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Geometrical model for a particle on a rough inclined surface

Giovani L. Vasconcelos and J. J. P. Veerman
Departamento de Fı´sica, Universidade Federal de Pernambuco, 50670-901 Recife, Brazil

~Received 7 December 1998!

A simple geometrical model is presented for the gravity-driven motion of a single particle on a rough
inclined surface. Adopting a simple restitution law for the collisions between the particle and the surface, we
arrive at a model in which the dynamics is described by a one-dimensional map. This map is studied in detail
and it is shown to exhibit several dynamical regimes~steady state, chaotic behavior, and accelerated motion!
as the model parameters vary. A phase diagram showing the corresponding domain of existence for these
regimes is presented. The model is also found to be in good qualitative agreement with recent experiments on
a ball moving on a rough inclined line.@S1063-651X~99!04005-2#

PACS number~s!: 83.70.Fn, 45.70.2n, 45.50.2j, 05.45.2a
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I. INTRODUCTION

Several experimental studies@1–4# have recently been
conducted on the problem of a single ball falling under gr
ity on a surface of controlled roughness. These works h
revealed interesting new aspects of granular dynamics
are not yet fully understood. Three distinct dynamical
gimes have been identified@1–4# as the tilting angle in-
creases. For small inclinations there is~i! a decelerated re
gime where the ball always stops, then comes~ii ! an
intermediate regime where the ball reaches a steady
with constant mean velocity, and for larger inclinations t
ball enters~iii ! a jumping regime. Computer simulation
@2–6# have confirmed these results, particularly those c
cerning regimes~i! and~ii !. A theoretical model@7# has also
been proposed in which steady-state solutions~but no de-
tailed dynamics! can be obtained analytically. More recentl
a one-dimensional map@8# has been introduced to study th
jumping regime. This map in its simplest version is line
and to obtain nonlinear behavior one has to vary spatially
properties of the rough surface@8#, in which case the mode
becomes inaccessible analytically.

In this paper we present a model for a single parti
moving under the action of gravity on a rough surface
specified shape. Within this setting we will give a detail
analytical description of all possible dynamical regimes. A
though the model we study is simplified, its predictions a
in good qualitative agreement with the experimental fin
ings.

Roughly speaking, our conclusions are as follows. Th
is ~i! a sharp transition~as the surface inclination increase!
from a regime of bounded velocity to one of accelera
motion. Within the region of bounded velocity various d
namical regimes are possible. First there is~ii ! a range of
inclinations for which the dynamics always has a uniq
attractor. For higher inclinations two other phases exist:~iii !
a region where we have coexisting attractors for the dyn
ics and~iv! a region where instabilities give rise to chao
behavior. For a fixed~sufficiently large! inclination a transi-
tion to the chaotic region will take place as the nature of
collisions between the particle and the surface beco
highly inelastic. Although our results are derived here in
context of a simple collision rule, it can be shown@9# that
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they remain valid for a wide class of restitution laws.
The paper is organized as follows. In Sec. II we descr

the model and study in detail its dynamical properties. T
main results of this section are then summarized in the ph
diagram shown in Fig. 4. In Sec. III we carry out a compa
son between the model predictions and the experime
findings. In particular, we argue that the jumping regim
seen in the experiments might correspond to a true cha
motion, as predicted by the model. Finally, in Sec. IV w
collect our main conclusions and present further discussio

II. THE MODEL

In our model, which is shown in Fig. 1, the rough surfa
is considered to have a simple staircase shape whose
have heighta and lengthb. For convenience, we choose
system of coordinates in such a way that the step plateau
aligned with thex axis and the direction of the acceleratio
of gravity g makes an anglef with they axis. A grain is then
imagined to be launched on the top of the ‘‘staircase’’ with
given initial velocity. In what follows, we will be concerne
with the problem of apoint particle falling down this ‘‘stair-
case’’ and will thus not take into account any effect due
the finite size of the grain. Upon reaching the end of a s
plateau, the particle will undergo a ballistic flight until
collides with another plateau located a certain numbern of
steps below the departure step~e.g.,n53 in Fig. 1!. Accord-
ingly, we will refer to the integern as the jump number
associated with this flight.

