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Looped finger transformation in frustrated cholesteric liquid crystals

J. Baudry, S. Pirkl,* and P. Oswald
Laboratoire de Physique,† ENS Lyon, 46 Alle´e d’Italie, 69364 Lyon Cedex 07, France

~Received 16 October 1998!

Localized structures named ‘‘fingers’’ form in the vicinity of the unwinding transition of a cholesteric liquid
crystal subjected to an electric field and to homeotropic boundary conditions. Several types of fingers exist,
with different static and dynamic properties. For instance, cholesteric fingers of the second species~CF-2! can
drift perpendicular to their axes and form spirals in ac electric fields, whereas fingers of the first species~CF-1!
crawl along their axes. In this article we show that CF-2’s are much easier to nucleate in thick samples~with
respect to the pitch! than in thin ones and may form loops like the CF-1’s, with or without defects. We show
that looped CF-1’s always collapse in thick samples at increasing voltage, whereas they can form cholesteric
bubbles in thin samples. By contrast, we never observe the formation of a bubble from a loop of a CF-2 except
when it possesses a point defect. We also recall that CF-1 segments always collapse at increasing voltage,
whereas CF-2 segments systematically give cholesteric bubbles in similar conditions. To qualitatively explain
these transformations, we use a simplified representation on the unit sphereS2 of the director field within the
fingers. While the CF-1’s are described within the standard model of Press and Arrot, we use for the CF-2’s a
recent model of Gil and Gilli, which we prove to explain most observations. We also describe the growth and
collapse dynamics of a loop of a CF-2 in close connection with the spiral dynamics. Finally, we show
experimentally and numerically that the CF-2’s get abruptly thinner when the electric field exceeds the spin-
odal limit of the CF-1’s. This transformation is reversible, but strongly hysteretic.
@S1063-651X~99!08205-7#

PACS number~s!: 61.30.Gd, 61.30.Jf, 47.20.Ky
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I. INTRODUCTION

During the last ten years, many experiments have b
devoted to the problem of the unwinding transition of a ch
lesteric liquid crystal in confined geometry@1–30#. In stan-
dard experiments, the sample is sandwiched between
parallel ITO electrodes which are treated in homeotropic
choring. These boundary conditions are topologically inco
patible with the helical structure of the phase, which, con
quently, unwinds if the sample thickness is too small.
practice, the control parameter is the confinement ratioC
5d/p of the thickness over the equilibrium pitch. The tra
sition to the homeotropic nematic phase takes place w
C<Cc5K32/2, whereK32 is the ratioK3 /K2 ~the Ki ’s are
the usual Frank constants of the cholesteric phase! @3#. An-
other way to unwind the helix is to use a liquid crystal
positive dielectric anisotropy«a and to apply a voltageV
between the two electrodes. This control parameter is m
easier to vary than the thickness.

So, in practice, the thickness is fixed and the voltage
changed. In this way it is possible to show that the transit
is usually first order@10#. In particular, there exists a voltag
V2 where the two phases coexist. More precisely,V2 is the
voltage for which the cholesteric fingers of the first spec
~CF-1’s! have exactly the same energy as the nematic.
this voltage, a segment of a CF-1 has a constant length.
CF-1’s have been known for a long time because they are
most easy to obtain experimentally. Nevertheless, o
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kinds of fingers exist nearV2 , which can be nucleated in
special conditions, for example, at the cholesteric-isotro
interface in directional growth@29#. The most interesting are
the cholesteric fingers of the second species~CF-2’s! because
they can drift and form spirals in ac electric fields, contra
to CF-1’s. In the microscope they look very similar to th
CF-1’s, which explains why both types of fingers have oft
been confused.

There also exist in the samples other objects of circu
shape, named cholesteric bubbles@31–35#. These bubbles
have been known for a long time and form spontaneousl
the cholesteric-isotropic transition. Another way to produc
bubble is to shrink in electric field a looped CF-1@35# or a
segment of a CF-2@22#.

