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Hydrodynamic fluctuations in the Kolmogorov flow: Linear regime
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The Landau-Lifshitz fluctuating hydrodynamics is used to study the statistical properties of the linearized
Kolmogorov flow. The relative simplicity of this flow allows a detailed analysis of the fluctuation spectrum
from near equilibrium regime up to the vicinity of the first convective instability threshold. It is shown that in
the long time limit the flow behaves as an incompressible fluid, regardless of the value of the Reynolds
number. This is not the case for the short time behavior where the incompressibility assumption leads in
general to a wrong form of the static correlation functions, except near the instability threshold. The theoretical
predictions are confirmed by numerical simulations of the full nonlinear fluctuating hydrodynamic equations.
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[. INTRODUCTION can nevertheless lead to hydrodynamical instabilities analo-
gous to those observed in real systems. Our main purpose in
A common theoretical approach for the study of fluctua-this article is to study the statistical properties of one such
tions is the Landau-Lifshitz fluctuating hydrodynamijag§ =~ model proposed some 50 years ago by Kolmogdidj. As
mainly because of its relative simplicity as compared to moreve will show, the periodic boundary conditions associated to
fundamental approach@g,gl_ F|uctuating hydrodynamics is this model allow detailed analySIS of the fluctuation Spectl’um
a stochastic formulation of standard fluid mechanics. Sponfrom near equilibrium up to the vicinity of the first instability
taneous fluctuations of hydrodynamic variables are introleading to convective rolls.
duced into the transport equations by adding random compo- The Kolmogorov flow will be presented in the next sec-
nents to the dissipative part of the pressure and heat fluxeion where some well known aspects of its macroscopic be-
Since these fluxes are not conserved quantities, the correljavior are reviewed. The statistical properties of the model
tions of the random terms are expected to be short rangé@l” be discussed in Sec. lIl. We will show that the dynamlC
and short lived, so that on a hydrodynamic scale they arétructure factor of the fluid is practically not affected by non-
assumed to be Diraé-correlated. Their strengths are then equilibrium constraints. This is not the case for the velocity
chosen to yield the correct equilibrium thermodynamic fluc-correlation functions which become long ranged as soon as
tuations as derived from the Gibbs distribution. the system is driven out of equilibrium. Their amplitude is
Fluctuating hydrodynamics has been used by various alshown to diverge as one approaches the convective instabil-
thors to study the statistical properties of simple fluids subity threshold. Conclusions and perspectives will be presented
jected to nonequilibrium constraints, such as temperaturd Sec. IV.
gradient[2,4,5 or shear[3,6] (for a review, see Ref.7]).
Recent light scatt_ering results, obtained fqr systems under Il. KOLMOGOROV FLOW
temperature gradient, have shown gquantitative agreement
with theoretical predictiond8]. Quantitative agreements Consider an isothermal flow in a rectangular dog<L,
have also been demonstrated with results based on partictegiented along the main axes, that i)<x<L,,0<y
simulations, both for systems under temperature gradientL,}. Periodic boundary conditions are assumed in both
[9,10] and sheaf11]. A more important issue is obviously directions and the flow is maintained through an external
the role of fluctuations in the onset of hydrodynamical insta-force field of the form
bilities, such as the convective instability arising in the- Be
nard problem{12). . . Fexi=Fosin2mny/L,)1,, )
The macroscopic studies of subsonic hydrodynamical in-
stabilities are usually based on the incompressibility assump- . . . N .
tion. However, as pointed out by Zaitsev and Shliofitis], where 1, is the unit vect(‘)‘r in thex d|rect|or’1’. Th|§ model
this assumption is basically inconsistent with the very foun-€Presents the so-called “Kolmogorov flow” and it belongs
dation of the fluctuating hydrodynamics formalism since it the_W|de_r class of twg-dlm_ensmnal negative effective
imposes fictitious correlations between the velocity compoddy viscosity flowg17]. Itis entirely characterized through
nents of the fluids. On the other hand, even in the absence §7€ Strength of the force fielé,, the parameten, which
noise, the mathematical analysis of convective instabilitie€CNtrols the wave number of the forcing, and the aspect ratio
arising in compressible fluids proves to be quite involved® defined as
[14,15. One way to overcome this difficulty is to look for
idealized models which, in spite of their extreme simplicity, a,=Ly/L,. 2
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In the following, we will mainly concentrate on the case Uol
=1. R= S (10
The hydrodynamic equations for this model read

