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Why all crystals need not be bcc: Symmetry breaking at the liquid-solid transition revisited
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Alexander and McTaguPhys.Rev. Lett41, 702(1978] argued that if there is a spinodal point associated
with the liquid-solid transition in a fluid of spherically symmetric particles, the bcc phase will be uniquely
favored as the only accessible symmetry breaking structure that forms a regular three-dimensional lattice. By
reconsidering their analysis in the framework of density-functional theory, we show that at a liquid-solid
spinodal in fact many other solid stuctures also are simultaneously accessible, among them the fcc structure.
Nevertheless, the bcc structure is still shown to be special, as, independent of the details of the interaction, the
free energy of the unstable bcc phase close to the spinodal is always lower than that of the other solidlike
structures. We illustrate our general results by explicit calculations on a toy model, the “Onsager solid.” This
simple model also indicates that the ultimately stable crystal phase, which, as usual for sufficiently steep
repulsive forces, turns out to be fcc, is dictated by properties of the free energy that cannot be obtained
perturbatively starting from the spinodal poif§1063-651X99)00905-9

PACS numbes): 64.70.Dv, 61.50.Ah, 64.66.i

I. INTRODUCTION at the stability limit of the liquid, i.e., the liquid-solid spin-
odal, which turns out to be the same thermodynamic point
Landau theory2,3] is a powerful tool for the analysis of for both bcc and fcc solids. We determine the asymptotic
symmetry-related aspects of phase transitions. In a seminfrm of the solutions along these branches by bifurcation
paper[1], Alexander and McTague applied it to the freezing@nalysis. Using arguments closely related to those of Alex-
transition of monatomic fluids of spherically symmetric par-ander and McTague, a fundamentally different behavior is
ticles. Their most striking result was that the bcc phasePbtained for bee and fec. However, with the help of the glo-
should be uniquely favored independent of the interactiorPal picture one realizes that these findings only apply to the
details. However, a number of real metals and the rare gasé#$stable solution branches near the spinodal point, while no
as well as many model systems, such as the hard sphere apifnilarly general statement can be made about the stable
the Lennard-Jones fluid, actually freeze into an fcc solidoranches that are typically far off from the liquid in a “solid
phase. The latter is also predicted by the elaborate densit@rder parameter space” and cannot be described by one or a
functional theories that have been developed in the past déMall number of density Fourier coefficients. From this per-
cadeq4,5]. spective it is no surprise that in many cases the fcc solid is
Still the bec structure seems to play an important role inthermodynamically stable in spite of the preference for bce at
nucleation processes. A large number of computer simuladoWw crystallinity.
tion studies have examined the possibility of bcc nuclei in
the supercooled Lennard-Jones liquid, with controversial re-
sults. The most recent and most sophisticated work, by tel- BIFURCATION ANALYSIS OF DENSITY-FUNCTIONAL
Woldeet al.[6,7], reported small bce nuclei that attain an fcc THEORIES
core upon growing while the surface remains bcc-like. This  The free-energy functional for a one-component fluid of
was confirmed within a density-functional theory by S,he”spherical particles has the general form
and Oxtoby[8], who furthermore showed that the equilib-
rium solid-liquid interface locally has bcc character, too.

Thus the bcce structure seems to be closer to the liquid than 5 5
the fcc in a not yet fully understood sense. F[{P(r)}]:kBTJ d®p(N[Inp(NN"=1]+Fef{p(r)}]
In the present work we readdress this problem from a 1)

somewhat different perspective using a combination of

density-functional theory and the Landau approach. In prin-

ciple, a Landau expansion can be derived from any givemvith the thermal wavelengtk. The first term represents the
approximation to the density functional by considering smallideal gas entropy while the excess free endrgy depends
solidlike perturbations of the liquid state. More insight canon the details of the particle interactions and is not known
be gained when one looks at solutions of the Euler-Lagrangexactly except in trivial cases. However, a large number of
equation that follows from the density-functional theory, approximative expressions fdéf., are available for simple
which represent the stable and metastable states as well a®dels, especially for the hard sphere fld5]. These are
the saddle points in the infinite dimensional space of densitgapable of predicting the location of the freezing transition
profiles. We will present a generic picture of the typical glo-and the solid structure with satisfactory accuracy.

