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Motivated by experimental observations of exotic free surface standing wave patterns in the two-frequency
Faraday experiment, we investigate the role of normal form symmetries in the associated pattern-selection
problem. With forcing frequency components in ratidon, wherem andn are coprime integers that are not
both odd, there is the possibility that both harmonic waves and subharmonic waves may lose stability simul-
taneously, each with a different wave number. We focus on this situation and compare the case where the
harmonic waves have a longer wavelength than the subharmonic waves with the case where the harmonic
waves have a shorter wavelength. We show that in the former case a normal form transformation can be used
to remove all quadratic terms from the amplitude equations governing the relevant resonant triad interactions.
Thus the role of resonant triads in the pattern-selection problem is greatly diminished in this situation. We
verify our general bifurcation theoretic results within the example of one-dimensional surface wave solutions
of the Zhang-Vimls model[J. Fluid Mech.341, 225 (1997] of the two-frequency Faraday problem. In
one-dimension, a 1:2 spatial resonance takes the place of a resonant triad in our investigation. We find that
when the bifurcating modes are in this spatial resonance, it dramatically effects the bifurcation to subharmonic
waves in the case that the forcing frequencies are in ratio 1/2; this is consistent with the results of Zhang and
Vinals. In sharp contrast, we find that when the forcing frequencies are in a ratio 2/3, the bifurcation to
(subharmonic waves is insensitive to the presence of another spatially resonant bifurcating mode. This is
consistent with the results of our general analyls$4.063-651X%99)01505-6

