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Looped finger transformation in frustrated cholesteric liquid crystals
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Localized structures named “fingers” form in the vicinity of the unwinding transition of a cholesteric liquid
crystal subjected to an electric field and to homeotropic boundary conditions. Several types of fingers exist,
with different static and dynamic properties. For instance, cholesteric fingers of the second &pEdesan
drift perpendicular to their axes and form spirals in ac electric fields, whereas fingers of the first §pEeles
crawl along their axes. In this article we show that CF-2's are much easier to nucleate in thick samwthles
respect to the pitghthan in thin ones and may form loops like the CF-1's, with or without defects. We show
that looped CF-1's always collapse in thick samples at increasing voltage, whereas they can form cholesteric
bubbles in thin samples. By contrast, we never observe the formation of a bubble from a loop of a CF-2 except
when it possesses a point defect. We also recall that CF-1 segments always collapse at increasing voltage,
whereas CF-2 segments systematically give cholesteric bubbles in similar conditions. To qualitatively explain
these transformations, we use a simplified representation on the unit §thefehe director field within the
fingers. While the CF-1's are described within the standard model of Press and Arrot, we use for the CF-2's a
recent model of Gil and Gilli, which we prove to explain most observations. We also describe the growth and
collapse dynamics of a loop of a CF-2 in close connection with the spiral dynamics. Finally, we show
experimentally and numerically that the CF-2's get abruptly thinner when the electric field exceeds the spin-
odal limit of the CF-1's. This transformation is reversible, but strongly hysteretic.
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PACS numbsgs): 61.30.Gd, 61.30.Jf, 47.20.Ky

I. INTRODUCTION kinds of fingers exist neaV,, which can be nucleated in
special conditions, for example, at the cholesteric-isotropic
During the last ten years, many experiments have beeimterface in directional growtf29]. The most interesting are
devoted to the problem of the unwinding transition of a cho-the cholesteric fingers of the second spe¢@s-2's) because
lesteric liquid crystal in confined geometi$—30]. In stan-  they can drift and form spirals in ac electric fields, contrary
dard experiments, the sample is sandwiched between twi® CF-1's. In the microscope they look very similar to the
parallel ITO electrodes which are treated in homeotropic anCF-1's, which explains why both types of fingers have often
choring. These boundary conditions are topologically incombeen confused.
patible with the helical structure of the phase, which, conse- There also exist in the samples other objects of circular
quently, unwinds if the sample thickness is too small. Inshape, named cholesteric bubb[@—35. These bubbles
practice, the control parameter is the confinement r@tio have been known for a long time and form spontaneously at
=d/p of the thickness over the equilibrium pitch. The tran- the cholesteric-isotropic transition. Another way to produce a
sition to the homeotropic nematic phase takes place whebubble is to shrink in electric field a looped CH35] or a
C=<C.=Kg,/2, whereKg, is the ratioK3/K, (the K;’s are  segment of a CF-§22].
the usual Frank constants of the cholesteric phE3e An- In this article, we show the possibility to form looped
other way to unwind the helix is to use a liquid crystal of CF-2’s. Depending on the value and on the frequency of the
positive dielectric anisotropy, and to apply a voltagdy  electric field, these loops grow or collapse, but never form
between the two electrodes. This control parameter is muchubbles contrary to CF-1's, except when they have a point
easier to vary than the thickness. defect. This feature is certainly connected to the topology of
So, in practice, the thickness is fixed and the voltage ighe CF-2. In addition, we study the growth and collapse dy-
changed. In this way it is possible to show that the transitiornamics of looped CF-2’s in close connection with the forma-
is usually first ordef10]. In particular, there exists a voltage tion of spirals. Finally, we show that the CF-2’s abruptly get
V, where the two phases coexist. More precis#ly,is the  thinner when the applied voltage exceeds the spinodal limit
voltage for which the cholesteric fingers of the first speciesVs of the CF-1, a phenomenon that can be theoretically ex-
(CF-1'9) have exactly the same energy as the nematic. Aplained from the Gil-Gilli model of Ref{30].
this voltage, a segment of a CF-1 has a constant length. The
CF-1's have been kn_own for a long time because they are the Il EXPERIMENTAL SETUP AND PHASE DIAGRAM
most easy to obtain experimentally. Nevertheless, other
The sample is obtained by mixing the liquid crystal 5 CB
(4-n-pentyl-4-cyanobiphenyl) with 3.25 wt % of the chiral
*Permanent address: Department of Physics, University of Pardunolecule CB15from Merck Corp). The cholesteric pitch is
bice, 53210 Pardubice, Czech Republic. measured in a Cano wedge and equalsuhbat 30 °C. The
TAssocieau CNRS, UMR 8514. sample is prepared between two parallel ITO electrodes
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13 TABLE I. V,~V3 are the coexistence voltages for the fingers
of the first and of the second speci&s; (Vg) defines the spinodal
12 limit for the CF-1's(the bubblel V}. (=~V3) is the voltage above