bal behavior of these solutions for bcc and fcc structures. In  In order to obtain the equilibrium density profit€r) for
both cases a solution branch bifurcates from the liquid stata given bulk density,,, the free-energy functional is mini-
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mized under the constraintd®rp(r)=Vp,, i.e., using a
Lagrange multiplierw, which yields the Euler Lagrange
equation

Inp(r)N3=cM({p(r)},r)—Bu=0. (2)

The direct correlation functions™ are defined as functional
derivatives of the excess functional:

_ OFef{p(n}]
5p(r1)3p(r2)- -~ op(ry)”
3

Elimination of the Lagrange multiplier from Ed2) using
the normalization condition yields

cMp(r)rq, ... rp)=

|np<r)—\3/j &I p(r')—cO({p(n}1)

1
+vf d3r cM{p(r)},rH=0. (4

We now employ a Fourier representation of the density

p(r)=py 1+§q: n(Q)eiq") (5)
with a possibly infinite but discrete set of wave vectgand
7(0)=0 to ensure correct normalization. We require the ori-

gin r=0 to be a symmetry point of the lattice so thatq)

must be invariant under all point symmetries. Therefore, it

depends only on the absolute valuemfAfter insertion of
Eqg. (5) into Eq. (2) or Eq. (4), Fourier transformation, and
expansion of the logarithm, one obtains fp# 0

5 s
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)n+1
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The homogeneous densip(r)=p, always solves Eq(6)
because®(p,,r) is a constant, but one expects that beyond
a critical bulk densityp,. it no longer corresponds to a local
minimum of the density functional but rather to a saddle
point.

By a bifurcation analysis of Eq6) we shall determine the
stability limit p. of the liquid solution as well as the charac-
ter of the bifurcating solutions that become stable ahgve
To this end we expand the bulk denspy and the Fourier
componentsy(q) with respect to a small dimensionless pa-
rametere:

po=pcteprteipyt- -, Y

7(q)=eny(q)+ €2 ma(q) + - - -, 8

which is inserted into Eq(6) and then sorted according to
powers ofe yielding a hierarchy of bifurcation equations of
which the first three are

71(D[1-pc?(pe.q)]=0, 9
— 72(q)p1¢2(Q) + 72(D[ 1 =P (A) ] pep171(q)
- 1
xc®(q,0— > qEq 6(0—0d;—0dz) 71(01) 71(d2)
1:42
X[1+pZc®(q1,9,)1=0, (10

and

73(0) = C@(A) [ p271(Q) + p172(A) + pe73(A) 1= C3(A,0)[ p2 71(A) + p1272(A) + p2pe 72(0)]

—- > 8a-91—0p)
d1.d2
1 1
—5¢9(@.00pipema(@) =5 > G-y
d1.d2.03

—03) 71(d1) 71(d2) 71(d3)[ pcC M>(Q1:Q2:Q3

- 1
( 71(d1) ﬂl(qZ)[Pcplc<3)(qqu2) + EPlP(Z:EM)(QLquO) + 71(dy) 772(Q2)[1+PEE(3>(Q1'CI2)]

-2]=0. (11

Herec™(p,q;, ... g,_1) denotes the Fourier transform of
the nth liquid direct correlation function:

E(n)(p!ch! LRC !Qn—l):f d3

X e 1 (ra=rn). ..

d3r,_c™(p,ry, .0
e*iQn—l'(rn—lfrn)_

(12

When the density argument of” is omitted, as in Eqg10)
and(11), it is understood to be..

The first bifurcation equation determines the critiGa.,
spinoda) density as the smallest solution of

1-pc@(pe,q)=0. (13)

