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Variational principle for the Navier-Stokes equations
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(Received 29 June 1998

A variational principle is presented for the Navier-Stokes equations in the case of a contained boundary-
driven, homogeneous, incompressible, viscous fluid. Based upon making the fluid’'s total viscous dissipation
over a given time interval stationary subject to the constraint of the Navier-Stokes equations, the variational
problem looks overconstrained and intractable. However, introducing a nonunique velocity decomposition,
u(x,t) = é(x,t) + (x,t), “opens up” the variational problem so that what is presumed a single allowable point
over the velocity domaim corresponding to the unique solution of the Navier-Stokes equations becomes a
surface with a saddle point over the extended doméin). Complementary odual variational problems can
then be constructed to estimate this saddle point value strictly from above as part of a minimization process or
below via a maximization procedure. One of these reduced variational principles is the natural and ultimate
generalization of the upper bounding problem developed by Doering and Constantin. The other corresponds to
the ultimate Busse problem which now acts to lower bound the true dissipation. Crucially, these reduced
variational problems require only the solution of a serie$irefar problems to produce bounds even though
their unique intersection is conjectured to correspond to a solution of the nonlinear Navier-Stokes equations.
[S1063-651%99)08105-3

PACS numbgs): 47.27.Ak, 47.27.Cn, 47.27.Nz, 47.3Q

I. INTRODUCTION straints [9,10]. Subsequent work has been redirected to
examining new functionalgl1—-14 or developing novel ap-
Variational methods represent a unique theoretical tooplications[15-22.

for producing rigorous inequality results relevant to fluid tur- Recently, a new “background” variational formulation
bulence. Although turbulent solutions to the Navier-Stokeshas been discoverd@3—-26 which differs so fundamentally
equations are not currently available, larger velocity fieldfrom the Howard-Busse approach that any relationship be-
sets in which they are embedded can be. Rigorous bounds aween them was fascinatingly unclear. It is now evident in
flow quantities are then derivable through optimization overthe plane Couette flow problem that this new background
such an extended velocity domain which is designed to satapproach furnishes the dual or complementary problem to
isfy as many dynamical consequences of the governing equénat proposed by Bus$8] (see[27,28). The key step in this
tions as possible yet still retain its tractability. Theoretically, new formulation is the use of a nonunique velocity decom-
results can always be improved by imposing further conygsition consisting of a steady, scalar background fig(g)
straints until eventually only realizable velocity solutions are\yhich carries the inhomogeneous boundary conditions and a

considered. . . . . homogeneous fluctuation field(x,t) [so that u(x,t)
The underlying philosophy of a variational approach vari- A L o .
ously christened “upper bound theory” by Malk(i$,2] or ~ — $(2)x+ v(x,t), wherex is the direction of imposed shear

the “optimum theory of turbulence” by Busg8—6] is that ~andz the normal to the platésan idea that can be traced
a fluid field becomes turbulent for a purpose which manifestdack to Hopf{29]. This extends the variational problem over
itself in the maximization of some flow functional. The an enlarged set of competitor fieldg,) in such a way that
grand objective is to identify what this functional is through the required energy dissipation maximum now becomes a
comparing the observed turbulent field with the optimizingsaddle point. The Doering-Constantin background varia-
flow deduced from the associated variational problem for thdional problem can then be recognized as a minimizing pro-
functional. The search for this functional naturally begancedure in¢ to estimate this saddle point value strictly from
with the relevant global transport of the turbulent flow — for above, whereas the Howard-Busse maximization problem in
example, heat flux in convection or momentum transport inv provides estimates entirely from below. Practically, this
shear flow — since this is directly observable in experi-complementary or dual relationship implies that the true
ments. Work by Howarfl7] and Bussé3,5] has led to semi- saddle point value can be bracketed between trial function
nal upper bounding results for global energy dissipation ratesstimates derived within each procedure.

in shear and convective turbulenffer reviews, sed6,8]). Given this dual relationship, an outstanding issue is then
These bounds typically overestimate actual data by an ordevhether this new background formulation offers a new and
of magnitude and it remains unclear whether the correctractable way forward in producing better bounds through
asymptotic scalings with a Reynolds or Rayleigh numbetthe addition of further constraints. The purpose of this paper
have been captured. Efforts to improve these results have $8 to suggest that this is so by revealing a natural path for
far faltered due to the mathematical complexity of the ensuincorporating additional constraints which ultimately leads to
ing Euler-Lagrange equations, which almost immediately bea variational principle for the Navier-Stokes equations. Cru-
comes unmanageable under the addition of further coreially, the saddle point structure discovered in the upper
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bound problenj28] is preserved by this procedure. The key V.u=0, (2.2)

idea is as before the degeneracy built into a nonunique rep-

resentation of the velocity field. By successively relaxing thewith boundary condition

restricted form used for the background field until it too is

eventually a three-dimensional time-dependent vector field u=ReV(x,t) for xedV, (2.3
depending on all three spatial variables, i.e., the velocity rep-

resentation is fully degeneratgx,t)= ¢(x,t) + »(x,t), pro-  Where Re=V,d/v is the Reynolds number and, is a typi-
gressively more information is incorporated until finally the cal speed of the boundary. A fundamental issue for such a
full Navier-Stokes equations become constraints. In this scesystem is how large the viscous dissipation rate can become
nario, the variational problem is then one for the average@n average over a certain peripd,T]. The long-time limit-
energy dissipation rate over a fixed time interval subject tdng caseT—« has been considered previously within the
the full constraint of the Navier-Stokes equations: in othercanonical context of plane Couette flo\s,6,10,23,24,27,
words, theultimate upper bound problem for the energy dis- 28,30—-33. There the approach has been to develop tractable
sipation rate. Of course, for prescribed initial and boundaryariational problems built upon only the very first power
conditions, the Navier-Stokes equations are presently préntegral and mean momentum constraints imposed by the full
sumed to have a unique solution rendering this variationa$ystem(2.1)—(2.3) to produce upper bounds on the realizable
problem hopelessly overconstrained for the velocity field long-time averagedor equivalently statistically steagien-
However, viewed over the extended function domain), ergy dissipation rates. Eventually, of course, the goal has
there is a saddle point structure and complementary varigdlways been to add more and more constraints to bring these
tional principles are available to estimate the saddle poinPounds closer to the observed values. Here, we consider the
from either side. Within this context, it is clear that the ultimateupper bound problem for the energy dissipation rate
“fluctuation” field v is precisely the Lagrange multiplier by imposing the full Navier-Stokes equations as our con-
vector field imposing the Navier-Stokes equations as constraints.

straints. The complementary variational principles for esti- Technically, the viscous dissipation rate is

mating the presumed unique saddle point value and associ-

ated solution intriguingly require only the solution of linear 1 JJJ VUV Tul2dY

problems to make progress and therefore appear eminently 2

tractable. Armed with these two dual pieces of machinery, a

feasible varigtional principle.for the Navier—Stokes equations _ Jff IVu|2dV+ fﬁ muu;;dS (2.4
seems to arise out of an intractable-looking upper bound ’

problem which has as its constraints the full Navier-Stokes . . .

