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Numerical statistics of power dropouts based on the Lang-Kobayashi model
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The statistics of power dropouts in semiconductor lasers subjected to delayed optical feedback have been
numerically investigated using the Lang-Kobayashi model. The data from the numerical simulations have then
been used to calculate the probability distribution functions, mean values, and return maps of the time that
elapses between dropouts. In addition, the transition from the ‘‘low frequency fluctuation’’ to the ‘‘coherence
collapse’’ regime has also been investigated. The numerical simulations compare well with both experimental
results, obtained from multilongitudinal mode lasers, and analytical results obtained from other theoretical
models. Evidence of ‘‘excitability’’ within the Lang-Kobayashi model is also reported.
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I. INTRODUCTION

It is well known that semiconductor lasers are very sen
tive to optical feedback. While small amounts of feedba
can be useful in obtaining linewidth reduction@1#, reinjection
of light levels of;1% of the emitted light can give rise to
chaotic output power and a linewidth that increases b
factor of ;103. This behavior is commonly referred to a
‘‘coherence collapse’’~CC! @2#. For similar feedback condi
tions but injection currents close to the solitary laser thre
old, a peculiar behavior, not yet fully understood, can
observed: the low frequency fluctuation~LFF! regime@3#. In
the LFF regime the optical power develops repetitive dr
outs in which the power falls to almost zero before recov
ing over microsecond time scales. The recovery proces
much longer than any other typical time scale of the syst

The LFF regime has been extensively studied both exp
mentally and numerically@3–24#. While most of the experi-
ments have been carried out with lasers that lase with sev
longitudinal modes and undetermined feedback levels,
theoretical and numerical studies have mainly been base
the well known Lang-Kobayashi~LK ! model @25#. This
model assumes single mode operation of the laser diode
ject to weak to moderate external feedback and consi
only one reflection within the external cavity.

Recent renewed interest in the LFF and CC regimes
in part, centered on how the overall dynamics are affected
the multimode nature of many of the lasers investigated. O
of the areas in which multimode operation is thought to p
a crucial role is in the recovery process of the optical pow
after a dropout. Recently, Huyet and co-workers@11,12#
have experimentally shown~with a Fabry-Perot Hitachi HLP
1400 laser! that after a dropout, and while the output pow
is still recovering, many of the longitudinal modes of th
laser clearly switch on, even though at a later stage,
before the subsequent dropout, the laser operates pred
nantly in a single longitudinal mode. An important feature
this recovery process is that the different longitudinal mo

*URL: http://formentor.uib.es/Photonics/
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of the laser undergo fast pulsations on a 20-100 ps t
scale. These fast pulsations have been experimentally
served using streak cameras@9,13#. Interestingly, fast pulsa-
tions during the recovery process were predicted by the
model before the experiment’s verification@20#. Although
there are some discrepancies with respect to the origin of
pulses@9,13#, it seems that this behavior is not exclusive
related to the multimode character of the laser but is a m
general aspect of the dynamics. The LK model predicts t
the intensity distribution during the high frequency dynam
has a maximum at very low powers and is monotonica
decreasing as the power increases@24#. These numerical re-
sults are in good agreement with recent experimental ob
vations@14#, but are in contradiction with earlier experimen
tal results, where a distribution function with a maximum
the mean value of the laser power was obtained. Moreo
an asymmetrically decreasing distribution for both low a
high power levels was experimentally observed@11#. This
behavior was attributed to the multimode character of
laser. However, the results presented in Ref.@11# appear to
apply to a special case~high injection current! and cannot be
regarded as the generic influence of multimode emission

Very recently, the coexistence of both the stable opera
and LFFs has been observed experimentally in a Hita
HLP 1400 laser when an etalon was inserted between
laser and the external mirror@17#. This work confirmed an
earlier theoretical prediction of the LK model, that one of t
external cavity modes of a laser subject to feedback is alw
stable. This mode is commonly referred to as the maximu
gain mode~MGM! @21#. Numerical studies using the LK
model have shown that spontaneous jumps from LFF
stable operation, and vice versa, can occur@24#.

To gain insight into the LFF regime several studies in
the statistics of the time intervalT between dropouts hav
been undertaken. At least four experiments@6,8,10,16# re-
ported the same qualitative results. Namely, that well wit
the LFF regime the distribution function ofT is single
peaked, but as the current is increased a multipeaked d
bution function develops. The mean time between dropo
^T& monotonically decays with increasing current. Althou
the experiments have been carried out with various di
5400 ©1999 The American Physical Society
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lasers, all of them predominantly exhibit multilongitudin
mode behavior in the LFF and CC regimes.

