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Velocity structure functions, scaling, and transitions
in high-Reynolds-number Couette-Taylor flow
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Flow between concentric cylinders with a rotating inner cylinder is studied for Reynolds numbers in the
range 2< 1°<R< 1P (Taylor Reynolds numbers, (R, <290) for a system with radius ratig=0.724.
Even at the highest Reynolds number studied, the energy spectra do not show power law(isealthgre is
no inertial rangg and the dissipation length scale is surprisingly large. Nevertheless, the velocity structure
functions calculated using extended self-similarity exhibit clear power-law scaling. The structure function
exponents{, fit Kolmogorov's log-normal model within the experimental uncertaindy=(p/3)[ 1+ (u/
6)(3—p)] (for p<10) with u=0.27. Thesg, values are close to those found in other flows. Measurements
of torque scaling are presented that are an order of magnitude more accurate than those previously reported
[Lathropet al, Phys Rev. A46, 6390(1992]. Measurements of velocity in the fluid core reveal the presence
of azimuthal traveling waves up to the highest Reynolds numbers examined. These waves show evidence of a
transition atRy=1.3x 10% this transition was observed previously in measurements of torque, but our wave
velocity and wall shear stress measurements provide the first evidence from local quantities of the transition at
Rt . Velocity measurements indicate thaRgtthere is a change in the coherent structures of the core flow; this
is consistent with our analyses of the scaling of the torque. Our measurements were made at two aspect ratios,
and no significant dependence on aspect ratio was observalf®efBy . [S1063-651X99)02405-9

PACS numbgs): 47.27.Jv, 47.55:t, 47.32~y

I. INTRODUCTION experiments and theory yield a power law for the depen-
dence of the Nusselt numbHlr(the dimensionless heat trans-
The Couette-Taylor system has played an important rolgort) on the Rayleigh numbeR, (the dimensionless tem-
in the development of some of the fundamental concepts gerature differende N~R§’7 [4]. The previous experiment
fluid dynamics. Most studies of this system have examinegn Couette-Taylor turbulence yielded, contrary to expecta-
instabilities that arise at low to moderate values of the Reytjons, no region of constant exponentThe experiment also

nolds number, revealed the transition @;, where there was a marked
change in the slope of the exponentas a function oRR.
R= Qa(b—a)’ (1) In this paper we present velocity and wall shear stress
v measurements that provide the first evidence from local

quantities of the transition &R;. Also, we present torque

where() is the inner cylinder angular rotation raandb  measurements that are an order of magnitude more precise
are the inner and outer cylinder radii, ands the kinematic and accurate than the earlier ddtd. Our results for the
viscosity. The present study focuses on the behavior near anglocity spectra and velocity structure functions indicate that
beyond a transition aRr=1.3x 10*; beyond this transition Couette-Taylor flow is unlike most other turbulent flows—
the fluid is turbulent and no well-defined transitions haveeven at a high Reynolds numbd®~10°, we observe no
been observed. inertial range. However, the structure functions computed by

Our apparatus was originally designed to determine thextended self-similarity(plotting the pth-order structure
Reynolds number dependence of the torfilie That experi-  function versus the third-order functipaxhibit a power-law
ment was motivated by a prediction for the behavior of thescaling region that enables us to obtain precise values for the

torque at high Reynolds number, structure function exponents, and these exponent values are
close to those found for other turbulent flows.
G~R", ) The rest of this paper is organized as follows. Section I

describes the experimental apparatus and the measurement
where a=5/3[2,3] andG is the nondimensional torqu& techniques. Section Il presents the results from torque mea-
=T/pv?L (T is the torqueyp is the fluid density, and. is  surements and discusses models of torque scaling. Section
the length of the inner cyIind)arThis scaling is analogous to |V presents evidence for a transition R$=13 000. Section
the behavior found for Rayleigh-Bard convection, where V discusses the Reynolds stress and turbulent intensity and
compares the Kolmogorov, Taylor, and dissipation length
scales. Section VI presents the scaling exponents of longitu-
*Electronic address: lewis@dnai.com dinal structure functions calculated using extended self-
"Electronic address: swinney@chaos.ph.texas.edu similarity. Section VIl is a discussion. An Appendix presents
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results for probability distribution functions for the wall is controlled to within a few millidegrees Kelvin of the set

shear stress and for velocity differences. point throughout a torque run, while the power dissipated
ranges from about 10 W to 2 kW. Temperature is measured
Il. EXPERIMENTAL SYSTEM with Thermometrics Fastip thermistors in direct contact with