equations. with the latter term uniquely determined for an incompress-

The detailed presentation of these ideas begins by formJP!€ velocity field specified on the boundary. In most situa-
lating this “ultimate” upper bound problem in Sec. II. The tions, this term is zero because either the velocity vanishes

full background decomposition of the velocity field is then O1 the boundary, the boundary conditions are periodic, or the
introduced and exploited to reveal the inherent saddle poirffPundary is planar and only moves tangentially to itself.
structure which exists when the functional of interest is theloWever, regardless of whether this term vanishes or not, it
dissipation rate. Complementary variational principles ard?lys no role in any variational analysis since it is invariant
then formally developed for estimating the saddle pointfOf @ny incompressible velocity field which satisfies the
value and realized velocity solution in Sec. Ill. A discussionPoUndary conditions. As a result this term is suppressed in
of whether these variational principles actually touch at thevhat follows, although of course ultimately it should be re-
saddle point follows in Sec. IV, before Secs. V and VI focusintroduced to produce any total dissipation rate. We therefore
on their practical implementation. Generalizations of the!00k o determine stationary values of the dissipation func-

Howard-Busse and Doering-Constantin upper boundingional
variational principles are discussed here and examined as 11
practical algorithms for approximating solutions of the DT:Z_J (|Vul?) dt
Navier-Stokes equations. Finally, Sec. VII contains a discus- TJo

sion of the paper’s findings and their implications.

a(T Ju 5
-7 v E+2wxu+u-Vu+Vp—V up ) dt
Il. THE ULTIMATE UPPER BOUND PROBLEM 0
FOR THE DISSIPATION RATE (2.5

Consider a homogeneous, incompressible fluid of kine- .
S L X with
matic viscosityr in a volume) whose boundaryV is mov-
ing with some prescribed velocily in a frame rotating aiv. V.u=0, u=ReV| (2.6)
Taking a typical length scaléof V and the viscous diffusion ’ v
time scaled?/v to nondimensionalize the system leads to thegng some initial conditiomi(x,0) = ug(x) where the bulk in-

Navier-Stokes equations tegral is defined as follows:

J
8—$+2w><u+u-Vu+Vp=V2u, 2.1 (A)(t)==ffdeA(x,t).
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(Inthe case Cif an unbounded domain such as the plane laygist the fieldv. Comparing the dissipation values associated

2 P : ~
xeRX[—3,3], this can be defined as with two trial fields, » and »*, then straightforwardly leads
to the difference expression

At i 1 f+LXd f“yd f+1/2d t
(A)(= lim —Ly X -L, y ~12 2 AX D+(Uu(v),v;a)— D(U* (#*),v*;a)

Loty ALy

for example) Here v=1wp(x,t) clearly plays the role of a 17~ Dy

Lagrange multiplier which imposes the Navier-Stokes equa- :$f (v=v%)- W(U V)

tions as a constraint. We have also included an extra constant

a for comparison with earlier upper bounding work but here ~ ~ -

it is evidently redundant and can be absorbed into the —|V(U—U*)|2—3(U—U*)'VV'(U—U*)>dt
Lagrange multiplien. For flows in which absolute pressure

is not importantp is merely a Lagrange multiplier associated a  ~ o~ 7

with the condition of fluid incompressibility and can natu- - f[<(“_“ ) »)]o- (2.12
rally be “absorbed” intowr by insisting thatv is divergence-

free. Natural boundary conditions far are homogeneous If »* is the presumably unique solution to the full variational
and appropriate “initial” conditions emerge to be tfieal  problem, the firstlinean term on the right-hand side van-
conditions thatr vanishes everywhere &t T. This ensures ishes. The second and third terms are assured negative
that the one boundary terfdu- »]{ (whereéu is a variation  semidefiniteif we only select trial fields/(x,t) which satisfy

in the velocity field produced by the variational procedure the spectral constraint

drops. In summary, we take

0

inf (IVv|]?+av-Vv-v)=0 (2.13
V.-v=0, »=0, »XxT)=0. (2.7 V.o=00=0

The variational problem as formulated thus far is not imme-2t every instant in imever[0,T]. This is accurately termed
diately useful. The functionaD+ is stationary when the @ spectral constraintor » (borrowing some terminology
variational derivatives oD with respect tau and v vanish, ~ from [24]) because it is the requirement that the eigenspec-

that is, trum of the linear self-adjoint operator
8D7| oDy % 28 L(v;a)v=a(Vr+V'p).v+Vp—2V% (2.19
ov u ou v ’ . is positive semidefinite over the space of incompressible
which vanishes on the boundary. The l@sbundary term
where can be made to vanish identically by our “final” condition
q ; 1 (7] 8D (X, T)=0 and carefully arrangingv/dt att=0 such that
el ~. _- Tz the velocity field always satisfies the correct initial condition,
g Dt(u,v+ev;a) T 5 v ) dt, e
LUe€ le=0 0 vy u(x,0)=ug(x). With these restrictions om, we can conclude
(29  that
d ~ ] 1(7/ 6D ~ . * %\ _ NS
—D(u+ eu,v;a) =—j —I| .0}t Dr(u,») < Dr(u*,»")=Dr", (2195
I de le=o TJo ou v

(2.10  or in other words we can estimate the true dissipation rate
from below Unlessv* satisfies the spectral constraint or
The first of these variational vector equations is of course thénore exceptionally there existsig¢ v* with (|V(I]— u*)|?
Navier-Stokes equations, which for given initial conditions
and boundary conditions are presently presumed to have
unique solution. The full variational problem then amounts
to finding the dissipation of this unique solution, which then
is both a maximum and minimum at once.
A reduced variational problem of some interest can be
found, however, although it is not clear how effective it may A. Towards a variational principle
be. If the latter of the two variational criteria for Stationarity, The pr0b|em with the variational formulation given above
is that for Dt=D+(u,»;a), one of the natural variational
equations to be solvediD+/8v|,=0, leads directly to the
Navier-Stokes equations. This can be avoided by restructur-
ing the underlying independent function fields ¢). Replac-
v 2 ing u by a new vector(background field ¢(x,t)=u(x,t)
=Tag T 2aexy-aviy, @1y — v(x,t), which is therefore incompressible and satisfies the
same boundary conditions as achieves this in a perfectly
is considered as an equation definingivenw», we can pro- general way. The functionaD=D+(¢,v;a) is now ex-
duce a reduced variational problem Ok (u(v),»;a) over  pressible as

+a(u—u*)-Vw-(U—u*))=0, there is strict inequality in
By. (2.15 and it is unclear how close tBYS one can get
using this scheme since there is no way to estirbgtefrom
above.

