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Polymer shape anisotropy and the depletion interaction
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We calculate the second and third virial coefficients of the effective sphere-sphere interaction due to
polymer-induced depletion forces. By utilizing the anisotropy of a typical polymer conformation, we can
consider polymers that are roughly the same size as the spheres. We argue that recent experiments are
laboratory evidence for polymer shape anisotrdi®31063-651X99)01705-3

PACS numbe(s): 61.25.Hq, 36.20.Ey, 82.70.Dd

Over 60 years ago, Kuhn studied the conformations ofmore free volume for the remaining spheres and hence a
polymer chaing1] and recognized that typical conforma- larger entropy. Thus the propensity for “close” configura-
tions of ideal chains areot spherically symmetric. The in- tions can be interpreted as an entropic “depletion” force.
tuitive idea of a symmetric shape is a result of the isotropic Recently [9], monodisperse polymers(specifically
end-to-end vector distribution of a random wal: spheri-  A-phage DNA have been used to induce depletion forces
cal symmetry results from implicit rotational averaging of between polystyrene spheres. To model this system at low
the polymer. In fact, a typical polymer conformation is an- concentrations, one might replace the polymers with spheres
isotropic, with an aspect ratio of roughly 3.4{3]. of radiusR¢, the polymer radius of gyration. Asakura and

Nonetheless, there is little laboratory evidence for thisOosawa derived a simple formula for the potential between
asphericity. In solution, polymers rotate randomly and therawo large spheres of diameterin a gas of smaller spheres
are no significant polymer-polymer correlations. Thus smallof diameterD. The Asakura-OosawghO) potential is[8]
angle light-scattering measurements of polymer solutions

can only determine the average pr|n0|pal axis of th_e polymer UR) T3 3/ R 1/ R\3
shape. If there were a way to induce strong orientational =——l1- | —|+=|—] |, 3
correlations, light-scattering measurements could discern an keT  (A—1) 2\oN]  2\o\

asymmetry. We will show that the induced attraction be-
tween regions of depleted polymer concentratiaslusions  where R is the distance between the centers of the large

is a probe of this shape anisotropy. spheresy is the volume of a small spherH, is the osmotic
The shape tensor characterizes the spatial distribution Qi}r)essure of the small-sphere gas, ane1l+D/o. The
monomers: above approximation simply se8=2Rg. This is obvi-
N ously a crude approximation to the true system. A complete
Maﬂ:f dn[Ra(n)—ﬁa][RB(n)—ﬁﬁ], (1)  analysis at length scales longer than the polymer persistence
0 length (50 nm) would count the number of self-avoiding

random walks which avoid the two polystyrene spheres.

whereR,(n) is the position of monomenr, « andg label the In general, the effective potential is of the forth
Cartesian coordinates, anﬂaz(llN)den R,(n) is the =IIV(R) whereIl is the osmotic pressure and is an
polymer center of mass. The polymer radius of gyration isR-dependent recovered volume. At low concentrations the
simply RézTr(M). Moreover, the eigenvalues dl gz, osmotic pressure is not adjustabdle= kgTc. The physics all

A2<\3=<\3, are the average squared radii of gyration alongies inV(R). The AO model gives a one-parameter family of
the principal axes of inertia. Simulatiori8,4] have deter- functions, depending on the effective hard-sphere diameter

mined that the most likely shape has D. In principle one could derive a virial expansion for this
potential with each term involving the evaluation of a set of
A3:N3:\3~11.8:2.7:1.0. (2)  cluster integrals, each of which involves integrations over

polymer degrees of freedom. We will derive a different one-
Indeed, the shape asymmetry exists and is rather [gige parameter family based on the known shape distribution of
Exploiting this shape anisotropy as a calculational tool is theyolymers and argue that the datd®} are the first laboratory
main theoretical component of this paper. evidence of the conformational anisotropy.