) _ the working fluid. Heat is removed from the system via cool-
The experimental system consists of a Couette-Taylor apng fluid which is circulated in the top and bottom heads of

paratus, drive motor, motor control electronics, temperaturg, apparatus and separated from the working fluid by 1.6
regulation system, and a computer for control and data aGhm thick copper rings

quisition. The design considerations and apparatus were de- Since the heat is removed from the ends, we were con-

;gb:g d'i?ig)lg's-[Qi}hi?soi?ﬁggrsheszg[g]mphas'zes the Changeéerned that axial temperature gradients might cause errors.
9 y ' For Reynolds numbers below about 4000, where the rotation

rate is low (<1 Hz) and the viscosity is high, there were
A. The Couette-Taylor system axial temperature variations of up to about 0.05 °C between a

The Couette-Taylor apparatus has a stationary clear Plexthermistor at midheight and another at one-quarter height.
g|as outer Cy”nder with an inside radius bf=22.085 cm For hlgher Reyn0|dS nUmberS, where the turbulent transport
and a stainless steel inner cylinder with an outer radius ofs much higher, the difference between the two thermistors
a=15.999 cm; thus the gap I3—a=6.086 cm and the ra- Was less than 0.01°C.
dius ratio isy=a/b=0.724. To reduce end effects the inner
cylinder is made in three sections with only the 40.65 cm C. Flow states
center section used to measure torque. The total length of the giates with different numbers of Taylor vortices can be

apparatus id.=69.5 cm, which yields for the aspect ratio giape at a given Reynolds numHéi. In our apparatus, we

I'=L/(b—a)=11.4. In some experiments the fluid height {5 nq that ifR was slowly increased from rest, a state with
was reduced to 60.0 cni'(=9.8) by the addition of a spacer 14 yortices formed at the onset of Taylor vortex flom,

to the top head. In all cases, both ends of the annulus were gy \jith further increase iR, there were transitions to a

stationary. 12-vortex state aR=2000, a ten-vortex state &= 6000,

The end sections of the inner cylinder are rigidly attached, 4 4 eight-vortex state Bt=20 000; forR>20 000, only
to the drive shaft. The center section of the inner cylinder is ’ ’

mounted on low friction bearings and is driven through a

strain arm which transmits all of the torque required to turn *Qilc(r)ni/ss;; —0.023—
the center section. The inner cylinder is rotatgdab2 kW —0.115— —0.0097—
motor (PMI model JR25M6CH which has zero cogging and 10" e —

turns smoothly down to zero rotation frequen€yhe motor

used in the previous measurements had speed variations due
to 12 preferred rotor positions; these speed variations were
the dominant feature of wall shear stress measurements on 10
the inner cylinde). The motor speed is measured by an op-
tical encoder with 2500 pulses per revoluti@ynamics Re-
search Corp 25-031-B16-2500

()

We have measured torque for flow states with eight and 100 ¢ E
ten vortices withl'=11.4, and for a state with eight vortices G
with I'=9.8. For eight vortices anl=11.4, measurements
were made with six different values of the kinematic viscos- 100k 4

ity ranging from 0.00968 to 0.208 cts. The 0.009 68

cn?/s fluid was water; the 0.1521 éfs fluid was ethylene

glycol; the other fluidg0.0229, 0.0403, 0.1148, and 0.208

cn?/s) were water-glycerol mixtures. The viscosity was 10
measured with Cannon-Fenske Routine viscometers with an
accuracy of+0.5%. There was no measurable difference in

the torque for the pure and binary fluids, which indicates that
errors due to concentration gradients in the mixtures are in-
significant.

For the ten-vortex state, measurements were made with
water-glycerol mixtures with viscosities of 0.1148 and 0.203 e
cn?/s. For the shorter aspect ratib=9.8, measurements 10° 10 10° 10°
were made in the eight-vortex state using five fluids with Reynolds Number
viscosities ranging from 0.009 68 to 0.208 Um

FIG. 1. (a) Experimental values of nondimensional torque in the
eight-vortex state foF'=11.4; the average axial wavelength is 2.86
X the gap width. The viscosities of the fluids used in different runs

Temperature control is important because of the temperaare indicated at the toggb) Residuals of fit to Eq(3). The solid
ture dependence of viscosity. The working fluid temperatureurve is a fit to the Prandtl-von iKman model(4).