It occurs at the wave numbe of the global maximum of
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E(z)(Pc,Q), which determines the wavelength and thus thecontribute, which are generated by permutations and sign
lattice constant of the bifurcating solid solution. We remarkchanges —of the  vectors go=0*/v/3(2,0,0), a0
that this lattice constant will in general deviate from the one= q*/4/3(2,2,0), andgy,=0q*/y/3(2,2,2). Equation(11)
that follows by the restriction of one particle per unit cell at evaluated forg* and Eq.(10) evaluated forqy in one of the
the bulk densityp.. The p. defined in this way is indepen- second shells form a coupled sytem of equations which de-
dent of the lattice structure. This means that solutions witfermines 7:(q*), 72(9200. 72(9200. and 7,(dz00). The
different structures can branch off from the liquid branch athnumber of possibilities to write a given second shell vector
the same density. Equati@f) also shows tha;(q)=0 for ~ as a sum of two first shell vectors is 4, 2, and 1 for the shells
all g with g#q*. (200, (220, and (222, respectively, anqulqué(q—ql
Let us now consider the second bifurcation equation for a- g,) with q=q,=q* gives 3, 3, and 1 for the three cases of
wave vectorqg in the first shell(i.e., [q|=g*) for which the  second shell vectors,. Using p,= = p. to allow for solu-
terms with 77,(q) drop out due to Eq(13). There are two  tions above and below,, one gets
fundamentally different possibilities, depending on whether
the sum over; andg, in Eq. (10) reduces to zero or not.  7,(0a00[ 1~ pcC? (G200 ]1—272(q* [ 1+ p2c® (1,200 ]
The former will occur if the sum of any two wave vectays
and g, of the first shell never equals another vector in this =0, (15
shell, i.e., if equilateral triangles cannot be formed by the _
vectors in the first shell. This is actually the case for most 72(0220[ 1~ pcC?(Az201— 72(a* [ 1+ pZc®(d1,0220]
conceivable solid structures, e.g., simple cubic, where the
first shell consists of the six vectors obtained frqfi(1,0,0) - (16)
by sign changes and permutations of the components, and 1
also for fcc, where the eight vectors of the first shell can be;), (q,,)[1— pC@ (o0 ] — = 2(q*)[ 1+ pZE® (a1, 0oz ]
generated frong*//3 (1,1,1). We recognize the above con- 2
dition for the nonvanishing of the sum as Alexander and _| 17)
McTague’s condition for the occurrence of a third-order term ’
in the Landau free enerdyl]. They found that the only pos- gn(d
sibility for a nonzero sum that is compatible with a three-
dimensional periodic lattice corresponds to the bcc structure- ch(Z)(q*)IpCZE<3)(q* ,0) — 372(0a00)
whose first shell in reciprocal space is formed by the twelve
vectors generated hy* /12 (1,1,0). The thirty vectors given X[ p2c®(qy, 0200 +1]
by the edges of a regular icosahedron also allow the forma-
tion of equilateral triangles but do not produce periodic_3,72(q220)[p’é'5(3)(q1,q220)+1]_ 72(Cozo)
structures. However, this case may be relevant for quasicrys-
tals whose refraction patterns do exhibit icosahedral symme- (18
try [9]. A third, rather unlikely possibility also mentioned by o~ 2
Alexander and McTague is a two-dimensional triangular lat- X[peC! (0, bz + 1]~ 6 7:(a*)
tice generated by the six vectors pointing from the center to
the vertices of a regular hexagon. x S
The liquid state direct correlation functio$™ are in- a1 T 0s
variant under any)(3) transformation acting simultaneously
on all arguments,, ... ,r,. By choosingr,=0in Eq. (12
one concludes that their Fourier transforms are also invariant ~3) -
under O(3) transformations ofyy, . . . Gy_1. AS any two where the arguments of®) in Egs.(15)—(18) are chosen so
equilateral triangles with one corner at the origin can behat|di=|0i+020d =01 +022d =[01+ 0224 =% The sum
transformed into each other by a rotation, all terms in then Ed. (18), which runs over vectors,, g,, andgs in the
sum of Eq.(10) are equal. For the bcc lattice there are fourfirst shell,.q being any fixed vector of this shell, contains 27
such terms. The magnitude pf is actually irrelevant since t€rms which, however, are not all equal because not all quad-

it just sets thee scale. Therefore we can spy=p, and rilaterals formed by, q;, gz, andqs have the same shape.
obtain When Eqgs.(15—(17) are solved for thep,’s and inserted

into Eq. (18), an equation forp,(q*) results that either has
two or zero solutions, depending on the values of the second-
, (14)  tofourth-order direct correlation functions and on the sign of
2[1+p2c®(q;,9,)] p». As realistic models will have fcc solutions corresponding
to stable or metastable solid states bejaw we expect the
whereq; andq, are any two vectors of the first shell such fcc branch to bifurcate into the negative direction, i.e., to find
that|q,| =0, =01+ 2. solutions for negative..