which the CF-2's get abruptly thinne¥/);, (=V,) is the voltage
below which the thin CF-2 recovers its initial widtN,, is the
10 voltage above which a looped CF-1 transforms into a bubbler

11 -

% collapses. The asterigk) refers to the CF-2's.
9_

. fe fro C=d/p 1.78 2.22 3.33 4.44

¢ i V, 3.23 3.96 5.28 7.0

[ e " — - OSSP VA 3.28 3.96 5.28 7.0
64 S e _ Vs 4.02 4.8 6.05 7.7
) 10 100 i 3.92 4.64 5.99 7.46
Frequency (kHz) Vi 4.04 4.85 6.05 7.59
Vi 3.88 434 5.26 7.01

rtr

FIG. 1. VoltageV, for the fingers of the first specidm volt "
Vi 3.64 4.40 5.81 7.3

rms) as a function of the frequencyCE4.44). Curve 1(circles
corresponds to the voltage which is applied between the two elec=
trodes; curve Qtriangles is the voltage which is really applied to
the cholesteric sample. electric one {>f.) (f.~7 kHz in this samplg by contrast,
o . the measured voltage5® significantly shifts fromv3*™ at
treated with silane ZLI 3124 from Merck to obtain a strong high frequency whefi> f,;o> f.. (f;ro~150 kHz). Because
homeotropic anchoring. The sample thickness is fixed withmost of our experiments were performed at frequendies
Mylar spacers or nickel wires of calibrated thicknesses or<f . we will be aware of this correction in the following.
diameters. We performed most of our experiments with &rjnally, we observed that the sample heats when the fre-
20-um-thick sample, which gives a confinement ratio®@f  qyency exceed$;;o because of the Joule effect. The tem-
~4.44. This is a pretty large value compared to our previougerature increasaT is estimated by measuring the shift to
For comparison, we also did experiments in thinner sampleg¢ 0.1°0), it becomes important aboviro (for instance,
(C=1.78, 2.22, and 3.33 All our observations and mea- AT~0.95°C atf=300kHz). In order to maintain constant
surements are done at 30 °C. At this temperalye-K3 in  the sample temperature, we systematically decreasedrof
5CB [36], which makes easier our numerical simulationsipe temperature of the oven above 40 kHz.
(see Sec. VI We then measured the coexistence voltage for the

A square-wave ac voltage i?’ applied between fche WQE_2's, and we found that,~ V3 in all samples except the
electrodes. In order to characterize the sample, we first me{i‘ﬁinnes,t one in which/* is slightzly larger thaiV/, (this is in
2

sured as a function of the frequency the coexistence voltageood agreement with previous measuremé2Es). We also
V, for the CF-1's. At this voltage, the fingers have the same) 9 P §

. .. b )
energy as the nematic phase, and consequently do not grd;l,wveasured the SP'nOd"f‘l limité; and V3 for the (_:F-l_s and
or shorten. In Fig. 1, we plov, as a function of the fre- the bubbles, respectively. We found thie is slightly

quency in the thick sampleQ=4.44). Two curves are smaller thanV; contrary to what we previously observed in
shown. The first one is the voltage which is applied betweerhinner samplegin which C<1.6[35]). That means that the

the two electrodes: it strongly increases at high frequencygholesterlc bubbles are more stable in thin samples than in
typically whenf>100kHz. A similar effect was already re- thick ones. _ _

ported without clear explanation by Mitov and Sixgiv]. It A!I these datz_i are reported in Table | as a function of the
is in fact an artifact which is due to the voltage decreasé°nfinement raticC=d/p atf=>5 kHz.