PACS numbds): 47.54:+r, 47.20.Ky, 47.35ti

I. INTRODUCTION that the patterns argynchronousvith the forcing frequency.
The Faraday wave problem is an attractive experimental sys-
Exotic free surface standing wave patterns, parametricallyem for studying the fundamental mechanisms behind the
excited by two-frequency forcing, have attracted consideroccurrence of such patterns because of the fast time scales
able attention in recent years, both experimentdly6] and involved and the number of tunable control parameters
theoretically[1,7—10. In this system, the surface waves are[16,17).
excited by subjecting the fluid layer to a time-periodic verti- One motivation behind some of the early experiments on
cal acceleration with twdrationally related frequency com-  two-frequency parametric excitation of Faraday waves was
ponents. This corresponds to a modification of a classic hyto destroy the symmetry associated with subharmonic waves
drodynamic problem, which dates back to observations of2—4]. Specifically, in the classic Faraday experiment with
Faraday[11], in which the surface waves are parametricallysingle-frequency forcing cosf), the onset surface waves re-
excited by a purely sinusoidal vertical acceleration of thespond subharmonically with frequenay2 [18]. (Harmonic
fluid container[12]. Triangular patterng4], quasipatterns response is also possible for very shallow layers of viscous
[3,5], and superlattice patterhS] are among the more exotic fluid [19,20.) In the situation of subharmonic response there
states that have been observed in laboratory experiments efs-a discrete time translation symmetryt+ 27/ that is
ploying two-frequency forcing. Here, “quasipatterns” are broken by the state of the system. This i&asymmetry and
patterns with twelvefold symmetry and are the hydrody-it manifests itself in the governing pattern amplitude equa-
namic analogs of two-dimensional quasicrystals. These pations by suppressing all even terms. Edwards and FBive
terns are not spatially periodic, but do have long-range orinoted that by introducing the second perturbing frequency
entational order; their spatial Fourier transform exhibitscomponent to the periodic forcing, they could destroy this
twelve prominent equally spaced peaks that lie on a circlediscrete time translation symmetry of the system.
Such patterns have been observed for two-frequency forcing A second feature of using two-frequency forcing is that it
with excitation frequencies in ratios 4/5, 4/7, 6/7, and 8/9is possible to obtain a neutral stability curve with minima at
[2,3], as well as in single-frequency Faraday experimentswo distinct wave numbers, where the ratio of these two
[13-15. In contrast, “superlattice” patterns are spatially pe- critical wave numbers can be adjusted by varying the two-
riodic with structure on two disparate length scales. Theyfrequency components of the forcing. Typically, one mini-
have been observed in the two-frequency Faraday systemum corresponds to standing waves that are subharmonic
with a forcing frequency ratio of 6/[5]. The observations of with respect to the forcing frequency, while the other mini-
both quasipatterns and superlattice patterns have indicatedum corresponds to synchronous waj@s It was proposed
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by Edwards and Fauvig] that by tuning the ratio of wave =1/2, as studied by Zhang and \4ils. In this latter case, the
numbers of the most unstable modes one could control theresence of near-critical resonant triads leads to peaks in the
resonant triad interactions that are important to the patterncross-coupling coefficieng(#) [1]. In order to understand
formation procesg21]. Indeed, all of the exotic patterns the distinction between these two situations, we first recall
mentioned above were obtained with experimental paramthat in each of these cases the neutral stability curve has a
eters near the so-called “bicritical point” where two modes double absolute minimum at the bicritical point, with one of
lose stability simultaneously3-5]. the minima associated with a FvH-1 and the other with a
The role of resonant triad interactions in the formation ofFM= —1 [3,8]. At the bicritical point, there are two distinct
Faraday wave patterns has been investigated extensively layitical wave numbersk,, andk,(k,<k,). The FM=+1 is
Vinals and co-workers for both the case of single-frequencyssociated with the smaller critical wave numigy if the
forcing [22,23 and two-frequency forcinfl]. The most de- even frequency is less than the odd offiee., m/n
tailed two-frequency calculations focused on the situation=even/odd), and it is associated with the larger wave num-
where the frequency ratio was 1/2, and the onset surfackerk, if the even frequency igreaterthan the odd oné.e.,
wave response was subharmonic with the forcing. Zhang aneh/n=odd/even). We show that in the former case the nor-
Vinals compared their theoretical results with the experimenmal form of the coupled amplitude equations describing the
tal results of Miier [4], who observed subharmonic hexa- relevant resonant triad interaction does not possess any qua-
gons, triangles, and squares near the bicritical point; whichiratic terms because of a symmetry associated with the sub-
pattern was observed depended on a relative phase betwelesirmonic waves. This is in contrast to the case of odd/even
the w and 2w sinusoidal waveforms in the forcing function. forcing where quadratic terms are present in the normal
A key theoretical idea behind the work of Zhang andaf:n  form.
[1,23] and Chen and Vials[22] is that the presence of cer- In this paper, we demonstrate this distinction between
tain resonant triads composed of Fourier mode wave vectorsven/odd and odd/even forcing by considering a simple ex-
k1, ky andk,+k,(|k1|=1|k,|) can suppress the formation of ample of one-dimensional waves that are parametrically ex-
regular wave patterns that involve tkg andk, modes. In  cited by two frequencies. Rather than consider the full hy-
particular, this is the case when the and k, modes are drodynamic equations, we investigate this issue using a
excited at the onset of the Faraday wave instability, while thesimpler model derived from the free-surface Navier-Stokes
mode with wave vectok; +k, is only weakly damped. This equation by Zhang and Vats [23]; their model applies to a
situation arises quite naturally near the bicritical point indeep layer of low-viscosity fluid. We consider botlw/Bw
parameter space. and lw/2w forcing frequencies, over a range of frequencies
Motivated by the ubiquity of quasipatterns in two- w, including a critical frequency for which a one-
frequency Faraday experiments, Lifshitz and Petf@hre-  dimensional spatial resonance occurs. Specifically, at the
cently investigated twelvefold quasipatterns within thecritical frequency, the minima at the bicritical point are in
framework of a simple Swift-Hohenberg-type model for theratio k,,/k,=1/2. We find that this spatial resonance leads to
evolution of a real scalar fieldi(x,t). Their model lacks a divergence of the Landau coefficient in the amplitude equa-
reflection symmetryu— —u, and the linearized equations tion describing bifurcation to subharmonic waves in the case
lead to a neutral stability curve with a double absolute mini-of the 1/2 forcing frequency ratio; this is consistent with the
mum. However, because their model leads to time+tesults of Zhang and Vads [23]. In contrast, the Landau
independent patterns arising from steady-state bifurcation, ttoefficient for waves, parametrically excited by two-
does not capture one of the key features of the two-frequendiyequency forcing in ratio 2/3, is unaffected by any parameter
Faraday problem. Specifically, at the bicritical point in the proximity to the bicritical point and/or the spatial resonance
Faraday problem, one of the neutral curve minima is associpoint. While the wave vectors of the critical modies and
ated with a Floquet multiplie{FM) +1, while the other 2k, are in resonance, there is a mismatch in their frequen-
minimum is associated with a FM of 1. A FM of +1 cies: in this case the usual large contribution to the Landau
indicates that the transition is to a pattern which oscillates atoefficient due to the spatial resonance is absent.
the same frequency as the excitation frequency, while a FM The next section of the paper provides the necessary
of —1 indicates that the transition is to a pattern which os-background to our analysis. It reviews the key theoretical
cillates at half the excitation frequency. In this paper we arddeas about the role of resonant triad interactions in pattern-
specifically interested in this feature of the bicritical point of formation problems, as well as the linear theory for Faraday
the two-frequency Faraday experiment, and its potential inwaves, parametrically excited by two-frequency forcing.
fluence on the resonant triad interactions important to th&his background section closes with a discussion of the nor-
pattern-formation problem. mal form symmetries associated with the subharmonic insta-
We investigate the role of resonant triads in the formatiorbility. Section Ill sets up the example of one-dimensional
of wave patterns near the bicritical point in parameter spacesurface waves, indicating the precise analogy between triad
We focus on the situation that applies to the two-frequencyesonance in two dimensions and spatial resonance within
quasipatterr{3] and superlattice patterfb] experiments in this simpler one-dimensional problem. This section also pre-
which the forcing frequency ration/n<<1, hasmeven anch ~ sents the governing hydrodynamic equations that describe
odd. We show that the usual contribution of resonant triadparametrically excited surface waves in the limit of an infi-
to the cross-coupling coefficient in the amplitude equationsiite depth fluid layer and weak viscosity. The last part of
may be greatlysuppressedn this case. This is in marked Sec. lll sets up the weakly nonlinear analysis that we use to
contrast to the situation of subharmonic waves with forcingcompute the cubic Landau coefficient for harmonic and sub-
ratio m/n<1, wherem is odd andn is even, e.g.m/n harmonic waves. Section IV presents bifurcation results for
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A B=\B+ aA*C+(a|B|?>+b|A|?>+c|C|?)B, (4)

C=uC+ BAB+(d|A|>+d|B|?+€|C|?)C,

where the asterisk indicates the complex conjugate, and the
coefficients are all real. Ik=0, u+# 0, then one can further
reduce the bifurcation problem to one involving the critical
modesA and B, with C constrained to the center manifold:
. C=—(B/u)AB+---. One obtains, for|\| sufficiently
FIG. 1. On the left is a plot of a neutral stability curxgk), small, the reducedunfolded bifurcation problem
showing minima ak=k,, andk=k,,. On the right is an associated

k., k, k

resonant triadk,, k,, and k;+k,, where |k;|=|k,|=k, and . 2 _% 2

|k;+ky|=k,. The angled betweerk,; andk, is related to the ratio A=MA+alA[*A+|b o [BI*A,

kn/km by Eqg. (2). (5)
. . S 2 aB) o

two examples: waves parametrically excited by two- B=AB+a|B[*B+ b—7 |Al“B.