B. Temperature measurement and control
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the eight-vortex state was observed. Each of these flownent uncertainty is dominated by the hysteresis associated
states, once formed, remained stable wRemas slowly de-  with the seals and the contacts between the strain arm and

creased to nearlR. . inner cylinder.
The flow state for largér was visualized using buoyant
particles which go to low pressure regions, making the vor- E. Velocity and wall shear stress measurements

tex structure clearly diS(_:ernibIe. With this techniqge We 0b-  1he wall shear stress is measured with TSI model 1268W
served, contrary to previous repoffs7], that vortexlike co- ot fjim probes flush mounted on the outer and inner cylin-
herent structures persist with increasiRgeven toR= 10, ders. Azimuthal velocity measurements are made with TSI
our highestR examined. However, foR=100 000, the vor-  model 1210AJ-20W cylindrical and 1264BV conical hot film
tex boundaries drifted axially and the number of vortices wagrobes with TSI 1653B and 1750 anemometers. Anemom-
not well-defined. eter outputs are fed to computer-controlled variable offset
A stable anomalous nine-vortex state was produce at and gain instrumentation amplifie(Burr Brown PGA-2032,
= 1500 by introducing a convective perturbation. In this statefollowed by two computer-controlled, variable frequency,
there was an outflow boundary at the bottom end ring. Norswitched capacitor, eighth order Butterworth filtékational
mally the ends are inflow boundaries due to EkmanSemiconductor MF-#and active fixed frequency low-pass
pumping—the fluid is slowed by the end rings and forcedantialiasing filters.
toward the inner cylinder by conservation of angular mo- Velocity was measured in the middle of the gap, 4.35 cm
mentum. Benjamin studied similar anomalous states at lowetbove midheight for 12 060R<5.4x10°. The sampling
Reynolds numberg8—10. rate was _2500 times the inner cy]mder rotation frequency; 10
Our measurements focus on the eight-vortex state becaul@ 20 million samples were acquired for each Reynolds num-
it is stable over the widest Reynolds number range in ouPer:

apparatus, 88 R<100000. For convenience, we will refer f For thﬁ Vf#: sfhear strbess, E_)thmillion s?mple? v;/r?rte takeg
to the flow for R=100000 as the eight-vortex state, even f:gm ggg ticr)nesethgurro?ar\(t)ioﬁsr;\{le fc?r St?g'g Tgsr%;ﬂu% ;/:ne
though the number of vortices is not well defined. .

1536 times the rotation rate for the 0.0091%snfluid.

As an additional check and to provide absolute measure-
ments of the azimuthal component of the velocity, a 0.3-cm-
Improvements in the system resulted in torque measurediam Pitot tube(United Sensor PCC-12-KLwas used in

ments that for a given fluid are reproducible to 0.[8h an  measurements as a function of radial positiah annulus
order of magnitude increase in precision over previous meamnidheigh}. The Pitot tube was adjusted to be tangential to
surement$l]. Torque is measured using a Taedea Huntleigtthe flow.

model 305 7 kg full bridge bending beam strain arm with

total error of less than 0.02% full scale. A circuit consisting 1Il. TORQUE MEASUREMENTS AND THE PRANDTL -

of a REF-01 voltage reference source and a Darlington tran- VON KA RMAN SKIN FRICTION LAW

sistor provides a 10 V DC excitation signal to the strain arm.
The strain gauge signal is amplifiek 600) with an Analog
Devices AD624 instrumentation amplifier placed inside the Measurements of torque as a function of Reynolds num-
center section of the inner cylindé&his minimizes noise and ber for the eight-vortex state are presented in Figy.1A
eliminates the problem of slip ring resistancéhe measure- cubic least squares fit of these data yields

D. Torque measurements

A. Torque measurements

0.200%l0g;,R)3—1.97qlog;oR)?+ 7.77%log;oR) — 5.516, 26068<R=<13000,

19610G=1 _ 5 006 36010g,,R)+0.134910g,, R) 2+ 0.885Q10g;,R) + 1.610, 13 008&R=<10F,

©)

which is accurate abov@= 13 000 to 0.5% rms, and to 0.6% ratios differ less than 1% for f&cR<1C°, but the difference
rms for lowerR. The residuals of this fit are shown in Fig. increases to 4% at $0Presumably this increasing difference
1(b). Most of the variations shown in Fig(l) arise from the is a consequence of Ekman pumping, which causes the size
+0.5% uncertainty in the viscosity measurements. of the end vortices to increase with increasRgThe larger

We examined the dependence of the torque on the axiand vortices are “felt” by the measurement section of the
wavelength by comparing measurements for the eight- anthner cylinder more strongly with the short aspect ratio, re-
ten-vortex states, as shown in FigaR For R<13000, the sulting in a larger measured torque for this case.
torque scaling and velocity spectra indicate different dynam-
ics for the eight- and ten-vortex states. For lardrthe
torque values for the two states are within 2%.