From the numerical point of view, it is difficult to com
pute the very long time series required to calculate^T&. To
overcome this problem two different approaches have b
taken. On the one hand, the Henry-Kazarinov~HK! theory
has been used@4,8,16# to estimate^T&. This approach as
sumes that the system lies in a potential well and is for
out of the well by noise at timesT0. The timeT between
dropouts is thusT5T01Tr , whereTr is the recovery time
which is usually negligible. In a second approach, Eg´a
et al. @19# introduced a dynamical model in which the syste
is excitable and exhibits an Andronov bifurcation. They p
posed a simple set of equations and obtained an analy
expression for̂ T&. The model developed in@19# is also able
to reproduce, at least qualitatively, the experiments of ex
ability reported in@10#.

In this paper extensive numerical simulations of the L
model are performed to evaluate the statistics of the timT
between dropouts. To our knowledge, these types of sim
tions have not been carried out before. The aim of this w
is to compare numerical results with previously reported
perimental and theoretical results. Moreover, it will
shown that a laser subject to optical feedback and descr
by the LK model is able to exhibit excitability, under appr
priate conditions. The paper is organized as follows:
model is described in Sec. II and the numerical results of
statistics of the time elapses between dropouts are report
Sec. III. Section IV reports evidence of excitability in the L
model and conclusions are given in Sec. V.

II. THE MODEL

A single mode semiconductor laser subject to weak
moderately strong feedback~that is, approximately 1026 to
1022 of the light emitted is fed back! can be described in
terms of the Lang-Kobayashi equations@25#,

dE~ t !

dt
5 1

2 ~11 ia!@G~N,P!2G0#E~ t !1gE~ t2t!e2 iv0t

1FE~ t !, ~1!

dN~ t !

dt
5p

Jth

q
2

N~ t !

T1
2G~N,P!P~ t !, ~2!

G~N,P!5
j~N2Nt!

11eP
, P~ t !5uE~ t !u2, ~3!

whereE(t) is the slowly varying amplitude of the electrica
field inside the cavity andN(t) is the carrier number.g and
t are the feedback rate and the delay time in the exte
cavity, respectively,v0 is the solitary laser frequency,a is
the linewidth enhancement factor,p is the pump current in
units of solitary threshold currentJth , andq is the electronic
charge. The effect of optical saturation of the active medi
is included via the nonlinear gain parametere. j is the dif-
ferential gain;T1 and 1/G0 are the carrier and photon life
times, respectively, andNt is the carrier number at transpa
ency.FE is a Langevin force describing a~Gaussian! white
noise process that represents random fluctuations cause
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spontaneous emission whose rate isR54Nb. Assuming that
the system is Markoffian, random forces have zero mean
are d correlated in time^FE(t)FE* (t8)&5Rd(t2t8). The
equations are normalized such thatP5uEu2 is the number of
photons inside the cavity. In order to better compare with
experimental data, a set of parameters that approxima
correspond to those of the Hitachi HLP 1400 laser, as e
mated from experimental data given in Ref.@15#, has been
used. j52.7631026 ns21, a54, e5331027, G0
5158 ns21, T150.6 ns, Nt51.513108, and b58
31027 ns21. g535 ns21 and t53.3 ns. The solitary la-
ser threshold current is 55 mA and the feedback give
threshold reduction of;12.3%.

The steady-state solutions of the LK equations lead
fixed points created in saddle-node bifurcations as the fe
back rate is increased. These fixed points are usually den
as external cavity modes and antimodes@18#. Modes and
antimodes lie on an ellipse in the carrier-frequency ph
space. The antimodes are~unstable! saddle points. The sta
bility of the cavity modes is dependent upon, among oth
things, the effective feedback strengthC5gtA11a2. In the
weak feedback regime~small C) the modes are stable an
the laser operates in the minimum linewidth mode, which
the mode nearest in frequency to the solitary laser freque
@1#. As C is increased many more modes become unsta
due to Hopf bifurcations@21#. Physically, the modes tend t
show undamped relaxation oscillations, and the laser is
served to jump between many of these unstable modes.
bias currents close to the solitary laser threshold the sys
can perform LFFs. Within this regime the system tries
move towards the MGM, located near the top of the ellip
The path of the trajectory is such that it always passes
close to a saddle point, and is thus repulsed towards
center of the ellipse, producing a dropout, before it can re
the MGM. Afterwards, the system again starts on its w
towards the MGM~‘‘Sisyphus effect’’ @20,22#!.