In this article, we show the possibility to form loope
CF-2’s. Depending on the value and on the frequency of
electric field, these loops grow or collapse, but never fo
bubbles contrary to CF-1’s, except when they have a po
defect. This feature is certainly connected to the topology
the CF-2. In addition, we study the growth and collapse
namics of looped CF-2’s in close connection with the form
tion of spirals. Finally, we show that the CF-2’s abruptly g
thinner when the applied voltage exceeds the spinodal l
V3 of the CF-1, a phenomenon that can be theoretically
plained from the Gil-Gilli model of Ref.@30#.

II. EXPERIMENTAL SETUP AND PHASE DIAGRAM

The sample is obtained by mixing the liquid crystal 5 C
(4-n-pentyl-48-cyanobiphenyl) with 3.25 wt % of the chira
molecule CB15~from Merck Corp.!. The cholesteric pitch is
measured in a Cano wedge and equals 4.5mm at 30 °C. The
sample is prepared between two parallel ITO electro

u-
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PRE 59 5563LOOPED FINGER TRANSFORMATION IN FRUSTRATED . . .
treated with silane ZLI 3124 from Merck to obtain a stro
homeotropic anchoring. The sample thickness is fixed w
Mylar spacers or nickel wires of calibrated thicknesses
diameters. We performed most of our experiments with
20-mm-thick sample, which gives a confinement ratio ofC
'4.44. This is a pretty large value compared to our previ
experiments: this choice will be justified in the following
For comparison, we also did experiments in thinner samp
(C51.78, 2.22, and 3.33!. All our observations and mea
surements are done at 30 °C. At this temperatureK1'K3 in
5CB @36#, which makes easier our numerical simulatio
~see Sec. VII!.

A square-wave ac voltage is applied between the
electrodes. In order to characterize the sample, we first m
sured as a function of the frequency the coexistence vol
V2 for the CF-1’s. At this voltage, the fingers have the sa
energy as the nematic phase, and consequently do not
or shorten. In Fig. 1, we plotV2 as a function of the fre-
quency in the thick sample (C54.44). Two curves are
shown. The first one is the voltage which is applied betwe
the two electrodes: it strongly increases at high frequen
typically when f .100 kHz. A similar effect was already re
ported without clear explanation by Mitov and Sixou@17#. It
is in fact an artifact which is due to the voltage decrea
across the two ITO layers. Indeed, these two layers act
resistanceRITO , which is in series with the sample, and th
one can be modeled by a resistanceRs in parallel with a
capacityCs . From these three constants, two characteri
frequencies can be constructed: the charge relaxation
quency of the samplef c5(RsCs)

21 and another frequenc
f ITO5(RITOCs)

21 that depends on the ITO layer. As a resu
the voltage that is really applied to the sample (V2

samp) must
be different from that experimentally measured (V2

expt). This
voltage can be easily calculated providing thatRITO , Rs , and
Cs are known. We measured these three constants~which we
found to be independent of the frequency up to 300 kH!
with a precisionLCR meter HP4284A, which allowed us t
calculateV2

samp. This voltage is displayed in Fig. 1: w
note that it is constant and does not change significa
when we go from the conducting regime (f , f c) to the di-

FIG. 1. VoltageV2 for the fingers of the first species~in volt
rms! as a function of the frequency (C54.44). Curve 1~circles!
corresponds to the voltage which is applied between the two e
trodes; curve 2~triangles! is the voltage which is really applied t
the cholesteric sample.
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electric one (f . f c) ( f c'7 kHz in this sample!; by contrast,
the measured voltageV2

expt significantly shifts fromV2
sampat

high frequency whenf . f ITO@ f c ( f ITO'150 kHz). Because
most of our experiments were performed at frequencief
, f ITO , we will be aware of this correction in the following
Finally, we observed that the sample heats when the
quency exceedsf ITO because of the Joule effect. The tem
perature increaseDT is estimated by measuring the shift
the melting temperature. Negligible at 40 kHz~of the order
of 0.1 °C!, it becomes important abovef ITO ~for instance,
DT'0.95 °C atf 5300 kHz). In order to maintain constan
the sample temperature, we systematically decreased ofDT
the temperature of the oven above 40 kHz.