and v=»/p is the kinematic viscosity. The stationary solu-

ap .
VY. tion of Eq.(9) reads
=~V (o), &) q.(9)
1
oV Y= — 5 —cod2my). (11)
=—p(V-V)V=VP—V.0o+Fg, (4) 77

p—
ot
Settingy= .+ Sy, and linearizing Eq(9) aroundi;, one
wherep is the mass density the hydrostatic pressure, and gets QY= st 0F 9 Ea®) Vs
o the two-dimensionabtress tensor:

a(V26¢) A(V28¢) Sy
Jv; Jvu; A P N T A2 ooy
Oij=—7 a—?+ %—b},va —{6;V-v. (5 at sin(2my) IX Amesin(2my) X
] i
+RIVZ(V25y). (12)

For simplicity, we shall assume that the shear and bulk vis-

cosity coefficients;y and{, arestate independent.e., they  owing to periodic boundary conditiongy(x,y,t) can be
are constant. It can then be easily checked that at the statiogxpanded in Fourier series:

ary state the pressure and the density are uniform in space

(Ps=Pg,ps= po) Whereas the velocity profile is given by i
. oY(xy,t)= exp —2mik,y)
Vg=Ug Sin(2my/Ly) 1y, (6a) ky Ky= — o0 ¥
2 Xexp(—2mikyx/a,) o (1),
Fol{ Ky
Uozm- (6b) (13

1
o t)=| dyexp2mik
For small enoughF,, this stationary flow is stable. As we P, (1 fo yexp2aikyy)

increasd-,, however, the flow may become unstable, giving
rise to rotating convective patterns. Other instabilities of in- xi fardxex;xz ik x/a,) Sp(x,y.t)
creasing complexity may occur for larger valuesHgf, cul- a, Jo TGy Yo
minating in a turbulentlike behavidl8—20. In this paper
we shall limit ourselves to the analysis of the system befor&Equation(12) can then be transformed to
its first instability.

We still have to supply the momentum conservation equa- AP «
tion, Eq.(4), with an equation of state relating the pressure to xy

== 4m’ Rk k) 8

the density(recall that the system is isothermah this sec- ot
tion, we follow the traditional macroscopic analysis by as- -
suming that the flow is incompressible, i.e., 7KL Wi, k1 O k1]
V=2 % g 7 Ky
VERTw 0 ™ +2m L[S g1t O 1) (1)
ki + K
whereu andv represent thex andy components of the ve-
locity, respectively, i.ey=ul,+v1,. Relation(7) impliesa Where we have set
uniform densityp, throughout the system for all times, if _
initially so, as well as the existence of a scalar function k,=k,/a, . (15
¥(x,y), known as “stream function,” defined by the rela-
tions In its general form, the analysis of this equation proves to

be quite difficult{21]. On the other hand, if; is stable then,
Iy g in the long time limit, the evolution of the system will be
o (8) mainly governed by long wavelength modes. Accordingly,
we start our analysis by considering only the mo&gs 0,
Scaling lengths by, , velocities byug, and time byt /uo, *1, ie, we assume thafyy  (1)~0 for lky|=2 [22].
the dimensionless equation for the stream function reads Equation (14) then reduces to a 83 matricial equation
2 2 2 whose eigenvalues fdq,#0 (the casek,=0 is trivial) are
IV =— ad IV + ad IV +R™IVZ(V2y) found to be
ot ay X X  ay

+8m°R 1 cog2my), (9) A =—27°RY(1+2k?)