However, solutions of other type, e.g., fcc, may also exist In order to estimate the stability of the fcc and bcc solu-
whenp;=0. In order to construct these solutions to lowesttions, we calculate the free-energy for both states to leading
order in e one must take into account vectors of the secondrder in the parameter. We define the free- energy density
shells, i.e., those that can be reached by the summation difference Af=(F[{p(r)}]—F[pp])/V between the liquid
two first shell vectors. For fcc three different second shellsand the solid. It is straighforward to derive the expansion

8(q— 01— 02— 03)[2p3c(q;,02,03) — 1]

=0,

1+p2c®(g*,0)

7(Q*)=—
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* (a) bee
BAf=n§2qE qE 8(dy+ -+ - +0n) 7(dy) - - 7(Clp)
—1)n n
X n((n—_)l)pb_ p_be(n)(pbvqli cee rqn—l) . (19)

n{(q*)

n!

This expression actually is the Landau expansion of the gen- S

eral mean field free energy E@l) up to arbitrary order, \ P
including secondary and higher order parameigmg+ q*).
Inserting Eqs(7) and(8), one obtains for the bcc solution

BAfuee=—2€*95(q*)p 1+ pic®(q* 0], (20)

(b) fee

where @/ap)c®(p,q)=c®)(p,q,0) has been used. In the .

fcc case no terms of order occur and Eqs(15)—(18) have ')

to be applied to simplify th@(e*) term, which after some
algebra results in the surprisingly similar expression

BAfree= T2 92(q%)p[ 1+p2c®(g*,00]. (2D N e

- Po
I1l. GLOBAL BEHAVIOR OF THE SOLUTIONS:
UNSTABLE AND STABLE BRANCHES

, -
{
After we have determined in the preceding section the \
asymptotic solutions close to the spinodal, their significance

will become clearer if we look at the global behavior of the
dlfferent solut!on _branches- TO this end we ConStWCt In th'sthe fcc solid. The first Fourier coefficieni(q*) of the solidlike
section generlc b!furcatlon diagrams for the freezing to ,fCCsqutions of the Euler Lagrange equation is shown as a function of
and bcc solids which follow from the results of the precedingihe puik densityp,. Solid and dashed lines correspond to local
section together with some plausible assumptions on the eX¥pinima and saddle points of the free energy, respectively. The slope

istence of solid solutions of the Euler Lagrange equation agf the unstable solid branch at the spinodal dengitys finite for
lower densities. First we observe that the liquid state is lopcc and infinite for fcc.

cally stable forp,<p. but unstable fop,>p.. At unstable
solutions there are directions in th€q) space that lower the .
free energy, i.e., these solutions are saddle points o 1'b0€(qf)<0' Moreover .t.he free-energy differencef to
Af[{7(q)}]. Since the solutions obtained by the bifurcation e I!qwd should be posmve for th;unstable branch. Both
analysis are those closest to the liquid in the vicinityogf ~ requirements are fulfilled when-1pzc®(q*,00>0 and 1
they must be unstable fgr,<p.. On the other hand, a re- +pc®)(q;,q,)>0 for q;=0,=|q;+0,|=q* [see Egs.
alistic theory that predicts a first-order freezing transition(14) and (20)], which we expect to be generally valid in
will also have stable solutions below the spinodal, with arealistic theories of freezing.
larger degree of order. It is natural to assume that these are The vanishing ofp, for the fcc solutions, induced by the
connected to the unstable branch at a point where highémpossibility to form equilateral triangles from the vectors of
derivatives ofAf vanish, which leads to the situation de- the first shell in reciprocal space, leads to different power-
picted in Fig. 1. law behaviors ofA f for the unstable branches near the spin-
A negative value ofp(q*) gives a lattice with maxima of odal: due to ey~ pp—pe and eqe~|pp—pcY?> one has
p(r) at the interstitials of the original lattice, i.e., the points Af ..~ (p.—pp)® and Afi .~ (pc—pp)? SO that G<Af,.
that have maximal and equal distances from the surrounding: A f;. if comparison is made at the same bulk densitgt
lattice sites. For fcc the lattice formed by the interstitials isat the same value of the order parameter as was implicitly
just the original lattice shifted by half the cube size along,done in Ref[1]). Thus general symmetry-based arguments
e.g., the(100) direction. Therefore the fcc bifurcation dia- predict a lower free energy along the unstable branch of the
gram is symmetric with respect tg(q*)— — »(q*): forany  bcc solid compared to the fcc solid. However, no general
solution with positivez(gq*) an equivalent solution exists conclusion is possible concerning the relative depths of the
with the opposite sign ofp(g*) [and of »(q) with q in bcc and fcc minima represented by the upper branches in
higher “odd” shells], which represents the same structureFig. 1. These depend on the details of the full functional and
shifted in real space. On the other hand, the interstitials o€annot be determined from a local analysis at the bifurcation
the bcc lattice form a more complicated cubic lattice with apoint. Results of density-functional theories for hard spheres
basis that is not equivalent to the bcc lattice, which explainsndicate, in agreement with simulation results, that the solid
the absence of the corresponding symmetry in Fig).JAs  density at liquid-solid coexistence is strongly peaked and
the bec branch fop,<p (i.e.,€<0) should be connected to cannot be described by one or a few Fourier components in
locally stable bce solutions with positive(q*), one expects Eg. (5) [10]. But, even if the stable branches were close