Though hard spheres only interact by direct contact, en- We start by calculating the classical configurational inte-
tropic effects of other particles present can induce long-ranggral Qu(R), the sum of Boltzmann weights over all confor-
interactions. These sorts of forces are responsible for liquidmations ofN polymers with two spherical inclusions sepa-
crystalline order in lyotropic systeni§] and surface crystal- rated byR. The sphere-sphere effective potentifly(R) is
lization in hard-sphere fluids/]. It is instructive to consider
the virial expansion for a gas of identical balls. Around each
sphere of radius there is a sphere of radius 2Zrom which P(R)= Qn(R) = exp — fUer(R)} .4
the centers of the other spheres are excluded. When two
spheres are close, their excluded regions overlap leaving deQN(R) deexp{—,BUeﬁ(R)}
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Although Qn(R) has terms which are independentR)fthe
resulting effective potential4(R) does not: they cancel
between numerator and denominator in E4.

To calculateQy(R), we sum over all the conformations
and placements oN polymers with the excluded-volume
Boltzmann weights: 1 if the polymers and the spheres do not
overlap and 0 otherwise. We split the integration over each
polymer into three parts. The first is an integration over the
center of mass, the second an integration over all rigid rota- (@) () ©
tions of the conformation, while the third is the remaining -~ | Sequence of approximations. The actual polymer per-

integration over “internal” degrees of freedom. This final ¢ ..c 5 self-avoiding random walle) which has a typical prolate

integral is over each unique conformation — two conforma-g,eroidal shapé). For computational simplicity, we neglect the

tions are equivalent if one is merely a rigid rotation or trans-gpisotropy between the two shorter principal axes and build up the
lation of the other. We will only integrate over one represen-regylting ellipsoid out of overlapping spheres.

tative from each equivalency class. Denoting the space of all
such “internal” polymer conformations by, we have

considered the interaction between inclusions much smaller

N than the polymers, i.egq<Rg. In the opposite extreme, one
1 might consider polymers which are much smaller than the

= . dQ. e 8Y . . : .

Qn NI |1:[1 Ydrl,mtf dridQ; e "7, 5 spheres. In this case, it is appropriate to study the induced
Casimir force between two walls and to then approximate the
wheredr; ;,; is the measure on the space of conformation nteraction betwgen ;pheres via the Derjaguin approximation
’ 11]. By approximating the polymers as prolate spheroids,

for polymeri, r; is its center of mass, an; is its rigid treat the inclusi e t advant
rotation. We further divide the integration ov¥r by char- We can freat the Inclusions exact— a great advantage
when the two extreme limits are not applicable.

acterizing each polymer conformation by its principal axes. , : .
Definingg(A1,\5,\3) as the number of conformations with We have thus reduced thg configurational intedgy
over all polymer modes to an integral over the allowed loca-

axes\;, we have tions and orientations of a prolate spheroid. In order to re-
LN duce the phase space somewhat and reduce our computation
time, we will assume that;=\,. In the case of interest, we
=— dNi1dNi20Ni3 O(N i1, N2, A ' 1ot : '
QN N!i[[lf 1100205 9(A i Az Ais) consider a prolate spheroid with aspect ratid1.8:1
~3.4:1.0, so that
Xf dr;dQ; e AY. (6)
g(N1,N2,M3)%8(N1—=N2) S[N3— (3.4 4]

To pass from Eq(5) to Eq. (6) we assumed that the internal X 8(RE—[2\2+2\3)), @
degrees of freedom did not affect the interaction potefdial

This is, of course, not precisely correct. Our approximationyhereRg is the radius of gyration of the polymer. To facili-
replaces each polymer by a solid ellipsoid, and then considate the numerical evaluation of integrals, we construct the
ers the potential due only to this shape. While this certainlye|lipsoid out of overlapping spheres. Figure 1 depicts our
removes many degrees of freedom, it includes more degreggquence of approximations. We note that choosigig \ ,

of freedom than replacing the polymers by spheres. We will= ), would reduce our analysis to that[ih2] which consid-

see that this approximation is valid by comparison with dataered the depletion force between two spheres induced by thin
[9]. Thus our approximation replaces the monomer-sphergys.

