) is valid for any value ofj, . The Gauss-

) , , ) ian fixed point g, = 0) is unstable to perturbations along this
The theoretical considerations in Sec. Il C lead us to CONyirection. and the coupling, is driven tog,=os in the in-
sider Eq.(22) as the right free energy describing the large-fareq, which is the fixed point describing the physics of the
distance properties of the phantom tubule. In fact they allo"\bhantom tubule(PTFP. At the PTFPg,(p) has the form

: y

us to solve the phantom tubule phase exactly, simply b)f)"“g(pyllpilz) as predicted by Eq44) at any fixed point
v , 4 .

forming the shift
periorming the shi We can easily recover now the results[B8)5] from our
1y - exact solution Eq(51) and Eq.(52) at the PTFP.
u—u'— Ejo dz(d;h)*, (47 (1) Fory=p,/|p, |*— we have

oo
: —J dzz%(1-2z)?

D-3

— o0

where the lower bound for the integral is arbitrary and cor- C(y) x~<
responds to translations of the zero mode. The free energy =
Eqg. (22) is then a sum of Gaussian terms. Let us compute the

anomalous elasticity, determined by the correlator B6),

K)(DS)/Z 2

(1—2)20=3_z200-3)

(1-2)*-2*

, (54
Gu(x—2)=(dyu(x)dyu(z)),

(48 which converges, both in the infrared and the ultraviolet, for
G,(p)= f d(x—2)e P IG(x—2). 3<D<3 (the dimensions in which the tubular phase exists
For smallp,

The elasticity constant is given by

gy(p)wp;uﬂiu:‘S_ZD- (55

1
9y(p)= Gup) (49) (2) Fory=p,/|p, |>~0 we have
—-2D+5 D
At tree levelgy(p)=gy. Cly)y o~ y " t l[x(l—x)](ZD*E’)’z
The general case amounts to performing the shift Eq. y=0 2 k] Jo

(47). Equivalently the loop expansion may be performed to
all orders. The diagram consists of a necklaceﬁdbops % f+°°d“221/4(1+z)(|375)/2 (56)
which can be resummed, yielding 0
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soC(y)_ o~y X const where const is a convergent integral
for 2<D<3. For smallp, atD=2

9,(p)~pi”. (57)

To conclude let us connect with the results in Sec. Ill. At the v
PTFP we haveS=0, and the rest of the exponents from this ~ ~
result and scaling relations.

FIG. 4. One-loop diagrams contributing to the renormalization
of the free energy.
V. THE SELF-AVOIDING TUBULE

We have argued that E30) is the appropriate free en- where erfk) denotes t_he error function. This result is_ in
ergy to consider once self-avoidance is included. The task dfomplete agreement with that quoted #). The next step is
computing the critical exponents of this theory is not easy!© Perform the MOPE for the operator
since from[7] we know that the results of the(d) expan-
sion are not very robust to higher-order perturbations.

In order to get an estimate for the exponents at the SAFP,
we compute the critical exponents to lowest ordes (D ,d)
for arbitrary internal dimensionD. Existing techniques This is easily done using standard techniques, with the result
[13,14] then allow us to perform more sophisticated extrapo-
lations which produce reliable estimates for the critical ex-
ponents. B{x, x| y}=Cy(x, —x[)+CA(x, —x]):

ix Xy =89V, ,y)—h(x|y). (61

XV h(x° (X0 y)i+ -
A. The computation of & VahOe Y)Y gh(xi,y) . (62
We follow the MOPE formalisnj9], employing dimen- ] o
i i7ati i i i wherex? = (x, +x/)/2, and the Wilson coefficients are
sional regularization and minimal subtraction, used in this L LX) 4,
problem in[7], to compute theS exponent.
Within the MOPE formalism, one may prove that the free