6Dt T 2
Su =0=a(Vv+V'v)-u+Vp—-2V-u
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With respect to variations i@, the variational statement is

a L A(T) . oD
(a—1) (T 5DT:_T[<5¢-V>]O+TJ‘O 5¢5—¢ dt=0
= Fr(bvia) = iodt<|v,,|2>, T

(2.16  for all allowable variationsd¢, where

a 1(7
R e N 2 e

where 6Dt ) v T
— =—2Vep+a—+2awXv+a(Vv+V'v) ¢
1T 26 S . ot
v a):==| dtj| av- — +2arv- X
gT(¢V ) TJO i< v ot V- ¢ ‘i'aV'VV‘i'(a_Z)VZV—i_quS:O- (224)
+av-¢-V+(a—1)| V|2 Note that now the difference
+av-V¢-v—(a—2)v-V2¢>], 5DT _5DT :5DTi (223
v, ob|, ovl, '

(2.17

gives the Navier-Stokes equations.
1(7 ) o The fundamental observation to be made from qL6
Fr(dv;a) ::fio dt { |V |*~aw- —¢ T2ad oxv is thatDt appears to possess classic convex-concave saddle
point structure over ¢,v); D+ is individually quadratic in
) either ¢ or v and positive definite in the highest spatial de-
tag-Vv-dptav-Vv-¢+(@-2)v-V°@) 1. jvative term involving ¢ and negative definite in that of
v(a>1). Although this proves a slight oversimplification,
(218 the overall conclusion that the presumably unique stationary
e point of D is a saddle point nevertheless appears justified.

The expressiorn2.16) is more familiarly derived within th e : N
framework of Doering and Constantin’s background upper! "€ Néw variational equatior&.22 and(2.24) individually

. : T, form the basis of complementary variational principles to
gﬁ/%gdmg method as follows. Taking T o{»-(2.1))dt estimate this saddle point value strictly from above and be-

low. Taken together, of course, they offer no advantage over
1 17T I the previous sef2.8), but treated separately they naturally
—[(%vz>]3+—f dti{ v+ — +2v-wX dp+v- -V dismantle the nonlinearity of the Navier-Stokes equations.
T TJo at . . : .

This manifests itself in the fact that these complementary

variational principles only require the solution of linear prob-
+v-Vo- v+|Vv|2—v-V2¢>]=O. (219 lems.
Adding an unspecified multipl(a ([30]), of Eq. (2.19 to the I1l. COMPLEMENTARY VARIATIONAL PRINCIPLES
identity For definiteness in what follows, we confine our attention

(|Vu|2)=(|V¢|2)—2<v-V2¢>+(|VV|2), (2.20 to functions¢pe Q andveI’, where

also time-averaged over the intery8lT], then leads back to Q:={ | ¢;(x,t) e C3(V)XC0,T],
Eqg. (2.16). P . _
The new variational equations are derived by insisting =123V =0, ¢=ReV|a}, 3.3
that the first variationsD+ produced by variationgw in » Ii= (x.t)eC2(V)XCYoT
and é¢ in ¢ vanishes. With respect to variations i the rlnhecm) [o1].
variational statement is i=1,2,3; V- v=0,v=0|,}. (3.2

Given initial conditions oru= ¢+ », D1 has a unique sta-
dt=0 - : : ; :
tionary point corresponding to the appropriate solution of the
¢ (2.21  Navier-Stokes equation. We now construct two reduced
variational principles which can be used to approach this

oDr=—2[( & T+1iT o 221
T T[< V'V>]0 T 0 V- Sv

for all allowable variationsov, where point and its associated solution either strictly from above or
below.
oDr { P, X ¢p+ap-Vo—2(a—1)V?2
— =—ja—t2aw ag- —2(a— v
owl, at A. Minimization problem

The basic idea is to perform the optimization owefirst
=0. by solving the variational equatiof2.22 for a given trial
background field¢p(x,t). Providing certain conditions are
(2.22 met, the subsequent dissipation rate estimate can be assured

+a(Vep+V'e)-v—(a—2)V2¢h+Vp,
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to exceed the saddle point value. These conditions revolverhich is alinear, spatial problem for » which needs no
around the temporal boundary conditions and a pointwise-intemporal boundary conditions. The value &f at this sta-
time spectral condition which determines whether the chosetionary pointy=v* is

background trial field leads to an overestimation of the

saddle point value or not. The second optimization oger T dh
then seeks to minimize this upper estimate of the realized Gr(pv*a)=or . <V*'|aﬁ+23w><¢
dissipation.
To force the boundary terms in both Eq®.21) and
(2.23 to drop, we impose initial conditions amand ¢ and +a¢-V¢—(a—2)V2¢} > dt. (3.9

insist thatv(x, T) vanishes to be consistent with the approach

taken in Sec. Il. Most importantly in what follows, we must The fact that there are conditions efx,0) andw(x,T) must

ensure that any possible v_eloqty fikgx,t) can _be repre- - pe reinterpreted as, in fact, conditions @/ Jt at either end
sented as the sum of the trial fiegpland a fluctuation field ot 16 fime interval. For this stationary point to be a mini-

atany time and spatial position. Given thafx,T)=0, this 1, gverT, there is the spectral condition on the back-
means, for example, thap(x,T) must equal the final real- ground field that

ized velocity field,u(x,T) =uNS(x,T), whereuNS(x,t) is the
Navier-Stokes solution given the initial conditiaiS(x,0) ((a-1)|V2+ar-Vg-») =0, VweT, Vte(0OT)
=Uo(x). Additionally, since the true starting condition fgr ' ' (é.lO)
is also unknown, this must be chosen, for examghéx,0)

= ¢ho(X), which means that(x,0)= Uo(X) — ¢(X). The dis-  which is the condition that the eigenspectrum of the linear
sipation rate functional is then expressible as self-adjoint operator

DT:HT<IV¢IZ>+ %«UO_ #0)°) — Gr(p,v;a) L(pa)v:=a(Vp+V ') - v+Vp—2(a—1)V?p
0

(3.3 s positive semidefinite oveF Vte (0,T). This ensures that
the important quadratic terms @y are positive semidefinite.

with ¢e Q, andveI’;, where The function se€),,
Qi(o)i={ & 2| P(x,0)= ¢o<x>,¢<x,T>=uNS<x,T2%,4) Q={ e Q((a-1)|V¥*+ar-Vo-v) =0,
' Vwel, Vte(0T), (3.1

I'1( o) :={ v e I'[1(X,0) = Up(X) = o(X), »(X,T) = 0}.
(3.5 collects together all such “allowable” background fields. If
the selected background field marginally satisfies the spectral
Now, if a trial background fieldpe €2, can be chosen such constraint, the self-adjoint operator to be inverted in Eq.

that (3.8) is singular. In this case, there is the solvability condi-
tion that the right-hand side in E¢3.8) must be orthogonal
inf  Gr(¢,v;a)>—o, (3.6)  to the operator’s null space, and the solutieis only deter-
vel'y(do) mined up to this null space. This latter feature is actually not
important at this stage of the optimization procedure because
then we have immediately the upper boufi3,24), only the inhomogeneous solution contributes to Gafand

therefore affects the dissipation functional. Put another way,

1T o, & 2 it is of no consequence here that this infimum may not be
Dr < Tjo (IVel*)+ ﬁ«uo_ bo)) unique although the background trial field must be adjusted
to satisfy the solvability condition. Practically, the way to
— inf  Giy(é,va). 3.7 bypass this extra complication is to avoid trial fields which
veT1(dy) are “spectrally” marginal.