FIG. 1. Model for a single particle moving under gravity on
rough inclined surface.
5641 ©1999 The American Physical Society
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We will assume, for simplicity, that the momentum lo
due to collisions is determined by two coefficients of res
tution et anden , corresponding to the tangential and norm
directions, respectively. More precisely, ifv5(vx ,vy) de-
note, respectively, the components of the particle velo
parallel and perpendicular to the surface before a collis
then we will take the velocityv85(vx8 ,vy8) after the collision
to be given by

vx85etvx , ~1a!

vy852envy , ~1b!

where 0<et,1 and 0<en,1.
In the present paper we will for simplicity discuss on

the caseen50, the advantage being that the model can th
be described by a one-dimensional map. Whenen.0 the
dynamics is governed by a three-dimensional map, the an
sis of which is more complicated; we plan to provide th
analysis in future@10#.

We now derive the equations governing the dynamics
the model presented above. Let us denote byE the kinetic
energy of the particle at the moment of departure for a gi
flight. We writeE5 1

2 mV2, wherem is the particle mass an
V is the launching velocity at the start of the flight~see Fig.
1!. After this flight the particle will first collide with a step
below, then slide along this step~recall en50), and finally
take off again on another flight with initial kinetic energyE8.
We suppose that the main energy loss is due to collisions
so we neglect the energy dissipation as the particle sl
along a step, where it then moves with a constant accel
tion g sinf. Using simple arguments of energy conservat
together with the collision conditions~1! and ~2!, one can
write E8 in terms ofE. The result is

E85
1

2
met

2vx
21mgsinf~nb2x!, ~2!

wheren is the corresponding jump number for the flight a
x is the x coordinate of the landing point. It takes simp
algebra to show that at the landing point (x,y) we have the
following identities:

x5
g sinf

2
T21A2E

m
T, ~3a!

y5
g cosf

2
T25na, ~3b!

vx5g sinf T1A2E

m
, ~3c!

vy5g cosf T, ~3d!

whereT is the flight time.
It is convenient to introduce a dimensionless energyl

variable:

E5
E

mgacosf
. ~4!
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Eliminating T from Eq. ~3! and inserting the result into Eq
~2!, we obtain that the dynamics of the model in terms of t
variableE is given by the following map:

E85 f ~E,n!5n@et
2 ~AE/n1t !21t~t2t22AE/n!#, ~5!

where we have for conciseness introduced the notation

t5tanf, ~6!

t5b/a. ~7!

The parametert above can be viewed as a measure of
surface roughness, witht2150 corresponding to a perfectl
smooth surface. As for the inclination parametert, we need
to consider only the interval 0,t,t for which nontrivial
motion occurs.~Clearly, for t,0 the particle will always
come to a rest, whereas fort.t the particle undergoes a fre
fall without ever colliding again with the ramp.!

The flight jump numbern appearing in Eq.~5! is deter-
mined from the energyE according to the following condi-
tion: n is equal to the smallest integer such thatnb2x>0 or,
alternatively,

n~t2t !22AnE>0. ~8!

This means thatE falls within the intervalI n :

EPI n~ t ![†

1
4 ~n21!~t2t !2, 1

4 n~t2t !2
‡ . ~9!

Thus the functionf (E,n), as defined by Eqs.~5! and ~9!,
exhibits jump discontinuities at energy valuesE5 1

4 n(t
2t)2, but each of its branches is smooth. This is illustra
in Fig. 2, where we graph the function~5! for et50.7, t
53.7, and several values of the inclinationt.

For later use, we note here that the average velocityV̄
between two consecutive flights is given by

V̄5
nL

T1~A2E8/m2etvx!/g sinf
, ~10!

whereL5Aa21b2 and the second term in the denominat
corresponds to the time during which the particle moves
the ramp~see Fig. 1!. If we now introduce a dimensionles
mean velocity

FIG. 2. One-dimensional mapf (E,n) for et50.7, t53.7, and
t50.2, 0.5, 0.7, 0.9~from the bottom up!.
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V̄5
V̄

Aag cosf
, ~11!

then Eq.~10! becomes

V̄5
tAn~11t2!/2

~12et!t1AE8/n2etAE/n
. ~12!

