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Geometrical model for a particle on a rough inclined surface
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A simple geometrical model is presented for the gravity-driven motion of a single particle on a rough
inclined surface. Adopting a simple restitution law for the collisions between the particle and the surface, we
arrive at a model in which the dynamics is described by a one-dimensional map. This map is studied in detalil
and it is shown to exhibit several dynamical reginfsteady state, chaotic behavior, and accelerated nmjotion
as the model parameters vary. A phase diagram showing the corresponding domain of existence for these
regimes is presented. The model is also found to be in good qualitative agreement with recent experiments on
a ball moving on a rough inclined lingS1063-651X99)04005-2

PACS numbe(s): 83.70.Fn, 45.76-n, 45.50-j, 05.45~a

[. INTRODUCTION they remain valid for a wide class of restitution laws.
The paper is organized as follows. In Sec. Il we describe

Several experimental studigd4—4] have recently been the model and study in detail its dynamical properties. The
conducted on the problem of a single ball falling under grav-main results of this section are then summarized in the phase
ity on a surface of controlled roughness. These works havéiagram shown in Fig. 4. In Sec. Il we carry out a compari-
revealed interesting new aspects of granular dynamics th&on between the model predictions and the experimental
are not yet fully understood. Three distinct dynamical re-findings. In particular, we argue that the jumping regime
gimes have been identifiefl—4] as the tilting angle in- Seen in the experiments might correspond to a true chaotic
creases. For small inclinations there(is a decelerated re- Mmotion, as predicted by the model. Finally, in Sec. IV we
gime where the ball always stops, then com@s an collect our main conclusions and present further discussions.
intermediate regime where the ball reaches a steady state
with constar_mlt. mean vel_ocity, a_nd for larger inclination§ the Il. THE MODEL
ball enters(iii) a jumping regime. Computer simulations
[2—6] have confirmed these results, particularly those con- In our model, which is shown in Fig. 1, the rough surface
cerning regimesi) and(ii). A theoretical mode]7] has also is considered to have a simple staircase shape whose steps
been proposed in which steady-state solutidmst no de- have heighta and lengthb. For convenience, we choose a
tailed dynamickcan be obtained analytically. More recently, system of coordinates in such a way that the step plateaus are
a one-dimensional ma8] has been introduced to study the aligned with thex axis and the direction of the acceleration
jumping regime. This map in its simplest version is linear,of gravity g makes an anglée with they axis. A grain is then
and to obtain nonlinear behavior one has to vary spatially thémagined to be launched on the top of the “staircase” with a
properties of the rough surfa¢8], in which case the model given initial velocity. In what follows, we will be concerned
becomes inaccessible analytically. with the problem of goint particle falling down this “stair-

In this paper we present a model for a single particlecase” and will thus not take into account any effect due to
moving under the action of gravity on a rough surface ofthe finite size of the grain. Upon reaching the end of a step
specified shape. Within this setting we will give a detailedplateau, the particle will undergo a ballistic flight until it
analytical description of all possible dynamical regimes. Al-collides with another plateau located a certain numbef
though the model we study is simplified, its predictions aresteps below the departure st@pg.,n=3 in Fig. 1). Accord-
in good qualitative agreement with the experimental find-ingly, we will refer to the integem as thejump number
ings. associated with this flight.

Roughly speaking, our conclusions are as follows. There
is (i) a sharp transitiorias the surface inclination increages \Y}
from a regime of bounded velocity to one of accelerated
motion. Within the region of bounded velocity various dy- b
namical regimes are possible. First therg(ii$ a range of ¢ 9 ala
inclinations for which the dynamics always has a unique
attractor. For higher inclinations two other phases exis: \4
a region where we have coexisting attractors for the dynam-
ics and(iv) a region where instabilities give rise to chaotic \
behavior. For a fixedsufficiently large inclination a transi-
tion to the chaotic region will take place as the nature of the
collisions between the particle and the surface becomes
highly inelastic. Although our results are derived here in the FIG. 1. Model for a single particle moving under gravity on a
context of a simple collision rule, it can be sho\®) that  rough inclined surface.
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We will assume, for simplicity, that the momentum loss 15 T
due to collisions is determined by two coefficients of resti-
tution e; ande,,, corresponding to the tangential and normal
directions, respectively. More precisely, vf=(v,,v,) de-
note, respectively, the components of the particle velocity
parallel and perpendicular to the surface before a collision, f(e)
then we will take the velocity’ = (vy ,v,) after the collision
to be given by 5t 1