_W

u= 5y, v=

whereR represents the Reynolds number, +m2KA(1-KD)/(1+K2) + 47?R 2,
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N,=—272R"1(1+2K2) (S (r0)Se(r',t))=2kgTod(t—t") 8(r—r")
X[ (S8 + 81 81

—mVKA(1-KD/(1+KD) +4m?R72,  (16)
+(L— )8 sl (21

- A2p-1 %
Ag= —4mR(1ITK). We still have to specify the equation of state. Since the

fluid is isothermal, we simply set
It follows from Eq.(16) that\, and\ 5 are always nega-

tive, whereas there exists a critical value of the Reynolds 5P=c§5p, (22
number
wherec, is the isothermal sound speed. Scaling lengths by

1+K%2 Ly, time byL/cs, dp by pg, andév by the speed of sound,
Re(ky)=2v27 — 0<k?=<1 (170  the dimensionless fluctuating equations in the Fourier space
V1-k2 read
for which A, becomes equal to zero, thus indicating the limit aapkx’ky(t) —oi(k K
of the stability of the corresponding mofi23]. Clearly R, is a2 (kUi i TRy Ui k)
an increasing function ofk,| so that the first modes to be- y
come unstable correspond k=1, provided the aspect +eRTK(Spic k,+17 Pk, —1)s (23)

ratioa,>1. Asa,— 1, R;—, indicating that no instability
can develop for perturbations of the same spatial periodicity 05ka,ky(t)

as the applied forcesee Ref[24]). In the following, we shall o~ meR(vi k1t Uk k1)
therefore concentrate on the cage> 1.
Fora,=2, relation(17) predicts a critical Reynolds num- + meRK(SUy 11— Uk 1 —1)
ber R.=5/6/3~12.8255. Analytical calculations can still Xy Xy
be handled when the modé&g= +2,=3 are taken into ac- —472e(K2+k2) duy
count as well, and lead to a critical Reynolds numBer Y Xy
~12.8736. The discrepancy thus remains smaller than 0.4%. —4m?a ek (KU, +K o0k )
Numerical evaluation oR. performed with a total amount of x oy YOy
103 modes shows no further discrepancy. We thus conclude T
that one can rely reasonably well on a “three-modes” ap- +2W|kx5pk*’ky+FkX‘ky(t)’ 24

proximation theory[that is, 6y ky(t)~0 for [k,|=2], as

long asRis close toR.. We shall use this approximation in
the next section to study the statistical properties of the sys- at
tem near its first instability.

dovk k(1) -~
—— _—7eR kx(évkX k1T 5l)kX ,kyfl)

—4me(ki+ k) Sk,

Ill. HYDRODYNAMIC FLUCTUATIONS — amaeky(KedUig i +Ky B0 1)

To study the fluctuation spectrum, we first linearize the
hydrodynamic equationg§3) and (4) around the stationary
state. Setting=pg+ dp, P=Py+ 6P, andv=vg+ v, and
following Landau and Lifshit1], the fluctuating hydrody-

+27Tiky5pkxyky+ka,ky(t)y (25

wherea={/7 and

namic equations read v
€= oL (26)
dép déu  doév [ 2my\ dop
ot Pol G T gy ) T tosSn L, | ox (18 The functionsFy_x andGy_ are Fourier components of
the noise terms; their covariances follow directly from Egs.
PyY, (20) and (21):
po—p = PolVse V) V= po(3V- V)Vs— V 5P—V - S0 , R ,
(19 <Fkx,ky(t)Fk)’< 'k;(t ))=€eA[(a+ )k + k] Op 4 xr 0Ot —1"),
I\ — T Kr '
o is the two-dimensional fluctuating stress tensor: (Fi, k(DG i (1)) = eAakukydyc, o o0t —1'), (27)
dsv;  Adv (Gk k(DG (1)) = eA[KE+ (a+1KZ]SL, |, oS(t—t"),
50i,j:_7l W‘FW_&’]V'&/ —§6i'jV~é\/+Si,j, y Xy '
. ' (200  wherek=(k,/a, k,) and
whereSis a random tensor whose elemef{fss;} are Gauss- A=87? (28

