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Numerical statistics of power dropouts based on the Lang-Kobayashi model
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The statistics of power dropouts in semiconductor lasers subjected to delayed optical feedback have been
numerically investigated using the Lang-Kobayashi model. The data from the numerical simulations have then
been used to calculate the probability distribution functions, mean values, and return maps of the time that
elapses between dropouts. In addition, the transition from the “low frequency fluctuation” to the “coherence
collapse” regime has also been investigated. The numerical simulations compare well with both experimental
results, obtained from multilongitudinal mode lasers, and analytical results obtained from other theoretical
models. Evidence of “excitability” within the Lang-Kobayashi model is also reported.
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[. INTRODUCTION of the laser undergo fast pulsations on a 20-100 ps time
scale. These fast pulsations have been experimentally ob-
It is well known that semiconductor lasers are very sensiserved using streak cameif@13]. Interestingly, fast pulsa-
tive to optical feedback. While small amounts of feedbacktions during the recovery process were predicted by the LK
can be useful in obtaining linewidth reductipt], reinjection  model before the experiment’s verificatig@0]. Although
of light levels of ~1% of the emitted light can give rise to a there are some discrepancies with respect to the origin of the
chaotic output power and a linewidth that increases by gulses[9,13], it seems that this behavior is not exclusively
factor of ~10°. This behavior is commonly referred to as related to the multimode character of the laser but is a more
“coherence collapse’{CC) [2]. For similar feedback condi- general aspect of the dynamics. The LK model predicts that
tions but injection currents close to the solitary laser threshthe intensity distribution during the high frequency dynamics
old, a peculiar behavior, not yet fully understood, can behas a maximum at very low powers and is monotonically
observed: the low frequency fluctuatidi-F) regime[3]. In  decreasing as the power increaf24]. These numerical re-
the LFF regime the optical power develops repetitive drop-sults are in good agreement with recent experimental obser-
outs in which the power falls to almost zero before recovervations[14], but are in contradiction with earlier experimen-
ing over microsecond time scales. The recovery process i@l results, where a distribution function with a maximum at
much longer than any other typical time scale of the systemthe mean value of the laser power was obtained. Moreover,
The LFF regime has been extensively studied both experian asymmetrically decreasing distribution for both low and
mentally and numerically3—24]. While most of the experi- high power levels was experimentally obsenfdd]. This
ments have been carried out with lasers that lase with severbehavior was attributed to the multimode character of the
longitudinal modes and undetermined feedback levels, thiaser. However, the results presented in R&l] appear to
theoretical and numerical studies have mainly been based apply to a special caghigh injection currentand cannot be
the well known Lang-KobayashiLK) model [25]. This regarded as the generic influence of multimode emission.
model assumes single mode operation of the laser diode sub- Very recently, the coexistence of both the stable operation
ject to weak to moderate external feedback and considersnd LFFs has been observed experimentally in a Hitachi
only one reflection within the external cavity. HLP 1400 laser when an etalon was inserted between the
Recent renewed interest in the LFF and CC regimes hasaser and the external mirr¢d7]. This work confirmed an
in part, centered on how the overall dynamics are affected bgarlier theoretical prediction of the LK model, that one of the
the multimode nature of many of the lasers investigated. Onexternal cavity modes of a laser subject to feedback is always
of the areas in which multimode operation is thought to playstable. This mode is commonly referred to as the maximum-
a crucial role is in the recovery process of the optical powegain mode(MGM) [21]. Numerical studies using the LK
after a dropout. Recently, Huyet and co-workéid,12] model have shown that spontaneous jumps from LFF to
have experimentally show(with a Fabry-Perot Hitachi HLP  stable operation, and vice versa, can od@4.
1400 laserthat after a dropout, and while the output power To gain insight into the LFF regime several studies into
is still recovering, many of the longitudinal modes of the the statistics of the time interval between dropouts have
laser clearly switch on, even though at a later stage, antdeen undertaken. At least four experimeffis3,10,16 re-
before the subsequent dropout, the laser operates predonperted the same qualitative results. Namely, that well within
nantly in a single longitudinal mode. An important feature ofthe LFF regime the distribution function of is single
this recovery process is that the different longitudinal modegpeaked, but as the current is increased a multipeaked distri-
bution function develops. The mean time between dropouts
(T) monotonically decays with increasing current. Although
*URL: http://formentor.uib.es/Photonics/ the experiments have been carried out with various diode
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lasers, all of them predominantly exhibit multilongitudinal spontaneous emission whose rat®is4NB. Assuming that
mode behavior in the LFF and CC regimes. the system is Markoffian, random forces have zero mean and