10 | ]

U>,<:etU><v (1a)

, 0 - -
Vy= — €y, (1b) 0 5 10 15

€
where O<e;<1 and O<e,<1.
In the present paper we will for simplicity discuss only ~ FIG. 2. One-dimensional maf(¢,n) for =0.7, 7=3.7, and
the cases,=0, the advantage being that the model can theri=0-2, 0.5, 0.7, 0.9from the bottom uj
be described by a one-dimensional map. Wiegk-0 the

dynamics is governed by a three-dimensional map, the analyz/iminating T from Eq. (3) and inserting the result into Eq.
sis of which is more complicated; we plan to provide this (2), we obtain that the dynamics of the model in terms of the
analysis in futurg 10]. variable& is given by the following map:

We now derive the equations governing the dynamics of ., 2 [T 2 N
the model presented above. Let us denoteEbthe kinetic g =f(&n=nle (Ven+ 1) +1(r—t=2y€in)). ()

energy of the particle at the moment of departure for a giveyhere we have for conciseness introduced the notation
flight. We write E= 3m\?, wheremis the particle mass and

V is the launching velocity at the start of the fliglsee Fig. t=tang, (6)
1). After this flight the particle will first collide with a step
below, then slide along this stepecall e,=0), and finally r=b/a. (7)

take off again on another flight with initial kinetic energy.
We suppose that the main energy loss is due to collisions anbhe parameter above can be viewed as a measure of the
so we neglect the energy dissipation as the particle slidesurface roughness, with *=0 corresponding to a perfectly
along a step, where it then moves with a constant acceler@mooth surface. As for the inclination parametiewe need
tion g sin¢. Using simple arguments of energy conservationto consider only the interval 9t<r for which nontrivial
together with the collision conditionél) and (2), one can motion occurs.(Clearly, for t<0 the particle will always
write E’ in terms ofE. The result is come to a rest, whereas for 7 the particle undergoes a free
fall without ever colliding again with the ramp.
;1 ) _ The flight jump numben appearing in Eq(5) is deter-
E'= Emeva%—mgsm(i)(nb—x), (2 mined from the energy according to the following condi-
tion: nis equal to the smallest integer such that-x=0 or,
wheren is the corresponding jump number for the flight and alternatively,
x is the x coordinate of the landing point. It takes simple
algebra to show that at the landing pointy) we have the n(r—1)—2yné=0. ®

following i ities: . - .
ollowing identities This means thaf falls within the intervall ;:

sin 2E
e = (3a EelyO=[n-1)(—02in(=7. (@
Thus the functionf(&,n), as defined by Eq95) and (9),
:gCOS(ﬁTz:na 3b) exhibits jump discontinuities at energy valugs=in(r
2 ' —t)?, but each of its branches is smooth. This is illustrated

in Fig. 2, where we graph the functiof®) for ,=0.7, 7

] [2E =3.7, and several values of the inclinatibn
vx=gsing T+ m’ (39 For later use, we note here that the average velogity

between two consecutive flights is given by

vy=gCcos¢T, (3d L
. . . V= , (10
whereT is the flight time. T+( /—ZE’/m—etvx)/g sing
It is convenient to introduce a dimensionless energylike
variable: whereL = \/aZ+ b? and the second term in the denominator
corresponds to the time during which the particle moves on
E 4) the ramp(see Fig. L If we now introduce a dimensionless

E=———. .
mgacos¢ mean velocity
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. V2 there are infinitely many such fixed poin¢second curve
V= —, (11  from the top and after this all of them cease to exigpper-
yagcos¢ most curve.