energy Eq(30) renormalizes onto itself. It also identifies the C,(u)= 1 ,
diagrams to compute that yield the RG functions determining ¢ (47) 9=V — GD(u,0)]@~ V"2
the critical exponents. For details on this formalism we refer (63)
to [8,9], and for its implementation in the tubular case, we
refer to the original Bowick-Guitte(BG) [7] calculation. aB u“u®
The first step is to compute the two-point functicp for Cyl(u)=- TG T
arbitraryD atb=0. The result is 4(4m) [=Gn(u.0]
GO(x, y)=— |x,|?7P We also need the MOPE for the product of two of these
hXe .Y S_D)(2m)P+DR2 operators. One finds
+ o
x| Ix, Y2 fo dt 21K 1 p)a(t) cos( tHaw) dix1.21 Y1} dlxz .23 Yo}
y [+ :C£¢(XJ]:_XJ2_!ZJJ?_ZJZ_!yl_yZ)Qs{XJ_!ZJ_ Yitee
+ Efo dttP32K 53_pya(t) sin(tl’zw)}, (64)
(58)

wherex, = (x] +X3)/2, y=(y1+Y2)/2, andz, =(z; +z;)/2
wherew=vy/|x, |2 and K, is a modified Bessel function. &nd
There are two particular cases of interest.yAt0 we have
si2-pp| L 1 Cp(u,v,w)= ! :
Ix, | F(Z)F(D/Z— 7) 24 (4) @92 [ —GO(u,w)— GY(v,w) ] D72

0 - _
Gh(x.,0= (5 —D)m(D+112p5P2 ) (59) (65)

For the physical valueD=2 it follows from Kyx(t) This is all we need to compute the critical exponents. This

=K_qo(t) = (m/2t) Y%t that MOPE corresponds to the_ diagrgms in Fig. 4. The last dia-
gram for the renormalization df is not necessary to com-
IX| V2 y (w pute, as it _cancels against_the renprmalizatioﬂ of '
Gﬂ(x,y)= — e WA_ _erf( _) (60) Expanding the renormalized action E§3), and using the
21?2 412 MOPE Eq.(62),
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bR/.LS
-2 [ o aP i ayaix X y)

bRMs
=—— (jdD‘ledD‘lxidyC}é(xL—xi)

+ f d®~*x,d®~ x| dy C3#(x, —x])

XV h(x y)Vgh(x? ,y)+- - (66)

The first term of Eq(66) renormalizes the identity operator e o 42D —3,,2D-3
and therefore may be neglected in computing expectation :f duf d

values of operators. The second term determifgs with
the result

1 (5 (2D+2)/(5-2D)
= 1+m(§‘ )
(3D +3)/(10-4D) »(11-3D)/(5-2D) bR 1
X[I‘(%)F(D/Z_%)](2D+2)/(5—2D) T[(D-1)/2] &
(67)

At one loop there is no renormalization fdr a result that is
also true at any order in perturbation thedny.

Expanding thed function, and performing the MOPE in
Eq. (64), we find

(bRu®)? _ 100 1
5 de X0dP XY dy, 89 H(h(X° ,yo)

—h(x)’ ,yo))f d°~*zd®twdyCj,(zw,y),
(68)

where higher terms in the MOPE E(64) are neglected as
they do not give rise to poles in. To find Z,, we must
compute the last integral in E@68). This is done by per-

forming the angular integration and then changing variable

to u=|z/¥%y andv=|w|¥%y. The result is

defldeflwdycﬁd,(z,w,y)

2 (D112

8
:(4w)<d—1>/2(r[(0—1>/2]

)(d—l)/Z

(d-1)2
X

5
2 (D+1)/2
5 D)(Z’JT)

i 1py 1y
XJ’ dy ysflJ duJ’ dv
0 0 0

u2D73UZD73

“THw+ f(o) 7 ©9

where
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t1/2
f(u)y=u*" ZD[ J dttP27 1K ;- D,Z(t)cos( u)

1 [+ 1/2
+§JO dtt(D2)’2K(3D),2(t)sm(7)}. (70)