The dependence of torque on aspect ratio was examined For power-law scaling, the exponent in Eg) would be
by comparing measurements on the shortened sysfem (constant with a value given by =d(log;oG)/d(log;qR),
=9.8) with those on the full height systeni’£11.4), as which is the slope of Fig.(&). This slope was approximated
shown in Fig. 2b). The torque values for the two aspect by taking a sliding linear least-squares fit for each fluid sepa-

B. Torque scaling
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Reynolds Number =d(log;0G)/d(log,oR) calculated for each fluid separately, using

a sliding least-squares fit over the interdg(log;oR) = 0.1 (eight-
]yortex state]'=11.4).(b) Comparison of torque exponents for the
eight-vortex state witH’'=9.8 (A) andI'=11.4 (@), and for the
ten-vortex state witi'=11.4 (@). For each state the slopes from
all fluids are averaged into bins af(log,oR)=0.05.

FIG. 2. (a) Comparison of torque in the eight- and ten-vortex
states ['=11.4), which have average wavelengths, respectively, o
2.28 and 2.86 times the gap widtB,, was taken directly from
measurements for viscosities of 0.11 %m (A) and 0.22
cn/s (@). The values of5g were calculated using a linear regres-
sion of logyR versus logy G for all the eight-vortex data within an
interval of A(log;oR)=0.12 centered at the corresponding ten-

vortex data point(b) Ratio of torques measured for the eight-vortex \/_6 =Nlogso ‘/6+ M, )
state at aspect ratios of 9.8 and 11.4, which have average wave-
length, respectively, of 2.46 and 2.86 times the gap width. where, for the two modeld\ andM are different functions

of the von Kaman constant and the geometry. By defining

rately over a range oA (log;oR)=0.1, and the results are the skin friction coefficientC;=G/R?, we obtain from Eq.
shown in Fig. 8a). Clearly there is no region where is  (4) the Prandtl-von Kianan skin friction law:
constant. Thus we find no power-law scaling, which is in
accord with the observations of Lathrepal.[1]. The tran- 1
sition in the behavior ofx at approximatelyR;= 1.3x 10° ol NlogioRVCi+M. ®
will be discussed in Sec. IV. f

Figure 3b) compares the scaling exponent for the ten-The torque data fit5) remarkably well, as Fig. (@ demon-
vortex state withI'’=11.4 and the eight-vortex state with gtrates. The parameter values from the fit Mre 1.56 and
bothI'= 9.8 and 11.4. Although the torque scaling dependsy; = — 1.83, which for Panton’s model imply a von’ Kazn
on the fluid state below the transitionR¢, for largerRthe  constant ofic=0.44, close to the standard value of 0[4Q].

values ofa for the different states are in good accord. Equations(2) and (4) can be solved to obtain a relation
o for the Reynolds number dependence of the scaling exponent
C. Comparison with Prandtl—-von Karman skin friction law a,
Lathropet al.[1] and Pantori11] have shown that a pre- 5
diction for the scaling behavior of the torque abd®e can a=— (6)
be obtained by assuming logarithmic boundary layers at each 1+ 2 logyee
cylinder wall. Lathropet al. treated the core region as an
extension of the boundary layers, while Panton assumed con- log;0 G+ N

stant angular momentum in the core region. The assumption

of logarithmic boundary layers with a core of approximately This prediction is compared with our measurements in Fig.
constant angular momentum is supported by measuremendgh). The agreement of the torque measurements with(@q.

by Smith and Townsenf7]. Lathropet al. and Panton both is much better than that reported[ifl.

arrived at the following relation between torque and Rey- To test the assumption that the angular momentum is con-
nolds number: stant in the core of the flow, we made the measurements
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FIG. 6. Velocity power spectra for state with eight vortices,
showing the presence of azimuthal traveling waves; all peaks are
close multiples of the lowest frequency peak. Each data set contains
at least 5<10° points sampled 40 times per inner cylinder revolu-
tion. Measurements were made at a vortex center: midgayl9
cm) and one-half vortex above midheight of the cylinder.

shown in Fig. 5. There is a small increase in specific angular
momentum with radius in both our experiments and those of
Smith and Townsen@13], but to good approximation it is
constant and given by

Ugr 1

0" 2 @

IV. TRANSITION AT Ry=13000

The measurements of torque, a globally averaged property
of the flow, reveal a transition &;=13 000, where there is
a sharp change in the slope of the torque expofigigt 3).
Although the transition aR; can be explained as arising
from the development of logarithmic boundary layer profiles
[1,11], there must also be changes in the structure of the core
region, where the torque is transmitted by the Reynolds
stress(cf. Sec. V B. We now examine velocity measure-
ments in the core to search for evidence for the transition at