The upper bound in Eq3.7) can be minimized over all

The crucial point is that we have this degeneracy in the vepermissible background fields e Q,( ) N Q, to give the
locity representation which can be used precisely at thigetier bound

point to advantagesivena ¢(x,t) field, there is still always

a fluctuation fieldw(x,t) which can “reach” any realizable 1T
velocity fieldu(x,t): as a result, Eq(3.7) must hold foru™S, D= inf [Tf (IV &|?)
The condition forG; to have a stationary point is that e Qy(dg)NQ, 0
5D1/6v=0: a
+5=((Up— ¢o)?)— inf Gr(gwa)}.
a(Vep+VT¢) - v+Vp,—2(a—1)V2w 2T vely(do)

(3.12

This optimization procedure translates into solving the two
(3.8 variational equations

d 2
= —aE—Zawx d—ad-Vo+(a—2)V-d
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6D+
ov

D¢

=—— =0 (3.13 Q3:={ b € Q[ P(x,0)= ¢p(x)}. (3.18
] oo

v As before, there is a spectral constraimbw on the fluctua-

. . . tion field ») which ensures that the dissipation rate available
over the restricted sepe (o) N4, With vel'y given — auerihig initial optimization ovekp underestimates the true
¢y Itis at this point that any possible degeneracy in SOIV'ngsaddle point value. We defirig,

the first variational equation introduced through a spectrally ' '

marginal trial background fiel(B.8) becomes important. The D={vel|(|V(d— b))|?

second variational equation is an equation dothen forced

by an underdetermined fluctuation field A conceivable +a(¢1— o) Vv (d1—¢) ) =0,
resolution of this is that both operators in the two variational

equations are simultaneously singular for the realized solu- V ¢y, e Q,Vte(0,T)}, (3.19

tions so that the null space degeneracwirsay, would be
removed by the solvability condition in th¢p equation and
vice versaln this scenario both variational equations would
need to be solved simultaneously, a task more difficult tha
the Navier-Stokes equation itself. The optimal solution of the L(va)w=a(Vr+VTp) . v+Vp—2V%  (3.20
Doering-Constantin upper bounding problem provides a sim- '

plified example of this situation where only one spectral conyg positive semidefinite oveF Vte (0,T). Then, provided

straint exists and this is marginally satisfiésee[27] for ve 1 (py) NT,, we have the lower bound
detailg. Realistically, perhaps only the reduced principte

as the set of fluctuation fields which satisfy this spectral con-
straint. Membership of this set is determined by examining
thether the eigenspectrum of the linear self-adjoint operator

which ¢ remains a trial field and only E@3.8) is solved is a _
of practical interest. ﬁ((uo—¢o)2>+ inf F1(¢,v;a)
Formally, a final minimization over the initial spatial field belly
¢o(x) produces the lowest upper bound available, (a—1) (T
- f dt{|Vv|?) < D-. (3.21
1T T Jo
D= inf inf [?f (IVel?
dpc © beQi(P)NQ; 0 The conditionveI', ensures that ir;g‘egs}} exists. This

infimum is identified by the solution oD /6¢=0,

a H .
to7{(Uo=g?)= inf Gr(o, ”'a)] a(Vw+VTw)- ¢+ Vp,—2V2¢h

vel'y (dy)
3.1 v
319 =—aE—ZanV—aVVV—(a—Z)VzV,
or in a(min) min-max form
(3.22
. . 1(7 : : o : .

D= inf inf sup ff (|V &|?) a linear spatial problem foth. Again, if a trial fluctuation
o P (dr)NQ; vel'(dy) 0 field is chosen which is “spectrally” marginal, E¢B.22 is

subject to a solvability condition. However, as discussed
a bove, this issue can be ignored in the reduced problem b
+— ((Ug— o)D) — : 315 apove in De g y
77 {(Uo= o)) = Gr( ¢’V’a)]' (3.19 avoiding such marginal trial fields.
A subsequent optimization overleads to a maximization

where problem,
Q:={ p|$i(x) €C2(V),i=1,2,3;V- =0, p=ReV|}. supinf [i<(u0_¢0)2>
(316) vel'1(¢g)NT, PpeQg 2T
B. Maximization problem + Fr(p,v;a)— (a_l)det(|Vv|2)) <D.
The order of optimization can be reversed to produce a T Jo
max-min procedure in the following way. The functional (3.23
a (a—=1) (T These two optimizations together amount to solving the re-
—_ _r/1 T . _ 2
Dr= T[<2 V) lot Fr(o.via) T fo dt(|V %) quired two variational equations
(3.17
r| Dy 324
is first optimized ovewp assuminghat the fluctuation field Sv & S|, '

is known, and then optimized over. Since we now have

direct control over the trial fluctuation field which must van- over the restricted sete I'1(¢pg) NI', with ¢pe Q5. A final
ish att=T, it is no longer necessary to know'S(x,T) and  maximization over the initial spatial fielh,(x) produces the
we can work with the more general background function segreatest lower bound,
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sup  sup inf [%<<uo—¢o>2>+ﬂ<¢,v;a> T (@SS (B )

¢0€f2 vel'(¢g)NIy pe Q3

5¢>
2

_ 16D
_ (a l)det<|Vy|2> - DT_ (325) + : (¢NS NS)(¢ ¢NS)> (42)
T Jo o

In summary, we have the bracketing of the realized dissipa-
tion, thus Here by initial assumptiodD+/Sv( ¢, ») =0 and the second

functional derivative terms are

a
sup sup inf { o7 ( 0= P0)°)
o vET1(dg)NT, e Qa(dy) 16°D7 m '~ s
(o 25’}2(9{”’)(”1’)
+ F(,v;a)— vz)]

17 ~
1 — _ _
$DT$ inf inf sup {TJOT<|V¢|2> Tf0<(a 1)|V(V VNS)|2

o Q D= Q1(dg)NQ; vel'y(dy)

