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We consider an inhomogeneous substrate for Marangoni convection. The inhomogeneity shows up in a
nonuniform temperature distribution which we model by a periodic variation. The response can exhibit para-
metric resonance. Both resonant and nonresonant responses are considered and a possible strong effect on
wave number selection indicatd®1063-651X99)02505-3

PACS numbd(s): 47.20.Dr

[. INTRODUCTION tions w and 6 satisfy the linear stability equationgor a
stationary instability, i.e.9/dt=0)

Marangoni convectiotti.e., surface tension driven as op-
posed to Benard or buoyancy driyepccurs when the fluid (D2—a2)2w=0, 1)
layer is very thin and can set in with finite wave number or
with zero wave numbel-4]. This is an additional feature
when compared to the Benard convection and recent experi- (D?-a%) 6=—w, 2
ments have established the occurrence of both varieties quite ) ) _
dearly. From a theoretical standpoint, there is additional inWhere the dimensionless wave numiserkd, d being the

terest as the control paramet@arangoni numbeM) for ~ Mean thickness of the fluid layer af=d/dz. The bound-

Marangoni convection occurs only in the boundary condition?y conditions are

unlike Benard convection, where the control paramgRery-

leigh numberR) occurs in the governing differential equa- aw

tions. The geometry envisaged is that of a thin fluid layer on w=——=0 at z=0, ©)
an infinite conducting plate which is heated from below. The

free surface at the top is ideally taken to be insulating. For a

sufficiently low-temperature difference across the layer,
there is no movement of the fluid, i.e.=0 with a tempera-
ture profile T(z)=T,— Bz, whereT, is the temperature of #=0 at z=0, (5)
the conducting plate placed zt 0, andg is the temperature

gradient. Fluctuations about this steady state are character- 50

ized by suv(r,t) andST(r,t). The fluid is taken to be incom- =0 at z=1, (6)

w=0 at z=1, (4

pressible. With the fluctuations made appropriately dimen- 0z
sionless, thez component of the velocity fluctuation is
denoted bysw and the temperature fluctuation BY. If the
plate is infinite in extent, the translational invariance in the 92 , & ;| o,
x-y plane will lead to oscillatory behavior in the plane and B- P D°— P W= MCr@ D +3@ Dw
we can writedw=e'* 'w(z,t) and §6=¢€'*""6(z,t), wherek
is a wave number in the two-dimensional plane. The func-
92 2
-M—| B——|6=0 at z=1, (7)
*Electronic address: tpjkb@mahendra.iacs.res.in ax? ax2>
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the last coming from the normal and tangential force balance V29=—w+ ew cosbx. (12)
across the free surfadé]. In the aboveM = aBd3S,/\pv

where a=(1/Sy)(dS/dT), Cr=pv\/Syd is the Crispation . i o
number [6], and B is the Bond number given byB In w_ntmg the above equations, we have made a 5|mpllf|ca-
— pd2g/S,. The mean surface tension is given By, p is  tonin that we have taken thg amplltudcof the modulating _
the densityy is the kinematic viscosity, and is the thermal (€M to be a constant. In principle, because of the compli-

diffusivity. A solution of Egs.(1) and(2), consistent with the ~Cated nature of the temperature profile, the amplitedeill
boundary conditions, is obtained for be a function ofz. However, this complication, apart from

making the algebra more tedious, does not have any qualita-
tive effect on the final result. We have checked the humerical
8a’C(CS—a)(B+a?) ® effect of the simplification and found it to be of the order of
=73 .3 2 5 , 10%. In Sec. Il, we present the effect of the modulation on
(5°-a’C)(B+a%)+8a°CCr the threshold Marangoni number for the two specific re-
sponses:(i) response with wave numbds/2 (parametric
resonanceand (ii) response with wave numbér (typical
solution without resonange
The case of parametric resonance is by far the most im-
portant. The branching of translational symmetry in the
direction by the heating shows up in this case as a phase
dependence of the response to the temperature drive. This
phase dependence is analogous to that observed in the
Mathieu equation—which is true for Mathieu eqgation in the
} 9) temporal dependence is true for our system inxigepen-
dence. We conclude with a discussion of our results in Sec.
1.

whereC= cosha andS= sinha. For the finite wave number
convection Cwhich is usually a small number and less than
of the order of 10%) can be dropped and critical vali, is
found to be 81.8 witha,~2.11. Neara=0, we can expand
M as
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For 0.2+ B~1>B/120Cr, there is a minimum a=0, and
the long wavelength convection will set in iB23Cr<81.8. Il. RESPONSE UNDER MODULATION
Thus, it is possible to have both finite wave number and zero
wave number onset for Marangoni convection.