frequency excitation in the ratio 2/3 and waves excited with
a 1/2 excitation frequency ratio. Section V summarizes ourrhe presence of the near-critical mo@én Eq. (3) leads to

results, and indicates some directions for future work. a large cross-coupling coefficieg#)=[b— (aB/x)] in the
amplitude equationéb) since|u|<1. A consequence of this
Il. BACKGROUND is that patterns that involve an equal amplitude superposition

of modesA andB tend to be unstable at onset. For example,
the stability of steady rhombic patterns at angleA=B in
One of the central ideas in pattern formation studies ofq. (5)], within the setting of the amplitude equatiofis, is
quasipatterng3,9,15,21 and surface wave patterns para- determined by two eigenvalues whose signs ard s
metrically excited by two-frequency forcind.,3] involves  —(aB/u)] and sgha—b+(aB/w)]. When |aB/u|>|a|
near-critical resonant triads. Three linear traveling wave+ |b|, the two eigenvalues take on opposite signs and the
modes, for instance, form a resonant triad if their wave vecpattern is necessarily unstable at onset. If the spatial reso-
torsky, Kz, ks and frequencies;, o,, w; satisfy nance occurs nea#=7/2, for example, then square plan-
forms are unstable. Quasipatterns and spatially periodic “su-
Ki—kz—ks=0 and w;—w;—w3=0. (1) perlattice” patterns, such as described5m10,25, involving

Since instability to a givew andk first onsets at a minimum Eoth ?f the mgdeaA andB ablpve areﬁsmﬂa;ly .detshtablllzed
of a neutral stability curve, there is particular interest in sys- Iyt ad arge C;J. Ic c;p;s-coqptl_ngd_coe 'C'?ﬂ ) in the am- |
tems, such as the Faraday system with two-frequency ford2ItUde equations. ThiS point IS diScussed for various reguiar

ing, for which it is possible to have a neutral stability curve patterns, including quasipatterns, [i.

with a double minimum. The double minimum corresponds

to a bicritical point and the resonant triad interaction of in- B- Bicritical curves for the two-frequency Faraday problem

terest is then given by the locations of the minima, kay We now examine, in greater detail, the double minimum

andk,, of the neutral curve. The resonant triad is made up obf the neutral curve associated with the Faraday problem

wave vectors;, k, andk;+k,, where|k;|=|k,|=ky, and  with two-frequency forcing. Besson, Edwards and Tucker-

|ky+ko|=k,. Thus the angle betweenk; andk, satisfies man[8] computed the linear stability of the flat free surface
of a shallow fluid layer subjected to a periodic vertical ac-

A. Resonant triad interactions

Cog{ g) = 2'7(” . ) celeration
) 9(t)=go— g,[cog x)cod mwt) + sin( x) cog nwt + ¢)].
Here we have assumed that®,<k,<2k,,; see Fig. 1. (6)

To illustrate the possible influence of resonant triad inter- is th | itational lerati d
actions on pattern formation, we first consider a steady-stat@erego Is the usual gravitational acceleration,andn are

bifurcation problem, where modes of wave numhkgrand ~ COPrime integers, ang,,w, y, ¢ are additional external con-
k, lose stability(almos} simultaneously with the increase of trol parameters. Note that the anglecontrols the relative

an external control parameter. We consider a bifurcatio mplitudes of thgmw foreing andne forcmg. Bessc_)ret al. .
problem on a six-dimensional center manifold for linear .8] com_pared,_ with go_od agreement, their th_eoretlcgl pre_d|c-
modes tions with their experimental results for various fluids with

different viscosities in the case that=4 andn=5 in Eq.
At)e'ki x4 B(t)eke X+ C(t)elkitka x4 cc.,  (3)  (6). In this case, they found that the initial instability of the
fluid surface was either associated with a Floquet multiplier
whereA,B,C e C. Symmetry consideration®4] determine (FM) —1 or +1, depending on whether the odd or even
that the unfolding of the bifurcation problem takes the form,frequency component in Eq6) dominated. The transition
through cubic order in the amplitudes, between subharmonic (F¥—1) and harmonic response
) (FM=+1) occurred at a particular value of the anglen
A=\A+ aB*C+ (a|A|?+b|B|?+c|C|?)A, Eq. (6), called the bicritical point.
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FIG. 2. Neutral stability curves computed from EJ). The
angley in Eq. (6) is indicated in the lower right corner of each plot.
Floguet multipliers of+1(—1) are indicated by soliddashedg
lines. The first instability encountered with increased foraipds
to harmonic waves ify<yx.~63°, and to subharmonic waves for
X>Xc- The other parameters of the forcing function axe-4, n
=5, ¢=0, and w/27=11 Hz; the fluid parameters aré&
=20.6 dyn/cm,»=0.209 cni/s, andp=0.95 g/crm.

Here we do not consider the full hydrodynamic problem,
but rather a simplified model derived by Zhang and afn
[23], which applies to a deep layer of weakly viscous fluid.
The linearized equation for the free surface mbgg)e'** is

" 21! st 214
"+ 4vkh] + g(t)k+7+4v k*lhe=0, (7

where v is the kinematic viscosity of the fluidl’ is the
surface tension, ang is the fluid density. Note that in the
absence of the time-periodic parametric forcifige., g,
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of k associated with FMs:=1. The locations of the minima
can be roughly approximated by considering the simple wa-
ter wave dispersion relatiomgzgokﬂ“k?’/p, and assuming
subharmonic response to the forcing frequenciematand

Nw, i.e., form=4 andn=5:

do rk®

2

2
) ~Qok, +

=l
For the example of Fig. 2 this approximation yields
~8.0 andk_=9.8. We note that the neutral stability curves
obtained from the simple linear problefm) are qualitatively

very similar to those obtained by Bessenal. [8] from the
full hydrodynamic problem, cf. our Fig. 2 with Fig. 2 [8].