. +a(r— "S- V- (v— NS )dt, 4.3
+ 57 ((Uo— o))~ Gr( @, via) | (3.26
1 6°Dy
<2 3 (19 (9~ ¢NS)>
IV. DO THE COMPLEMENTARY VARIATIONAL o¢h
PROBLEMS INTERSECT?
It is natural to speculate whether the complementary

variational principlesattain the saddle point value; in other f <|V — V9|2

words, whether the inequality signs in E@.26 may be
more accurately replaced by equality signs. In terms of the
solution[ @NS(x,t),¥NS(x,t)] of the full variational problem
[Egs.(2.22 and(2.24) subject to the initial and final condi-
tions ¢(x,0)+ »(x,0)=ug(x) and »(x,T)=0], this is the  With conditions(4.1) satisfied, the last term in E@4.2) is
condition that positive semidefinite and then, providing satisfies the
spectral constraint that the expression in #g3) is positive

semidefinite for allveT' (decQ,), a global minimum is

If only one of these conditions is satisfied, then the saddi@ssured af$"S,»"]. For uniqueness of this minimum, we
point value is only attained from that side although this un-need to establish the nonexistence of fidlds»] distinct
symmetric situation seems unlikely. If both conditions hold, from [ ¢"S,#NS] for which Eqgs.(4.3) and (4.4) vanish iden-
then it can be shown using convexity and concavity argudically. Since the integrands of both these expressions are
ments that the complementary variational problems intersecupposedly positive semidefinite, they must in fact vanish
at a unique saddle point. Consider the minimization problenpointwise in time. This implies that the two equations
first for the trial background fieldpe Q,(dNS(x,0)) with
accompanying fluctuation fielde I';(¢"S(x,0)) found by ~ T (S NS (A 125 NS _
solving 6D+/8v=0 and compare its dissipation rate value AV §)-(r=r )+ Vp—2@-DVir—v )(405'3)
with that of the Navier-Stokes solutigmp™NS(x,t),»NS(x,t)]. '
SinceD+1(¢,v) is only quadratic ingp and », it is straight-
forward to show that a(V NS+ VTINS) . (h— NS+ Vp,—2V2(h— dNS)=0

(4.9

+a(p— ¢S - VNS (§— ¢N9) )dt. (4.4

¢NSE Qz and VNSE F2 . (41)

Dr(¢,v;a)—D1(¢" M5 a)

=[D1(, v;a)—D1(,\Sa)] must be satisfied/ t e (0,T) in addition to the variational
equationsD+/8v( ¢, v)=0. As an overspecified system for
[, 7], this indicates(but does not provethat the global
177 |sD minimum is unique.
:_J dt< _T(:/,,;) (v— N9 In the maximization case, consider a trial fluctuation field
ve 1 (¢NS(x,0)) and its accompanying background fiefd
1 82D e Q,(¢"¥(x,0)) found by solvingsD1/8¢=0 and compare
T(:,,;, (v—NS) its dissipation rate value with that of the Navier-Stokes so-
2 52 lution [ NS(x,t), ¥NS(x,1)],

+[D1(¢,"S;a)— D( NS, NS a)]
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D+( o, v;a)—D(d"S NS a) D1(¢"S,») < Dr(dN°0"S), Vwel. (41D

=[D+(¢,7;a)—Dr(p"S,v;a)] Unfortunately, this interpretation is merely that and does not
NS 2y NS NS. offer any clues as to how the conditio%1) may be estab-
+[Dr(¢™va)—Dr(¢™ v a)] lished. An observation already made in Secs. IllA and 1lI B

1¢7/ 8D regarding “spectrally” marginal trial fields is worth revisit-
:_f <_T(¢,NS, NS (p— pNS) ing here. If one of the realized fields, s&'>, is spectrally
Tlo\ ov marginal, then the operator to be inverted in E8.8) (to

identify #N) is singular. The solvability conditids) then
indirectly imposed ong™S together with the null space de-
2 512 generacy in\° seem to necessitate that the operator in the
other variational equation also be singular with the same
+ %( n Ay NS dimensional null space. Talking broadly, this null space de-
S bv) (d=¢™) generacy ing"S is then of the right dimension to accommo-
date the solvability conditids) in the N equation andiice
16 D7 . - NS versa In this scenario, it does not necessarily follow tia¥t
2 5 (1) (d—¢™) )dt. (4.7) is also spectrally marginal but merely that the eigenspectrum
of the operator in Eq(3.20 has a zero. Nevertheless, this
argument at least indicates that Eg.1) is not obviously
flawed and perhaps hints at a way forward. This issue is, of
1 82D course, of fundamental interest since proving @gl) would
<_ - _T(¢NS NS (p— st)> appear to guarantee thBt; can only have one stationary
2 5172 ’ point and therefore that the Navier-Stokes equations have a
unigue solution for given initial conditions.

1 6°D+

( ¢NS’ VNS)( ;,_ VNS)

Here D1/ 8¢( ¢, v) =0 by initial assumption and

17 “
[ Ca-nvi- e
TJo V. IMPLEMENTATION: THE MINIMIZATION PROBLEM
+a(v— NSy NS, (;,_ NS) Vdt, (4.9 So far the focus has beeni tq formallly e;tablish the exis-
tence of complementary variational principles based upon
1 62D certain spectral constraints and to discuss whether they meet
- T((}, ) (p— NS in a unique saddle point. Here we concentrate upon their
2 5¢? ' implementation by discussing reduced versions of these
variational principles with a view to realizing both upper and

1(T . lower bounds on the dissipation in plane Couette flow.
:?fo (IV($p— ") The minimization problem formulated in Sec. lllA re-
quired the knowledge of the final realized veloaify®(x, T)
+a( (}_ A9 L (a)_ &%) )dt. (4.9 which will usually be unavailable. Consequently, we present

here a more useful and only very slightly “less-sharp” varia-
With conditions(4.1) satisfied, the second term of Eg.7)  tional problem which upper bounds the functional

is positive semidefinite and then, providingsatisfies the
duall .spectra! co'n§tra|nt thf\t the expression in &a9 |§ Dyi=Do+ E(VZ(X,T))
positive semidefinite for alipe Q@ (ve1',), a global maxi-
mum is assured dt¢NS,¥NS]. Uniqueness depends on the 107 a
same arguments as before. :TJ dt{|Ve|%)+ ﬁ(vz(x,0)>—gT( ¢, v;a)
It is difficult to establish whetheipNSe Q, or »N5eT, 0
since these are global properties over the whole spieesl (5.1)
Q, respectively. This very fact, however, naturally suggests

that these conditions be interpreted as some sort of “stabil;

LY ) ) and thereforeD;. Provided the trial background fielg is
ity” criteria. Doering and Constantifi26] have already no- chosen inQ4( ) N, and fluctuation fields which solve
ticed some similarity between the spectral constraint and en-

ergy stability arguments in their upper bound formulation.
However, this connection is not borne out in the broader &
variational context discussed here. Instead, their interpreta- ov
tion seems to lie simply with the attribute of making the
dissipation extremal. 1S T',, then from Eq.(4.2)

) (5.2
b

are in

D1("S M) < D1(9p, ), Ve (410
! ' Ty(do)={ v €T [M(x0=Uo(X)~ do(X)}, (5.3

so that dissipatiofifor »=»") is minimized by the realized

background field, whereas #NSe Q,, then then
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1JTd V ) a 2 _ I 1 J-FLXd J+Lyd
D<= t + —{((uy— A(z,t):= lim X X,t
T T 0 <| ¢| > 2T ( 0 ¢0) > ( ) LX'Lny4LxLy L, 7Ly yA( )
N irn(f¢ : gr(d.va). (5.4 is the horizontal mean an/= 0 indicates the Navier-Stokes
ve 3 0

equationghere withw=0),
The key step is being able to remove the boundary term
(3v%(x,T)) from variational consideration: this lifts the J\/’-—i—u+u-Vu+Vp—V2u,

troublesome requirement thai(x,T)=0. Certainly in the t

case of turbulent flows we can anticipate that the final kinetic .