In order to study the dynamical properties of the m
above, we must first investigate the existence of fixed poi
If we denote byEn a fixed point with a jump numbern, then
En will be the solution to the equation

En5 f ~En ,n!. ~13!

In view of the homogeneity of the functionf (E,n) @see Eq.
~5!# we write

En5n@z0~ t !#2, ~14!

where the quantityz0(t) no longer bears any dependence
n. Using Eqs.~5! and ~14!, Eq. ~13! becomes

~z01t !25et
2~ t1z0!21tt, ~15!

whose positive solution is

z0~ t !52t1A tt

12et
2. ~16!

Now a fixed pointEn , as given in Eqs.~14! and~16!, will
exist if and only if EnPI n(t), where the intervalI n(t) is
defined in Eq.~9!. Thus, ast increases, a fixed point with
jump numbern will be created whenEn equals the left end
point of I n . Comparing Eqs.~9!, ~14!, and~16!, we see that
this happens at an inclinationtn such that

z0~ tn!52tn1A ttn

12et
25

1

2
A12

1

n
~t2tn!. ~17!

This equation is quadratic inAtn and can thus be easil
solved. However, we shall not bother to give the result h
and will simply mention a few important facts that follo
from Eq. ~17!. First, we note thatt150 so that a fixed point
with jump numbern51 is always created att50. Then, ast
increases, fixed points with successively highern will appear
in an increasing sequence of inclinations$tn%n51

` . Finally,
we have that fort.t` , where t`5 limn→` tn , all fixed
points cease to exist. Settingn5` in Eq. ~17! we obtain for
the limit point t`

t`5t
12et

11et
. ~18!

The appearance of this sequence of fixed points can per
be best visualized by referring to Fig. 2, where we plot
function f (E,n) at increasing values oft, with et andt kept
fixed. For smallt ~lowermost curve in Fig. 2! there is only
one intersection with the 45° line, corresponding to the fix
point withn51. As t increases fixed points with successive
higher n appear~second curve from the bottom!. At t5t`
s.

e
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e

d

there are infinitely many such fixed points~second curve
from the top! and after this all of them cease to exist~upper-
most curve!.

One can also show that fort.t` we always have
f (E,n).E, whereas for 0,t,t` there exists an energyE*
such thatf (E,n),E for E.E* ~see, e.g., Fig. 2!. We thus
conclude that fort.t` the particle velocity will become un
bounded for any initial condition, whereas for 0,t,t` the
velocity remains always bounded. In other words, at the c
cal inclinationt5t` there is a sharp transition~independent
of initial conditions! from a regime of bounded velocity to
accelerated motion. In the region of bounded velocity, s
eral dynamical regimes are possible, depending on the
bility of the fixed points, as discussed below.

The stability of a fixed pointEn is determined by the
parameterl5 f 8(En ,n), where the prime denotes derivativ
with respect toE, so that ifulu,1 (ulu.1) the fixed point is
stable ~unstable! @11#. Using Eqs.~5!, ~14!, and ~16!, we
obtain for the derivativel at the fixed point

l~ t !512
12et

2

12A~12et
2!t/t

. ~19!

Notice thatl does not depend onn, thus implying that all
existing fixed pointsEn ~for given values of the model pa
rameters! have the same stability properties. Moreover, sin
l is always smaller than unity, we see that instability c
occur only ifl(t),21. Let us then denote byt inst the incli-
nation such thatl(t inst)521. From Eq.~19! we obtain that

t inst5t
~11et

2!2

4~12et
2!

. ~20!

Thus the fixed points are stable fort,t inst and unstable for
t.t inst.

If the fixed points are stable, the dynamics of the map w
in general be attracted to one of the existing fixed points.
example, in the region of parameters such that 0,t,t2
,t inst the particle will almost always reach a periodic motio
where the particle falls by one step at a time, since in t
case only the fixed point withn51 exists and is stable@12#.
On the other hand, fort2,t,t inst there are coexisting stabl
fixed points, in which case the final state~i.e., the fixed
points to which the dynamics is attracted! will depend on the
initial condition. Once the system has reached a given fi
point En the particle will accordingly be moving with a con
stant mean velocityV̄n whose value can be readily obtaine
by inserting Eqs.~14! and ~16! into Eq. ~12!:

V̄n5Fn~11t2!t

2t`
G1/2

. ~21!