From the numerical point of view, it is difficult to com- are & correlated in time(Fg(t)FE(t"))=R4&(t—t'). The
pute the very long time series required to calculd®. To  equations are normalized such t#at |E|? is the number of
overcome this problem two different approaches have beephotons inside the cavity. In order to better compare with the
taken. On the one hand, the Henry-KazarinelK) theory  experimental data, a set of parameters that approximately
has been usef#4,8,16 to estimate(T). This approach as- correspond to those of the Hitachi HLP 1400 laser, as esti-
sumes that the system lies in a potential well and is forcednated from experimental data given in REE5], has been
out of the well by noise at time$,. The timeT between used. ¢é=2.76<x10°° ns'!, a=4, e=3%x10"7, T,
dropouts is thu§ =T+ T,, whereT, is the recovery time =158 ns?', T,=0.6 ns, N,=1.51x1C¢®, and B=8
which is usually negligible. In a second approach, Bgui x10 7 ns ! y=35 ns! and r=3.3 ns. The solitary la-
et al.[19] introduced a dynamical model in which the systemser threshold current is 55 mA and the feedback gives a
is excitable and exhibits an Andronov bifurcation. They pro-threshold reduction of-12.3%.
posed a simple set of equations and obtained an analytical The steady-state solutions of the LK equations lead to
expression fofT). The model developed i19] is also able fixed points created in saddle-node bifurcations as the feed-
to reproduce, at least qualitatively, the experiments of excitback rate is increased. These fixed points are usually denoted
ability reported in[10]. as external cavity modes and antimodds8]. Modes and

In this paper extensive numerical simulations of the LKantimodes lie on an ellipse in the carrier-frequency phase
model are performed to evaluate the statistics of the fime space. The antimodes afenstabl¢ saddle points. The sta-
between dropouts. To our knowledge, these types of simulability of the cavity modes is dependent upon, among others
tions have not been carried out before. The aim of this WOI‘Khings, the effective feedback strend@th y71+ 2. In the
is to compare numerical results with previously reported exyweak feedback regimésmall C) the modes are stable and
perimental and theoretical results. Moreover, it will bethe |aser operates in the minimum linewidth mode, which is
shown that a laser subject to optical feedback and describafle mode nearest in frequency to the solitary laser frequency
by the LK model is able to exhibit excitability, under appro- [1]. As C is increased many more modes become unstable
priate conditions. The paper is organized as follows: thejue to Hopf bifurcation§21]. Physically, the modes tend to
model is described in Sec. Il and the numerical results of thghow undamped relaxation oscillations, and the laser is ob-
statistics of the time elapses between dropouts are reported §grved to jump between many of these unstable modes. For
Sec. IIl. Section IV reports evidence of excitability in the LK pjas currents close to the solitary laser threshold the system

model and conclusions are given in Sec. V. can perform LFFs. Within this regime the system tries to
move towards the MGM, located near the top of the ellipse.
Il. THE MODEL The path of the trajectory is such that it always passes too

close to a saddle point, and is thus repulsed towards the

A single mode semiconductor laser subject to weak (Qenter of the ellipse, producing a dropout, before it can reach
moderately strong feedbadthat is, approximately I to e MM, Afterwards, the system again starts on its way

102 of the light emitted is fed badkcan be described in towards the MGM(“Sisyphus effect”[20,22).

terms of the Lang-Kobayashi equatio&5], As mentioned previously, it is of interest to evaluate the
mean timeT between these dropouts. Henry and Kazarinov

@: 1(1+i@)[G(N,P) =T ]E(t)+ yE(t— r)e w0 (HK) estimated_(T) by making some approximations to the
dt LK model. Their expression fofT) is [4]:
+ FE(t)v (1) 1 P 3
(T~ —— —exg=e(1—ple93| 1+ 2| |, (@)
4P 3b 4P
AN _ Jn N oo @ al 1+ —
dt - p q Tl ’ 3 Pl
where P, is the mean output-power for the current corre-
G(N,P)= §(N—Ny P(t)=|E(t)|? 3) sponding to the solitary laser threshold in the presence of
' 1+eP ’ ' feedback andP is the mean power that is dependent on the