. . . . : . 2
ian white noises with zero mean and covariances given by Mcg
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M =arpo|-§ being the total mass of the system. nonequilibrium constraints affect mainly the behavior of the
The analysis of the above Langevin equations can be sinfluid near the originwo~0 (the viscous regime
plified somewhat by noticing that the quantitynust remain We first consider near equilibrium situations, limiting our-

small if one wishes to remain within the limit of validity of Selves to relatively small values of the Reynolds nunfRer
the hydrodynamic regimi25]. Furthermore, as already men- In this case the Langevin equatiof3)—(25) can be solved
tioned in the Introduction, in this article we limit ourselves to Perturbatively by expanding the hydrodynamic variables
strictly subsonic flows, so thatR=uq/c.<1. We thus have around the equilibrium,

at our disposal a natural small parameter which, however,

has to be used with care since the solution of the Langevin Op= 6peqt mop1+ w2dpyte-, (343
equations(23)—(25) proves to be singular in the limit
— 0. Moreover, it turns out that the behavior of the system is OV= Vgt Vs + u2Vp+- -, (34b)

qualitatively independent of the value of the bulk viscosity
coefficient so that, to avoid cumbersome notations, we si
ply seta=0 (recall thata=¢/#%). In any case, the calcula-
tions remain lengthy and tedious, so that here we concentra
mainly on the final results, giving only a brief sketch of the
intermediate steps.

We pay particular attention to two quantities: First, the(dVk- 6V_i) = (Vi OV_k)eq
so-called scattering function, defined as the space-time Fou-
rier transform of the density autocorrelation function:

Mivhere the subscript “eq” denotes equilibrium quantities and
éﬂpe parameteg is defined au=R/27. After some tedious
gebra, one gets for the static correlation function

A(10+ 2kS+ 5k +K2)

=(R27)?>— - — -
o . 2(k2+4)(2k2+5)(2k2+1)(k2+1)?
Sdo)= | dtextion(sn(sn (0). (29

w X[1+O0(e?,(RI2m)?)], (35)

1 . —_— I
(5pk(t)5p,k(0))=§i J drdr’ exp{2mik-(r—r’)} where(&yk-&,k>eq=2A is thg equilibrium contrllbutlon
and, to simplify the presentation, we have considered the

X(8p(r,1)8p(r",0)), (30  casek,=1.

To check the validity of this result, we have solved nu-
where the integrals extend over the surf&sea, x 1 of the ~ merically the Langevin equatiori23)—(25). The traditional
system; and second, the space-time Fourier transform of tHefocedure consists of simulating the corresponding stochas-

velocity autocorrelation function, defined in a similar fash-tic processes and using the hydrodynamical sample paths
ion: (time serie$ so obtained to construct the various correlation

functions. Unavoidable for nonlinear problems, this proce-
‘ _ dure is quite simple to set up but requires very long runs in
dtexp(iwt)(ovi(t)-v_k(0)) (3D order to get reliable statistics. Alternatively, one can solve
directly the equations governing the evolution of the corre-
as well as its statiéequal time counterpart; lation functions which can be obtained easily from the un-
derlying Langevin equationf26]. The latter procedure is
1 % accurate(no need for statistigsand quite fast but it is, of
(V- OV_i)= zi doW(w). (32 course, limited to linear problems. We have used both tech
- nigques, the former to simulate the full nonlinear hydrody-
namic equation$3) and(4) with noisy stress tensor, and the
latter to study the statistical properties of ttieearn Lange-
vin equationg23)—(25), limiting ourselves to the first 4k,
32eAKA 7t - modes|that iS,5pkx,ky(t)= ka,ky(t)%o for [k,|=21].
Su(w)= (w2—4k2772)2+1662w2k4774[1+0(6 R, In Fig. 1 we have presented the static velocity autocorre-
(33  lation function, as given by the relatio85), together with
the corresponding numerical solution. As can be seen, quan-
where k?=(kZ+k?). We note that the scattering function titative agreement is demonstrated Ro= 4 (1<0.6) but dis-
exhibits only sound mode peakBrillouin lines). The ab- ~ crepancies gradually appear as we consider larger values of
sence Of a pureiy dissipative mode around;o (Rayieigh the Reynolds numbel’. Th|S iS to be eXpeCted Since the Valid'
line) is directly related to the fact that the Kolmogorov flow ity of the relation(35) can only be guaranteed for “small”
is “strictly” isothermal, i.e., there are no temperatufer ~ values of the Reynolds number.
entropy fluctuations. On the other hand, the velocity auto- Before discussing the behavior of the system for larger
correlation function does exhibit a purely dissipative viscousvalues ofR(<R;) it is instructive to study the properties of
regime arounds~0, together with a sound regime located the static correlation function in real spa¢éy(r) - 5v(0)).
aroundw~ *+2|k|. Here again we found that, to dominant This can be obtained by summing the product
order ine, the sound regime is not affected by the nonequi< vy 6v_)exd 2mi(xk+yk)] over (k,k,). Analytical cal-
librium constraints and behaves very much like the scatteringulations, however, prove to be extremely difficult to handle
function, Eq.(33). One thus arrives at the conclusion that thefor the general case. We therefore limit ourselves to a special