When the fixed points are unstable (t inst,t,t`), the par-
ticle motion becomes very irregular and no stationary~peri-
odic! regime is ever reached. This is illustrated in Fig.
where we plot the jump numbern as a function of time
~iteration step! for two orbits in the region where the fixe
points are unstable. In this figure we clearly see that the ju
number fluctuates erratically around a mean value. We h
computed the Lyapunov exponent for several values of
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rameters in the region of unstable fixed points and h
found it to be positive for all cases studied, thus indicat
that the motion is indeed chaotic in this region.

The different dynamical regimes displayed by the mo
above can be conveniently summarized in terms of a ‘‘ph
diagram’’ in the parameter space (et ,t/t), as shown in Fig.
4. In this figure we plot the curves corresponding tot` ~solid
line! and t inst ~dashed line! given by Eqs.~18! and ~20!, re-
spectively. Also plotted is the curve representing the incli
tion t2 ~dot-dashed line! at which the fixed point withn52
first appears. Thus in terms of the existence/stability of
fixed points the model displays the following four region
~i! for 0,t,min(t2 ,t inst) there is a unique stable fixed poin
namely, that withn51; ~ii ! for t2,t,min(t inst,t`) there are
multiple stable fixed points~at least those withn51 andn
52); ~iii ! for t inst,t,t` all existing fixed points are un
stable and chaotic motion is observed;~iv! for t.t` no fixed
point exists and the motion becomes accelerated.

Another interesting feature in Fig. 4 is the fact that t
chaotic regime appears when the collisions are highly ine
tic ~i.e., small et). In particular, foret.A221 ~at which
point t inst equalst`) the fixed points remain stable over the
entire domain of existence.~The results shown in Fig. 4 ar
qualitatively different from the behavior seen in the mod
studied in Ref.@8#, where chaotic motion appears as the r
titution coefficient increases.!

FIG. 3. The jump numbern as a function of time~measured in
iteration steps! in the chaotic regime. Hereet50.35, t53.73, and
t51.65 ~lower orbit!, 1.74 ~upper orbit!.

FIG. 4. Phase diagram for the model. The solid line correspo
to t` , the dashed line tot inst , and the dot-dashed line tot2 .
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III. COMPARISON WITH EXPERIMENTS

In this section we wish to compare our model with rece
experimental studies of a single ball moving under gravity
a rough inclined surface. In these experiments, first p
formed by Janet al. @1# and later expanded by Ristowet al.
@4#, a rough surface was constructed by gluing steel sph
of radius r on an L-shaped flume. Another steel sphere
radiusR was then launched with a small initial velocity an
its subsequent motion analyzed. As the surface inclina
increases, the following three regimes are observed@4#: for
small inclinations the ball always stops~regime A!, then
comes a range of inclinations for which the ball reache
steady state with constant mean velocity~regime B!, and
beyond this point the ball starts to jump~regime C!. In Fig. 5
we show data taken from Ref.@4# for the ball mean velocity
V̄ as a function of sinu, whereu is the inclination angle with
respect to the horizontal direction. As discussed in Ref.@4#,
the change in trend observed in the data asu increases~for a
given value ofR/r ) marks the beginning of the jumpin
regime.

The regime B seen in the experiments corresponds in
model to a stable fixed point withn51, for in this case the
particle reaches a periodic motion where it falls one step
time ~as in the experiments!. In order to compare our mode
more closely with the experiments let us first express
mean velocityV̄1 ~at the fixed pointn51) in terms of the
angleu, whereu5f1p/22a ~see Fig. 1!. Settingn51 in
Eq. ~21!, returning to dimensionful units via Eq.~11!, and
expressing the final result in terms ofu, we obtain

V̄15FLg~11et!

2~12et!
G1/2

Asinu2t21 cosu. ~22!