Using

J‘lmy ny 42D —3,2D-3
duf dv
o Jo LR+ H() PR

+p(y),

o Jo U LH(u)+ ()] O P

(7D
wherep(y) is a continuous function that vanishesyat 0,
and adding a factor of 2 corresponding to the two ways one

can perform the MOPE in the diagram in Fig. 4, we get
finally

(g _ D)(4D73)/(572D)2[(4D73)(D73)/2(572D)]+4
Zb: 1+

~7(0-1/2(5-20) [ (D — 1)/2]?
bR

X1(D)—, (72

&

with

2D—3 2D-3

T

We have thus succeeded in renormalizing the theory at the
one-loop level. The evaluation of this integral is discussed in
the Appendix. The next step is to compute the exporient
We begin with the computation of th@ function. There are
two of them. Defininga; andb; via Z, =1+ (b%/¢)a, and
gb 1+ (b®&)b,, we have

[f(U)+f(v)]<4D 3)/(5-2D)
(73

2(5—2D)

By(bR)=—ebR+|a;+ bl)(bR)Z, (74

and

D-1
3gy(bR,g§*):(5—2D+ TA(bR))gg‘, (75)

where A(bR)=pu(d/du)InZ, . There is a nontrivial fixed
point (the SAFB at

€

bR*_a1+[(7 €)/2(5—2D)]b;’ (76)
and, forD<[5— A (bR*)/2]/[2— A(bR*)/2]
gy=+ee. (77)
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Using Plugging Eq.(67) and Eq.(72) into Eq. (79) yields
— R\ — i 5
6=A(b )_Md,u Inz, - (78) E_D
S=—o———c5, (80
we obtain the final result £+6(D)I(D)
&
9=~ 7/25-2D) + a; /b, 79 shere

{F(%)F[(D/Z) _ %]}(2D+2)/(5—2D)2(2D2—25D/2+27/3/(5—2D)
aT[(D—1)/2]

H(D)=(D—1) (81)

The scaling relations after E¢42) and Eq.(46) determine  (D,,d,=(6D,—1)/(5—2Dy)) (see Fig. $and hope to find
the rest of the critical exponents provided we have a goog new expansion in which the corrections to E82) are

determination of5. As only the first term in the expansion  minimized. In this case one may expect reliable one-loop
is available this will require refined methods to improve theresults.

perturbative expansion. This is an involved subject to which  As an example, let us rewrite EG82) in terms of D

we now turn. — Dy, and keep the leading terms,
B. Analysis of the results »(D)= S_EDo - D—2Do
From Eg.(80) and the scaling relations we get explicit
forms for the critical exponents of the self-avoiding tubular +v1(Do+D—Dg)e(D,d)+0O(e?)
phase. For example, the radius of gyration or size exponent
reads 5-2D, D-D,
= 4 — 2 +V1(D0)8(D,d)
5_
V(D)= —,—+n(D)e(D.d)+- -, (82 +0(e?,6(D—Dy),(D—Dg)?). (83)

One can expand around any poird{,dy) in the e=0
wherev,(D) is plotted as a function d in Fig. 5. curve, but at the expense of dealing with the double expan-
As already noticed if7], a direct application of Eq82)  sion ine andD in Eq. (83). Furthermore, critical quantities

to a physical membrane is not robust with respect to secondtepend, in principle, on a new paramef@y, but should
order corrections. This is a consequence of the poit (
=2,d=3) being too far from the point (2,11) on the critical 12

curvee=0. One can try, instead, to perform a generalized
expansion around any other point on the critical curve 0l
0.1
8 L
0.08 |
d sl
0.06 | 4
vy
0.04 21
I 0 - : ]
0.02 1.6 1.8 2
D
01 s 17 o 21 23 FIG. 6. The solid line is the =0 curve. The naive expansion
’ : ’ D i i is marked with a dotted line. Other possible expansions from the

physically interesting caseD(=2,d=3) are marked with dashed
FIG. 5. Plot ofv4(D) as a function oD. lines.
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obviously be independent of it. There are established techshows a plateau coincident with D, but deviating slightly.
niques to select the beB,, such as the minimal sensitivity The Hwa technique shows two extrema, one slightly above
method of Hwd 13]. Anyway, the expansion ia,D is justa the Flory result, the other slightly below, so although the
particular case of a more general situat[dd4], as we may results are reasonable, we think we cannot apply it accurately
choose any new set of variableg(D,¢),y(D,e)} and reex- asd decreases. At (2,7), the situation for the different ex-
press Eq(83) as an expansion around the critical cufxg  trapolations is very similar; again, expansion D gives a nice