As mentioned previously, it is of interest to evaluate t
mean timeT between these dropouts. Henry and Kazarin
~HK! estimated̂ T& by making some approximations to th
LK model. Their expression for̂T& is @4#:

^T&'
p

aS 11
4P

P1
D expF 1

3b
~12pth

feed!3S 11
P1

4PD 3G , ~4!

where P1 is the mean output-power for the current corr
sponding to the solitary laser threshold in the presence
feedback andP is the mean power that is dependent on t
injection current. (12pth

feed) is the threshold reduction in
duced by the optical feedback, anda, b are two laser-
specific constants. It should noted that spontaneous emis
noise is essential in this model sinceb→0 whenb→0. The
parameters that best fit our numerical results area
525 ps21 andb56.3231023, but only for currents above
the solitary laser threshold@as will be shown in Fig. 4~a!#.

III. NUMERICAL RESULTS

The LFF process was explained by Sano as an examp
a crisis of an attractor, that is to say, the path of the sys
trajectory in the phase space always collides with an a
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5402 PRE 59JOSEP MULET AND CLAUDIO R. MIRASSO
mode at some point in its evolution@18#. In Fig. 1~a!, we
illustrate LFF trajectories in theh2n phase space, wher
n5N2Nth is the carrier number normalized to the solita
laser threshold, andh(t)5f(t)2f(t2t) is the phase dif-
ference of the slowly varying complex fieldE(t) in one ex-
ternal round-trip. For comparison, in Fig. 1~b! we illustrate
the same kinds of trajectories for the CC regime. The la
parameters are the same as those described in the pre
section, except thatt52.3 ns andg516.5 ns21 ~5.4%
threshold reduction!.

A means of automatically determining whether a drop
event has occurred is a necessity when analyzing long
series. The criterion used in this work makes use of the
that a dropout event manifests itself in theh2n phase space
as a sudden large excursion of the system trajectory tow
positive values ofh @see Fig. 1~a!#. A dropout event is as-
sumed to occur when a sudden change of at least six m
in h, towards the center of the ellipse, is observed. The
of a six-mode scheme to classify a dropout event is so
what arbitrary, but has been found to consistently distingu
between the chaotic back and forth changes inh associated
with CC and a dropout event~at least for the parameter s
being considered!.

Time series longer than 1 ms and that averaged ove

FIG. 1. Evolution of the trajectory in phase space for the~a!
LFF and ~b! CC regimes. Diamonds denote cavity modes a
crosses antimodes; the MGM is denoted with a square. For
LFFs we superposed three dropout events. The system evolve
wards the maximum-gain mode passing very close to the antim
and almost reaching the unstable manifold of the saddle gener
a dropout event. In the CC regime chaos and antimode dyna
compete. The numbers give an idea of the high frequency dyna
involved: 1–2, 10.1 ns; 2–3, 3 ns; 3–4, 2.6 ns, 4–5, 6.2 ns.
er
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least 104 dropout events were used to calculate the^T& for
each of the bias currents considered. Although the sim
tions were performed with spontaneous emission noise,
inclusion of this term seemed to have little effect on t
magnitude of the statistical quantities calculated.

Figure 2 shows the probability distribution functio
~PDF! of the timeT between dropouts for three bias curren
These correspond to the LFF regime below the solitary la
threshold, the LFF regime above the solitary laser thresh
and well into the CC regime. As can be seen, in the L
regime the distribution is nearly single-peaked, in agreem
with previous experimental results, obtained from lasers t
typically operate with several longitudinal modes@10,16#. In
Fig. 2~a! a secondary peak appears due to fast excurs
between the modes and antimodes when the system
pumped just above the threshold for LFF behavior. Simu
tions have been undertaken to check that this small peak
appears in the PDF for values ofp between 0.88 and 0.92
For bias currents within the CC regime the PDF initially h
a multipeaked structure that then slowly decays expon
tially, and hence is in qualitative agreement with experime
tal observations as outlined in@10,16#. However, the ampli-
tudes of the oscillations in the PDF are very small, wh
compared to those seen experimentally in Ref.@10#. This
seems to indicate that some additional phenomenon nee
be included in the LK model in order to fully describe th
features observed experimentally. A phase-locked beha
due to multiple external reflections is the most likely can
date, since it has been noted that reducing the feedb