A. Azimuthal traveling waves

Azimuthal velocity power spectra obtained on the outflow
boundaries and within a vortex reveal peaks at integer mul-
tiples of a fundamental frequencfig. 6). Cross correlation
of velocity measurements with two probes at the same radius

FIG. 5. () Specific angular momentum at cylinder midheight @nd height but separated by 5.5° azimuthally show that the
(an inflow boundary as a function of radius(b) Comparison of

present data #£=0.724) for

R=50000 @)

and R

=540000 @) with data of Smith and Townsend;& 2/3) for R

=50000 (A).

spectral peaks correspond to azimuthal traveling wa\id®e
peaks are weak or absent on the inflow boundarisslow
Reynolds numbers there is a dominant peak, but as the tran-
sition is approached with increasimf) more modes rapidly
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FIG. 8. Wall shear stress cross-correlation measurements show-
. . ing the presence of azimuthal traveling waves with decreasing am-
0 T TS T plitude with increasingR. The two probes are separated both azi-
Reynolds Number muthally and axially on the outer cylinder. One is at midheight, and

the second is 2.75° downstregh06 cm) and a half vortex4.35
FIG. 7. Angular velocity of azimuthal traveling waves for the cm) above the first.
eight-vortex state. The angular wave speed was calculated by divid-
ing the frequencies of the dominant peaks by the mode number artibn [Fig. 9b)]. The advection velocity increases below the
averaging the results for each Reynolds number. transition but is approximately constant above it. For
>Ry, the structures that contribute most to the wall shear

0 : S
become excited and the peaks become weaker and comp%gfss are advected at about 70% of the fluid velocity in the

rable in amplitude. FOR> R, the peaks gradually decrease
in amplitude, but the lowest frequency peak remains discer
ible in spectra up to at leaf®=750000, even though the
Taylor vortices are no longer stationary.

Measurements of the wave speed as a function of Re
nolds number indicate a change in the behavior of the flui
core atRt (Fig. 7): the wave speed increases monotonically
below Rt and then becomes approximately constant above
R;. The wave speed value B;, 0.35, is the same as the

Our final piece of evidence for the transition Bt is
ng']iven by measurements of the decay timg, of the auto-
correlation function of wall shear strefisig. 10. [tq is cal-
culated by fitting the wall shear stress autocorrelation func-
Yion to A(t)~e ta.] For R<R;, probes at midvortex show
different decay time behavior from probes at the inflow

The azimuthal traveling waves are also visible in wall
shear stress measurements on both the outer and inner cylii
ders. The same frequencies are measured by the wall she: ‘
stress probes as in the velocity spectra, except that the peal o3
in the wall shear stress spectra are much weaker, and th
frequencies measured at the inner cylinder are shifted be's
cause the sensor is in a moving reference frame. Figure (g
shows cross correlation of measurements by two wall shea %,
stress probes on the outer cylinder. Although the correlation’g 0.6
is small, the waves are clearly present at the lower Reynolds 2
numbers, and the amplitude rapidly decreases as the trans 05 L ]
tion is approached. ’ - ‘

Cross correlation of wall shear stress measurements witt ~ 3x10
different probes provides further evidence for a transition at
Rr: the maximum correlation coefficient decreases more g, 9. (3 Maximum of the correlation between wall shear
rapidly above the transition than below{kig. Xa)]. stress probes on the outer cylinder at midheight, separated azimuth-

Evidence of the transition &y is also provided by ad- ally by 2.75°(1.06 cm). (b) Dimensionless advection velocity cal-
vection velocity values deduced from the wall shear stresgulated from time to maximum correlation and the distance between
measurements: the velocity is calculated by dividing the disprobes. The velocity is normalized by the “core velocity,” the ve-
tance between probes by the time to the maximum correldecity at which the angular momentufda®=1/2.

normalized angular fluid velocityJ ,/r(}, computed from g 08 .
Eqg. (7) at midgap. g
q.(7) gap S 05| ]
g
B. Walll shear stress correlations E gal ,
£
2
=

0.

(]
T

5

3x10° 10
Reynolds Number
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FIG. 10. Decay times calculated from the autocorrelation func-
tions of wall shear stress data.