FIG. 1. Schematic bifurcation diagrams f@ the bcc andb)
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enough to the liquid gt,= p. so that a truncation of Eq19)  tative features. A short discussion of more sophisticated
after the fourth term was a good approximation, a generaflensity functionals will be given in the next section.
statement would still be impossible due to the dependence on Instead of a full minimization with respect to an arbitrary

™). The more universal second- and third-order terms alongolidlike p(r), we follow the usual strategy to make a trial
obviously are not sufficient to produce stable solutions at allParametrization of the inhomogeneous density and to mini-
Therefore we repudiate Alexander and McTague’S Conc|umize Only with reSpeCt to a small number of parameters. First
sion that bcc should be favordds the stable solid phase We examine the commonly applied Gaussian approximation
when the first-order character of the transition is not too pro-

nounced. (= @(ﬁ

The above result concerning the height of the free energy p ps\
barrier in order parameter space between the liquid and the
stable solid branches may be relevant for the nucleation ofvhere the parametex measures the width of the density
the solid phase, although we have assumed translational ipeaks that are located at the lattice sRed he density of the
variance ofp(r) from the beginning, whereas nucleation lattice sitesp (and thus the magnitude of the lattice vecjors
usually takes place via spatially inhomogeneous nuclei. Stills treated as an additional minimization parameter and not
computer simulationfs,7] as well as density-functional cal- fixed by the bulk density,. Thus solutions with more or
culations[ 8] provide evidence for the occurrence of local bccless than one particle per site are included. The correspond-
stucture within these nuclei in systems with stable fccing Fourier coefficients are
phases. An earlier application of symmetry arguments to
nucleation was given by Klein and Leyvrg¥l], who, how- ,](q):e*qzmay (25)
ever, used a concrete example for the functional and did not
discuss fcc solutions because they only took into account th@here the absolute values of the wave vectors in the first
first two bifurcation equations. Their conclusion is that theshell for fcc and bcc lattices are
critical nucleus must have bcc symmetry near the spinodal.

Along the same lines we can discuss the stability of an 13
icosahedral quasicrystal for which the first shell in reciprocal qy°= 27T\/§<% ; QECCZZW\/E< %) . (28
space is formed by the edges of a regular icosahedron. Here
the sum in Eq(10) has four terms ifj,=0,=q=0"*, asfor  The excess free energy is calculated from
the bcc case. Therefore the amplitude of the bifurcating so-
lutions is again given by Eq14). However, the correspond- 1 /.
ing free energy is BFex/V=— Epﬁ( f(0)+% ﬂ(Q)z?(Q)> (27

3/2 )
> e R (24
R

1/3

- _5/3.2 22(3)
BAtico=—=5€"n1(aq")p[1+pcC™ (A" 0] (22 \ith the Fourier transformed Mayer function

Hence below the spinodéle., for e<0) the free energy of
the unstable branch is higher for the icosahedral structure T(q)=—4mo
than for bcc by a factor 5/2. (qo)®

By the same methods we find that for the hypothetical
triangular lattice mentioned above the amplitude of the bifur-using g values of the lowest 10 to 20 shells. For the ideal
cating solutions is twice that given by E@.4) and the cor- contribution to the free energy, one has the expansion
responding free-energy difference to the liquid is twice as