energy term which separaté®; and D will become less SO thatN;=0 is thex component. Bothy and a signify

significant relative to the dissipative terms Rincreases so Lagrange multipliers in this expression linked with specific

that ultimatelyD;— D+ asT— . constraints. Taking variations igh requires that the long-
The exact form of the trial background field chosen hadime averagéor equivalently statistical averagef the hori-

profound consequences on the constraints actually being apentally averaged Navier-Stokes equation in xheirection

plied to the upper bound minimization problem. We illustratebe satisfiedi.e., vanish. Subsequent optimization over the

this in the case of plane Couette flow where an incompressalance parameter imposes the total power integral as no-

ible fluid in the region ,y,z) e RZX[—3,3] is subjected to ticed before[[28], Eq. 2.67].

shearing boundary conditiongx,y,+ %)==+ %Rei. The result of this minimization procedure is therefore the

maximum dissipation possible subject to this subset of con-

straints derived from the Navier-Stokes equations, and as

such constitutes an upper bound on the true dissipation. The
The choice of a steady, scalar background figld upper bound may also be estimated frbeiowby reversing

= $(2)X is the simplest possible one consistent with thethe order of optimization. Eliminatings(z) by solving

boundary conditions in plane Couette flow. The variationaldD../8¢|,=0 leaves a maximization problem over This

A. One-dimensional steady background fieldsgp= ¢(z)X

equationsD+/6v| ,=0 is now simply is essentially how Busg&] obtained his first estimate of this
upper bound from below. Rather than dealing with the full

V3 1 functional D., and using the degenerate representation
a¢’'| 0 |+Vp,—2(a—1)V?w=(a—2)¢"| 0 = ¢(2)x+ v(x,t), Busse appealed to a number of plausible
vy 0 physical arguments to lead directly to a maximization prob-

(5.5 lem overv = v— », thereby shortcutting the formal procedure
outlined abovegsee[28] for details. It is clear here that the
[[28], Eq. (2.39]. However, there is no guarantee that theoptimization procedure ovep anda incorporates precisely
steady solution to this equation will have the correct initialthe physical information that Busse built directly into his
conditionswy=Uy— ¢o(2)X. In this case it is clear that only problem.
the limiting caseT— in Eq. (5.4 makes sense since then ~ The fact that this maximization problem can surpass the
the initial conditions drop entirely from the problem. The true dissipation is of course tied in with the restricted form of
subsequent upper bound 8, is then a supremum oveill the background field. Choosing a trial fluctuation fielc,t)
possible initial conditions. This is the upper bound problemand minimizing overg= ¢(z)x is no longer guaranteed to
initially proposed by Doering and Constantj@3,24 and  |ower bound the true dissipation sinegx,t) + ¢(z)X is now

improved by Nicodemust al. [30]. Simple trial fields have ot general enough to encompass all possible velocity fields
been used to deduce rigorous bounds on the dissipatiogy 5 given p(x,t).

[23,30,34 as well as more sophisticated examples in a de-
tailed numerical study by Nicodemus, Grossman, and Holth-
aus[32,33. This latter work has proved especially important
not only in establishing the practicality of this upper bound Allowing the trial background field to be three-
problem but also in indirectly confirming previous dimensional permits more information to be incorporated
asymptotic work by Bussb] in the dual probleniseg[28]).  from the Navier-Stokes equations and hence should lead to a

Given the larger variational context within which this re- lower (bette)y upper bound. In particular, E¢5.6) becomes
duced problem lies, it is now clear what constraints are ac-

B. Three-dimensional background fields:¢= ¢(x)

tually being imposed. In the limif— c, the functional given o EIT N e EfT _
in Eq. (2.5 is Des=lim 3 | (VU dt=lim 7 | (u-N)dt
D..:=li 1JT<|V 12) dt— i af( N) dt [ afTN’d 5
wi=lim = u —lim=| (u- +{ ¢ lim= t). .
T—>00T 0 T—>00T 0 ¢ T~>ooT 0 ( 7)
+ v & lim Ef Ndt dz, (5.6) Optimization with respect to the Lagrange multipliérthen
—12" 1o.TJo incorporates the requirement that the steady Navier-Stokes

equations be satisfied. Improvement of the bound, however,
where is not automatically guaranteed unless the new constraints
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imposed disallow previous optimizing solutions. Section 3.3critical Reynolds number below which it satisfies the spectral
of [28] discusses the use of the two-dimensiardbpendent constraint. In particular, the steady laminar solution

background field choiced= ¢,(2)X+ ¢,(2)y in plane Cou- =—RezXxisin ﬁz for ResRey,, Where Rgyis the energy
ette flow. The extra constraint applied compared to using thetability limit [30,35. For these Reynolds numbers, the
background field¢= ¢(z)§< is that the steady, horizontally background field should be designed to evolve from its initial
averagedy component of the Navier-Stokes equation muststate to the steady laminar state since tisishe correct
vanish. Since Busse’s optimizing solution already satisfieglong-time) Navier-Stokes solutiorfwith »—0). At higher
this new constraint, the optimal choice ¢§(z) is trivially 0  Reynolds numbers above the energy stability threshold, the
and no improvement results. fluid may or may not be attracted to the laminar state de-
Again this upper bound may be estimated from below bypending on the initial conditions. Since the laminar state is
reversing the order of optimizations to produce a maximizang |onger a valid background field for these Reynolds num-
tion problem overw. bers, other nearby choices must be made. These other
choices, of course, still permit the laminar state to be ap-
C. One-dimensional unsteady background fieldsgp= ¢(z,t)x proached ultimately but now necessarily through an accom-

A time-dependent, one-dimensional background field depanying non_trivial fluctuation field. i
pending only ore is the simplest choice which allows upper Constructing more general background fields clearly al-

bounds dependent on initial conditions to be explored. Thd®Ws more information from the Navier-Stokes equations to
functional is be built into the variational problem as constraints; see ex-

pressiong5.6), (5.7), and(5.8). Also clear from these is the

1(7 a(T nontrivial role played by the parametar Although upper
— 2 - — .
DT"TL (IVul?) dt TJO (u-N)dt bounds emerge for ang>1, these bounds can be further
optimized overa. This is in contrast to the maximization
a (T (L2 X
+ _f SN, dz dt (5.9 problem, wherea merely acts to renormalize.
TloJ-12
which means that the horizontally averaged first component VI. IMPLEMENTATION:
of the Navier-Stokes equation is the applied constraint. As THE MAXIMIZATION PROBLEM
mentioned before, sincéD1/6v|,=0 is a purely spatial _ i ) L
problem for v given ¢, the initial conditionu(x,0)= ug(x) The interestingly novel feature in the maximization prob-