+ 0

Wk(w):f

— o0

+

We found that, to dominant order g S () is not af-
fected by the nonequilibrium constraints, i.e.,
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<dv, - OV_ k>neq { <6vy . bv_ k>eq

_<8v(x) Sov()> /A

neq

. 0.2
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FIG. 1. Fourier transform of the nonequilibrium part of the static ~ FIG. 2. Nonequilibrium part of the static velocity autocorrela-
velocity autocorrelation function, normalized by the correspondingtion function, normalized by the parame#e{defined by Eq(28)],
equilibrium part, as a function of the Reynolds number. The solidas a function of the spatial coordinateThe solid curve represents
curve represents the theoretical prediction, as given by(&,  the theoretical prediction, as given by E&7), whereas the dia-
whereas the diamonds correspond to results obtained by numericaionds correspond to results obtained by numerical simulation of
simulation of the linear Langevin equatiof&3)—(25). The param-  the linear Langevin equation@3)—(25). The Reynolds number is
eters aree=102, A=103 [defined by Eq.(28)], ky=1, ke=1 set toR=3 and the other parameters are as given in the caption of

(i.e. k= %). The estimated statistical errors are less than 4%. Fig. 1.

the other being held fixed. Specifically, we simply $gt pointed out in the preceding section, fBrclose toR, one
=0 to obtain can reasonably well rely on the “three-mode” approxima-

tion theory[that is, Spy i (t) = OV i (1) ~0 for [ky|=2].
Al2 As a consequence, Eq23)—(25) reduce to a system of nine
coupled linear Langevin equations for each fixgdwhich,
for consistency, must be limited tik,/<a,. The calcula-
tions can nevertheless be done, leading to the following ex-
pression for the static velocity autocorrelation function:

(Vi - vy ) —2A=(Ri2m)?

(k2+1)(1+2k2)

X[1+0(€%,(R2m)?)].  (36)

Note that settingk,=0 is equivalent to taking the spatial 5

average over thg direction[cf. Eq. (30)], so that relation (SVi- OV_ ) — 2A= AR [1+0(e2R?)]

(36) holds only fork,# 0. In fact, dvg o(t) =0 since the linear 2(R2—R?)(1+2k2) ’
momentum of the center of mass is a conserved quantity. (39)
With this restriction the summation can be performed in a

straightforward manner to give where the second term on the left hand side is the equilib-

rium contribution,R.(k,) is given by Eq.(17), andk,=1.
The nonequilibrium part diverges &— R (k,=a,), but
then, of course, the linearized Langevin equations ceases to

(8v(x)- 3v(0)) — 2A[ 8(x) —ay ]

2 _
= AR, V2 cosfivam(x—a/2)] be valid. In Fig. 3 we have represented the re¢8® for
8w sinh(ma, /v2) increasing values OR, together with the numerical solution
_ Cosr[?ﬂ'(x_ a,/2)] _ 1 37 <dv,, - 8v_k>neq [ <& 5v_k>eq
sinh(7ra,) a, |’

15 i

where the second term on the left hand side is the equilib- % {

rium contribution[27]. Note the presence of a constant term 10} }

in both equilibrium and nonequilibriuntright hand sidg
parts which ensures the conservation of the linear momen-

tum. S5

The nonequilibrium contribution tdv(x)- 5v(0)) ex-
hibits long-range correlations since the correlation length is 0 . . .
clearly of the order of the system’s size. This is shown in § 9 10 1 12 13