FIG. 11. (a) Power spectra of azimuthal velocity measured in
the core region. R=540000 andR=34800 correspond tdR,
=270 andR, =80, respectively. (b) Slopes of the same spectra.
The slopes were calculated by performing a sliding linear least-
V. LENGTH SCALES: DISSIPATION, TAYLOR, squares fit of the spectra over a rangeAdfilog,oR)=0.05. The

AND KOLMOGOROV dashed line at-2 indicates maximum dissipation. The dotted line
indicates where the slope is equal+®/3, the Kolmogorov expo-
nent value. The lack of a region of constant slope equat 53

Velocity power spectra at two Reynolds numbers are preshows that there is no inertial range.

sented in Fig. 1(a). The abscissa at the top of the figure

shows that the length scales are surprisingly Iarge for suchhe torque data and E€7) show that in the core, the viscous
high Reynolds numbers. The gap width, 6 cm, is only beontribution decreases from about 2% of the totalRat
tween 30 and 100 times larger than the smallest length scale 1 5 about 0.06% aR=10F.

above the noise floor. We now compare dissipation calculated from the velocity

Figure 11b) shows that the slopes of the power spectrayaia and from the torque. From the hot film data, the dissi-
are not constant over any range in frequency. Thus there {Sation (assuming isotropyis given by

no inertial range, and this flow is fundamentally different
from fully developed isotropic turbulence and from turbulent
pipe or channel flow, where an inertial range exists and Kol- = 150((Jul 9x)2) = 15 f K2E(K)dk 10
mogorov's— 2 law holds at much lower Reynolds numbers. € P{(9U19%)%) v (kydk (10

boundary, but foR>Ry, all probes show a similar power-
law decrease iy with increasingR.

A. Absence of an inertial range

B. Turbulent intensity, Reynolds stress, and length scales wherex andu are the streamwise direction and velodjiye

The azimuthal turbulent intensityi,,= W/Ue was treat the local velocity fluctuations in Cartesian rather than
l 6, ’

measured at midgap with the hot film probes to be 6.0—7.5%Cy|i_ndrical coc_)rdinate)s_ Fr(_)m the torque the average dissi-
with the lower value at higher Reynolds numbers. A fit gﬁ/tilggdpt?; t‘;\?ﬁg@?gﬁﬁgﬁﬂig}/ the total power infii
aboveR; yields '

ip=0.1R %1% (8) RGO
' - (&)= smp—ad)" D

The radial turbulent intensity for 10 06(R<<60000 at an
inflow boundary was measured by ultrasound to be abo
12%. These turbulent intensities are similar to those reporte
in [7].

The torque per unit length is transmitted by the Reynold
stress and viscous forces:

he dissipation calculated from the power spectra, (),
IS between 30% and 50% of that calculated from the torque,
Fa. (12), with the largest discrepancy at Idwy this is within

the expected range and in the expected direction, considering
the anisotropy and that the dissipation from the torque in-
’ cludes the boundary layers while the dissipation from the hot
I_ E—(u Ugr?— rgi(& 9) film data is point measurement in the cdfef].
L 27 "7 ar\ ) The Kolmogorov scale is
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FIG. 12. Length scalesX), Ny, Taylor microscale calculated
from Eq.(13); fitis A;=47.(R" %472 (@) )4, length at the maxi-
mum dissipation in the velocity power spectra; fit sy
=115R"2605 (m) A, Kolmogorov length scale calculated from
Egs.(10) and (12); fit is A =42.0R 674

FIG. 13. Velocity structure functions &= 540 000. The veloc-
ity in units of cm/s was normalized by the inner cylinder rotation
frequency(Hz).

creases. For fully developed turbulence these are believed to
1/4 scale as power laws & [17]:

: 12

V3

)\K: P

((Aug)P)~sfp. (15
where we use Eq10) to determinee. The Taylor microscale .

is defined ag15] Deviations from the Kolmogorov 1941 values ¢f=p/3
[18] characterize the intermittent nature of the flow. The first
four structure functions are shown in Fig. 13. We use the

w2 f E(k)dk absolute values of the velocity differences in calculating the
2= - = (13)  structure functions because this is more statistically stable.
((aulax)) f K2E(K)dk While there is no theoretical justification for this, numerical
and experimental evidence suggests that using the absolute

values does not significantly change the exponent in(Exg).
Figure 12 shows\y and\ determined from Eq912) and  [19-22.
(13). These values okt were used to calculate the Taylor  Like the power spectra, the structure functions show no
Reynolds numbersR, =(u?)\/v, given in this paper. Be- region of power-law scaling. However, Beretial.[19] have
low R=R;, R, was extrapolated and is less accurate. shown that the range of power-law behavior can be extended
The dissipation is greatest at the wave nunmiggrwhich  to lower Reynolds numbers using extended self-similarity
maximizes the integrand of E¢L0). From this we define a (ESS, that is, by plotting(]Aug/P) versus(|Aug®) on a