d
e
to-
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FIG. 2. Probability distribution functions of the time betwee
dropouts for three different bias currents.~a! p50.92, ^T&
5312 ns;~b! p51.014, ^T&5116 ns;~c! p51.18, ^T&525 ns.
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PRE 59 5403NUMERICAL STATISTICS OF POWER DROPOUTS . . .
strength washes out the oscillations seen in the PDF.
Return mapsTn11 vs Tn for the currents used in Fig. 2 ar

shown in Fig. 3. A more or less uniform cloud of points
both the LFF and CC regimes can be seen, indicating a
of periodicity in the dynamical evolution, with no correlatio
between dropouts. Qualitatively the same return maps
obtained when the spontaneous emission noise term in
~1! is removed. These results are in good agreement w
previously reported experimental data@10#, except that the
LK model is unable to reproduce the observed substruc
that appears in the CC regime. However, our interpreta
of the return maps is different from that given in Ref.@10#.
The latter interprets LFFs as a consequence of the exist
of an Andronov bifurcation in which noise is essential
anticipate the bifurcation and avoid a periodic regime.

Finally, in Fig. 4 we plot the mean time between dropo
vs bias current normalized to~a! the solitary threshold and
~b! the threshold of the appearance of LFFs, which in t
case almost coincides with the threshold of the laser w
feedback. We define heree15p21 ande25p/pth

LFF21. The
last points of Fig. 4~a!, close to CC, can be fitted with 1/e1.
This dependence was experimentally found by Sacheret al.
@6#. However, this dependence has been observed to twis
lower currents, in good agreement with more recent exp
mental results@8,16#.

The LK model predicts that stable emission will be o
tained for control parameter values less than some crit
valuepth

LFF . When the control parameter slightly exceeds
critical value, stable emission is interrupted by occasio
power dropouts. Hence, the natural threshold required to

FIG. 3. Return mapsTn11 vs Tn for the time between dropout
for the same currents as Fig. 2.
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derstand the scaling properties of the system appears t
thepth

LFF and thus the data should be normalized to this val
However, the exact value ofpth

LFF is not easy to find numeri-
cally and has been estimated to bepth

LFF50.8860.01. The
numerical results in the LFF regime scale very closely
1/e2 @Fig. 4~b!# when replotted using ln̂T& vs lne2. Figure
4~b! shows that the HK theory~solid line! cannot be fitted to
these data.

The plot of ln̂T& vs lne1 obtained from the theoretica
model proposed by Eguı´a et al. @19# is only in qualitative
agreement with the numerical results presented here
those of Refs.@8# and@16#, if the e thresholdof Eguı́a’s model is
interpreted as the threshold of the solitary laser.

IV. EXCITABILITY

Eguı́a et al. @19# introduced a dynamical model that pre
dicts that LFFs are induced by noise. Their model has dim
sion 2 (x,y) and codimension 2 (e1 , e2). Three fixed points
exist for some regions of thee1-e2 space: a saddle, a nod
and a third point that always exists. The node is always
cated to one side of the saddle, and their relative dista
decreases whene1 is increased until the node and the sadd
collide and disappear~Andronov bifurcation!. In the region
in which the third point is spiraling unstable, and only th

FIG. 4. Mean time between dropouts versus normalized cur
~a! to solitary laser threshold and~b! to the threshold of the appear
ance of LFF (pth

LFF). Points are calculated from numerical simul
tions of the LK model. Solid lines correspond to the Henr
Kazarinov approximation and dot-dashed lines are straight li
with slope21. Three dot-dashed lines roughly delimit the LFF a
CC regimes.
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node is stable, a dropout event is generated when noise d
the trajectory towards the unstable manifold of the sad
They define the threshold as the value of the control par
eter for which no dropouts occur in one integration time. T
excitability phenomenon can be also explained by this mo
in terms of crossing the Andronov bifurcation.

In our analysis excitability is taken to mean that the s
tem can only develop dropouts if short input pulses are
perimposed onto a bias current for which the laser wo
otherwise be stable. At least three ingredients are require
any system before it can be described as being excita
first, the existence of a threshold above which an excita
can occur; second, the form and size of the response mu
invariant to any change in the magnitude of the perturbat
third, a refractory time must exist~if a second perturbation is
applied at a time shorter than the refractory time, the sys
no longer responds!.