Fig. 2 fqu: 3 where quantl_tatlve agreement with numerlqal FIG. 3. Fourier transform of the nonequilibrium part of the static
results is observed. The existence of long-range correlationg,|ocity autocorrelation function, normalized by the corresponding
is generic for fluids under shear constraints and has beegyijibrium part, as a function of the Reynolds number. The solid
predicted by several authof8,27], and confirmed by both  cyrve represents the prediction based on the “three-mode” approxi-
microscopic[11] and lattice-gas automata simulatio28].  mation theory, Eq(38), whereas crosses and diamonds correspond
On the other hand, experimental evidence has so far be&p numerical results obtained, respectively, by the simulation of
reported only for fluids under a temperature gradient, wher@inear and nonlinear Langevin equations. The parameters are as
guantitative agreement with fluctuating hydrodynamics wagjiven in the caption of Fig. 1. The estimated statistical errors are
demonstratedi8]. about 15% for the last four data points.
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of the linear Langevin equation23)—(25) as well as the <Bu, Bu_, >/ <By, dv_, >

results obtained by simulation of the full nonlinear hydrody- Y % 5
namic equationg3) and (4) with noisy stress tensor. Quan- { %
titative agreement is observed for valueskobip to 12, but I }
significant discrepancies start to show ufRas R, (=12.87 3t

where the linearized theory leads to diverging correlation | 3
function[cf. Eq.(38)]. This is not the case for the correlation .

function based on the full nonlinear equations which seems L] R
to exhibit a maximum aroundR.. It should, however, be 1;'5 B 3 B

noted that, due to slowing down of the relaxation of the

“critical” Fourier modes, statistical errors are quite impor-  F|G. 4. Ratio ofx andy component of the velocity autocorrela-

tant for R close toR; (about 15% for the last four dataso  tion function in Fourier space, as a function of the Reynolds num-

that no definitive conclusion can be drawn at this stage. Iber. The parameters aee=10"2, A=10"¢ [defined by Eq(28)],

any case, the analysis of the statistical properties of the Nofk =1, k=1 (i.e., k= 3). The dashed line represents the expected

linear regime is beyond the scope of the present work. ratio for an incompressible fluid, whereas the diamonds correspond
to results obtained by the simulation of the full nonlinear equations,

IV. VALIDITY OF THE INCOMPRESSIBILITY Egs. (3) and (4) with noisy stress tensor. The estimated statistical
ASSUMPTION errors do not exceed 8%.

The macroscopic studies of subsonic hydrodynamical in- 2
stabilities are based on the incompressibility assumption Uk(“’)_uk(“’)eq:ﬁ[lJro(esz)] (42)
which is fundamentally inconsistent with the very foundation V(o) =Vi(w)eq k2 '
of the fluctuating hydrodynamics formalisfd3]. For in- X

stance, it is easy to show that at equilibriuR=0), one has  \here both the numerator and the denominator on the left
hand side prove to assume a Lorentzian shape, sharply
U(@)eq  (0?—4m%k5)2+16mkZk] ) peaked around the origifthe width is of the order of).
V(@) - (w2—4772'|22)2+167r‘rR2k2[1+O(6 )1 Nevertheless, because of the presence of the equilibrium
q x Xy contributions, the relatioi42) is still in contradiction with
the incompressibility condition, Eq40). There exist, how-
where U, (w) and V() are the space-time Fourier trans- ever, two different situations where this objection can be

forms of (su(r,t)su(r’,0)) and(su(r,t)du(r’,0)), respec- ruledout . o

tively. Org the other hand>, the i<ncompressibility> assumption, e firstis near the origing~0) where the fluid satisfies

Eq. (7), implies the |nco~mpre55|blllty condition already at equilibrium, i.e.,
Uk(@)ee~Vi(w)ed. Obviously, this situation concerns

U(@)ind Vi ®)ine= k)z//'r()z(‘, (40)  only the long time behavior of the fluid. For instance, the

static correlation functions, obtained from Eg2), obey

where the subscript “inc” refers to incompressible fluids.