;Singo—(qo cosgqo

(28)

large as that of the bcc structure. “(=1)"
BFia/V=pp(In pp\3= 1)+ pp >, —
n=2 n(n 1)
IV. A SIMPLE EXAMPLE
In this section we consider a specific example for the XD X Gyt + ) () ().
density functional to illustrate and corroborate the general f Gn
findings of the preceding sections. Specifically, we employ (29

the second virial approximation for the excess free energy
The sums oveq; can be replaced by sums over shells when

appropriate coefficientaql“.qn are added that take into ac-

1
Felip(Nil=- Ef drd>r " p(n)p(r)i(r=r’|), count the number of possibilities to add vectors from shells
(23) i1, ....0n to zero. These coefficients have been calculated
(for n<10) by a shortMATHEMATICA program. While Eq.
wheref=exp(—pBw)—1 is the Mayer function for the inter- (29) is very convenient for small values ef, when 7(q)
action potentialv. We consider a hard sphere potential for decreases quickly with increasingthe series does not con-
particles of diameter so thatf(r)=c®(r)=-0(r—o¢). verge for largeq. [The convergence radius is 1/8#{q,) is
This approximation has many merits in the field of liquid assumed to be the only nonzero Fourier coefficieRbere-
crystals but it is reliable only for low bulk densities. At den- fore we used Eq{(29) only for those @,ps) for which
sities near the freezing transition it does not yield quantita-;(qg;)=<0.09, while for largera the three-dimensional inte-
tively reasonable results, but still captures the essential qualgral
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FIG. 2. Contour plots of the free energy of a fcc structure within - 1 3 Bifurcation diagrams for bee and fec solutions of the
the Gaussian density approximation as a function of the width pagiationarity equation. The first Fourier coefficient is shown as a
rametera and the lattice site densigy, for bulk densities above and ¢, ction of the bulk density. The upper curves are calculated with
below the bifurcation density,=2.7705. The black dots denote o Gayssian ansatz E4), the lower curves with the cumulant
stationary points. ansatz Eq(31). Solid lines correspond to local minima, dashed

lines to saddle points. The dotted lines represent the asymptotic

1 behavior near the bifurcation point, which is linear for bcc and
_ 3 3 ’
BFialV= \chv drp(r)[inp(r)r°-1] (30 square-root-like for fcc.

) ) ) merical solution oBF/dps=dF/da=0 (see Fig. 3. Expres-
over the unit celV; was calculated numerically using a stan- sjons for the partial derivatives can easily be derived from

dard routine. Egs.(27), (29), and(30). As expected, both stationary points
The bifurcation density of this model, obtained from Eq. approach each other for decreasjngand merge at a certain
(13) with ¢®(p.,q)=T(q), is p.=2.770 and the critical threshold density below which no solid solution exists. How-
wave numben* =5.763; here and in the following is used  ever, in the immediate vicinity gf. the fcc solutions show a
as the unit of length. The site densities at the bifurcatiorPeculiar behaviofsee the inset in Fig.(8)]: attached to the
point arep/®=0.5941 andp?*°=0.5458. The enormous dif- unstable branch one finds a short additional branch of stable
ference betweep, andp, as well as the fact that, is much solutions which appggache_zs thg b|fgrcat|on point with a
larger than the density of close packing of hard spheres ar%ower law ~ (pp—pc)™. This artifact is a consequence of

o - - .. the restricted parameter space that enforces a fixed relation-
due to the crudeness of the density funct|0-n.al apprOX|mat|onShiIo between the first and second shell coefficidig,
Contour plots ofF(ps,«) at bulk densities above and

belowp, are shown in Fig. 2. Fos,>p,, F decreases from (29], €.g., n(da0d = 7(Ga1) ™", which is not compatible

the constant valu& (ps,0) for the liquid with increasingy W|t_r|1hthe behavior of the exact SOIl-mcEBee Eq15). “
e g . . ese problems are avoided with a more general “cumu-

and exhibits a minimum corresponding to a quite stronglylam,, ansatz for the density

peaked structure. The ratio of the decay lengticlto the

nearest-neighbor distance is 0.147 at the minimum for the

case shown in Fig. (3. On the other hand, the liquid is ! iqr

locally stable forp,<p. and a saddle point occurs at an p(r)=Cex _121 “iqgs. e (31)

intermediate value o& in addition to the solid minimum. It :

is this saddle point that is accessible by the bifurcation analy-

sis of Sec. Il. We tracked the positions of the saddle pointvhere j runs over the firstn shells S;. The constantC

and the minimum as a function of the bulk density by nu-=C[{«;}] is fixed by the normalizationf d3r p(r) = p,V.
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V. CONCLUSIONS
-11.6
1.8 In summary, we have shown that the liquid state becomes
- unstable to solid fluctuations of different symmetries at the
S same spinodal density.. The symmetry differences be-