and monomer-monomer potential with a sum of pairwise, \yriting fij:e*ﬁuij_l, whereu;; is the excluded-volume
ellipsoid-ellipsoid, or sphere-ellipsoid terms. Each term ispotential between particlésandj, and labeling the spherés
infinite for any overlap and zero otherwise. andB, Qy(R) can be rewritten as

We now reduce the complexity of the integration in Eq.
(6) by using the shape distribution of polymers. Since the
distribution of polymer shapes is peaked around the prolate QN=—Ie*B”ABf dr,dQ,dr,dQ,- - -drydQy
spheroid, weonly consider those polymer shapes. This ap- N! v
proximation does not account for the entire space of princi-
pal axes, though we believe that it does characterize the X(1+fa)(1+F) (14 fa)(1+ o) (1411 - -.
polymer conformations better than a sphere. More impor- (8
tantly, our approximation allows us to consider polymers
which are roughly the same size as the included sphereshe product in Eqg.(8) is a sum of terms which can be
This has a great advantage when comparing to the exper@rouped by the number of polymer positions and rotations
ments of Vermaet al.[9]. By comparison, most work in this that are freely integrated over. The first term is proportional
field has treated the inclusions approximately while correctlyto (47V)N, the configurational integral for free ellipsoids,
modeling the medium as a gas of random walkers[1®]  whereV is the volume of space minus the volume of the two
field theoretic methods were used to obtain the depletiomncluded spheres. Subsequent terms have fewer powé&fs of
potential. There, in order to calculate reliably, the authorsSince the polymers are identical, these corrections include
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FIG. 2. Numerical result for the effective potentldL for dif- ’
fering concentrations anBz=0.5 um. We have kept terms up to
second order in the polymer concentration. Note that at the highest ~0.7 ‘ , ‘ ‘
concentration there is a small repulsive bumgRat2 pm. How- 1.1 13 15 17 19 2.1
ever, forc<c* ~2/um?, the third virial coefficient is a small con- R [um]

tribution to U .
¢ FIG. 3. Our model and the AO model are fit to the experimental

data forc=0.5/um®. We varied only the effectiv®; as a param-
eter. The fit givesRz;=0.42 and 0.8 for the AO model, and our
model, respectively.

combinatoric factors involvindN. We take the limitN— o
andV— o« keepingc=N/V constant to find the virial expan-
sion inc.

It is both convenient and instructive to graphically repre-
sent these “cluster” integralgl3] in terms of Mayer cluster
graphs. The first two terms id4(R) are

below the overlap concentratiaat and at the same time is
large enough that the well depth is on the ordekgt so
that data can be reliably obtained. We can adjust the effec-
tive radiusRg for both the AO model and our ellipsoid-
based model. We find that a good fit results for the AO
model with RG=0.42 um and for our model withRg
=0.8 um, in comparison with the light-scattering-obtained
valueRz;=0.5 um. In Fig. 3 we show the data along with
these two one-parameter fits. We have checked other concen-
Bations and have found that at=1.0/um? the theory and
xperiment also compare favorably with the same effective
adii. What should one conclude from this agreement? It is
possible to interpret the data as arising from either shape
simply by adjusting the size of the shape. However, one
hould start from a microscopic picture based on the polymer
hysics of the allowed chain conformations. Only from this
rspective can one properly interpret the data.
Since the radius of gyration of the-DNA can be calcu-
lated from its molecular weight and persistence length to be
Re=0.5 um, we can consider two different zero parameter
fits: our model and the AO model. The result is shown in
Fig. 4. Note that the data lie between our calculation and the

c 1/ c¢)\?
BUA(R) = = [drdon A+ (E)
x / drdryd§,d0, [2I‘I+2N+2N+2K+N]
9

where the open dots represent the spherical inclusions ar}
the closed dots represent the ellipsoids. The integrals in E
(9) are difficult to compute analytically and thus were evalu-
ated numerically via a Monte Carlo algorithm:1@ifferent
angles and 10 different points were chosen in a volume
which included both spheres and which did not exclude an
possible orientation or location of the ellipsoids. We calcu-
lated these integrals by this random sampling weighted b)‘?e
the appropriate phase-space volume factor.