We then measured the coexistence voltageV2* for the
CF-2’s, and we found thatV2'V2* in all samples except the
thinnest one in whichV2* is slightly larger thanV2 ~this is in
good agreement with previous measurements@25#!. We also
measured the spinodal limitsV3 andV3

b for the CF-1’s and
the bubbles, respectively. We found thatV3

b is slightly
smaller thanV3 contrary to what we previously observed
thinner samples~in which C,1.6 @35#!. That means that the
cholesteric bubbles are more stable in thin samples tha
thick ones.

All these data are reported in Table I as a function of
confinement ratioC5d/p at f 55 kHz.

III. SEGMENTS AND LOOPS OF FINGERS OF THE
FIRST AND SECOND SPECIES: COLLAPSE

OR TRANSFORMATION INTO CHOLESTERIC BUBBLES

Let us first consider segments of a CF-1 and a CF-2.
know from previous experiments that the former have t
different tips~a pointed one and a rounded one!, whereas the
latter have almost similar rounded tips. More important,
former systematically collapse aboveV2 , whereas the latter
systematically form bubbles aboveV2* ~and belowV3

b) @22#.
These transformations are shown in Fig. 2. We also re
that a CF-2 segment may easily extend belowV2 ~rigorously
below a voltageVn that is a little bit smaller thanV2 @25#! by
forming two segments of a CF-1. In this case, there exis
point defect at each junction between the CF-2 and CF-

c-

TABLE I. V2'V2* are the coexistence voltages for the finge
of the first and of the second species;V3 (V3

b) defines the spinoda
limit for the CF-1’s ~the bubbles!; Vtr* ('V3) is the voltage above
which the CF-2’s get abruptly thinner;Vrtr* ('V2) is the voltage
below which the thin CF-2 recovers its initial width;Vltr is the
voltage above which a looped CF-1 transforms into a bubble~†! or
collapses. The asterisk~* ! refers to the CF-2’s.

C5d/p 1.78 2.22 3.33 4.44

V2 3.23 3.96 5.28 7.0
V2* 3.28 3.96 5.28 7.0
V3 4.02 4.8 6.05 7.7
V3

b 3.92 4.64 5.99 7.46
Vtr* 4.04 4.85 6.05 7.59
Vrtr* 3.88 4.34 5.26 7.01
Vltr 3.64† 4.40 5.81 7.3
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5564 PRE 59J. BAUDRY, S. PIRKL, AND P. OSWALD
In addition, the two CF-1 segments end with similar round
tips ~Fig. 2!.

Second, we consider loops of these fingers.
We already showed that a loop of a CF-1 may transfo

into a bubble if the voltage is large enough~in practice,
larger thanV2 , but smaller thanV3

b) @35#. During this irre-
versible transformation, the core of the loop collaps
whereas its external ring shrinks to form the bubble~Fig. 3!.
This transformation only occurs in thin samples~typically
whenC,2). WhenC.2, the loops collapse without form
ing bubbles. Typical values of the voltageVltr above which a
CF-1 loop transforms into a bubble or collapses are given
Table I.

Similarly, it was possible for the first time to form loop
of a CF-2. Such loops are much easier to obtain in large-d/p
samples than in thin ones. Indeed, the CF-2’s nucleate
easily as the CF-1’s in thick samples~typically C.3) when
electrically ‘‘quenching’’ the sample from the nematic pha
into the finger region. In Fig. 4~a!, we show such a
loop: optically, it looks like a CF-1 loop and a simple o

FIG. 2. ~a! Segment of a CF-1. It collapses aboveV2 . ~b! Seg-
ment of a CF-2. It gives a bubble aboveV2* , while it lengthens by
forming two CF-1 segments with similar rounded tips belowVn

~C53.38,p514.8mm, f 55 kHz, V255.02 V).

FIG. 3. A looped CF-1 may form a bubble in thin samplesC
51.68,V57.6 V, f 520 kHz).
d
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servation through the microscope is not sufficient to dist
guish them. By contrast, we shall see in the following sect
that their dynamic behaviors are quite different and allow
to distinguish them without ambiguity. As for the CF-
loops, it was possible to shrink them by increasing the vo
age while remaining in the domain of existence of t
bubbles. We observed that the CF-2 loops always colla
without giving bubbles. Nevertheless, we failed to make
CF-2 loop without defects in the thinnest sample (d/p
51.78) in which we observed the transformation of a CF
loop into a bubble. On the other hand, it was possible
make CF-2 loops containing one point defect. In this ca
the loops systematically transform into bubbles@Fig. 4~b!#.
In fact, looped CF-2’s with one or several defects sponta
ously form in all the samples. For instance, we show in F
5 a loop with four point defects. By increasing the volta
close toV3

b , this loop breaks at the places of the defects a
give four segments of a CF-2, which then form four bubbl

In the following section, we describe the dynamical pro
erties of the looped CF-2’s.