- 122 tween fcc and bcece structures manifest themselves in different
g 104 exponents for the density dependence of the order parameter
e and the free energy belopy, along the bifurcating branches.
-12.6 But, since these branches correspond to unstable solutions,

128 the bcc structure generically has a lower maximum in the
' free energy than fcc, not a lower minimum as implied by

2 22 24 2.6 28 Alexander and McTague, whereas a small order parameter
P expansion cannot access the relative stability of the stable
branches. For Onsager's second-virial density-functional
FIG. 4. Free energy along the unstatilpper partsand stable  theory of the isotropic-nematic transition, it has been shown
(lower partg solution branches for fcc and bece structures obtainedthat even if the bifurcation analysis is carried through to very
with the cumulant ansatz. Also shown is the free energy of thehigh order, it only captures the unstable branch up to the
liquid. To make the differences more clearly visible, a linear func-jnflection point[12].

tion of the bulk density has been substracted. This does not prevent The relation of our results to the observation of bee order

the possibility to determine phase coexistence by the double tangent . . .
) : . o IN nucleation phenomena is not straightforward because only
construction from these curves which yields the densities of th

coexisting liquid and fcc solid marked by black dots. ebulk_fluct_uations were considere_d. A rigorou_s treatment of
spatially inhomogeneous nucleating clusters is probably not
feasible within bifurcation analysis because the structure of
This ansatz allows independent variations of the firfou-  the core of the nucleus will be close to the stable bulk
rier coefficients while for large values of the it approxi-  branch. However, near the spinodal the nucleus will exhibit
mately reproduces the Gaussian behavior near the lattioeduced crystalline order acrosshbaoad interface to the
points. Actually for the stable branches it yields lower freemetastable liquid. Therefore its free energy of formation may
energies than the Gaussian ansatz, indicating that it is closée approximated by an integral over the bulk free energy
to the exact solution. We set=4 which includes all shells corresponding to the local degree of order at a given radial
that can be reached by a sum of two first shell vectors, i.edistance. This integral will be dominated by the contributions
those for whichs,(q) # 0 according to the bifurcation analy- of structures near the unstable branch. This reasoning would
sis. The Fourier coefficientg(q) (and the constan€) are  predict a preference for bce order in the interface of the
determined by three-dimensional fast Fourier transformatior|yster, in accordance with the simulation resfi@s).
with 16 points in each dimension. The excess free energy is \we add a final remark concerning the relevance of our
.then again obtained from E(7) while the ideal free energy (esults to the cases of more realisticompared to the

IS second-virial approximation of Sec. J\ensity-functional
theories for hard spheres. They are often explicitly con-
n structed in a way that reproduces the Percus-Yevick approxi-
BFiq/V=py| In C_1+j§1 Nje;7(q;) |, (32) mation to the liquid direct correlation function. In this case

Eg. (13) has no solution for packing fractiong<<1, which
means that there is no liquid-solid spinodal. However, since
the Percus-Yevick result presumably is not a very accurate
description of the structure of the strongly “supercom-
pressed” liquid, it is not clear at the present stage what the
corresponding behavior of tlexactdensity functional would

N; being the number of vectors in sh&|. Figure 3 shows
that with this ansatzy(q,) of the saddle point branch ap-
proaches the liquid axis with an infinite slope and with the
amplitude predicted by Eq$15)—(18).

Results for the free energy along the various squtiorPe'
branches are presented in Fig. 4. In order to make the differ-
ences more visible, the functidfp, with an appropriately
chosen value oK was substracted. The unstable bcc branch
indeed lies below the unstable fcc branch, as predicted by the ACKNOWLEDGMENTS
general analysis. However, this relationship is reversed for
the stablebranches for densitigg,>2.2. Phase coexistence  This work is part of the research program of the Stichting
can be determined from Fig. 4 by the double tangent convoor Fundamenteel Onderzoek der Matdff@undation for
struction, which yields a liquid-fcc transition while the Fundamental Research on Majtand is made possible by
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