=x(Dg,0),yo=Y(Dy,0)), flat plateau consistent with the Flory estimate, and we ex-
trapolate the best in the same way as in the (2,8) case.
v(D,g)=v(X,y)=v(Xq,Yo) + AXv1 o(X0,Y0) Expansion C gives a result completely consistent with D,
although with not such a flat plateau, while expansion A
+Ayvoa(Xo.Yo) ¥+, (84 starts to deviate. The cases (2,6), (2,5), and (2,4) follow the
same trends as the previous ones, as apparent from Fig. 7 and
whereAx=x(D,e) ~Xo, Ay=Y(D,#)—Vo. the results are quoted in Table I. We conclude that expansion

Now the goal is to choose a good set of variales/}

e S D is a reliable generalized expansion that we can confi-
from the infinite number of possibilities.

- : , . dently apply to the physical case (2,3). Our final result is
A good expansion variable must meet two basic requireq oted in Table I. Let us recall that ja4] expansion D also

ments, (1) independence oD, at least in some interval of g5y the most reliable results, and it is interesting to find the

Do's, and (2) within this region, results must be quantita- ¢ome situation here.

tively correct. _ _ Concerning the’ exponent, the situation is different. We
The way we choose to meet requiremeltis to look for  ging the best results applying Hwa’s technique. For srdall

v to plateau WIthII:] some given accuracy for an interval Ofany of the estimates A,B,C,D exhibits a large enough pla-

Do. To meet requirement2), we will systematically study g5, and consequently, we are not confident enough of their

the (2d) line, starting close td=11 where even the naive  opystness. The estimates quoted in Table | are those ob-

expansion is expected to work and agree well with the Floryained from the Hwa method. As shown in Fig. 8 we find two

estimate. At largel a good expansion variable should exhibit points wheredv/dD,=0, one forD,<2, the other forD,

a broad plateau around the Flory result. At this stage, the.> our actual estimate corresponds to the cBgec2

expansions that do not deliver accurate enough results Ca””ﬁhce, on one hand, it agrees slightly better with the Flory

be trusted, and should therefore be rejected.0As de-  eqiimate for largel, and on the other, the curee=0 seems
creased we check that the plateau remains stable for the go?rﬂuitively closer to the actual point.

expansion variables, so that we have a reliable extrapolation Finally, it is reassuring that the values we obtain ficand

at d=3. In addition, we expect reasonable agreement withg, although computed using different extrapolations, are

the Flory estimate. compatible with the scaling relations E@3).
We examine they exponent as well as thé exponent

using the above techniques. The reason for ana_llyzing both 2. Corrections to the Flory estimate
exponents is that they have different dependencie$,@s he FI L hich inl K Il
expressed in Eq43). This may result in different expansion | "€ Flory approximation, which certainly works well for
variables being appropriate for different exponents. Of°Clymers, also provides valuable insight in the case of mem-
course, results must be consistent with the scaling relationl%_ranes' The basic approximation assumes th?‘t elastic ener-
expressed by Eq43) gies are comparable to self-avoiding energies. For self-
In this paper, we implement the Hwa minimal sensitivity cOnsistency we then require thaf, =Z,. This extra
scheme[13], and we explore the following distinct expan- condition fixess and» to be

sions: (1) expansion A:{x=D,y=¢}; (2) expansion Bix _4e

=D,y=d}; (3) expansion C{x=D,y=Dy(d)=(5d+1)/ Sr= ,

2(3+d)}; and (4) expansion D:{x=g,y=Do(d)}, which 4+(D-1)(d+3)

have been previously used in a different contexlid]. D1 (85)
1. Corrections to mean field VRoy T g1

