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We consider an inhomogeneous substrate for Marangoni convection. The inhomogeneity shows up in a
nonuniform temperature distribution which we model by a periodic variation. The response can exhibit para-
metric resonance. Both resonant and nonresonant responses are considered and a possible strong effect on
wave number selection indicated.@S1063-651X~99!02505-2#

PACS number~s!: 47.20.Dr
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I. INTRODUCTION

Marangoni convection~i.e., surface tension driven as op
posed to Benard or buoyancy driven! occurs when the fluid
layer is very thin and can set in with finite wave number
with zero wave number@1–4#. This is an additional feature
when compared to the Benard convection and recent exp
ments have established the occurrence of both varieties q
dearly. From a theoretical standpoint, there is additional
terest as the control parameter~Marangoni numberM ) for
Marangoni convection occurs only in the boundary condit
unlike Benard convection, where the control parameter~Ray-
leigh numberR) occurs in the governing differential equa
tions. The geometry envisaged is that of a thin fluid layer
an infinite conducting plate which is heated from below. T
free surface at the top is ideally taken to be insulating. Fo
sufficiently low-temperature difference across the lay

there is no movement of the fluid, i.e.,vW 50W with a tempera-
ture profileT(z)5T12bz, whereT1 is the temperature o
the conducting plate placed atz50, andb is the temperature
gradient. Fluctuations about this steady state are chara
ized bydvW (rW,t) anddT(rW,t). The fluid is taken to be incom
pressible. With the fluctuations made appropriately dim
sionless, thez component of the velocity fluctuation i
denoted bydw and the temperature fluctuation bydu. If the
plate is infinite in extent, the translational invariance in t
x-y plane will lead to oscillatory behavior in the plane a
we can writedw5eikW•rWw(z,t) anddu5eikW•rWu(z,t), wherekW
is a wave number in the two-dimensional plane. The fu
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tions w and u satisfy the linear stability equations~for a
stationary instability, i.e.,]/]t50)

~D22a2!2w50, ~1!

~D22a2!u52w, ~2!

where the dimensionless wave numbera5kd, d being the
mean thickness of the fluid layer andD5d/dz. The bound-
ary conditions are

w5
]w

]z
50 at z50, ~3!

w50 at z51, ~4!

u50 at z50, ~5!

]u

]z
50 at z51, ~6!

S B2
]2

]x2D S D22
]2

]x2D w2MCr
]2

]x2 S D213
]2

]x2D Dw

2M
]2

]x2 S B2
]2

]x2D u50 at z51, ~7!
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the last coming from the normal and tangential force bala
across the free surface@5#. In the aboveM5abd3S0 /lrn
where a5(1/S0)(]S/]T), Cr5rnl/S0d is the Crispation
number @6#, and B is the Bond number given byB
5rd2g/S0. The mean surface tension is given byS0 , r is
the density,n is the kinematic viscosity, andl is the thermal
diffusivity. A solution of Eqs.~1! and~2!, consistent with the
boundary conditions, is obtained for

M5
8a2C~CS2a!~B1a2!

~S32a3C!~B1a2!18a5CCr
, ~8!

whereC5 cosha andS5 sinha. For the finite wave numbe
convection Cr~which is usually a small number and less th
of the order of 1021) can be dropped and critical valueMc is
found to be 81.8 withac.2.11. Neara50, we can expand
M as

M5
2

3

B

CrF11a2S 1

5
1

1

B
2

B

120CrD1••• G . ~9!

For 0.21B21.B/120Cr, there is a minimum ata50, and
the long wavelength convection will set in if 2B/3Cr,81.8.
Thus, it is possible to have both finite wave number and z
wave number onset for Marangoni convection.

In the present work, we consider a situation where
temperature of the plate atz50 is not uniform. In natural
situations where Marangoni convection occurs, it is like
that the temperature of the surface will be inhomogene
and hence it could be interesting to study the effect of
inhomogeneous temperature distribution on the onset.
will consider a periodic modulation@7,8# as our inhomoge-
neity and study its effect on the critical Marangoni numb
In the case where the instability occurs as a long wavelen
roll, this effect has been studied by Tanet al. @9#. In their
case the critical Marangoni number is less than unity and
for any resonable Marangoni number, a nonlinear anal
had to be carried out. In particular, the situation under wh
the surface ripples was determined. We consider a situa
where acÞ0 and Mc is a number significantly larger tha
unity. This allows us to for shifts inMc as the first effect. In
particular we will show that for sufficient strength of th
modulation, the inhomogeneity can cause a change f
long wavelength to finite wavelength pattern in the situat
where a parametric resonance occurs.

If the temperature of the bottom plate is modulated
T11DT sinbx, then the conduction state temperature pro
is

T~x,z!5T12bz1DT
coshb~12z!

coshbd
sinbx ~10!

and the linear stability equation for the problem becomes

¹4w50, ~11!
e

ro

e

s
n
e

.
th

o
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h
n,

m
n

s
e

¹2u52w1ew cosbx. ~12!