One can also show that for>t, we always have

then Eq.(10) becomes f(&€,n)>¢&, whereas for 8t<t,, there exists an energy*

———n such thatf(&,n)<& for £>&* (see, e.g., Fig. 2 We thus
V= tyn(1+ /2 _ (12)  conclude that fot>t., the particle velocity will become un-
(1—e)t++EIn—e/&In bounded for any initial condition, whereas fox@<t,, the
y

velocity remains always bounded. In other words, at the criti-
In order to study the dynamical properties of the mapca| inclinationt=t.. there is a sharp transitioindependent
above, we must first investigate the existence of fixed pointspf initial conditiong from a regime of bounded velocity to
If we denote by¢, a fixed point with a jump numben, then  accelerated motion. In the region of bounded velocity, sev-
&y will be the solution to the equation eral dynamical regimes are possible, depending on the sta-
bility of the fixed points, as discussed below.

En=1(&n.n). (13 The stability of a fixed point, is determined by the
parameten =f'(&,,n), where the prime denotes derivative
with respect tcf, so that if|\|<1 (|]\|>1) the fixed point is
stable (unstablé [11]. Using Egs.(5), (14), and (16), we

In view of the homogeneity of the functiof(£,n) [see Eqg.
(5)] we write

E=n[z5(t)]%, (14) obtain for the derivative\. at the fixed point
where the quantitgy(t) no longer bears any dependence on ® 1—et2 19
i AN)=1l-—Fr———. 19
n. Using Eqgs.(5) and(14), Eq. (13) becomes 1-Ji-eur
(Zo+t)2=€7(t+20) 2+ t, (15 _ o
Notice that\ does not depend on, thus implying that all
whose positive solution is existing fixed pointst,, (for given values of the model pa-
rametery have the same stability properties. Moreover, since
7t \ is always smaller than unity, we see that instability can
() =—t+\7-2 (160 occur only ifA(t)<—1. Let us then denote by, the incli-

i nation such thak (t;,s) = — 1. From Eq.(19) we obtain that

Now a fixed pointf,, as given in Eqs(14) and(16), will 22
exist if and only if £,e1,(t), where the interval (t) is t :T(1+et) (20)
defined in Eq.(9). Thus, ast increases, a fixed point with st 4(1-€?)
jump numbem will be created wherg,, equals the left end
point of I ,. Comparing Egs(9), (14), and(16), we see that Thus the fixed points are stable foxt;,s; and unstable for
this happens at an inclinatidp such that t> 1t
If the fixed points are stable, the dynamics of the map will

Tty \/ in general be attracted to one of the existing fixed points. For
Zo(tn) = ~tyt+ \/1_—e2:§ 1_ﬁ(T_tn)' (17 example, in the region of parameters such thatté&ct,
! <tinst the particle will almost always reach a periodic motion
This equation is quadratic iRft, and can thus be easily Where the particle falls by one step at a time, since in this
solved. However, we shall not bother to give the result heréase only the fixed point with=1 exists and is stablel 2].
and will simply mention a few important facts that follow On the other hand, far,<t<t;, there are coexisting stable
from Eq.(17). First, we note that,=0 so that a fixed point fixed points, in which case the final statee., the fixed
with jump numbem=1 is always created @t=0. Then, ag  Points to which the dynamics is attracjeddll depend on the
increases, fixed points with successively highexill appear  initial condition. Once the system has reached a given fixed
in an increasing sequence of inclinatiofts}_, . Finally, ~ Point &y the particle will accordingly be moving with a con-
we have that fort>t,, wheret,=lim,_.t,, all fixed stant mean velocity), whose value can be readily obtained
points cease to exist. Settimg= in Eq. (17) we obtain for by inserting Eqs(14) and(16) into Eq. (12):
the limit pointt,,