across the two ITO layers. Indeed, these two layers act as a
resistanceRr|to, which is in series with the sample, and the
one can be modeled by a resistariRgin parallel with a lll. SEGMENTS AND LOOPS OF FINGERS OF THE
capacityC,. From these three constants, two characteristic FIRST AND SECOND SPECIES: COLLAPSE

frequencies can be constructed: the charge relaxation fre2R TRANSFORMATION INTO CHOLESTERIC BUBBLES

quency of the samplé.=(R,Cs) ~* and another frequency | et us first consider segments of a CF-1 and a CF-2. We
firo=(RiroCs) ~* that depends on the ITO layer. As a result, know from previous experiments that the former have two
the voltage that is really applied to the samplgX™ must  different tips(a pointed one and a rounded dnehereas the

be different from that experimentally measurebﬁ’(p'). This  latter have almost similar rounded tips. More important, the
voltage can be easily calculated providing tRaty, R, and  former systematically collapse abovg, whereas the latter
C are known. We measured these three constariich we  systematically form bubbles abow& (and belowV5) [22].
found to be independent of the frequency up to 300 )kHz These transformations are shown in Fig. 2. We also recall
with a precisionLCR meter HP4284A, which allowed us to that a CF-2 segment may easily extend below(rigorously
calculate V32™. This voltage is displayed in Fig. 1: we below a voltage/, that is a little bit smaller thai, [25]) by
note that it is constant and does not change significantljorming two segments of a CF-1. In this case, there exists a
when we go from the conducting regimé<(f;) to the di- point defect at each junction between the CF-2 and CF-1's.
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a) V=V2 V>V2

b) 20 um
V<V, I I

FIG. 4. (a) A looped CF-2 without defect always collapses
FIG. 2. (a) Segment of a CF-1. It collapses abovg. (b) Seg- aboveV* (V=7.6V, f=5 kHz, C=4.44).(b) A looped CF-2 con-

men@ ofa CF-2. Itgives a bubb_le apo\_/é » While it Ier_lgthens by taining one point defect always transforms into a bubble abyve
forming two CF-1 segments with similar rounded tips beldyy (V=7.6V, f=20kHz, C=4.44)

(C=3.38,p=14.8um, f=5 kHz, V,=5.02 V).

ervation through the microscope is not sufficient to distin-
dgs;uish them. By contrast, we shall see in the following section
that their dynamic behaviors are quite different and allow us
rT]tO distinguish them without ambiguity. As for the CF-1
: ) . . oops, it was possible to shrink them by increasing the volt-
into a bubble if the voltage is lljarge enougim prgcpce, agep while rerr)naining in the domain )(/)f existenge of the
Iarggr thanV,, but smaller thai/;) [35]. During this irre- bubbles. We observed that the CF-2 loops always collapse
versible transformation, the core of the loop collapses, iyt giving bubbles. Nevertheless, we failed to make a
wh_ereas its exter_nal ring shrinks to for_m the bub(kﬂc_g. 3. CF-2 loop without defects in the thinnest sample/g
This transformation only occurs in thin samplégpically — _1 7g) iy which we observed the transformation of a CF-1
yvhenC<2). Wh_enC>2, the loops collapse W|thout_form- loop into a bubble. On the other hand, it was possible to
ing bubbles. Typical values of the voltayfg, above whicha 1\ a1e CF-2 loops containing one point defect. In this case,
CF-1 loop transforms into a bubble or collapses are given iRhe loops systematically transform into bubbl&g. 4(b)].
Tab[e I,' ) ) o In fact, looped CF-2’'s with one or several defects spontane-