dissipation length scaley=1/ky. log-log plot; the slope is theti, /{3, and{, is determined by
The Kolmogorov, Taylor, and dissipation length scalestaking {3=1 from Kolmogorov’'s 4/5 law. Figure 14 shows
are shown in Fig. 12\ 4 is about seven times larger thag, the structure functions using extended self-similarity for

close to the nine times found for fully developed turbulence=1 to p=10. These are remarkably linear even though we
[16]. The Taylor scale is about twice as large as the dissipaelearly do not have anything resembling a scaling region in
tion scale, indicating that we do not have the separation ofhe energy spectra or in the classical structure function plots,
scales required for the development of an inertial range. and the length scales in the core are surprisingly large. The
structure functions of other flows show deviations from a
V1. VELOCITY STRUCTURE EUNCTION SCALING straight line at five to twenty times the Kolmogorov micro-
scale, while the data of the present study are linear over the
The longitudinal velocity structure functions are definedfull range of length scales: from=0.07 cm, which is just
as above the noise floor, t&=42 cm where the velocity differ-
ences are Gaussia(for discussions of the range of length
((Aug)P)y=([u(x+s)—u(x)]P), (14  scales at which ESS applies, §@4-25.)

The {,’'s at R=69 000 andR=540000 are compared to
whereu(x) is the velocity component at the positiarpar-  those obtained by others in Tablg19,23—-26. The values
allel to the relative displacemenst These were calculated for {, in Table | agree quite well up tp=6. Some of the
using Taylor's hypothesisu(x+s,t)=u(x,t—s/U). The discrepancy abovp=6 is due to less reliable statistics and
structure functions measure increasingly rare eventsias ~ some due to differences in the method of calculatigg A
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FIG. 15. Comparison of the values of the structure function
exponents{, determined from the present experiments Rit
10! 1 =69000 (A) and R=540000 @) with predictions of the log-
e/’ <Auf>  (em) normal(16) (solid line) and She-Leeque(17) (dashed lingmodels.
In the absence of intermittency, Kolmogorov the¢hg] gives ¢,
FIG. 14. Evidence for extended self-similarity: third versus first = p/3 (dotted ling.
through tenth order velocity structure functions Rt 540 000.

Lines are linear least-squares fits with slopes given in Table I. Th?lvhere the exponent for the second moment of the dissi-
velocity was normalized by the inner cylinder rotation 1‘requencypaﬁon’UHaS the value 0.27 for the best fit to our data: (@d
(Hz). For the points shown abovs,varies between 0.067 cm and She a,nd (etque’s reSlet obtained assuming a hiera'rchy of

42.2 cm, corresponding to normalized frequenciesf(/Z)) of 625 . - - -
and 1, respectivelysee Fig. 11 fluctuation strctures associated with vortex filamdg@2(g,

=3
o

comparison of different methods of calculatigg can be p
found in [23] and a discussion of the values &f can be £p=§+2—2(2/3)p/3. 17
found in[17] and in[22].
In Fig. 15 we compare our measurements, pfwith the
predictions of two theorie§17]: (a) Kolmogorov's log- which has no adjustable parameters. Although the log-

normal model, normal model provides a slightly better fit to our data, this
model is known17] to have two deficiencies: it violates the
_p Mo, Novikov inequality and it implies supersonic velocities at
éVp_3 1+ 6 3 p)), (16) very high Reynolds number.

TABLE |. Values of , calculated using extended self-similarity compared with values measured by others.

p R=69 006} R=540 000 Anselmet [26] Benzf [19] Stolovitzky? [25] Belin® [24] Boratay [23]
1 0.37 0.37 0.4

2 0.70 0.70 0.71 0.71 0.70 0.70 0.69

3 1 1 1 1 1 1 1

4 1.27 1.27 1.33 1.28 1.20 1.26 1.28

5 151 1.50 1.54-1.65 1.53 1.52 1.50

6 1.72 1.72 1.8 1.78 1.62 1.71 1.78

7 1.92 1.90 2.06-2.12 2.01 1.96 1.90

8 2.09 2.06 2.22-2.28 2.22 2.00 2.08 221
9 2.26 2.19 2.41-2.52 2.36 2.19

10 2.41 2.32 2.6 2.60 2.36 2.30 2.60

4R, =80.

bR, =270.