In the present work, we consider a situation where the We first take up the case of parametric resonance. This is
temperature of the plate at=0 is not uniform. In natural where the response occurs with a wave nuni#2r To find
situations where Marangoni convection occurs, it is likelythe critical Marangoni number for the response, we write the
that the temperature of the surface will be inhomogeneouselocity field (for threshold calculation, we can take the pat-
and hence it could be interesting to study the effect of artern to be two dimensiongal
inhomogeneous temperature distribution on the onset. We
will consider a periodic modulatiofi7,8] as our inhomoge- (bx+ ¢) 3(bx+ ¢)
neity and study its effect on the critical Marangoni number. w=A;g,(z)cos 5 +A3g3(z)cosT+ cee
In the case where the instability occurs as a long wavelength (13)
roll, this effect has been studied by Tanal. [9]. In their
case the critical Marangoni number is less than unity and so
for any resonable Marangoni number, a nonlinear analysighere
had to be carried out. In particular, the situation under which
the surface ripples was determined. We consider a situation,

A. Response at wave numbeb/2

, VS bz bz bz (b/2)Cyp—Sy, . bz
wherea.#0 andM. is a number significantly larger than gl(z)zsmh?— - cosh S—zsmh7
unity. This allows us to for shifts iM . as the first effect. In 172 (14
particular we will show that for sufficient strength of the
modulation, the inhomogeneity can cause a change from
long wavelength to finite wavelength pattern in the situationand
where a parametric resonance occurs.

If the temperature of the bottom plate is modulated as . 3bz 3bz  3bz
T,+ AT sinbx, then the conduction state temperature profile 93(2)= Sth_ TCOShT
is
(3b/2)Cy31— Sz, 3bz
coshb(1-2) + S0, zsinh > (15
T(x,z)—Tl—ﬂz+ATWsmbx (10

We follow the notation thatC,= coshmb and S,
= sinhmh. The above functiomy,(z) andgs(z) are obtained
from Eq. (1) with the boundary conditions satisfied. With
given by Eq.(13), the differential equatiofEq. (12)] for 6
V4w=0, (11) becomes

and the linear stability equation for the problem becomes
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;P N bx ¢ al1 bx ¢
EJFE 0=—A, gl(z) 0052 0032 +A; + g1(2)sin—= 5 smE
3¢  3bx 3¢  3bx ¢  3bx
—A3g3(z)c057co 5 +As03(2)sin—- 5 sin - —+ = Algl(z)cos2 cosT
A ¢  3bx A ¢  bx eA ¢  bx 1
- 1gl(z)sm25|n 5 + 393(2)0052 coso— 5 3gg(z)sm§sm7+---. (16
The solution forf can be written as
bx bx 3bx 3bx
0= fl(z)cos +1,(2)sin= 5 +f3(z)cos—— 5 +T5(z)sin—— 5 +..., (17)
wheref,, T, f5, T5 are the solutions ofwriting D=d/dz)
) b2 o) € € 10
D -7 fl=—A1cos§ 1—5 g.(2)+ §A3C05593(2)+---, (18
b2 ¢ € € )
D2- fl Alsm2 +§ g1(2)+ §A3sm§g3(z)+---. (19

The solutions forf; andf; are straightforward. We require thit=0 for z=0 anddf,/dz=0 onz=1 and similar solutions
are to be written foff;, f5, f5. This yields the velocity and temperature fields in terms of the two unknown constaatsd

A; and the phase. We now require that the boundary conditions of Ef. be satisfied. The two harmonics need to be
satisfied seperately and so also must be the sin and cos phase hag td0ber . For =0, we obtain a different set of
conditions. The consistency if the two relation betw@gnand A leads to

OMb? S3,— (210%8)Cap _(3b12)(CyiSyz— (3b12))

Mb? S}~ (b%/8)Cy ( - ) 2(b/2)(CyysSyz— bi2)

4 4(b%8)CypSy, |\ 2 S 4 4(270%8)C3,Syp Saro
€ Mb? 9Mb?
2 a4 a2 —— KaKyp, (20
where
_|1CuSiembl2 1 (b/2)Cyp Sy Sz 1 (1 (b12)Cy1/— Sy (b2/4)0§/2—55/2> 1
vei2 b3S, 4p3 S %2 Cappdl4 Sz 2 Sii2
and
3 Cy3053,—3b/2 3 (3b/2)Cy1— Sy Sip 13 (3b/2)Cg— Sy (9b%/4)C3,— S5,
Kap=|35 +— Cio— ==l 7 St (22)
2 pisy, 4b® Sa12 Cizbd\4 Sz Sar2

and the upper sign holds fab= 7 and the lower sign for for a=a.=2.1, we can get the lowest critical Marangoni
¢=0. number out of Eq(23) for b=2a,. In this case,

As expected fore=0, we get back the familiar result of
Eq. (8). Perturbative solution of Eq.20) in powers ofe,

leads to M= 81.4( 175 5|+ O(€?). (24)

2 _
M = (E) Cud C12512~b12) ( =5 +0(€?). (23)  Theresult, as we said, is dependent on the phase. The lowest
2] Slp=(b/2)%Cyp | 2

possible Marangoni number will be obtained for the negative
sign and hence with the phage= 7 for the response.