()
re
~gok_+ —.
Yo P

5w

2

C. Normal form symmetries

We now reexamine the role of resonant triad interactions
for the mode interaction problem pertinent to the two-
frequency Faraday experiment. In particular, we will inves-
tigate the additional effect of normal form symmetries on the
pattern-formation problem. It is through the normal form
symmetries that we take into account certain aspects of the
temporal resonance condition in EG). We wish to contrast
the situations where the forcing frequencie® andnw in
Eg. (6), m<n, havem even,n odd withm odd, n even. We
are specifically interested in the case where the aygie
Eq. (6) is close to the bicritical poink, .

We analyze the resonant triad interaction in terms of a
stroboscopic map since we are interested in a periodically
forced system. We denote the surface height at timpT,

p an integer,T=2m/w, by hy(x). Let the resonant triad be

hp=Ape*1 X+ Bye!2*+ Cpellarkd Xt ect -, (9)

where |k,|=1|k,| =k, and |k, + ks =k, 0<Kn<k,<2Kp,.
Here them,n subscripts indicate that the critical wave num-
bers can be roughly associated with the andnw forcing,
respectively, as in Eq@8) above. The general form of the
cubic-order amplitude equations, consistent with translation
symmetry and reflection symmetry, [isf. Eq. (4)]

Ap+1=NA+ aB% Cp+(al A2+ b|By|?+c|Cyl?) Ay,

Bp+1=ABp+ aA} Cy+(a|By|2+b|Ay|*+¢|Cy|2)B,, (10)

=0), one recovers a dispersion relation, where the damping ., = ,.C_+ BA,B,+ (d|A,|>+d|B,|2+€|C,|2)C, .

is given by 2k? and the water wave frequenay, satisfies
the usual gravity-capillary wave dispersion relatioarﬁ
=gok+T'k%p.

In the case tham is even andh is odd, the Floguet multipli-
ers for the linearized problem ake= +1 andu=—1 when

In Fig. 2 we present an example of the neutral stabilityy = y., whereas ifm is odd andn is even, thel\=—-1, u

curvesg,(k) for the parameters used by Besseinal. [8],
and for various values of the paramejefThese curves were
obtained from Eq(7) using the same method that Besson
et al.[8] used to obtain the neutral curves for the full hydro-

=+1.

It may be possible to further simplify the bifurcation
problem(10) by a normal form transformation. In particular,
there exists a near-identity nonlinear transformation such that

dynamic problem. The bicritical point in this example occursall nonlinear terms in E¢(10), which do not commute with

at y=63.11° for g,=3.13,(g,=980.665 cmiA), k.
=7.14 cm!, andk_=9.35 cm !, wherek. are the values

the matrixL of the linearized problem, can be removseée,
for example, Crawford26]). Here
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0 Zpi1= — (1+ €)Zy+ aW,Z5 +(a|Zp|*+ bWy |?) Z,,,
0|, (11) (14
M

|—
Il

o o >

o > O

W, 1= (1+ 8)W,+ BZ2+ (| Wyl 2+d|Zp|>) W, .

Subharmonic waves bifurcate at=0. For 6#0, the center
where|\|=|u|=1. This normal form symmetry may be in- manifold is given byW= — 8Z?/ 5+ - - -, and the equation
terpreted as a temporal phase-shift symmetry: harmonifor Z on the center manifold is
modes are unchanged in one period of the forcing, while the
subharmonic ones are taken to their negatives. Zpi1=—(1+€)Zy+(a—aBl8)|Z,|°Z,. (15

In the case that=—1, u=+1,i.e.,modd andn even in o ) _
the forcing (6), the bifurcation problem(10) is already in  1his gives the branching equation
normal form since the normal form symmetry is equivalent _ _ 2
to a translation byd, wherek,-d=k,-d= . The presence 0=—e+(a—apld)|Z* (16)

of the quadratic terms in this normal form means that the\gte that the presence guadratic terms in the amplitude
resonant triad _interactions will have a s_trong influence on th%quationq14) is manifest in the center manifold bifurcation
pattern-formation problem, as described for the simplésguation(15) through their contribution to theubic Landau
steady-state bifurcation example in Sec. Il A. coefficient for|Z,|?Z,. Furthermore, since is small for

In contrast, in the case that=+1, u=—1,i.e.,.meven  neqarly critical modes, their contribution to the cubic coeffi-
andn odd, the normal form transformation allows the qua-cjent’is large, forcing the subharmonic wave to bifurcate
dratic terms in the bifurcation problem to be removed. Theyith very small amplitude. This effect is the one-dimensional
normal form of the bifurcation problem, through cubic Ordervanalog of the cross-coupling tergf#) diverging near a spa-
IS tial resonance. This is the situation that can occur wies

odd andn is even fi>m) in Eq. (6), e.g.,m=1n=2.