To compare with experimeri®], we took the sphere di-
ameter to beD=1.2 um andRgz=0.5 um. Knowing Rg
enables us to find the length of the ellipsoid=3.4
X 2Rg//13.8~0.92 um. We have chosen the hard-
ellipsoid radii to be the mean square radii of gyration, which

is possibly naive: the hard-ellipsoid size should only be pro- o1 | o %

portional toR¢ . Since in a random walk the density decays 000

as 1f, there is no natural length scale which cuts off the Yy /mg/a@g:

excluded-volume interaction. Indeed, light-scattering experi- & o 009%‘}%)@ o

ments[ 14] have found that the effective hard-sphere radius is = °c§<g>o //

roughly half the radius of gyration. The relation betwd&n % 03 % °

and the hard-ellipsoid size must be determined through the = i S ____é i)aota del

depletion-force experiments we are modeling. -0.5 ® L - Ell'moi;
In Fig. 2 we plot our results as a function of concentra- S L Av;’;:;e

tion. Until one considers concentrations near the polymer -0.7 : : :

overlap concentratiorc*=1/(47rR%/3)%2/,um3, the third L1 13 1'; [um]” L9 21

virial coefficient, responsible for a repulsive “anti-

correlation hole,” is a small perturbation to the leading term g 4. Comparison of the AO model, the model presented here,
in Eq. (9). Thus if we restrict our study to the dilute polymer and the data at=0.5/um®. For both our model and the AO model
regime, the leading term in the virial expansion is sufficient.we have taken the theoretical valueRg~0.5 wm. There are no

We compare our model with the daf8] and the AO  free parameters in the models. We also plot the average of the AO
model atc=0.5/um? for two reasons. This concentration is model and the ellipsoid calculation.
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AO model, suggesting that one could smoothly deform theand ellipsoids would give a remarkably good fit to the data,
AO sphere into an ellipsoid and find a best-fit aspect ratio tawithout any adjustable parameters. While we have no basis
fit the data, giving a one-parameter fit. Indeed, we have madr this weighting of shapes, we nonetheless take this as
a number of limited runs on the fully anisotropic shape satdirect evidence for the anisotropy of polymer conformations.
isfying Eq.(2). This results in a curve which is roughly 30%  |n closing, we note that while counting polymer confor-
deeper than that in Fig. 4, which is better than the simplenations by treating them as rigid ellipsoids is appropriate for
spherocylinder result. Finally, we have made similgr COM-static properties, it is not clear at all that the dynamics re-
parnsons 3between theorysand gxpenmentatO.l/mnS, C  flects this. In particular one might ask whether a polymer
=0.2jum’, andc=1.0/um". We find that at=1.0jum" the  gjipsoid rotates to a new orientation slower or faster than it
comparison is similar to that shown in Fig. 4. At the tWo getorms into that orientation. Finally, our analysis could also

Iovyer concentrations, where the data are difficult to collectbe used to study the depletion interaction by actual ellipsoi-
neither our model nor the AO model make very good Pre-ya objects, such as bactefits]

dictions.

Returning to the original question, are polymer shapes It is a pleasure to acknowledge conversations with J.
anisotropic? Though the full distributiog(\4,\,,A3) is  Crocker, D. Discher, A. Levine, T. Lubensky, D. Pine, R.
peaked, it has a finite width. We can incorporate this widthVerma, and A. Yodh. We additionally thank the authors of
by choosing an appropriately weighted admixture of shapeg9] for providing us with their data. This research was sup-
Note that we could easily get a very good fit just by mixing ported in part by the Research Corporation, the Donors of
spheres and ellipsoids — the mixed second virial coefficienfThe Petroleum Research Fund, administered by the Ameri-
is just a linear combination of the two “pure” coefficients. It can Chemical Society, and the NSF-MRSEC Program
is easy to see from Fig. 4 that a 50-50 admixture of spheretrough Grant No. DMR96-32598.
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