Similarly, it was possible for the first time to form 00ps gy form in all the samples. For instance, we show in Fig.
ofa CIF'Z'hS“Ch Io::_ps are mucg eadS|eLto obte;n In IaT/g:e- 5 a loop with four point defects. By increasing the voltage
samples than in thin ones. Indeed, the CF-2's nucleate Fose tovg, this loop breaks at the places of the defects and

el‘%iiy. as”th‘(‘a CF'lﬁ in':d;;]ck sampllét?picallﬁl C>3) t\{vherrll give four segments of a CF-2, which then form four bubbles.
.efc rtlrc]a 3; quenching Ie sg_mp(; rom ehnema 'CE 45" In the following section, we describe the dynamical prop-
into the finger region. In Fig. (4), we show such a erties of the looped CF-2's.

loop: optically, it looks like a CF-1 loop and a simple ob-

In addition, the two CF-1 segments end with similar rounde
tips (Fig. 2.

Second, we consider loops of these fingers.

We already showed that a loop of a CF-1 may transfor

IV. DYNAMIC PROPERTIES OF LOOPED CF-2's

We know from previous experimenf44—18,22,25that
the CF-2's form spirals in ac electric fields when one at least
of their two ends are free to mou&ig. 6). These spirals
spontaneously form close ¥ because the fingers drift per-
pendicularly to their axes providing the frequency is not too
large (f<f. [37]). In Ref.[25], we showed that the spiral
tends to an Archimedian spiral far from its center, where the
finger drifts at constant velocity,. This velocity is given as
a function of the frequency in Fig. 7.

FIG. 3. A looped CF-1 may form a bubble in thin sampl&s ( Let us now consider a looped CF-2. At a voltage larger
=1.68,V=7.6V, f=20kHz). thanV} , the experiment shows that there is a critical radius

20 um
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FIG. 7. Asymptotic drift velocityvy of a CF-2 as a function of
the frequency aV=V3; (C=4.44).

20 um

A AV=V-V3 is large enough in order that the line energy of
) _ ) the rectilinear fingef (which is proportional ta\V: see Sec.
FIG. 5. Loop of a CF-2 with four point defects. AboW&; this v/|| and Fig. 18 is much larger than its curvature energy. In
loop breaks at the places of the defects to form four segments Wh'qhick samples C~3), the cholesteric helix is almost not

finally will give four bubbles ¥/=7.6V, f=20kHz, C=4.44). deformed except near the two glass plates and the finger is

equivalent to a cholesteric layer of thickngsésee Fig. 16

The bend energy of such a layer has been calculated by
‘Chandrasekhaf38] and equals (3/8§,dp/R%. Moreover,

e have calculated numerically the line energy of a CF-2 as
& function of the applied voltage:T~11K,;AV (see Sec.

VIl and Fig. 18. Experimentally, we performed all our mea-
surements aAV>0.5V. In these conditions, the curvature
energy of the fingers can be neglected as long as

R. below which the loop collapses and above which it
grows. In Fig. 8, we report the radius of the loop as a func
tion of time for different initial radiiR; . To explain the loop
dynamics, we consider the forces that act on the finger. The
is an outward driving forc& . which opposes to two inward
forces: the viscous forcg,, which we assume to be pro-
portional to the velocity [, = v4,/m) and the line tension
force proportional to the line enerdgyand inversely propor-
tional to the finger radius of curvatuf® Balancing these

three forces, we get R i i
VagavP

dR T
Vdrift:a:m(':e_ ﬁ)’ 1) ~2.5 um by taking C=4.44 andp=4.5 um.
wheremis a mobility inversely proportional to the rotational )
viscosity y,. The line tensionT is assumed constant, i.e.,
independent oR, which means that we neglect the curva-
ture energy of the finger. This assumption is valid if
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FIG. 8. Radius of a loop of a CF-2 as a function of time for
different initial radiiR; . WhenR;<R., the loop collapses, whereas
it grows whenRi>R. (V=8V, f=25kHz, C=4.44). The three
solid line curves are fitted to Eq3) by adjustingR.; and v. The
asymptotic velocityv, is equal to that measured from the spirals
(vo=0.06um/s). The critical radiuR. of the loop depends on the
voltage and frequency as shown in Fig. 9. For comparison, we also