Except near the origim~0 (long time limit), this result is (Sudu_)—A k§ -

clearly in contradiction with the correct equilibrium form, =, 1TO(eR)], (43

Eq. (39). In particular, the equilibrium static autocorrelations (Buxdv—=A k

are independent of the wave vector,

(39

which contradicts the incompressibility condition, E40).
(OUKBU_ i) eq=( VKOV _i)eg=A (41 A more interesting situation concerns the behavior of the
fluid near the instability where it can be shown that in the
whereas relatior(40) leads to(Suxdu_y)inc/(SvkdU _K)inc  limit R— R, both the static and dynamic velocity correlation
=KZ/K;. functions behave a®((R2—R?) %) [cf. Eq. (38)]. In other
The situation is somewhat different for the nonequilib-words, forR “close” enough toR., equilibrium contribu-
rium case. As we have shown in the preceding section, ttions become negligible so that the fluid behaves basically in
dominant order ine both the scattering function and the an incompressible way.
sound regime of the velocity autocorrelation function assume It should, however, be realized that this appealing conclu-
their equilibrium form, regardless of the value of the Rey-sion is based on the linearized Langevin equati@3s—(25)
nolds number. The nonequilibrium constraints thus affecwwhich are not valid near the convective instability. The study
mainly the behavior of the fluid near the origin=0 (the  of the statistical properties of the system in the critical re-
viscous regimg This result has an interesting consequencegime requires a nonlinear analysis of the fluctuating equa-
It suggests that, as far as the nonequilibrium properties of théons which is beyond the scope of the present work and will
fluid are concerned, one may rely on the incompressibilitybe reported elsewhere. Instead, we resort here to numerical
assumption Eq(7), since the compressibility of the fluid analysis only. More precisely, we have simulated the full
affects mainly the sound modes which are well separatedonlinear fluctuating hydrodynamic equations to obtain the
from the purely viscous modédsecall thate is smal). Ana-  ratio of thex andy components of the static velocity auto-
lytical calculations confirm the above arguments and lead teorrelation function for several values of the Reynolds num-
the following relation: ber. The results are depicted in Fig. 4 fog=k,=1, a,
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=2, so that the expected value of this ratio for an incom-equations. Such a procedure, however, proves to be ex-
pressible fluid is 4. This is precisely what we observe, butremely difficult mainly because of the boundary value prob-
only for values ofR=12.8(recall thatR.~12.87), a domain lem. To our knowledge, the only attempt in this direction has
which is beyond the validity of linearized hydrodynamic been made by Schmitz and Cohen for the case ofaB®

equationgcf. preceding section instability [14]. Concentrating on the behavior of a small
layer in the bulk, these authors have succeeded in deriving
V. CONCLUDING REMARKS the linearized fluctuating equations close to the convective
instability.

Our main purpose in this article was the study of the  pere “again, the relative simplicity of the Kolmogorov
statistical properties of the linearized Kolmogorov flow. Thefow allows some further progress in this important issue. In
simplicity of this model allows a detailed analysis of the tyig respect, we have shown that in the long time limit the
fluctuation spectrum from near equilibrium up to the vicinity fiow behaves as an incompressible fluid, regardless of the
of the first instability leading to convective rolls. For this \5jue of the Reynolds number. This, however, proves to be
latter case, the analytical calculations were based on got the case for the short time behavior. In particular, the
“three-mode” approximation theory, which consists in re- jncompressibility assumption leads in general to a wrong
taining only the Fourier modes with wave numiiy|<1,  form of the static correlation functions. The only exception is
while for the former case we have set up a perturbatiothear the convective instability, where we have shown that
scheme around the equilibrium. Extensive numerical calcughe incompressibility assumption remains valid.
lations a_IIow us to emphasize clearly the limit of validity of e problem with this conclusion is that the linearized
both regimes. In particular, we have shown that the “threefjyctuating hydrodynamic equations, on which this whole pa-
mode” approximation theory holds already f&=8 and  per is based, are no longer valid close to the instability
leads to a diverging velocity autocorrelation functionfs  threshold. Although extensive numerical simulations have
—Rc. On the other hand, the simulation of the full nonlinearpasically confirmed our predictions, a full answer to this im-
fluctuating hydrodynamic equations indicates that the validportant problem requires nevertheless a nonlinear analysis of
ity of linearized hydrodynamic equations can be guaranteeghe fluctuating Kolmogorov flow. Work in this direction is in
for Reynolds number as high as 1R.&12.87). progress.

Another interesting result concerns the validity of the in-
compressibility assumption which greatly simplifies the
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