1/2

TN (18)

n(1+ )t
2t.,

(21)

to

When the fixed points are unstablg,{<t<t..), the par-
The appearance of this sequence of fixed points can perhafisle motion becomes very irregular and no stationgusri-
be best visualized by referring to Fig. 2, where we plot theodic) regime is ever reached. This is illustrated in Fig. 3,
function f(&€,n) at increasing values df with e; and 7 kept ~ where we plot the jump number as a function of time
fixed. For smallt (lowermost curve in Fig. Rthere is only  (iteration step for two orbits in the region where the fixed
one intersection with the 45° line, corresponding to the fixedooints are unstable. In this figure we clearly see that the jump
point withn=1. Ast increases fixed points with successively number fluctuates erratically around a mean value. We have
higher n appear(second curve from the bottomAt t=t., computed the Lyapunov exponent for several values of pa-
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FIG. 5. Mean velocityv (cm/9 as a function of sim. Points are
experimental data taken from Ré#] for R/r=2 (+), 1.5 (*), 1
(A), 0.8 (¢). Solid curves are theoretical fif&q. (22)], ending
near the last data point considered in the fit. Fitted parameters are

rameters in the region of unstable fixed points and havére()‘r’;)h;t(?gﬁéhfs'm (0.64, 21.09, (041, 10.13, (0.27, 7.07,
found it to be positive for all cases studied, thus indicating '
that the motion is indeed chaotic in this region.

The different dynamical regimes displayed by the model
above can be conveniently summarized in terms of a “phase In this section we wish to compare our model with recent
diagram” in the parameter space,(t/7), as shown in Fig. experimental studies of a single ball moving under gravity on
4. In this figure we plot the curves correspondind.tdsolid  a rough inclined surface. In these experiments, first per-
line) andt;. (dashed linggiven by Eqs.(18) and (20), re-  formed by Jaret al.[1] and later expanded by Ristoet al.
spectively. Also plotted is the curve representing the inclina{4], a rough surface was constructed by gluing steel spheres
tion t, (dot-dashed lingat which the fixed point witm=2 of radiusr on anlL-shaped flume. Another steel sphere of
first appears. Thus in terms of the existence/stability of theadiusR was then launched with a small initial velocity and
fixed points the model displays the following four regions: its subsequent motion analyzed. As the surface inclination
(i) for 0<t<<min(t,,t;ns) there is a unique stable fixed point, increases, the following three regimes are obsefvddfor
namely, that witm=1; (i) for t,<t<min(t;s.t..) there are small inclinations the ball always stofgsegime A, then
multiple stable fixed pointgat least those witm=1 andn  comes a range of inclinations for which the ball reaches a
=2); (iii) for t,q<t<t., all existing fixed points are un- steady state with constant mean velocitggime B, and
stable and chaotic motion is observét) for t>t. no fixed beyond this point the ball starts to jun@gime Q. In Fig. 5
point exists and the motion becomes accelerated. we show data taken from Re#] for the ball mean velocity

Another interesting feature in Fig. 4 is the fact that theV as a function of sim, where#@ is the inclination angle with
chaotic regime appears when the collisions are highly inelasespect to the horizontal direction. As discussed in R&f.
tic (i.e., smalle;). In particular, fore;>+2—1 (at which  the change in trend observed in the data &screasegfor a
point t;,s; equalst.,) the fixed points remain stable over their given value ofR/r) marks the beginning of the jumping
entire domain of existencé€The results shown in Fig. 4 are regime.
gualitatively different from the behavior seen in the model The regime B seen in the experiments corresponds in our
studied in Ref[8], where chaotic motion appears as the res-model to a stable fixed point with=1, for in this case the
titution coefficient increases. particle reaches a periodic motion where it falls one step at a
time (as in the experimenisin order to compare our model
more closely with the experiments let us first express the
mean velocityV, (at the fixed poinh=1) in terms of the
angled, wherefd= ¢+ w/2— « (see Fig. 1 Settingn=1 in
Eq. (21), returning to dimensionful units via Eq11), and
expressing the final result in terms @f we obtain

FIG. 3. The jump numben as a function of tim&measured in
iteration stepkin the chaotic regime. Here,=0.35, 7=3.73, and
t=1.65 (lower orbiy, 1.74 (upper orbij.

IIl. COMPARISON WITH EXPERIMENTS
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N (We remark parenthetically that a similar expression can be

obtained heuristically if one introduces an effective sliding
friction in addition to inelastic collisions; see Ref4,4]. Our
formula follows, however, from a pure collision model.