FIG. 6. Archimedian spiral of a CF-2 observed in the thick plotted in this graph the time evolutiosolid circles of a trans-
sample C=4.44,Vv=7.2V, f=5 kHz). formed loop atv=8V, f=25kHz, andC=4.44.
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FIG. 9. Critical radius of looped CF-2's as a function of the a)
voltage at three different frequencie€ €4.44). Extrapolation of
the lines show thaR; vanishes at 7.2 \respectively, 7.16 and 7.24
V) whenf =15 kHz (respectively, 20 and 25 khizThese values are
equal toV} within experimental errorésee Fig. 1 iié;;;;;;iftiiiéééiiiij{
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In Fig. 8 we fit the experimental curves to E@) by adjust- b)

ing R, and vy. We foundvy=0.061um/s, in good agree-

ment with the value found experimentally at the same fre- FIG. 10. (@) Director field inside a cross section of a CRatter

quency for the drift velocity of a spiraling finger the modelof Press and Arrd#,5]). (b) The same for a CF-after

[ vo(spira) =0.059um/s]. the model of Gil qnd Gi!I[SO]). This.finger can be simply obtained
Finally, we measured the critical radius of the looped CF-from a CF-1 configuration by rotating af about thez axis of the

2’s as a function of the voltage at three different frequencies'.ower h{_;\lf part qf the finger. This operation requires the helix to be

These data, given in Fig. 9, show that the critical radius ig*€"fect in the middle plane of the sample.

roportional toV and vanishes a¥; :
proport vanishes &t As noted by Gil and Thibergg28], a CF-1 satisfies the fol-

Rea(V—V3). (5) lowing symmetry:
CF-1, _«, __~_ CF1
This behavior is quite compatible with E¢4) inasmuch as nyz (-y,—2)=eny;(y,2),

the line energyT vanishes aw3 , by definition. CF1
nX

(-y,—2)=—en{"Yy,2) (e==*1). (6)

V. TOPOLOGICAL MODEL AND CONSTRUCTION

ON THE UNIT SPHERE S2 Because of then— —n invariance, this symmetry implies

that the CF-1 is invariant by a rotation around the axis

In 1976, Press and Arrott proposed a model for describingparallel to the finger axjs Thez axis is perpendicular to the
the cholesteric fingers of the first specigs6]. In their  glass plates. As a consequence, the CF-1 does not drift per-
model, the director field is numerically calculated by assum-{pendicularly to its axis in ac electric field28].
ing that all the elastic constants are eq(isbtropic elastic- By contrast, the CF-2 drifts in ac electric fields and gives
ity). It was shown later that the unwinding transition must bespirals and growing loops &>V3 . An explanation pro-
second order in these conditioff0], which is not observed posed by Gil and Gill{30] would be that a CF-2 drifts with
experimentally. To explain why the transition is first order, different velocities according to whether the electric field is
elastic anisotropy must be taken into account, a refinemenip or down. This is possible if the finger is not invariant by
that does not change the topology of the CF{II6]. The a = rotation around the axis. The continuous director field
corresponding director field(x,y,z) is shown in Fig. 1(a). of Fig. 10b) found numerically by Gil and Gilli satisfies
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a) the north pole. This explains why the CF-1's easily nucleate
from the nematic phase when the electric field is reduced.
By contrast,I" is no longer a closed curve in a CHRig.
11(c)]. Indeed, circle<C now cover the whole sphel®2 so
thatI', is composed of two arcs of a circl®&A and BN,
which are symmetric with respect to thEs axis of S2 (Sis
the south polg In this representatiorA andB are diametri-
cally opposed and equivalent because they are the centers of
the same grand circle d82. But we now see that the director
field is no longer reducible to the north pole via a continuous
transformation. This explains the exceptional resistance of
the CF-2's to an increasing electric fielsee Fig. 8 of Ref.
[22] and Sec. V.
b) c) This representation 082 is also very useful to predict
whether there exist point defects at the ends of a finger. The
simplest way to answer this question is to consider a cube
surrounding the end of a fingéFig. 12 and to count how
many times the imagP on S2 of the directom covers the

thus, continuously reducible to the north pdl®. By contrast, the whole sphere while moving around the cube. This intdger

corresponding curvé’, in a CF-2 is open and cannot be continu- defines the topological rank_ of thg point dgfecN (
ously reduced to the north pole). =1,2,...)[42]. Note thatN=0 if there is no defectin this

case,P does not completely descril®2). By using the rep-
these conditions and so could describe the CF-2. In this casegsentation o152 of the fingers, it is immediate to check that
the Lehman effect could be the motor of the drift, but thisN=0 in each end of a CF-1, wherebls=1 in each end of a