Numerically investigations of the LK model have r
vealed the first evidence, to our knowledge, of excitability
Fig. 5. The parameters used are the same as those desc
in Sec. II, except that thea factor was lowered to increas
stability, a53.5. Values oft50.6 ns, g510 ns21 were
used and noise was neglected. A train of rectangular pu
of period of 60 ns was superimposed onto a bias curren
pbias50.986. The rectangular wave had a duty cycle of 0.
and amplitudeDp5(Jon2Jbias)/Jth , whereJon is the peak
of the injection current andJbias5pbiasJth . Stable emission is
obtained for small perturbations@Fig. 5~a!#. When the ampli-
tude of the perturbation is increased the system starts to
hibit dropout events@Fig. 5~b!#. The transition was found to
occur whenDp;0.19. The size and shape of the dropo
were found to be almost invariant to further increases inDp.

Numerical simulations have been undertaken to check
the existence of a refractory time in order to verify that t

FIG. 5. Time trace of the optical power normalized to the pow
of the saddle point and filtered with a lower-pass filter of bandwi
1 GHz. The time trace exhibits characteristics indicative of ex
ability. The amplitudes of the input pulses are~a! Dp50.05 ~cor-
responding to 2.75 mA! and~b! Dp50.25 ~corresponding to 13.75
mA!. The input current is plotted on the top of panel~a!.
ifts
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model is indeed excitable. The response of the system w
a second pulse is injected at a delay timeDT with respect to
the first pulse is shown in Fig. 6. It is clear that the respon
does not significantly change forDT&8 ns. IncreasingDT
further toDT*10 ns induces significant distortion. The sy
tem is unable to respond to the stimulus. The system reg
its ability to respond to both pulses whenDT*18 ns. It
would thus appear that the refractory time is;10 ns.

r
h
-

FIG. 6. Response of the system to a couple of pulses with a
plitudeDp50.25. In~b!–~f! we have increased the time separatio
DT between the two pulses:~a! a solitary perturbation,~b! DT
51 ns, ~c! DT54 ns, ~d! DT510 ns, ~e! DT512 ns, and~f!
DT518 ns.

FIG. 7. Phase-space evolution of the trajectory under the ex
able condition ofDp50.25. The system operates in the MGM.
dropout occurs after which the system goes back to the MGM. T
modes and antimodes are calculated forp50.986 for which stable
emission is observed. H is a Hopf-bifurcated external cavity mo
S is an antimode, and MGM is the maximum gain mode.
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The h2n phase space has also been used to investi
the dynamical evolution of the LK excitable scenario. Figu
7 shows the trajectory in this phase space forDp50.25. The
pulses excite the system and the trajectory moves tow
the saddle point through the unstable manifold, causing
trajectory to move towards the Hopf bifurcated point; a dro
out is produced in the system, and at some later time
system returns to the MGM.

V. CONCLUSIONS

In conclusion, extensive numerical simulations of a sin
~longitudinal! mode semiconductor laser subject to optic
feedback have been performed. The Lang-Kobayashi m
has been used to calculate the statistical properties of
time between dropouts. Bias currents ranging from those
sociated with low frequency fluctuations to those associa
with the coherence collapse regime have been investiga
The probability distribution functions, the mean time b
tween dropouts, and the return maps are all in good ag
ment with experimental results, which were obtained w
lasers that mainly operate with multiple longitudinal mod
in these regimes. When the mean time between dropout
the injection current~normalized to the threshold of the ap
an

n
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c-

R

.

nd

R

te

ds
e
-
e

e
l
el
he
s-
d
d.

-
e-

s
vs

pearance of the low frequency fluctuations! is plotted using a
ln-ln scale, a linear dependence, with slope very close
21, was obtained. This is in agreement with experimenta
observed behavior for a diode laser subject to optical fe
back. The numerical results also suggest that, at least
these types of quantities, the assumption of an intrinsic
single mode laser is sufficient to explain the experimen
results obtained with lasers that mainly operate with sev
longitudinal modes.

It has also been shown that the Lang-Kobayashi mode
able to reproduce an excitable scenario, under approp
conditions. Excitability in a semiconductor laser subject
optical feedback has been experimentally reported recen
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