Direct calculation on experimental data. Range of numbers is for different experiments.
YExtended self-similarity on experimental data.

®Experimental data fit to functional form.

fExtended self-similarity on simulation. Sg23] for values ofZ, using other methods.
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FIG. 16. Comparison of log-normal distribution with observed
wall shear stress measurementsRat 70300: (a) inner wall, (b)
outer wall. Insets show the same data with a linear ordinate.

trapolating our results far yields an estimate of the value of
R when a=2: R~3Xx10® which is comparable to our
estimate forR for the emergence of an inertial range.

We have presented evidence from local measurements for
the transition atRy=13000, which was first observed in
measurements of torque, a global quanfity; this transition

We have found that even &=10° (R, =290), Couette- is clearly evident in our results for torque exponéfig. 3).
Taylor flow exhibits no inertial range and the dissipationThe transition is also clearly discernible in local velocity
scale is largéabout 3% of b—a)/2x]. In contrast, pipe and measurements of the azimuthal wave spdgd. 7) and also
channel flow exhibit a well developed inertial range at suchn the amplitude of the waves detected in wall shear stress
high R. Perhaps the rotation suppresses the energy cascadedata (Fig. 8). Further, this transition can be in seen in the
the Couette-Taylor system. A clearly defined inertial rangeadvection velocity determined from cross correlation of sig-
should emerge in our system wheg>\ 4, which probably nals from two wall shear stress probésg. Yb)]. Finally,
corresponds t&R>10® (Fig. 12; because of the Joule heat- the wall shear stress measurements show a greater axial
ing, such high Reynolds numbers could not be achieved in ariation belowRy than aboveRy (Fig. 10.
table top apparatus unless the working fluid were helium at
low temperatures.

Despite the large length scales and the absence of an in-
ertial range, we were able to obtain, using extended self- We acknowledge the help and inspiration of our col-
similarity, the scaling exponents, for the longitudinal ve- league, David J. Tritton, who died last year. He will be
locity structure function. Our values fd, are slightly lower — greatly missed. We thank everyone who worked on this ex-
than those measured in most other turbulent flows; howeveperiment, especially Paul Umbanhowaho made the ultra-
they agree well with those measured by Bedinal. [24]. sound measurementd-rancisco Melo, and William Manor.
Although the lower values may not be significant, they mayDan Lathrop originally designed and built the experimental
suggest that Couette-Taylor flow is more intermittent, but toapparatus and provided help and guidance for the early part
test this supposition, we would have to consider the transef this project. This project also benefited from discussions
verse structure functiongFor transverse structure functions with D. Bogard, J. Fineberg, P. S. Marcus, W. D. McCor-
the displacement is perpendicular to the velocity componenmick, and R. Panton. This work was supported by ONR
and the deviations from Kolmogorov 1941 theory are everGrant No. N0014-980-1-0047.
larger[23,2§.)

We have presented very precise torque measurements tha}&PPENDlx: PROBABILITY DISTRIBUTIONS OF WALL

yield a scaling exponent for the dimensionless torqué SHEAR STRESS AND VELOCITY DIFFERENCES
~R%, which is not constant but increases linearly with

log;oR for R>R (Fig. 3). However,a cannot increase with- Probability distribution functions are not the subject of
out limit—there is a rigorous upper bound=2, which has this paper, but we present results for the distribution func-
been derived from the Navier-Stokes equafi28|; intermit-  tions here because of their importance in turbulence theory.
tency could lead to a smaller asymptotic value &arEx-  Above the transition aRy, the probability distribution func-

VII. DISCUSSION
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tions of the wall shear stress measured at both the outer arsdjuared. Since the functional form of this distribution is un-
inner cylinders are approximately log-normal, particularly inchanged by squaring, the dissipation at the wall is also log-
the tails(Fig. 16. The log-normal distribution has the form normal.
) Probability distribution functions for velocity differences
P(r)= 1 exp{ —[In(7/A)] ) (Fig. 17 were calculated using Taylor's hypothesis. From a
2AeA AT 4A ' theoretical perspective the distribution of velocity differ-
ences is more important than the distribution of velocities.
whereA is the most probable valuér)=Ae* is the mean, Figure 17 shows that as the separation distance increases, the
ando,=(7)(e?*—1)2is the standard deviation. The outer distributions change from having exponential tails to Gauss-
cylinder measurements show more high energy events aridn tails. This contrasts with turbulent flows with a well-
are closer to a true log-normal distribution. Energy dissipadeveloped inertial range, where the distribution functions
tion at the wall is proportional to the wall shear stresshave been found to have stretched exponential fa#s30.
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