The analysis leading to the extrapolation for h@xpo- |t js also interesting to analyze the corrections to the Flory

nent may be summarized in Fig. 7. ADE2,d=8) all sets  regylt. We can write at the fixed point the following equiva-
of variables A,B,C,D give consistent results. Neverthelessant definition fors:

the expansion D shows the flattest plateau which is in com-

plete agreement with the Flory estimate. This singles out 4 d Zy
expansion D as the best, and in fact we have taken as the 0= 6~ 4+(D—1)(d+3)’uﬁln(z_) (86)
actualv its value at the middle of the plateau. Within the D

expansion, results are largely independeriDgf This allows  Expanding to first order im it follows that

us to estimate the uncertainty infrom its deviations from

the plateau, which is the error bar quoted in the first column 5-2D 17-4D

of Table I. Expansion C also yields compatible results but, as ve(D)= 2 3(D+1) vi(D)e, (87)

apparent, it is not such a flat plateau. We find expansion B to
be unreliable and the results are not even displayed. Finallwyherev,(D) is defined in Eq(82). Coincidentally the extra
expansion A, almost equivalent to the naiweexpansion, factor appearing on the right-hand side of the previous equa-
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FIG. 7. Calculation for thev exponent. The long dashed line corresponds to the minimal sensitivity scheme, the dashed one is A
expansion, the dot-dashed line corresponds to expansion C, and the solid line is the D expansion.

tionis just 1 atD=2, so Eq.82) and Eq.(87) give the same expansion C produces the flattest plateau. We use this expan-
result atD =2, a result already noticed {I7]. sion to extract our best within this approximation. Using

We can apply the usual machinery to extract critical ex-the fluctuations in the plateau, as a functionDnf, to esti-
ponents. We start by examining the (2,8) case. From Fig. 9 itnate errors, we realize that results in this case are not as
is clear that all expansions give compatible results, althoughccurate, although still compatible with previous estimates
and with its Flory value. From analyzing this case we see
also that this expansion tends to give a slight overestimate.
The same situation holds asdecreases, as shown in Table

TABLE I. Final results for critical exponents.

dealing with problems with self-avoidance is the Gaussian

d v VElory 4 LFiory Il. Overall, results remain close to the Flory estimate al-

8 0.333(5) 0.333 0.60 0.600 th_ough with a larger un_certalnty. They are still compatible

- 0.374(8) 0.375 0.64 0.643 with the values quoted in Table I, which we regard as our
) | ’ ' most accurate determinations.

6 0.42(1) 0.429 0.68 0.692

5 0.47(1) 0.500 0.72 0.750 3. Corrections to the Gaussian variational approximation

4 0.54(2) 0.600 0.76 0.818 ' PP

3 0.62(2) 0.750 0.80 0.900 Another approach that has been relatively successful in
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FIG. 8. Calculation for the exponent. The conventions are the same as in the previous figure.

variational approximatiofil5]. It consists in approximating Flory approximation, we may determine the corrections to
the exact density functional by the best possible quadratithe Gaussian variational approximation within thexpan-
weight for the fieldh. It amounts to assuming that the self- sion. From

avoiding term is not renormalized, that &,=1. The quan-

tity 6 and the gyration radius exponent within this approxi- s _ i
mation were computed if8] with the result 0=y (D—-1)(d+3) ’ud,u IN(Zy), (89
S —4e which consistently at lowest order inresults in
V7 (D—-1)(d+3)’ 520 1,(D)
(89 _°>" 141
7(D-1) wB)= o1 ® (%0

Vvar— (3d—5)
wherev,(D) is defined in Eq(82) and again the extra factor
The value for the physical tubule ig,= . This is clearly —appearing on the right-hand side is just 1Da2, so Eq.
unphysical, being larger than one, but the accuracy of th€82) and Eq.(90) are equal aD =2, as reported ifi7].
Gaussian variational approximation should improve for large Our extrapolations are summarized in Fig. 10. The Gauss-
d, since it is essentially a largé-expansion. As with the ian variational approximation turns out to be the least accu-
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(2,8)

27)