IV. DYNAMIC PROPERTIES OF LOOPED CF-2’s

We know from previous experiments@14–18,22,25# that
the CF-2’s form spirals in ac electric fields when one at le
of their two ends are free to move~Fig. 6!. These spirals
spontaneously form close toV2* because the fingers drift per
pendicularly to their axes providing the frequency is not t
large (f , f c @37#!. In Ref. @25#, we showed that the spira
tends to an Archimedian spiral far from its center, where
finger drifts at constant velocityn0 . This velocity is given as
a function of the frequency in Fig. 7.

Let us now consider a looped CF-2. At a voltage larg
thanV2* , the experiment shows that there is a critical rad

FIG. 4. ~a! A looped CF-2 without defect always collapse
aboveVtr* (V57.6 V, f 55 kHz, C54.44).~b! A looped CF-2 con-
taining one point defect always transforms into a bubble aboveVtr*
(V57.6 V, f 520 kHz, C54.44).
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PRE 59 5565LOOPED FINGER TRANSFORMATION IN FRUSTRATED . . .
Rc below which the loop collapses and above which
grows. In Fig. 8, we report the radius of the loop as a fu
tion of time for different initial radiiRi . To explain the loop
dynamics, we consider the forces that act on the finger. Th
is an outward driving forceFe which opposes to two inward
forces: the viscous forceFv , which we assume to be pro
portional to the velocity (Fv5ndrift /m) and the line tension
force proportional to the line energyT and inversely propor-
tional to the finger radius of curvatureR. Balancing these
three forces, we get

ndrift5
dR

dt
5mS Fe2

T

RD , ~1!

wherem is a mobility inversely proportional to the rotation
viscosity g1 . The line tensionT is assumed constant, i.e
independent ofR, which means that we neglect the curv
ture energy of the finger. This assumption is valid

FIG. 5. Loop of a CF-2 with four point defects. AboveVtr* this
loop breaks at the places of the defects to form four segments w
finally will give four bubbles (V57.6 V, f 520 kHz, C54.44).

FIG. 6. Archimedian spiral of a CF-2 observed in the thi
sample (C54.44,V57.2 V, f 55 kHz).
t
-

re

DV5V2V2* is large enough in order that the line energy
the rectilinear fingerT ~which is proportional toDV: see Sec.
VII and Fig. 18! is much larger than its curvature energy.
thick samples (C'3), the cholesteric helix is almost no
deformed except near the two glass plates and the finge
equivalent to a cholesteric layer of thicknessp ~see Fig. 16!.
The bend energy of such a layer has been calculated
Chandrasekhar@38# and equals (3/8)K3dp/R2. Moreover,
we have calculated numerically the line energy of a CF-2
a function of the applied voltage:T'11K1DV ~see Sec.
VII and Fig. 18!. Experimentally, we performed all our mea
surements atDV.0.5 V. In these conditions, the curvatur
energy of the fingers can be neglected as long as

R@A 3

88

C

DV
p

'2.5 mm by taking C54.44 and p54.5 mm.

~2!

ch

FIG. 7. Asymptotic drift velocityn0 of a CF-2 as a function of
the frequency atV5V2* (C54.44).

FIG. 8. Radius of a loop of a CF-2 as a function of time f
different initial radiiRi . WhenRi,Rc , the loop collapses, wherea
it grows whenRi.Rc (V58 V, f 525 kHz, C54.44). The three
solid line curves are fitted to Eq.~3! by adjustingRc andn0 . The
asymptotic velocityn0 is equal to that measured from the spira
(n050.06mm/s). The critical radiusRc of the loop depends on the
voltage and frequency as shown in Fig. 9. For comparison, we
plotted in this graph the time evolution~solid circles! of a trans-
formed loop atV58 V, f 525 kHz, andC54.44.
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5566 PRE 59J. BAUDRY, S. PIRKL, AND P. OSWALD
This condition being fulfilled experimentally~see Figs. 8 and
9!, we shall neglect the curvature energy of the finger in
following. Integration of Eq.~1! ~with T constant! gives

n0t5~R2Ri !1Rc lnS R2Rc

Ri2Rc
D , ~3!

with

Rc5
T

Fe
. ~4!