_ AL . . lem is the spectral constraint on the trial fluctuation field.
¢o(2,0)x is In fact a condition ony$/4t(2,0). Given the Unlike that on the background field, this does not depend on

restricted form of the background field, only a subset of ini- ; .
tial conditions will be accessible. The challenge then be-the Reynolds number since the fluctuation field has homoge-

comes one of finding a time-dependent background field€OUS bqundary 'conditions.. The set of permissible fluctua-
which gives the besiowes) upper bound. The spectral con- 10N spatial fields is then unique for a given systemodulo
straint is a pointwise condition in time and so only the spatiaf® rénormalization ira). The Reynolds-number dependence
structure of the background field is important in this respectiS associated with the background field and enters through
Constructing a valid background field amounts to specifyinghe solution of6D+/8¢|,=0 into the dissipation functional.

a smooth time path across sets of allowable spatial fields The emphasis in producing best lower bounds is also dis-
parametrized by time. Since the forcing boundary conditionginctly different from that in the upper bounding case. There
are steady for plane Couette flow, one set of allowable backthe underlying philosophy is generally to select the back-

ground spatial fields at a given Reynolds number, ground profile of least dissipation which is still consistent
with the spectral contraint. In the lower bound problem, fluc-
Q,:={p|p(z2)eCY—%,3], p(+3) tuation fields which willmaximizethe dissipation are sought
. ) subject to the spectral constraint, which suggests selecting
=+;Re((a-1)|Vv|*+ar-V¢.-v) =0, Vwel}, the most complicated field available. It is therefore, for ex-

(5.9 ample, of little consequence that 0 is always allowed as a
trial function since beyond Rg this is not assured to give
can be used to select background profiles throughout the timi@e best(larges} lower bound on the dissipation.

interval. It is straightforward to show that the €4 is con-

vex; if ¢41(z) and ¢,(z) satisfy the spectral constraint, then o

so does\ ¢, + (1—\) ¢, for X [0,1]. Additionally, the set A. Steady fluctuation fields: »=(x)

is nonempty for any Reynolds number Re. For a background As before in the background field case, choosing a steady
spatial field(z) to be in{,, the sign-indeterminate term fluctuation field forc_es_the_ Ion_g-_time limit to be taken and
a/(a—1)(¢'viv3) must be dominated by the positive- Me€ans that onilyadlss.lpathn_ |_nf|mum can be produged over
definite termy(| V #|?) for all permissable fluctuation fields all initial conditions. Since initial cqndltlons appropriate to
Since trial background fields will scale with Re through thethe laminar flow solutionu=—RezXx, are possible for all
boundary condition, the former term can be made as small de, this infimum will always be the laminar dissipation and
required relative to the latter positive definite term by reduc-hence trivial. A time-dependent trial fluctuation field is re-
ing Re. As a result, every practical background field has auired to avoid this scenario.
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B. Unsteady fluctuation fields: »=»(x,t) dependent trial fluctuation field of the forme= v(z,t)x

A fully three-dimensional, unsteady fluctuation field de- which leads to the dissipation functional
pendent on all three spatial variables potentially imposes the
complete Navier-Stokes equations as constraints on the b ._1JT vul? aJTJ”Z Nodzdt (6.4
lower bound problem [see Eg. (2.5]. Provided » ™71/ (IVul) dt= T)o ) 0 N0 t 64
el'1(¢y) NT'5, we have the bound
3 (a-1) (T The horizontally averagexicomponent of the Navier-Stokes
el 1 \2 ; cay 4T 2 equations is imposed as a constraint and therefore only sta-
o7 (U= o))+ ¢':;3 Fr(dvia)-— jo AVl bility characteristics associated with this one time-dependent
equation can be incorporated. Given the restricted form of
<D, (6.1 the trial fields, only a special subset of initial conditions can
be possible. Nevertheless, providing these conditions are dif-
where ferent from the laminar profile, there is still the possibility of
establishing bounds on the threshold amplitude for instability
inf Fr(¢,via) of the laminar state. As before in the trial background field
bels case, these lower bounds can all be estimated from above by
1 (T I reversing the order of optimization.
= — —av- +av-Vv- ¢*
2T o<

ot
VII. DISCUSSION

+(a_2),,.v2¢*> In this paper we have revealed how to embed the dual
upper bound formulations of Doering-Constantin and Busse
within a grander variational framework found by exploiting
the full degeneracy of the background-fluctuation velocity
decomposition: see Fig. 1. In this framework, it is clear how
to manufacture successively more constrained upper and
now lower bounding problems on the fluid’s dissipation until
ultimately the Navier-Stokes solution itself is the optimal
solution. At this point the upper and lower bounding prob-
P 1 lems represent complementary variational principles for es-
ur _Ti_ LI timating the true dissipatioand the Navier-Stokes solution
ot (x.0) a{ VetV in)-$-Vp, (in the dissipation norm Presently it is unclear whether
these dual principles actually touch at the Navier-Stokes so-
+2V2h—av-Vv—(a=2) V¥ gouy-wx0 lution. Establishing this would prove the uniqueness of the
(6.3 Navier-Stokes solution for given initial and boundary condi-
tions.

where p, merely ensures thar remains incompressible. The novel introduction or rather retention of time depen-
Since the set of spatial fluctuation fiel@sall it T',) which dfefncr:er:nwth(ra] %frrzat'onflr%‘)ﬁl?rwsl ?rlwscr?ts?iei r]ﬁ:ﬁ c;rtalﬂly
satisfy the spectral constraint is convex as before, botq'ers nNEw challenges for the piementation. € depen-

= dence undoubtedly adds another layer of complexity to the
¥(x,0) anddv/dt(x,0) should be members df; to ensure .\, marical study recently completed by Nicodemeisal.

that »(x,t>0) is too. Convexity ofl’, means that the trial [32 33 where the spectral constraint has already been suc-
background field can smoothly evolve to visit various knowncessfully implemented. However, the corresponding rewards
spatial fluctuation fields if",. Finally, sincev=01is in T,  seem encouragingly high. Aspects of hydrodynamic stability
reaching the required end poingx, T) =0 does not present a can now be included along with the sensitivity to initial con-
problem. Practicallyu, should not be specified at the onset ditions now known to be so important for most hydrody-
but determinedh posteriorigiven an allowable background namic stability problems. In particular, only a lower bound
field att=0. Once the initial conditions have been set, thenproblem incorporating time dependence can ‘rise above”
the evolution ofv for t>0 is open to adjustment in the the trivial laminar dissipation infimum.
search for the largest dissipation lower bound. From the prospective of “upper bound theory1,2] or
This procedure has obvious possibilities for exploring thethe “optimal theory of turbulence3-6], it is natural to ask
instability of laminar flows from the prospective of an initial whether other functionals apart from the dissipation may also
value problem. In the particular example of plane Couetteshare the variational structure revealed here. In other words,
flow, presumed linearly stable at all Reynolds numbers, inis the dissipation functional special in some sense? Certainly
formation concerning threshold amplitudes for instability there is nothing profound in the initial construction of the
may be available by demonstrating that the dissipation mugdtinctional D+ given in Eq.(2.5. However, written in terms
exceed the laminar dissipation for given initial conditions asof ¢ andw, it is clear that to obtain the crucial saddle point
T—c. This application makes it clear how retaining time structure, the constraint expression must contribute exactly
dependence enriches these bounding problems since orilye right term to make the overall functional negative-
then is the fundamental dynamical concept of stability in-definite in the highest derivative term involving, i.e.,
cluded. The simplest such problem available has a time¢1/T) (| V|?)dt. If the base functionalwhich of course