1.5 1.7

1.5 1.7 1.9 21 23
DO

FIG. 9. Corrections to the Flory estimate for

rate of our determinations. At (2,8) all different extrapola- completeness, we extrapolate our results from this pseudo-
tions deliver equivalent results, but the expansion C showplateau where variations are small, and quote an error bar
the flattest plateau. The situation is the same for the casdsom its variations, which are the results quoted in Table II.
(2,7), (2,6), and (2,5), but at (2,4) and (2,3), there are siz-

able variations and there is no clear plateau. For the sake of VI. CONCLUSIONS

TABLE Il. Comparison of the different extrapolations for

d v Vg 14Y VFlory

8 0.333(5) 0.34(1) 0.34(1) 0.333
7 0.374(8) 0.39(2) 0.39(2) 0.375
6 0.42(1) 0.44(2) 0.44(4) 0.429
5 0.47(1) 0.51(3) 0.51(5) 0.500
4 0.54(2) 0.60(4) 0.60(6) 0.600
3 0.62(2) 0.71(6) 0.70(9) 0.750

In this paper our first task was to identify the simplest free
energy containing all the relevant operators controlling the
large-distance physics of the tubular phase of anisotropic
membranes. In this analysis essential use was made of rota-
tional symmetries. Although our analysis may be modified
by the existence of more complicated phase diagrams with
non-perturbative fixed points in the spirit B], we believe
that the model treated here reveals essential features of the
physics of the anisotropic tubular phase.

Finally we completely characterized the phase diagram
and calculated the critical exponents by generalizing ghe
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FIG. 10. Corrections to the variational estimate for

expansion introduced if¥]. For the physically self-avoiding 30
tubule we find
v=0.62, (92) 20
{=0.80, (92 fw)
z=0.75, (93 10
{,=—0.33, (94) ’
7u=1.65, (99 % 1 2 3 4 5
7. =1.0. 96) "
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FIG. 11. f(u) for different values ofD. The dashed line i®

Further improvement would necessitate a two-loop calcula=1.7, the dotted line®=2.0, and the solid lin®=2.3.
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TABLE lll. Sample of values foil (D). whereK, is a modified Bessel function. We have not been
able to compute the integrals in E&\3) explicitly, except in
D 1(D) D 1(D) the caseD=2. Nevertheless, we know both thifu) is a
16 0.07951 20 1.263916 monotpnically increasing function ai and its asymptotic
17 0.04643 21 1077516 behavior for small and large For largeu we have the result
1.8 0.02027 2.2 1.7155716
1.9 0.006434 2.3 4.0129818 1 D 1
f(u)u%:ZD’Z—Zr(—)r(—— —)u5‘2D[1+ O(1/u)]
4 2 4
. . . (A4)
tion for arbitraryD and would provide a valuable check of
our extrapolation.
These predictions may be tested via an extension of thehile, for smallu, we have
numerical simulations described [6] to the much more
demanding model with self-avoidance. These simulations are
currently in progress. We hope the concreteness of the calyj, f(u)= mI'[(3—D)/2] : 1
culations presented here will inspire further work in the rich y_.o 2(0+1i2 T'(5—=2D)sin(m/2)(5-2D)]’
field of the physics of anisotropic extended manifolds. (A5)
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APPENDIX The next step is to computé(z), Eq. (A2). Its exact
analytical form seems hopeless to compute, but again we can
In this appendix we discuss the analytical properties ofiind its asymptotic limits. For smait we have
several functions that arise in the evaluation of the quantity
(D). We follow closely the methods ¢¥], and rewrite Eq.

(73 as i [[(2D-2)/(5—2D)]
L » 0 [2P221(1/4)T (D/2~ 1/4)](2P~2)/(5-2D)
(D)= — — f dzFKz)?, (Al (D—2)/(5-2D)
I'[(4D-3)/(5—2D)]Jo % [1+0(Z5-20) (A6)
5-2D
with
F(Z):Z(SD—4)/(5—2D)deu (2D~ 3g—2f(u) (A2) and for largez
0
and F(z)~e 02 (A7)
o 112 o
f(u)=u*-20 uf dttD’21K(1_D),2(t)cos<—) wheref(0) is given by Eq(A5).
0 u The asymptotics provide valuable cross checks for the

Y 112 numerical integrations, and we have also used them in speed-
+1f dtt(D3)’2K(3_D),2(t)sin(—) . (A3) ing up the numerical_integration algorithms. A sample of
2)o u values forl (D) is provided in Table III.
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