In Fig. 8 we fit the experimental curves to Eq.~3! by adjust-
ing Rc and n0 . We foundn050.061mm/s, in good agree-
ment with the value found experimentally at the same f
quency for the drift velocity of a spiraling finge
@n0~spiral!50.059mm/s#.

Finally, we measured the critical radius of the looped C
2’s as a function of the voltage at three different frequenc
These data, given in Fig. 9, show that the critical radius
proportional toV and vanishes atV2* :

Rca~V2V2* !. ~5!

This behavior is quite compatible with Eq.~4! inasmuch as
the line energyT vanishes atV2* , by definition.

V. TOPOLOGICAL MODEL AND CONSTRUCTION
ON THE UNIT SPHERE S2

In 1976, Press and Arrott proposed a model for describ
the cholesteric fingers of the first species@5,6#. In their
model, the director field is numerically calculated by assu
ing that all the elastic constants are equal~isotropic elastic-
ity!. It was shown later that the unwinding transition must
second order in these conditions@10#, which is not observed
experimentally. To explain why the transition is first orde
elastic anisotropy must be taken into account, a refinem
that does not change the topology of the CF-1’s@10#. The
corresponding director fieldn(x,y,z) is shown in Fig. 10~a!.

FIG. 9. Critical radius of looped CF-2’s as a function of th
voltage at three different frequencies (C54.44). Extrapolation of
the lines show thatRc vanishes at 7.2 V~respectively, 7.16 and 7.24
V! when f 515 kHz~respectively, 20 and 25 kHz!. These values are
equal toV2* within experimental errors~see Fig. 1!.
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As noted by Gil and Thiberge@28#, a CF-1 satisfies the fol-
lowing symmetry:

ny,z
CF-1~2y,2z!5«ny,z

CF-1~y,z!,

nx
CF-1~2y,2z!52«nx

CF-1~y,z! ~«561!. ~6!

Because of then→2n invariance, this symmetry implies
that the CF-1 is invariant by ap rotation around thex axis
~parallel to the finger axis!. Thez axis is perpendicular to the
glass plates. As a consequence, the CF-1 does not drift
pendicularly to its axis in ac electric fields@28#.

By contrast, the CF-2 drifts in ac electric fields and giv
spirals and growing loops atV.V2* . An explanation pro-
posed by Gil and Gilli@30# would be that a CF-2 drifts with
different velocities according to whether the electric field
up or down. This is possible if the finger is not invariant b
a p rotation around thex axis. The continuous director field
of Fig. 10~b! found numerically by Gil and Gilli satisfies

FIG. 10. ~a! Director field inside a cross section of a CF-1~after
the model of Press and Arrott@4,5#!. ~b! The same for a CF-2~after
the model of Gil and Gilli@30#!. This finger can be simply obtaine
from a CF-1 configuration by rotating ofp about thez axis of the
lower half part of the finger. This operation requires the helix to
perfect in the middle plane of the sample.
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these conditions and so could describe the CF-2. In this c
the Lehman effect could be the motor of the drift, but th
interpretation has still to be confirmed experimentally.

In the following we show that the topological model
Gil and Gilli is compatible with our observations.

To simplify, we propose to represent the director field
the unit sphereS2 @39#. This method proved to be very use
ful in cholesterics@40,41#, in particular for explaining mos
properties of the CF-1’s and of their phase diagram@10–
14,27#. The idea is to associate with the director at a point
the real space, a point onS2. In this representation, the im
age of the director along a line in the real space is a tra
tory on S2. By convention, the north poleN corresponds to
the homeotropic orientation. Also two diametrically oppos
points are equivalent because of then→2n invariance. To
represent a finger~supposed invariant along thex axis!, we
consider the images of all the straight lines parallel to thy
axis that intersect the finger. Because of the homeotro
boundary conditions, the corresponding trajectories onS2
are closed curvesC going from N to N. It was previously
shown@10,27# that these trajectories may be approximated
circles @Fig. 11~a!#.