FIG. 11. Representation on the unit sph&2 of the director
field within the fingers. Each circl€; on S2 represents the trajec-
tory of the director along a ling; of the real spacéa). In a CF-1
the centers of the circleS; describe a closed curde;, which is,

interpretation has still to be confirmed experimentally. CF-2.
In the following we show that the topological model of  As a consequence, a CF-1 segment is continuous, which
Gil and Gilli is compatible with our observations. we have known for a long time. By contrast, there exists a

To simplify, we propose to represent the director field onpoint defect of rankN=1 in each end of a CF-2 segment.
the unit spher&2 [39]. This method proved to be very use- These defects are visible in the microscope and subsist when
ful in cholesteric§40,41], in particular for explaining most two CF-1 segments prolong the CHRig. 2(b)]. These de-
properties of the CF-1's and of their phase diagrigif—  fects are not centered in the sample as can be easily seen by
14,27. The idea is to associate with the director at a point ofsuperimposing the director fields of Figs.(&0and 1@b). In
the real space, a point d2. In this representation, the im- this case, two possibilities must be considered, depending on
age of the director along a line in the real space is a trajecwhether the two tips of the two CF-2's are different or not
tory on S2. By convention, the north pold corresponds to (this depends on the orientation chosen for the CF-2 with
the homeotropic orientation. Also two diametrically oppositerespect to the CF-1 when one superimposes the two director
points are equivalent because of the> —n invariance. To fields). In the former case, the two point defects are identical
represent a fingefsupposed invariant along theaxis), we  and lie at the same height in the samfile being closer
consider the images of all the straight lines parallel toythe to one plate than to the othern the latter case, which is
axis that intersect the finger. Because of the homeotropithdeed experimentally observed for energetical reasons
boundary conditions, the corresponding trajectoriesSan (rounded tips are less energetical than the sharp ones
are closed curve€ going fromN to N. It was previously [8,11,14), the two defects lie at different heights in the
shown[10,27] that these trajectories may be approximated toesample, which can be seen in the microscope by changing
circles[Fig. 11(a)]. the focus. This observation may explain the formation of a

We now describe the two types of fingers. @B, each  bubble with two point defects along its axisee the topo-
finger is represented by a set of circl€s Let I' be the logical model of Ref[35]) when the CF-2 shortens. Finally,
trajectory of their centers 082. we observed in a very thick samplel€£50um and p

In a CF-1,I is aclosedcurvel'; going fromNto N[Fig. = =14.8um) that these two point defects can move along the
11(b)]. In this case, the finger can be continuously reduced tdinger (providing it is long enough meet, and change sides
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50 um

=

FIG. 14. Part of a CF-2 loop observed at large magnification
“'i\,‘ before (a) and after transformatioib), (c) (C=4.44, f=25kHz,
‘1‘1 unpolarized light (a) V=8V, (b) V=8.5V, and(c) V=10V. By
) increasing the voltage, the apparent width as well as the optical

,,:/ contrast of the finger decreases, suggesting it also becomes thinner
- 7 b within the sample thickness.
66, fore. This effect is shown in Fig. 8 in which the radius of a

——— transformed loop is displayed as a function of time. On the
other hand, we observed that the transformed loop can grow
FIG. 13. Transformation of a loop of a CF-2 A&t=V} if its radius is larger than some critical radii , which
=8.45V, f=25kHz, andC=4.44 (unpolarized light The finger  turns out to be much larger than that of the initial loop.
locally pinches off, generating pairs of solitons which propagateThis is shown in Fig. 15 where both critical radii are reported
along the fingers. Each soliton separates two regions of differerfior comparison at different frequencies.
widths and optical contrasts. Finally, we observed that this transformation is reversible
if the voltage is decreased below a voltage which is very
without visible interaction. It is interesting to note that afterclose to V5 (see Table )l This transformation is thus
crossing, the curvature of the CF-2 segment has changesirongly hysteretic.