The correction taM at O(€) indicates the parametric reso- It should be noted that we have made an assumption about
nance for a response that occurs at double the forcing lengthe two-dimensional nature of the response to the heating. In
scale. Knowing that the unforceéd of Eqg. (8) is minimized  general the response will be three-dimensional which means
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the response would be of the formw(x,y,z) and
=f(2) cosk;(x)cosks(y). To get the parametric resonance we
needk,=b/2. If we now go through the algebra f&p+0,
we would arrive at Eg.(23) with the replacementsh
—(b%4+ kg) and similar adjustments fo€,,, and Sy,.
Minimization of Marangoni number now yields/(b%/4
+k§)=acz2.1. This means that for cylindrical rolld)
=2a, but for other patterns with finitk,, one would have a
different relation betweerb and a.. For instance, for a
square rollk,=b/2 andb= \/Eac. Thus, the rotational sym- [
metry in thex-y plane is broken by th&-dependent heating

2_ b2 fo=— E
(D—4b*)f,=—A,g,+ 2A191- (31)

Carrying out steps identical to those leading to &) now
yields

" S$-b%C; 2b(C;S,—b)
4bC;S, S

as should be the case. The special feature of this half wave
number response is best seen when we work out the critical

M for other responses. It will be seen that thée) term will
be absent in those cases.

B. Response at wave numbeb
In this case, we write
w=A;0,(z)cosbx+ A,g,(z)cos bx+ - -, (25

where

bC,—S,

g1(z)= sinhbz—bzcoshbz+ S zsinhbz (26)
1

and

zsinh 2z
(27)
We follow the notation thatC,= coshmb and S,

2b
g,(z)= sinh 2bz—2bzcosh bz+ %

—8bsC C,S,—2b
4M L_szbL}

O R TYOR=N S,

€ 2 2
= 2 Mb2AMbZK 1K, (32

For €=0, this vyields the standard answeM,
=8C;b?(C;S;—b)/S;—b3C,. Perturbative solving foM
for e=0 yields

8C,b%(C,S,—b
M = 1(11 )

Si-b%C,
. €eM3b*K K,
4M o[ (S3—8b°C5)/8bC,S,] — 4b[(C,S,— 2b)/S,]
4bC,S
X, (33
Sl_ b Cl

For minimization, the value df will correspond to the value

— sinhmh. The corresponding equation for the temperatureVhich minimizesM, and hence, we find

field is

(92
D2+ P) 0= —A10:(z)cosbx— A,0,(z)cos Dx
X

+ e cosbx[ A;g1(z)cosbx

+A,g,(z)cos bx]+ - - -

cosbx

€
—A10:+ §A292

+ —A292+§Algl cos ox+ - -
(28)
The solution takes the form
0=Q;f1(z)cosbx+Q,f,(z)cos Dx+- - -, (29
where
2 W2 €
(D=b")f1=—A0:+ §A292 (30

M =81.4+ €2(6.90). (34)

Thus, we find that the conduction is stabilized against con-
vection, a situation familiar from many other modulation
problems.

[ll. CONCLUSION

The response at half wave number is special, because
from a comparision of Eqg20) and(32), it should be clear
that only for the half wave number case is it possible to have
an O(e) effect. This effect, familiar from the study of the
Mathieu equation, lowers the stability boundary and we
could have an onset of convection at a significantly lower
value of the Marangoni number. We can think of at least one
spectacular effect of this particular response. By adjusting
the Bond numbeB and Crispation number Cr properly, we
can have an onset of zero wave number convection in the
modulated system. The critical Marangoni number at the on-
set is B/Cr as mentioned in the discussion following Eq.
(9). Now under modulation the condition of parametric reso-
nance satisfied, the onset of finite wavenumber convection
becomes(for e positive, for nearly all B and Cr, M,
=81.4(1- €/2) as given in Eq(24). (It is straightforward to
check that the effect of a finite Cr on the critiddl. for finite
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wave number response is negligiblf.the modulation am-  finite wave number instability. The modulation could thus

plitude e exceeds a critical value; given by have a striking effect as mentioned in the Introduction.
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