~We remark parenthetically that a similar expression can
obtained heuristically if one introduces an effective slidi
friction in addition to inelastic collisions; see Refs.@1,4#. Our
formula follows, however, from a pure collision model.!

We have fitted the expression~22! to the experimental
data shown in Fig. 5 — the corresponding results being di
played as solid curves in this figure. In our fitting procedu
s

FIG. 5. Mean velocityV̄ ~cm/s! as a function of sinu. Points are
experimental data taken from Ref.@4# for R/r 52 (1), 1.5 (* ), 1
(n), 0.8 (L). Solid curves are theoretical fits@Eq. ~22!#, ending
near the last data point considered in the fit. Fitted parameters
(et ,t)5(0.72, 33.18!, ~0.64, 21.09!, ~0.41, 10.17!, ~0.27, 7.07!,
from left to right.
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we tookL52r 51 cm @4#, g5980 cm/s2, and best-fitted the
parameterst andet for each data set consideringonly points
in regime B. As we see in Fig. 5, the model prediction for t
dependence ofV̄ with u is in a good agreement with th
experimental data~in regime B!.

The jumping regime observed in the experiments, on
other hand, would correspond in our model to the region
unstable fixed points, since in this case the particle jum
erratically, never reaching a steady state~see Fig. 3!. This
analogy might then provide a possible explanation for
change in trend observed in the experimental data for la
inclinations. To see this, consider the region of smallet in
the phase diagram shown in Fig. 4. As the inclinationt in-
creases~for a given et) the system goes from a region o
stable periodic motion~with n51) to a regime of chaotic
jumps, in close resemblance to the experimental transi
from steady state to the jumping regime.

To probe this analogy further, we illustrate in Fig. 6 t
behavior predicted by the model for the mean velocityV̄ as a
function of sinu in the region of smallet . In this figure, the
solid curve corresponds to the expression~22! for V̄1 , up to
the point where the fixed point becomes unstable, and
crosses are computed values ofV̄ in the ensuing chaotic
regime. Comparing Fig. 6 with Fig. 5, we see that the cha
in behavior predicted by the model at the onset of instabi
is in qualitative agreement with what is observed in the
periments~for small values ofR/r ) as the ball enters the
jumping regime. Of course, more detailed experiments
necessary to verify whether chaotic motion does indeed
place in the jumping regime.

FIG. 6. Same as Fig. 5 for our model withet50.1 andt51. The
solid curve corresponds to Eq.~22! whereas the stars give the com
puted mean velocity in the chaotic regime.
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IV. CONCLUSIONS

We have studied a simple geometrical model for t
gravity-driven motion of a single particle on a rough incline
line. In our model the rough line was chosen to have a re
lar staircase shape and a simple collision law was adop
With these simplifications the dynamics is described by
one-dimensional map that is quite amenable to analyt
treatment. Summarizing our findings, we have seen that
model displays the following four dynamical regimes.

For 0,t,min(t2 ,t inst) there is a unique stable fixe
point.

For t2,t,min(t inst,t`) the system has multiple stabl
fixed points.

For t inst,t,t` the fixed points are unstable and the d
namics is chaotic.

For t.t` no fixed point exists and the motion becom
accelerated.
Here the parametert measures the surface inclination and t
quantitiest2 , t inst, and t` separating the different regime
are given in terms of the other two model paramete
namely, the restitution coefficientet and the roughness pa
rametert. These regimes are indicated in the phase diag
shown in Fig. 4. Furthermore, it can be shown@9# that the
above conclusions, which were derived in the context o
simple collision rule, remain valid for a wide class of ta
gential restitution laws.

Despite its simplicity, our model does provide a theore
cal framework within which the generic behavior seen
experiments on a ball moving on a rough surface can
qualitatively understood. For example, the model succe
fully predicts the existence of several dynamical regimes t
are also observed in the experiments. In particular, the
dicted functional dependence of the mean velocity with
inclination angleu ~in the steady-state regime! is in good
agreement with the experiments. Moreover, the model p
vides a possible explanation for the change in trend see
the experimental data as the ball enters the jumping regi
We have suggested that this jumping regime might co
spond to a chaotic motion, as happens in the model. Clea
more experimental studies are required to investigate
interesting possibility.
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