sign. Such a finger, when it shortens, gives a bubble, how-
ever, as in other samples. VIl. ENERGETICAL MODEL

In order to explain our observations, we numerically cal-
VI. TRANSFORMATION OF THE CF-2's IN HIGH culated the director field and the energy per unit |ength of the

ELECTRIC FIELDS

800 —
The behavior and optical contrast of the CF-2's change o

when the applied voltage exceeds a well-defined voliage
(Figs. 13 and 11 At this voltage, which is very close to the 600 - o
spinodal limit V5 of the CF-2's(see Table )|, the fingers
abruptly become thinner while their optical contrast de-
creasesFig. 14). This transformation is not homogeneous at
V., , but proceeds from the nucleation and propagation along
the loop axis of pairs of “solitons” which form at each el-
ementary “stricture.” After the transformation, all these 200
“solitons” disappear(Fig. 13. By contrast, this transforma- A a
tion looks homogeneous if the voltage is abruptly switched A
to a voltage a few hundredths of a volt aboVg . This 0 T T T T T T
transformation of the CF-2 was observed in all the samples 0 5 10 5 20 % %0

. frequency (kHz)}
and was systematically observed at a voltage very close to
V3 (see Table)l A direct consequence of this transformation  FIG. 15. Critical radiiR, (triangles andR; (circles of looped
is a brutal change of the dynamic properties of the l0oOpCF-2's before and after transformation as a function of the fre-
Indeed, they usually start to quickly collapse immediatelyquency. At high frequencyR: becomes so large that it becomes
after the transformation, whereas they were growing just beimpossible to measureC(=4.44,V=7.8V).

400 o

Critical diameter (pm)
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two types of finger(supposed to be invariant along the
axig). In practice, we must solve the differential equations

of  of o9 of a of

S an ay anyy azan, O @)

wheref is the Frank energy

1 Lo 1 2
f=§K1(d|vn) +§K2(n~curln+q)

1 1
+§K3(n><curl n)Z—E(DE)2 (8)

[ et s e e e e e e e e A i e e e e bt

Lev oy st s oo e =

Y Y
s by n e

(with q=2m/p), together with the Maxwell equation giving
the local electric field 29]:

a)
ot =divD=0 9
— 5y~ divD=0, €)
whereD=(¢)E. This equation is only valid in the dielectric
regime >f.). In the conducting regimeff.), the equa- 150
tion 144
divj=0, (10)

with j=(o)E, must be solved instead of E(§). (N RS

In practice, we did our calculations using E§). Never- 09 = ““‘
theless, we checked that the value\of numerically found 08l .‘:,«:§§§§sﬁ\\“
depends very littigwithin 1%) on the condition chosefal- ° Sl

30 :::::&&&Q}Q‘ 50

though the spatial distribution of the electric field within the S
sample be quite differentThis result is in agreement with
the experimentsee Fig. 1

A relaxation method is used, consisting in solving the

equations b)

an; of
o _ (11 FIG. 16. Director field in a cross section of a CHd and the
ot on deviation of the vertical component of local electric field from its

mean valueV//d (b) (C=3.33,V=3.92V).
and (b) ( )

Vv of Il, we give the values oV, andV; calculated alC=2.22.
YA (12 we recall that the finger has the same energy as the nematic
phase a¥,, whereas abov¥; the finger spontaneously dis-

In order to satisfy the normalization conditiorr=1, we appears. We also give in Table Il the theoretical valu¥ ef

project at each step of the calculation the elementary discalculated from the exact formu[8,11,14

placementsén; = — (8f/n;) 8t onto the sphere?=1 [24].