We now describe the two types of fingers. OnS2, each
finger is represented by a set of circlesC. Let G be the
trajectory of their centers onS2.

In a CF-1,G is aclosedcurveG1 going fromN to N @Fig.
11~b!#. In this case, the finger can be continuously reduce

FIG. 11. Representation on the unit sphereS2 of the director
field within the fingers. Each circleCi on S2 represents the trajec
tory of the director along a lineLi of the real space~a!. In a CF-1
the centers of the circlesCi describe a closed curveG1 , which is,
thus, continuously reducible to the north pole~b!. By contrast, the
corresponding curveG2 in a CF-2 is open and cannot be contin
ously reduced to the north pole~c!.
e,

f

c-

ic

o

to

the north pole. This explains why the CF-1’s easily nucle
from the nematic phase when the electric field is reduce

By contrast,G is no longer a closed curve in a CF-2@Fig.
11~c!#. Indeed, circlesC now cover the whole sphereS2 so
that G2 is composed of two arcs of a circle,NA and BN,
which are symmetric with respect to theNSaxis of S2 ~S is
the south pole!. In this representation,A andB are diametri-
cally opposed and equivalent because they are the cente
the same grand circle onS2. But we now see that the directo
field is no longer reducible to the north pole via a continuo
transformation. This explains the exceptional resistance
the CF-2’s to an increasing electric field~see Fig. 8 of Ref.
@22# and Sec. VI!.

This representation onS2 is also very useful to predic
whether there exist point defects at the ends of a finger.
simplest way to answer this question is to consider a c
surrounding the end of a finger~Fig. 12! and to count how
many times the imageP on S2 of the directorn covers the
whole sphere while moving around the cube. This integeN
defines the topological rank of the point defect (N
51,2, . . . ) @42#. Note thatN50 if there is no defect~in this
case,P does not completely describeS2). By using the rep-
resentation onS2 of the fingers, it is immediate to check th
N50 in each end of a CF-1, whereasN51 in each end of a
CF-2.

As a consequence, a CF-1 segment is continuous, w
we have known for a long time. By contrast, there exist
point defect of rankN51 in each end of a CF-2 segmen
These defects are visible in the microscope and subsist w
two CF-1 segments prolong the CF-2@Fig. 2~b!#. These de-
fects are not centered in the sample as can be easily see
superimposing the director fields of Figs. 10~a! and 10~b!. In
this case, two possibilities must be considered, dependin
whether the two tips of the two CF-2’s are different or n
~this depends on the orientation chosen for the CF-2 w
respect to the CF-1 when one superimposes the two dire
fields!. In the former case, the two point defects are identi
and lie at the same height in the sample~while being closer
to one plate than to the other!. In the latter case, which is
indeed experimentally observed for energetical reas
~rounded tips are less energetical than the sharp o
@8,11,14#!, the two defects lie at different heights in th
sample, which can be seen in the microscope by chang
the focus. This observation may explain the formation o
bubble with two point defects along its axis~see the topo-
logical model of Ref.@35#! when the CF-2 shortens. Finally
we observed in a very thick sample (d550mm and p
514.8mm) that these two point defects can move along
finger ~providing it is long enough!, meet, and change side

FIG. 12. Cube surrounding a finger end.
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5568 PRE 59J. BAUDRY, S. PIRKL, AND P. OSWALD
without visible interaction. It is interesting to note that aft
crossing, the curvature of the CF-2 segment has chan
sign. Such a finger, when it shortens, gives a bubble, h
ever, as in other samples.