Api1=Apt (@ Ap|?+b[By|*+c|Cpl?) A, If, on the other handy = +1, = —1, then the quadratic
terms in Eq.(13) can be removed, and the usual effect of the
Bp+1=Bp+(a|By/?+b|A,[2+c|Cyl?)B,, (120  spatial resonance on the pattern formation problem is sup-
pressed. Specifically, th@infolded normal form of the bi-
Cpi1= —Cp+(d|Ap|2+ d|Bp|2+ e|Cp|2)Cp. furcation problem is

_ 2 2
In this case, the bifurcation to harmonic waves is investi- Zp+1_(1+6)zp+(a|zp| +b|WP| )Zp. 17
gated in the invariant subspa€s=0, and there is no diver- __ 5 2
gence of the cross-coupling term due to the resonant triad W1 (14 )Wy + (C[Wp|*+d|Z, )W,

interaction. The contribution of the resonant triad interactiony 5 monic waves. which bifurcate from the trivial solution at
to _thg pattern—format.ion problem is suppressed in this Cas§—0, are investigated in the invariant subspi¢e 0; they
This is a manifestation of the fact that the temporal réSOxatisfy the branching equation

nance condition is not met by the bifurcating modes in Eq.

(9). In the next section we test these ideas by performing 0=e+a|Z|% (18)

explicit computations of bifurcation coefficients from the

simplified hydrodynamic model, due to Zhang and aI&7  Subharmonic waves bifurcate from the trivial solutiondat

[23], of the two-frequency Faraday experiment. =0 and can be investigated in the invariant subspze®;
they satisfy the branching equation

lll. TWO-FREQUENCY FORCING OF
ONE-DIMENSIONAL SURFACE WAVES

A. Resonant interactions in a one-dimensional problem Neither of these branches is affected by the spatial reso-

. . . . ._nance. This is the situation we expect whaiis even anch
It is possible to investigate the effects of strong spatial : _ _
. . . is odd in Eq.(6), e.g.,m=2, n=3.
resonance on a pattern-formation problem in one spatial di- In Fig. 3, we plot the bicritical poing as a function ofv

mension. This is done by considering the situation where the " .o (Mm,n)=(1,2) and M,n)=(2,3). These curves ap-

minimak,, andk,, of the neutral curve satisty,/k,=1/2. In : - ; _
this case, the stroboscopic map associated with the criticzgiI 36 ;%gtz%/gnzarl]rdEiuoaggr’g():mwzt: trlzis ﬁguisrgyvr\]//:n;hgw

ikx 2ikx P ;
modesZ,e™+W,e™™+c.c. is, through cubic order, also the ratio of wave numbeks, /k,, at the bicritical point.

Zp+1=)\Zp+aWpZ§+(a|Zp|2+b|Wp|2)Zp, Note that in each case the spatial resonakgkk,,=2 is

achieved for a particular value of the forcing frequengy
(13) res

=w .

0=—&+c|W|2. (19

Wp+1=MWp+Bz§+(c|wp|2+ d|Z,[HW,.

L . . B. The Zhang-Vinals hydrodynamic model
In form, this is identical to Eq(10) restricted to the subspace 9 yarody

A=B=Z, C=W. Zhang and Vials [1] derive the following model for the
If \=—1 andu=+1, then Eq(13) is already in normal surface deviationh(x,t) and surface velocity potential
form. The unfolding is d(x,t), wherexe R?:



PRE 59 PARAMETRICALLY EXCITED SURFACE WAVES: TWO- ... 5451

74 E

72

Xe Xc T0F
74t E
68 |- 1 FIG. 3. (@ Bicritical point x. plotted as a
r wl | function of the frequencyw in Eq. (6) for m
7 . . : S S S =1, n=2; (b) corresponding ratio of critical
@ T g e x w0 wave numbers; /k, for x=x.(). (c) Bicritical
point x. plotted as a function of the frequenay
3 3

in Eq. (6) for m=2,n=3; (d) corresponding ratio
of critical wave numberg, /k; for x= x.(w). In

28 1 zsr 1 both cases =0 and I'=20.6 dyn/cm, v
\ =0.209 cmi/s, andp=0.95 g/cni in Eq. (7).
kifky 2t 4 kofks 2| .

15 E 15

(b) 100 150 2‘03 2;0 300 (d) 110 2‘0 3‘0 4‘0 5‘0 wSIO 7‘0 8‘0 9‘0 100
(3= yVAh—Dd=F(h,d), Tk goko . _ Gk
(20) FO:p_wZ’ G0=7, f=7. (26)

(9= YV3)D—Ah=T(h,d).
R The nonlinear operators are
Here the linear operatod is

1 . A A
A=T,V2—Go+4f[sin(2t) + k sin(2pt+ ¢)], (21) F(h,®)==V-(hV®)+ 5 VX(h*D®) - D(hDD)
where p=n/m. The linear, nonlocal operatap multiplies NP 1,
each Fourier component of the field by its wave number +D hD(th’)+§h Ve,
modulus. 7 and G are nonlinear operators to be defined (27)

shortly, together with the parameteys 'y, Go, f, and«. 1.1 , oA

In deriving the above, Zhang and \4ils assumed that the G(h,®)= E(DCD) N E(V(D) —(DP)[hV @ +D(hDP)]
experimental forcing takes the formg,r[sin(2nwgt)
+xsin(Nnwpt+ ¢)], where k=(1—r)/r; they have scaled
time by the frequencynw,. Here we choose a slightly dif-
ferent scaling of time; we assume that the parametric forcing