The finger energy is then calculated by integratirmyer a

cross section of the finger. Our initial configurations for the B Ks C? L. %a

CF-1's and CF-2's are that given by the geometrical model Vo=1\ — KJF KA with A= 47K, (13

of the circles onS2 (see Sec. Y Finally, we did our calcu-

lations by taking K;=K;=3.5x10 "dyn, K,=1.6 _ _

X 10~ 7 dyn [36], ,=16.2 ande, =7.3[43]. These values TABLE II. Values of the different voltages obtained &

are those given in the literature for pure 5CB, 3 °C below its=— 222

clearing temperature.

o . , Vo Vs V3 Vi V5,
Let us first discuss the results concerning the CF-1's. As a

typical example, we show the director field and shift of thegxperimental 2.05 3.96 3.96 4.85 4.34

vertical componenE, of the electric field from its mean Numerics 1.17 2.23 2.23 2.95 2.6

valueV/d in Fig. 16 whenC=3.33 andv=3.92V. In Table
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FIG. 18. Energies in units of; (with respect to the nematic
phase, assumed to bg¢ @ the CF-1's(circles and of the CF-2's as
a function of the voltageV at C=3.33 before transformation
(crossepand after transformatioftriangles.
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nematic phaseof the two types of fingers as a function of
the applied voltage. As expected in thick samples, the two
types of fingers have the same energy belbyv AboveVs,

! the CF-1's collapse, whereas the CF-2's get abruptly thinner.
This new solution corresponds to the upper branch of the
diagram. The CF-2’'s stay on this branch when the voltage is
decreased down 1@}, . Below, they recover their “normal”
width corresponding to the lower branch of the diagram.

B N

VIIl. CONCLUDING REMARKS
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NSty i

We have seen that there is only a qualitative agreement
between theory and experiments inasmuch as the measured

FIG. 17. Director field in a cross section of a CF-2 calculated atvoltages are systematically larger by a factor of 1.6—1.7 than
C=23.33 by first slowly increasing the voltagiéa) V=3.92V, ()  the calculated onetsee Table ). The explanation for this
V=4.37V, (c) V=4.4V], and then by slowly decreasing the volt- discrepancy is that the values of the elastic constants and
age[(d) V=3.95V, (e) V=3.92V]. The energy of these fingers is dielectric anisotropy at a given temperatu@0 °C in our
given in Fig. 18. experiment change with respect to those of pure 5CB when

chiral molecules are introducdgh our experiment we add
We note that there is a constant factor of the order of 1.73.25 wt % of CB15 to the sample, which causes a decrease of
between calculated and measured values. One possible eke melting temperature from 34.2 °C down to 31.5.°This
planation for this discrepancy is discussed in the next sednterpretation is reinforced by the fact that the agreement is
tion. better at small concentration. For instance, we found that at

Similarly, we have computed the director field inside aC=1.7,Vy(theory)=0.9V [calculated from Eq(13) by us-
CF-2 as a function of the applied voltagig. 17). As ex-  ing the values of the pure 5CB at 30F @hereas experimen-
pected, the CF-2 does not disappear when the voltage inally, at the same temperatur&,(expt)=1.2V when p
creases. On the other hand, its width abruptly decreases15u,m (0.98 wt% of chiral moleculgsand Vy(expt)
when the applied voltage exceeds a voltafe we found =2V when p=4.5um (3.21 wt% of chiral moleculgs
very close toV;. This is not surprising inasmuch as the Note that in the sample with 0.98 wt % of CB15, the melting
director field of a CF-2 close to one plate is quite similar totemperature only decreases by 0.8 °C.
that of a CF-1 at large thicknes€%1). By decreasing the
voltage, we numerically observed that the finger remains

O
<

[N
=

very thin down to a voltage/;;, intermediate betweeN, ACKNOWLEDGMENTS
andVj. This hysteretic behavior is observed experimentally
(see Sec. VL We also calculate¥; for the CF-2's, and we  This work was supported by the European Research Net-

found thatV,=V3 at largeC, again in very good agreement work “Pattern Noise and Chaos in Complex Systems” under

with the experiment. Values of,, V3, V;., andV};, are  Contract No. FMRX-CT96-0085, and by the Barrande Pro-

reported in Table Il aC=2.22. gram between France and the Czech Republic under Con-
Finally, we plot in Fig. 18 the energiwith respect to the tract No. 98010.
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