In writing the above equations, we have made a simplifi
tion in that we have taken the amplitudee of the modulating
term to be a constant. In principle, because of the com
cated nature of the temperature profile, the amplitudee will
be a function ofz. However, this complication, apart from
making the algebra more tedious, does not have any qua
tive effect on the final result. We have checked the numer
effect of the simplification and found it to be of the order
10%. In Sec. II, we present the effect of the modulation
the threshold Marangoni number for the two specific
sponses:~i! response with wave numberb/2 ~parametric
resonance! and ~ii ! response with wave numberb ~typical
solution without resonance!.

The case of parametric resonance is by far the most
portant. The branching of translational symmetry in thex
direction by the heating shows up in this case as a ph
dependence of the response to the temperature drive.
phase dependence is analogous to that observed in
Mathieu equation—which is true for Mathieu eqation in t
temporal dependence is true for our system in itsx depen-
dence. We conclude with a discussion of our results in S
III.

II. RESPONSE UNDER MODULATION

A. Response at wave numberb/2

We first take up the case of parametric resonance. Th
where the response occurs with a wave numberb/2. To find
the critical Marangoni number for the response, we write
velocity field ~for threshold calculation, we can take the pa
tern to be two dimensional!:

w5A1g1~z!cos
~bx1f!

2
1A3g3~z!cos

3~bx1f!

2
1•••,

~13!

where

g1~z!5sinh
bz

2
2

bz

2
cosh

bz

2
1

~b/2!C1/22S1/2

S1/2
z sinh

bz

2
~14!

and

g3~z!5 sinh
3bz

2
2

3bz

2
cosh

3bz

2

1
~3b/2!C3/22S3/2

S3/2
z sinh

3bz

2
. ~15!

We follow the notation that Cm5 coshmb and Sm
5 sinhmb. The above functiong1(z) andg3(z) are obtained
from Eq. ~1! with the boundary conditions satisfied. Withw
given by Eq.~13!, the differential equation@Eq. ~12!# for u
becomes
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S ]2

]z2
1

]2

]x2D u52A1S 12
e

2Dg1~z! cos
bx

2
cos

f

2
1A1S 11

e

2Dg1~z!sin
bx

2
sin

f

2

2A3g3~z!cos
3f

2
cos

3bx

2
1A3g3~z!sin

3f

2
sin

3bx

2
1

e

2
A1g1~z!cos

f

2
cos

3bx

2

2
e

2
A1g1~z!sin

f

2
sin

3bx

2
1

e

2
A3g3~z!cos

f

2
cos

bx

2
2

e

2
A3g3~z!sin

f

2
sin

bx

2
1•••. ~16!

The solution foru can be written as

u5 f 1~z!cos
bx

2
1 f̃ 1~z!sin

bx

2
1 f 3~z!cos

3bx

2
1 f̃ 3~z!sin

3bx

2
1•••, ~17!

where f 1 , f̃ 1, f 3 , f̃ 3 are the solutions of~writing D5d/dz)

S D22
b2

4 D f 152A1 cos
f

2 S 12
e

2Dg1~z!1
e

2
A3 cos

f

2
g3~z!1•••, ~18!

S D22
b2

4 D f̃ 15A1 sin
f

2 S 11
e

2Dg1~z!1
e

2
A3 sin

f

2
g3~z!1•••. ~19!

The solutions forf 1 and f̃ 1 are straightforward. We require thatf 150 for z50 andd f1 /dz50 onz51 and similar solutions
are to be written forf̃ 1, f 3 , f̃ 3. This yields the velocity and temperature fields in terms of the two unknown constantsA1 and
A3 and the phasef. We now require that the boundary conditions of Eq.~7! be satisfied. The two harmonics need to
satisfied seperately and so also must be the sin and cos phase has to bef50 or p. For f50, we obtain a different set o
conditions. The consistency if the two relation betweenA1 andA3 leads to

FMb2

4

S1/2
3 2~b3/8!C1/2

4~b2/8!C1/2S1/2
S 16

e

2D2
2~b/2!~C1/2S1/22b/2!

S1/2
GF9Mb2

4

S3/2
3 2~27b3/8!C3/2

4~27b3/8!C3/2S3/2

22
~3b/2!„C3/2S3/22~3b/2!…

S3/2
G

5
e2

4

Mb2

4

9Mb2

4
K3/2K1/2, ~20!

where

K1/25F1

2

C1/2S1/22b/2

b3S1/2

1
1

4b3

~b/2!C1/22S1/2

S1/2
C3/22

S3/2

C3/2

1

b3 S 1

4

~b/2!C1/22S1/2

S1/2
S3/21

~b2/4!C1/2
2 2S1/2

2

S1/2
D G ~21!

and

K3/25F3

2

C3/2S3/223b/2

b3S3/2

1
3

4b3

~3b/2!C3/22S3/2

S3/2
C1/22

S1/2

C1/2

1

b3 S 3

4

~3b/2!C3/22S3/2

S3/2
S1/21

~9b2/4!C3/2
2 2S3/2

2

S3/2
D G ~22!
f
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and the upper sign holds forf5p and the lower sign for
f50.