1
_EFOV'((Vh)(Vh)Z)-

takes  the (dimensionless form  f[cos()cosfn) Finally, we put the governing equations in a convenient
+sin(y)cosit+ ¢)]. We lett=m7/2 and®=(2/m)® in Eq.  form for the perturbation analysis that follows. In order to
(20) to obtain recover the linearized equati@n) for h, we apply the opera-
tor (9,— yV?) to the first of Egs.(22), and then use the
(9,— yV3)h—Dd = F(h,®), second equation to express, ¢ yV23)® as Ah+G(h,d).
(220  We supplement this equation with the first of E@2), re-
(6,— yV?)®— Ah=G(h,d), written as an equation for the field, to obtain the full
system of equations:
where .
2 Lh=(9,—yV?) F(h,®)+DG(h,®),
2vkg
v= . (23 - 2 (28
» D =(d,—yV)h—F(h,d).
The wave numbek, satisfies the equation Here the linear operator is
Tky _m?? 0 L£=0,,=2yV20,+(YV*=DA), (29)
24

goko+ 4
where the operatad is given by Eq.(25).
where w=2wy is the dimensioned forcing frequency. The

linear operatord is now C. Weakly nonlinear analysis:

) . Derivation of the bifurcation problem
A=T'oV*=Go+ f[cog x)cogmr) +sin(x)cogn7+ ¢)], . . : . :
(25) We restrict our analysis to spatially one-dimensional so-

lutions of the variablece R, and use a two-timing perturba-
where tion method to determine weakly nonlinear solutions of the
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system(28) in the vicinity of the bifurcation to(subhar-  whereg? is a real 2r-periodic function. We determine a
monic waves, i.e., near a primary instability associated withsolutionh, involving the real periodic functiop,(7), given

a Floguet multiplier+1(—1). To do this we introduce a by its (truncatedl Fourier series representation

small parametee, such that

N
h(va):Ehl(X!TyT)+62h2(va!T)+63h3(X:TyT)+| pzzz bjele‘I'CC (37)
(30 =0
d =ed T)+ 2D T)+ 8D T+---
(%, 7)=€eP106mT) + DX, 7, T) + 05X, 7, ) ' We also find, at this order, thdk, satisfies
where .
DP,=(d,— yih, (38
T=é%r, f=fy+é€f,. (31

sincedy(h,0,®,) + D(h;Dd,)=0; thus
Here f is the value of the forcing at the bifurcation point.

We seek spatially periodic solutions in the following sepa- 1 )

rable Floquet-Fourier form: Oz(7)= 2—|(c(57+47kc)p2- (39
hi=z(T)ps(n)e**+c.c., h,=25(T)p,(r)e'H+c.c., Finally, we consider the equation at ordet
®,=27,(T)qy(r)e**+c.c., @zzzi(T)qz(T)eiZKcXJré.gé) Lohz=—28_dthy+2yd,.d7hy

Here p,,q,(1=1,2) are 2r-periodic functions of the fast +f,[ cog x)cogm7) +sin( x)cog nr+ ¢)]Dh,

time 7 in the case of harmonic wavéBM=+1); in the case

of subharmonic waves they arer4periodic in 7. The wave (9= Y95~ Ox(19x P+ hadx®)

numberk, is associated with the first unstable mode. — DM DD+ ho DD ) + L9 (h2DD
At leading order ine, we obtain (N DPo+NoDO1) + 395 (h1DPy)

+D[hyD(h,DD,)+ 5h?
Lohy=0, (33 D[hyD(hyDPy) + 3105 P 1]}

DD, = (9.~ ya)h;. +D| (DD 1) (DD ) — (95D 1) (35D )

Here the linear operatof, is £ with f=f,, where L is A A I 3

defined by Eq.29). The equationlyh;=0 determines the ~D®y[hydx 1+ D(hy Dby) |- 7‘?x(‘9xhl) :

bifurcation pointf by the solvability condition that it have a

periodic solution; it is the equation we solved in Sec. Il B to (40

?eitriirrrggirrgi:;t?s;{?/:/:\tib:g)r/ngzrgvgj.trTehIzaggiligaoenn?{igtdern order to ensure that ar2periodic solution exists, we must
d - : apply a solvability condition to this equation, written com-

fo be the smallest value dfthat admits a periodic solution. bRl y q

Given f, and k,, we determine the solution afyh;=0 pactly asLoh=H(x,7.T). Specifically, we require

involving the periodic functiom,(7), which we may assume = — /T _
is real. We expresp, in terms of its (truncated Fourier {h, Lohs) = (1, H(x,71))=0, (4
series where the inner product is
N
L k 47 2m/kg
pl(r)=j20 aje'““‘)“r c.c., (39 (f,g)= 8_7:2f drf f*(x,7)g(x,ndx; (42
= 0 0

whereN is chosen large enough so that the s_olution is We||ﬁlE’bl(T)eikcx is a periodic solution to the adjoint linear
converged. Herg.=0 for the case of harmonic waves and
wu=1/2 for subharmonic waves. We readily solve the secon
of Egs.(33) for ®,, yielding

problem. Jhy=0. Here

LE=(0,+yox)?~DA, (43)
1
Ax(7)= (9, + yk2)p;. (35  wheref=fgin A.
c The solvability condition leads to the amplitude equation
At order €2, we obtain dz
. 547 =alszit (A+B)|z|%2, (44)
Lohy=—(9,= ydx)[Ix(h19y®1) + D(h, DD ) |

1. . ) ) where
+ 5DI(DP1)? = (9,81)7]

1 4 -
=2k3zZiqfe***+c.c., (36) 0= 5— f o (Pt ykepoPydr,
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ke (47 of bifurcation to waves excited with forcing frequency ratio
=1l [cog x)cogmT) 2/3, and for the case of bifurcation to waves excited with
forcing frequency ratio 1/2.
+sin(x)cogn7+ ¢)1p1padr,

(45 IV. RESULTS
k2

4 - . - .
A:_ﬁ ) [(qlpz)'+7k§qlpz]p1d7, We have calculated the coefficienfs «, A, andB in

the amplitude equatio4) for four cases. These correspond
to the two lowest resonance tongues in the two cases