VI. TRANSFORMATION OF THE CF-2’s IN HIGH
ELECTRIC FIELDS

The behavior and optical contrast of the CF-2’s chan
when the applied voltage exceeds a well-defined voltageVtr
~Figs. 13 and 14!. At this voltage, which is very close to th
spinodal limit V3 of the CF-2’s ~see Table I!, the fingers
abruptly become thinner while their optical contrast d
creases~Fig. 14!. This transformation is not homogeneous
Vtr , but proceeds from the nucleation and propagation al
the loop axis of pairs of ‘‘solitons’’ which form at each e
ementary ‘‘stricture.’’ After the transformation, all thes
‘‘solitons’’ disappear~Fig. 13!. By contrast, this transforma
tion looks homogeneous if the voltage is abruptly switch
to a voltage a few hundredths of a volt aboveVtr* . This
transformation of the CF-2 was observed in all the samp
and was systematically observed at a voltage very clos
V3 ~see Table I!. A direct consequence of this transformatio
is a brutal change of the dynamic properties of the lo
Indeed, they usually start to quickly collapse immediat
after the transformation, whereas they were growing just

FIG. 13. Transformation of a loop of a CF-2 atV5Vtr*
58.45 V, f 525 kHz, andC54.44 ~unpolarized light!. The finger
locally pinches off, generating pairs of solitons which propag
along the fingers. Each soliton separates two regions of diffe
widths and optical contrasts.
ed
-

e

-
t
g

d

s
to

.
y
e-

fore. This effect is shown in Fig. 8 in which the radius of
transformed loop is displayed as a function of time. On
other hand, we observed that the transformed loop can g
if its radius is larger than some critical radiusRc

1 , which
turns out to be much larger than thatRc of the initial loop.
This is shown in Fig. 15 where both critical radii are report
for comparison at different frequencies.

Finally, we observed that this transformation is reversi
if the voltage is decreased below a voltageVrtr* which is very
close to V2* ~see Table I!. This transformation is thus
strongly hysteretic.

VII. ENERGETICAL MODEL

In order to explain our observations, we numerically c
culated the director field and the energy per unit length of

e
nt

FIG. 14. Part of a CF-2 loop observed at large magnificat
before ~a! and after transformation~b!, ~c! (C54.44, f 525 kHz,
unpolarized light!. ~a! V58 V, ~b! V58.5 V, and~c! V510 V. By
increasing the voltage, the apparent width as well as the op
contrast of the finger decreases, suggesting it also becomes th
within the sample thickness.

FIG. 15. Critical radiiRc ~triangles! andRc
1 ~circles! of looped

CF-2’s before and after transformation as a function of the f
quency. At high frequency,Rc

1 becomes so large that it become
impossible to measure (C54.44,V57.8 V).
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two types of finger~supposed to be invariant along thex
axis!. In practice, we must solve the differential equation

d f

dni
5

] f

]ni
2

]

]y

] f

]ni ,y
2

]

]z

] f

]ni ,z
50, ~7!

wheref is the Frank energy

f 5
1

2
K1~div n!21

1

2
K2~n•curl n1q!2

1
1

2
K3~n3curl n!22

1

2
~D•E!2 ~8!

~with q52p/p), together with the Maxwell equation givin
the local electric field@29#:

2
d f

dV
5div D50, ~9!

whereD5(«)E. This equation is only valid in the dielectri
regime (f . f c). In the conducting regime (f , f c), the equa-
tion

div j50, ~10!

with j5(s)E, must be solved instead of Eq.~9!.
In practice, we did our calculations using Eq.~9!. Never-

theless, we checked that the value ofV2 numerically found
depends very little~within 1%! on the condition chosen~al-
though the spatial distribution of the electric field within th
sample be quite different!. This result is in agreement with
the experiment~see Fig. 1!.

A relaxation method is used, consisting in solving t
equations

]ni

]t
52

d f

dni
~11!

and

]V

]t
52

d f

dV
. ~12!

In order to satisfy the normalization conditionn251, we
project at each step of the calculation the elementary
placementdni52(d f /dni)dt onto the spheren251 @24#.
The finger energy is then calculated by integratingf over a
cross section of the finger. Our initial configurations for t
CF-1’s and CF-2’s are that given by the geometrical mo
of the circles onS2 ~see Sec. V!. Finally, we did our calcu-
lations by taking K15K353.531027 dyn, K251.6
31027 dyn @36#, « i516.2 and«'57.3 @43#. These values
are those given in the literature for pure 5CB, 3 °C below
clearing temperature.