As expected fore50, we get back the familiar result o
Eq. ~8!. Perturbative solution of Eq.~20! in powers ofe,
leads to

M58S b

2D 2C1/2~C1/2S1/22b/2!

S1/2
3 2~b/2!3C1/2

S 17
e

2D1O~e2!. ~23!

The correction toM at O(e) indicates the parametric reso
nance for a response that occurs at double the forcing le
scale. Knowing that the unforcedM of Eq. ~8! is minimized
th

for a5ac52.1, we can get the lowest critical Marango
number out of Eq.~23! for b52ac . In this case,

M581.4S 17
e

2D1O~e2!. ~24!

The result, as we said, is dependent on the phase. The lo
possible Marangoni number will be obtained for the negat
sign and hence with the phasef5p for the response.

It should be noted that we have made an assumption a
the two-dimensional nature of the response to the heating
general the response will be three-dimensional which me
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the response would be of the formw(x,y,z)
5 f (z) cosk1(x)cosk2(y). To get the parametric resonance w
needk15b/2. If we now go through the algebra fork2Þ0,
we would arrive at Eq.~23! with the replacementsb
→A(b2/41k2

2! and similar adjustments forC1/2 and S1/2.
Minimization of Marangoni number now yieldsA(b2/4
1k2

2)5ac.2.1. This means that for cylindrical rolls,b
52ac but for other patterns with finitek2, one would have a
different relation betweenb and ac . For instance, for a
square roll,k25b/2 andb5A2ac . Thus, the rotational sym
metry in thex-y plane is broken by thex-dependent heating
as should be the case. The special feature of this half w
number response is best seen when we work out the cri
M for other responses. It will be seen that theO(e) term will
be absent in those cases.

B. Response at wave numberb

In this case, we write

w5A1g1~z!cosbx1A2g2~z!cos 2bx1•••, ~25!

where

g1~z!5 sinhbz2bzcoshbz1
bC12S1

S1
z sinhbz ~26!

and

g2~z!5 sinh 2bz22bzcosh 2bz1
2bC22S2

S2
z sinh 2bz.

~27!

We follow the notation that Cm5 coshmb and Sm
5 sinhmb. The corresponding equation for the temperat
field is

S D21
]2

]x2D u52A1g1~z!cosbx2A2g2~z!cos 2bx

1e cosbx@A1g1~z!cosbx

1A2g2~z!cos 2bx#1•••

5S 2A1g11
e

2
A2g2D cosbx

1S 2A2g21
e

2
A1g1D cos 2bx1•••.

~28!

The solution takes the form

u5Q1f 1~z!cosbx1Q2f 2~z!cos 2bx1•••, ~29!

where

~D22b2! f 152A1g11
e

2
A2g2 ~30!
ve
al

e

and

~D224b2! f 252A2g21
e

2
A1g1 . ~31!

Carrying out steps identical to those leading to Eq.~20! now
yields

FM
S1

32b3C1

4bC1S1
2

2b~C1S12b!

S G
3F4M

S2
328b3C2

8bC2S2
2232b

C2S222b

S2
G

5
e2

4
Mb24Mb2K1K2 . ~32!

For e50, this yields the standard answerM0

58C1b2(C1S12b)/S1
32b3C1. Perturbative solving forM

for e50 yields

M5
8C1b2~C1S12b!

S1
32b3C1

1
e2M0

2b4K1K2

4M0@~S2
328b3C2!/8bC2S2#24b@~C2S222b!/S2#

3
4bC1S1

S1
32b3C1

. ~33!

For minimization, the value ofb will correspond to the value
which minimizesM0 and hence, we find

M581.41e2~6.90!. ~34!

Thus, we find that the conduction is stabilized against c
vection, a situation familiar from many other modulatio
problems.

III. CONCLUSION

The response at half wave number is special, beca
from a comparision of Eqs.~20! and~32!, it should be clear
that only for the half wave number case is it possible to ha
an O(e) effect. This effect, familiar from the study of th
Mathieu equation, lowers the stability boundary and
could have an onset of convection at a significantly low
value of the Marangoni number. We can think of at least o
spectacular effect of this particular response. By adjust
the Bond numberB and Crispation number Cr properly, w
can have an onset of zero wave number convection in
modulated system. The critical Marangoni number at the
set is 2B/Cr as mentioned in the discussion following E
~9!. Now under modulation the condition of parametric res
nance satisfied, the onset of finite wavenumber convec
becomes~for e positive!, for nearly all B and Cr, Mc
581.4(12e/2) as given in Eq.~24!. ~It is straightforward to
check that the effect of a finite Cr on the criticalMc for finite
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wave number response is negligible.! If the modulation am-
plitude e exceeds a critical valueec given by

81.4S 12
ec

2 D5
2B

3Cr
~35!

then the system will revert from a zero wave number to
ft,
a

finite wave number instability. The modulation could th
have a striking effect as mentioned in the Introduction.
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