We have fitted the expressid22) to the experimental

FIG. 4. Phase diagram for the model. The solid line correspondslata shown in Figs — the corresponding results being dis-

tot.., the dashed line tt, s, and the dot-dashed line tg.

played as solid curves in this figure. In our fitting procedure,
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30 T T T IV. CONCLUSIONS

*
g We have studied a simple geometrical model for the
20 | N gravity-driven motion of a single particle on a rough inclined
*** line. In our model the rough line was chosen to have a regu-
. lar staircase shape and a simple collision law was adopted.
b With these simplifications the dynamics is described by a
10} ) one-dimensional map that is quite amenable to analytical
treatment. Summarizing our findings, we have seen that our
model displays the following four dynamical regimes.
For 0<t<min(t,,t;,s) there is a unique stable fixed
point.
For t,<t<min(t,s,t) the system has multiple stable
FIG. 6. Same as Fig. 5 for our model with=0.1 andr=1. The  fixed points.
solid curve corresponds to E2) whereas the stars give the com-  For t;«<t<t, the fixed points are unstable and the dy-
puted mean velocity in the chaotic regime. namics is chaotic.
For t>t., no fixed point exists and the motion becomes
we tookL =2r=1 cm[4], g=980 cm/¢, and best-fitted the accelerated.
parameters ande, for each data set consideringly points  Here the parametémeasures the surface inclination and the
in regime B. As we see in Fig. 5, the model prediction for thequantitiest,, ti,s, andt.. separating the different regimes
dependence o¥/ with 6 is in a good agreement with the are given in terms of the other two model parameters,
experimental datéin regime B. namely, the restitution coefficies, and the roughness pa-
The jumping regime observed in the experiments, on th@ameterr. These regimes are indicated in the phase diagram
other hand, would Correspond in our model to the region O%hown in F|g 4. Furthermore, it can be Shoﬂ@j that the
unstable fixed points, since in this case the particle jumpgpove conclusions, which were derived in the context of a
erratically, never reaching a steady staee Fig. 3 This  gimple collision rule, remain valid for a wide class of tan-
analogy might then provide a possible explanation for thegential restitution laws.
change in trend observed in the experimental data for largé pegpite jts simplicity, our model does provide a theoreti-
inclinations. To see this, consider the region of smeglin 5| framework within which the generic behavior seen in
the phase diagram shown in Fig. 4. As the inclinatidn- oy heriments on a ball moving on a rough surface can be
creasegfor a givene,) the system goes from a region of g ajitatively understood. For example, the model success-
stable periodic motiorfwith n=1) to a regime of chaotic fully predicts the existence of several dynamical regimes that
jumps, in close resemblance to the experimental transition ¢’ 5150 observed in the experiments. In particular, the pre-
from steady state to the jumping regime. o dicted functional dependence of the mean velocity with the
To probe this analogy further, we illustrate in Fig. 6 the inclination angled (in the steady-state regimés in good
behavior predicted by the model for the mean velo¥itgs a  agreement with the experiments. Moreover, the model pro-
function of sing in the region of smalk; . In this figure, the  vides a possible explanation for the change in trend seen in
solid curve corresponds to the expressi@g) for V,, up to  the experimental data as the ball enters the jumping regime.
the point where the fixed point becomes unstable, and thé/e have suggested that this jumping regime might corre-
crosses are computed values \fin the ensuing chaotic SPONd to a chaotic motion, as happens in the model. Clearly,
regime. Comparing Fig. 6 with Fig. 5, we see that the chang&0re e_xperlmer_]tz_i! studies are required to investigate this
in behavior predicted by the model at the onset of instabilitynteresting possibility.
is in qualitative agreement with what is observed in the ex-
periments(for small values ofR/r) as the ball enters the
jumping regime. Of course, more detailed experiments are ACKNOWLEDGMENTS
necessary to verify whether chaotic motion does indeed take
place in the jumping regime. This work was supported in part by FINEP and CNPq.
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