Let us first discuss the results concerning the CF-1’s. A
typical example, we show the director field and shift of t
vertical componentEz of the electric field from its mean
valueV/d in Fig. 16 whenC53.33 andV53.92 V. In Table
s-

l

s

a

II, we give the values ofV2 and V3 calculated atC52.22.
We recall that the finger has the same energy as the nema
phase atV2 , whereas aboveV3 the finger spontaneously dis-
appears. We also give in Table II the theoretical value ofV0
calculated from the exact formula@3,11,14#

V05A2
K32

4A
1

C2

K32A
with A5

«a

4p2K2
. ~13!

FIG. 16. Director field in a cross section of a CF-1~a! and the
deviation of the vertical component of local electric field from its
mean valueV/d ~b! (C53.33,V53.92 V).

TABLE II. Values of the different voltages obtained atC
52.22.

V0 V2 V2* Vtr* Vrtr*

Experimental 2.05 3.96 3.96 4.85 4.34
Numerics 1.17 2.23 2.23 2.95 2.6
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We note that there is a constant factor of the order of 1
between calculated and measured values. One possible
planation for this discrepancy is discussed in the next s
tion.

Similarly, we have computed the director field inside
CF-2 as a function of the applied voltage~Fig. 17!. As ex-
pected, the CF-2 does not disappear when the voltage
creases. On the other hand, its width abruptly decrea
when the applied voltage exceeds a voltageVtr* we found
very close toV3 . This is not surprising inasmuch as th
director field of a CF-2 close to one plate is quite similar
that of a CF-1 at large thickness (C@1). By decreasing the
voltage, we numerically observed that the finger remai
very thin down to a voltageVrtr* intermediate betweenV2

andV3 . This hysteretic behavior is observed experimenta
~see Sec. VI!. We also calculatedV2* for the CF-2’s, and we
found thatV25V2* at largeC, again in very good agreemen
with the experiment. Values ofV2 , V2* , Vtr* , and Vrtr* are
reported in Table II atC52.22.

Finally, we plot in Fig. 18 the energy~with respect to the

FIG. 17. Director field in a cross section of a CF-2 calculated
C53.33 by first slowly increasing the voltage@~a! V53.92 V, ~b!
V54.37 V, ~c! V54.4 V#, and then by slowly decreasing the volt
age@~d! V53.95 V, ~e! V53.92 V#. The energy of these fingers is
given in Fig. 18.
7
ex-
c-

in-
es

s

y

nematic phase! of the two types of fingers as a function o
the applied voltage. As expected in thick samples, the
types of fingers have the same energy belowV3 . AboveV3 ,
the CF-1’s collapse, whereas the CF-2’s get abruptly thinn
This new solution corresponds to the upper branch of
diagram. The CF-2’s stay on this branch when the voltag
decreased down toVrtr* . Below, they recover their ‘‘normal’’
width corresponding to the lower branch of the diagram.

VIII. CONCLUDING REMARKS

We have seen that there is only a qualitative agreem
between theory and experiments inasmuch as the meas
voltages are systematically larger by a factor of 1.6–1.7 t
the calculated ones~see Table II!. The explanation for this
discrepancy is that the values of the elastic constants
dielectric anisotropy at a given temperature~30 °C in our
experiment! change with respect to those of pure 5CB wh
chiral molecules are introduced~in our experiment we add
3.25 wt % of CB15 to the sample, which causes a decreas
the melting temperature from 34.2 °C down to 31.5 °C!. This
interpretation is reinforced by the fact that the agreemen
better at small concentration. For instance, we found tha
C51.7, V0(theory)50.9 V @calculated from Eq.~13! by us-
ing the values of the pure 5CB at 30 °C#, whereas experimen
tally, at the same temperature,V0(expt)51.2 V when p
515mm ~0.98 wt % of chiral molecules! and V0(expt)
52 V when p54.5mm ~3.21 wt % of chiral molecules!.
Note that in the sample with 0.98 wt % of CB15, the melti
temperature only decreases by 0.8 °C.
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FIG. 18. Energies in units ofK1 ~with respect to the nematic
phase, assumed to be 0! of the CF-1’s~circles! and of the CF-2’s as
a function of the voltageV at C53.33 before transformation
~crosses! and after transformation~triangles!.
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