K3 [an =1, n=2 andm=2, n=3: whether harmonic or subhar-
—(p%qy)’ — yk2p2q, +ke02p; monic waves bifurcate at a smaller value of the driving am-
4mJo plitude depends on whether and y take values which are
31 20 3~ above or below the bicritical lines given in Fig. 3. The other
+2kelop1]padr. parameters used are the same as those listed in the caption to
Fig. 3.
In the above, differentiation with respect tas denoted by a Figure 4 shows the rati/B of the two contributions to
prime. We also took the periodic soluti&fri to be real. the cubic Landau coefficient for the excitation frequency ra-

In the above derivation of the bifurcation problgdy),  tio 2/3 for the two tongues which bifurcate at lowest ampli-
we have separated the two contributighandB to the cubic  tudes of the parametric excitatiag,. In each case the upper
coefficientA+B. The contributionA comes from the qua- graphs show the surface represen®i@ as a function ofw
dratic nonlinear terms in the original hydrodynamic model; itand x. The lower graphs show the corresponding contour
depends on the spatially resonant mod&&* as is evident plots. Superimposed on the contour plot is the bicritical line
from the p, terms in the integral expression férgiven in ~ from Fig. 3 above: the square mark on this graph indicates
Eq. (45). The contributiorB comes from cubic nonlinearities the point on the bicritical line at which the ratio between the
and therefore depends only on the matfe*. We calculate Wwave numbers for the two minima is 2. Note that in this case,
all of the coefficientss,a,A, andB numerically as follows. —Where the excitation frequency ratio is 2/3, the bifurcation to

At leading order ine, Eq.(33) for h; reduces to the linear the harmonic waves occurs at lower amplitudes of the para-
problem (7). The solution forh, is found by representing metric excitationg, for values ofw and y below the bicriti-
p.(7) as the truncated Fourier series given in E2f). As  cal line, while the bifurcation to subharmonic waves occurs
discussed i8], the problem then reduces to a generalizedfirst for values ofw andx above the bicritical line. The most
eigenvalue problem of the form striking feature of the plots associated with the harmonic

waves in Fig. 4 is the insensitivity of the quanti®yB to the
(46) point on the bicritical line at which the ratio between the
wave numbers is 2. Spatial resonance is also not important
for the subharmonic waves since the subharmonic tongue

Th ) i d to find the el | d occurs at the higher wave number in this case of even/odd
EISPACKTOUtINERGG IS used to find the eigenvalues and o ciation frequencies. This is in marked contrast to the case

corresponding eigenvectors, the eigenvalues giving the Iine%rf odd/even excitation, as demonstrated by the graphs shown
stability curves shown in Fig. 2. The eigenvalue correspond in Fig. 5, which were computed for an excitation frequency
ing to the minimum of the resonance tongue under Cons'derano 1/2. This time, it is the subharmonic instability which
ation '$ ?hen determlngd with the corresponding elgenv.ecto(gccurs first for values ofv and y below the bicritical line
then giving the coefficients; for the spectral representation and the harmonic instability which sets in first for values of

of py(7), from which g, () can be calculated. The adjoint o and y above the bicritical line. As for the previous graph,
linear problem forp; is solved in a similar way to that for A/B for the harmonic waves is unaffected by the ratio be-
P1. tween the wave numbers and the parameter proximity to the
Once a spectral representation fpris found, o3 is cal-  picritical line. However, in the case of subharmonic waves
culated usmg a pseudospectral approach. This then enablgfere is a singularity occurring on the bicritical line at the
the ordere? problem forh,, Eq. (36), to be written as a point of spatial resonance. This is consistent with the discus-
nonhomogeneous linear problem fog. This can be solved sion in Sec. Il A above, showing how critical the nature of
using theelsPACK routine RG. Finally, the coefficientsS,a,  the instability is in determining whether or not spatial reso-
A, and B in the amplitude equatio44) are computed by nance is important to the pattern formation process near the
calculating the various products @f ,p,, andq,; using a bicritical line.
pseudospectral method and then calculating the inner prod- Note that in Fig. 5 there is in fact a line of singularities
ucts. tangent to the bicritical line at the point on the bicritical line
Typically 20 Fourier modes sufficed to repres@ntp,,  where the ratio between the wave numbers is 1/2. This line
and g,, and 257 collocation points were adequate in theof singularities can also be understood through spatial reso-
pseudospectral calculation of the nonlinear terms. Checksance. Recall that above the bicritical line the subharmonic
were done, with twice as many modes and collocation pointsnstability occurs at a higher value of the excitation ampli-
to ensure that the results were well converged. tude than the harmonic instability, as shown in Fig. 6 for the
In the next section we present plots of the rai® of the  valuesw=135s !, xy=77.8°. These values were chosen as
two contributions to the cubic Landau coefficient for the casaepresentative of a point on the line of singularities shown in

Ax=g,Bx,

wherex is a vector of the Fourier coefficiengs in Eq. (34).
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FIG. 4. Plots ofA/B as a function ofy andw, for m=2, n=3, and¢=0 in Eq.(6). Computations are done at the bifurcation point to
(subharmonic waves on the leftight). The fluid parameters alé=20.6 dyn/cm,r=0.209 cnd/s, andp=0.95 g/cri. We give both
surface plot$(a) and(c)] and the corresponding contour pldts) and(d)]. In the contour plots we reproduce, from Fig. 3, the bicritical line
in the w,x plane. The square on this curve gives the value afhere the 1/2 spatial resonance occurs.