+[@* - 9,(2¢* —(a—2)v) 222 ,dt (6.2

and ¢* solveséD+/8¢=0. Formally, for given initial con-
ditions onu, the trial field » must be designed so that the
solution of SD1/8¢|,= 0 is Uy(x) — »(x,0) att=0. This re-
quires that
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DISSIPATION

Doering-Constantin

u = §2)2 + v(z,t)

Ultimate Doering -
Constantin problem

u = ¢(x,t) +v(z,t) Dys =

Ultimate Busse problem

u = P, t) + v(z,t)3

FIG. 1. This schematic summarizes the variational framework. The upper bound probl®f’}ds based upon the representation
= $(2)X+ v(x,t). The minimization/maximization procedures are the original Doering-Constantin/Busse problems. The first feasible lower
problem for DV is based uporu= ¢(x,t)+ »(z,t)x. The ultimate Doering-Constantin and Busse problems revolve around the fully
degenerate fornu= ¢(x,t) + »(x,t). The dashed lines acknowledge the possibility that these problems may not actually intersect at the
Navier-Stokes solutio}*.

has to be expressible in terms of the physical velocity a
: : T/ 102,12 —[(3)]5+K
= ¢+ v) is of higher order, for example, (T) [ o(|V-u|“)dt, T2V /o™i
the constraint(in its present form at leasis too weak to 1T
transform this into a saddle point ove#(v) (leaving aside :_f dtl (112+ad- V-
any boundary condition issueBase functionals of lower or- TJo Gl +ad-Vv-¢)

der can lead to saddle point structure but problems arise in

_ 2_ 1,121 - Vb
trying to solve the variational equation associated with (@l V"= z|v|*+ar-Vé-v)

since it will now have too many boundary conditions. The ad
kinetic energy functional provides an example of this. Defin- +¢-v—av- E—Zau wX ¢+av- V2¢> .
ing
(7.2
1(T af(T u Here, the spectral constraints @mwand » are, respectively,
KT::?L<%|U|2>dt_?fo< v E+2w><u that

(a|lVv]?—3|v|*+av- V- 1)=0, Vvel, (7.3
+u'Vu+Vp—V2u] > dt (7.1

(3lv]*+av-Vv-v)=0, VYverl.

leads to the expression The variational equatiodK;/8¢|,=0 given v is purely al-



5494 R. R. KERSWELL PRE 59

gebraic ing, so that the solution is forced to be discontinu-  Finally, it is worth remarking that the ideas discussed here
ous in general at the boundaries. This, however, suggests th@gneralize in a perfectly straightforward way when further

the kinetic energy plus a nonvanishing dissipation pargoverning equations are present; for example, the induction
should work as would presumably other lower order func-equation in magnetohydrodynamics and the heat equation in

tionals added to the dissipation. convection. This merits separate discussion elsewhere.
[1] W.V.R. Malkus, Proc. R. Soc. LonddR5, 196 (1954. [19] S.-K Chan, J. Fluid Mech64, 477 (1974).
[2] W.V.R. Malkus, J. Fluid Mechl, 521 (1956. [20] M.R.E. Proctor, Geophys. Astrophys. Fluid Dyftd4, 127
[3] F.H. Busse, J. Fluid Mecl87, 457 (1969a. (1979.
[4] F.H. Busse, Z. Angew. Math. Phy20, 1 (1969h. [21] A.M. Soward, Geophys. Astrophys. Fluid DyI6, 317(1980.
[5] F.H. Busse, J. Fluid Mecht1, 219(1970. [22] R.R. Kerswell, J. Fluid Mech321, 335 (1996.
[6] F.H. Busse, Adv. Appl. Mechl8, 77 (1978. [23] C.R. Doering and P. Constantin, Phys. Rev. Lé8, 1648
[7] L.N. Howard, J. Fluid Mech17, 405(1963. (1992.
(8] L.N. Howard, Annu. Rev. Fluid Mech, 473(1972. [24] C.R. Doering and P. Constantin, Phys. ReviE4087(1994).
[9] R-A. Worthing, Ph.D. thesis, MIT1995. [25] P. Constantin and C.R. Doering, Phys. ReGI1E3192(1995.

HOIRR ferswell and AM. Soward, J. Fluid MecB28 161 [26] c.R. Doering and P. Constanin, Phys. ReGE5957(1998.
(1996. [27] R.R. Kerswell, Physica [100, 355(1997).

[11] (Gl.g;.al.erley and W.V.R. Malkus, J. Fluid Mech87 435 [28] R.R. Kerswell, Physica 0121, 175(1998.

[12] W.V.R. Malkus and L.M. Smith, J. Fluid Mecteog 479 22 E- HOP, Math. Ann.117, 764 (1941. _
(989). [30] R. Nicodemus, S. Grossmann, and M. Holthaus, Physica D

[13] L.M. Smith, J. Fluid Mech227, 509 (1997). 101, 178(19973.

[14] W.V.R. Malkus, Phys. Fluid8, 1582(1996. [31] R. Nicodemus, S. Grossmann, and M. Holthaus, Phys. Rev. E

[15] E.C. Nickerson, J. Fluid Mect88, 807 (1969. 56, 6774(1997D.

[16] F.H. BusseThe Bounding Theory of Turbulence and Its Physi- [32] R. Nicodemus, S. Grossmann, and M. Holthaus, J. Fluid Mech.
cal Significance in the Case of Turbulent Couette Fldmv 363 281(19983.
Statistical Models and Turbulencéecture Notes in Physics [33] R. Nicodemus, S. Grossmann, and M. Holthaus, J. Fluid Mech.
Vol. 12 (Springer, Berlin, 1972 pp. 103—126. 363 301 (1998h.

[17] F.H. BusseOn the Optimum Theory of Turbulenée Energy ~ [34] T. Gebhardt, S. Grossmann M. Holthaus, and Mhden,
Stability and Convectign edited by G.P. Galdi and B. Phys. Rev. B51, 360(1995.
Straughan(Pitman Press, Boston, 198%p. 3—-21. [35] D.D. Joseph,Stability of Fluid Motions I(Springer Verlag,

[18] S.-K Chan, Stud. Appl. Math60, 13 (1971). Berlin, 1976.