Fig. 5. In this case the minimum of the subharmonic tonguesurring at the wave number of 6.616 Cﬁ1=2km, and
occurs at an excitation amplitude gf=2.1658), and at a therefore spatial resonance will occur. Similarly, for values
wave number ok, =3.308 cm. However, at this excita- of w andy to the right of the singularity which occurs on the
tion amplitude there is a bifurcation to harmonic waves oc-bicritical line, spatial resonance can occur between the mini-

(c)
A/B
80 80
1.75 ==
15 e
12? ........... (d)

i 70

FIG. 5. Plots ofA/B similar to those in Fig. 4, but computed for=1 andn=2. The divergence of/B for subharmonic waves is
discussed in the text. This divergence occurs on a curve that is tangent to the bicritical line at the'Peit®1 s~ !, x.=72.83°; this is

the point where there is a 1/2 spatial resonance on the bicritical line.
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T T T symmetries on the bifurcation problem by considering the

example of one-dimensional waves, parametrically excited

. by two-frequency forcing. In this one-dimensional problem a

a3l ‘\\ | spatial resonance, involving Fourier modes of wave number
\

9:/90 k., and X,,, takes the place of a resonant triad. Specifically,

2 F g we focused on the situation where the bicritical point in-
volves modek,,, andk,=2k,,. We considered instability to
r T harmonic waves and subharmonic waves when the two-
0 . , ) . frequency forcing was in ration/n=1/2 and m/n=2/3.
0 2 4 6 8 10 Rather than perform the weakly nonlinear analysis on the full

hydrodynamic equations, we used the simpler Zhang and
FIG. 6. Neutral stability curves fom=135 s, y=77.8°, Vvinals model[1] that applies to a deep layer of a nearly
m=1, n=2. The harmonig¢subharmonigtongue is indicated by a inviscid fluid. Consistent with our general bifurcation theo-
solid (dashed line. The minimum of the subharmonic tongue oc- 'etic analysis, we found that only in the case of subharmonic
curs atk,=3.308 cnv!, wheng,=2.1658),. Also marked is the ~Waves, parametrically excited by/n=1/2 forcing, did the
point where X, intersects the harmonic tongue. Note that this in-Presence of the bicritical point lead to a diverging Landau
tersection occurs at the critical value gf, where bifurcation to ~ coefficient in the bifurcation problem. In the other cases, the
subharmonic waves occurs. Landau coefficient was completely insensitive to any param-

eter proximity to the bicritical point or to the spatial reso-
mum of the subharmonic curve and the right side of thenance.

harmonic tongue. Note that, in practice, it is only close to the Our work suggests that the spatially resonant triads, im-
bicritical line that one would expect to observe the effect ofportant to a broad class of pattern formation problems, do not
the spatial resonance on the subharmonic waves, as in glay an important role in pattern formation of parametrically
other cases bifurcation to harmonic waves occurs at signifiexcited surface waves near the bicritical point in the case of
cantly lower amplitudes of the excitation. We also note thateven/oddforcing. This work is particularly timely given a
for parameteron the bicritical line the center manifold re- recent comment by Arbell and Finebd®&]j, who find in their

duction described in Sec. Ill A can break down. experiment that they only observe superlattice patterns if, for
m<n, mis even and is odd(or bothmandn are odd: they
V. CONCLUSIONS never observe them ih is odd andn even. However, since

. . _ our analysis focused only on the case of a one-dimensional
In this paper we have investigated how normal form sym-pattern formation problem, more analysis in the two-

metries affect the role of resonant triads in the pattern fordimensional case is warranted. In the future we hope to carry
mation problem for surface waves parametrically excited byout a more extensive analysis of the contribution of resonant
two-frequency forcing. We focused on the behavior of thetriads to two-dimensional Faraday waves wetren/oddorc-
system near the bicritical point in parameter space, wherghg. For instance, it would be of interest to carry out such an
modes of wave numbek,, and k, lose stability simulta- analysis for the physical parameters of the recent Faraday
neously with one mode associated with a Floquet multiplierexperiments in which superlattice patterns were obsd&ked
of +1 and the other associated with a Floquet multiplier ofin these experiments the forcing frequencies were in ratio
—1. Our analysis shows that when the Floquet multiplier6/7; the spatial Fourier transform of the harmonic wave pat-
+1 is associated with the smaller wave number, then quaterns exhibited peaks, some of which could be associated
dratic terms may be removed from the relevant amplitudevith the two different frequency components of the forcing
equations. In this case, the contribution of resonant triads taave form[5].
the bifurcation problem is not affected by proximity to the  Although the analysis presented in this paper was moti-
bicritical point. In contrast, when the Floquet multiplier vated by and applied to the problem of Faraday waves with
—1 is associated with the smaller wave number, then théwo-frequency forcing, we expect many of the symmetry-
quadratic terms cannot be removed by a normal form transsased ideas to carry over to other parametrically excited pat-
formation. Hence, in this instance, resonant triads influenceéern forming systems. We have in mind, for example, the
greatly the bifurcation problem near the bicritical point. Therecent experiments on one-dimensional surface waves on fer-
former situation applies when the forcing frequency ratio isrofluids, which are excited by a time-periodic magnetic field
m/n<1, with m even andn odd, while the latter situation [27]. In this system, both harmonic and subharmonic re-
occurs whemm is odd andn is even. Thus we expect normal sponses occur with single-frequency forcing.
form symmetries are important to understanding the experi-
mentally observed quasipatterns and superlattice patterns
[3,5], which employ even/odd forcing. Such effects are nec-
essarily neglected in theoretical models, such as the model of We have benefited from discussions with Laurette Tuck-
Lifshitz and PetricH9], in which quasipatterns form through erman. We are also grateful to Chad Topaz for a careful
a steady-state bifurcation. reading of this manuscript. The research of M.S. was sup-
This paper demonstrates the influence of the normal fornported by NSF CAREER Grant No. DMS-9502266.
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