injection current. (£ pf®Y is the threshold reduction in-

whereE(t) is the slowly varying amplitude of the electrical gyced by the optical feedback, are] b are two laser-
field inside the cavity and(t) is the carrier numbery and  specific constants. It should noted that spontaneous emission
7 are the feedback rate and the delay time in the externaigjse is essential in this model sinbe-0 wheng—0. The
cavity, respectivelyw, is the solitary laser frequency; is  parameters that best fit our numerical results are
the linewidth enhancement factq,is the pump current in - — 35 ps? andb=6.32x 103, but only for currents above

units of solitary threshold curredt,, andq is the electronic  ne solitary laser thresholds will be shown in Fig. @)].
charge. The effect of optical saturation of the active medium

is included via the nonlinear gain parameteré is the dif-

ferential gain;T, and 1I"; are the carrier and photon life-
times, respectively, an; is the carrier number at transpar-  The LFF process was explained by Sano as an example of
ency.Fg is a Langevin force describing @aussiapnwhite  a crisis of an attractor, that is to say, the path of the system
noise process that represents random fluctuations caused trgjectory in the phase space always collides with an anti-

Ill. NUMERICAL RESULTS
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FIG. 1. Evolution of the trajectory in phase space for the
LFF and (b) CC regimes. Diamonds denote cavity modes and . . ~
crosses antimodes; the MGM is denoted with a square. For thg_rgggms .fgr tﬂrfzgljlff?re_nilglas .curre_ntlsal)S p_; 0_9225 (1)
LFFs we superposed three dropout events. The system evolves to- ns;(b) p=1.014,(T)= nsi(c) p=1.18,(T)=25 ns.

wards the maximum-gain mode passing very close to the antimodes
and almost reaching the unstable manifold of the saddle generatij asr: 1? ?}ro%qm events were u.zed t(;) (ZIEUIati “:? fo_r |
a dropout event. In the CC regime chaos and antimode dynamic_ac of the bias currents considered. Although the simula-

compete. The numbers give an idea of the high frequency dynamidions were performed with spontaneous emission noise, the

FIG. 2. Probability distribution functions of the time between

involved: 1—2, 10.1 ns: 23, 3 ns: 3-4, 2.6 ns, 4-5. 6.2 ns. inclusion of this term seemed to have little effect on the
magnitude of the statistical quantities calculated.
mode at some point in its evolutidi8]. In Fig. 1(a), we Figure 2 shows the probability distribution function

illustrate LFF trajectories in they—n phase space, where (PDF of the timeT between dropouts for three bias currents.
n=N-—Ny, is the carrier number normalized to the solitary These correspond to the LFF regime below the solitary laser
laser threshold, and(t) = ¢(t) — ¢(t— 7) is the phase dif- threshold, the LFF regime above the solitary laser threshold,
ference of the slowly varying complex fiell(t) in one ex- and well into the CC regime. As can be seen, in the LFF
ternal round-trip. For comparison, in Fig(k) we illustrate  regime the distribution is nearly single-peaked, in agreement
the same kinds of trajectories for the CC regime. The lasewith previous experimental results, obtained from lasers that
parameters are the same as those described in the previaypically operate with several longitudinal modd®,16]. In
section, except thatr=2.3 ns andy=16.5 ns! (5.4% Fig. 2@ a secondary peak appears due to fast excursions
threshold reduction between the modes and antimodes when the system is
A means of automatically determining whether a dropoutpumped just above the threshold for LFF behavior. Simula-
event has occurred is a necessity when analyzing long timgons have been undertaken to check that this small peak also
series. The criterion used in this work makes use of the fachppears in the PDF for values pfbetween 0.88 and 0.92.
that a dropout event manifests itself in the-n phase space For bias currents within the CC regime the PDF initially has
as a sudden large excursion of the system trajectory towards multipeaked structure that then slowly decays exponen-
positive values ofp [see Fig. 1a)]. A dropout event is as- tially, and hence is in qualitative agreement with experimen-
sumed to occur when a sudden change of at least six modéal observations as outlined [10,16. However, the ampli-
in n, towards the center of the ellipse, is observed. The ustudes of the oscillations in the PDF are very small, when
of a six-mode scheme to classify a dropout event is somesompared to those seen experimentally in R&D|. This
what arbitrary, but has been found to consistently distinguisiseems to indicate that some additional phenomenon needs to
between the chaotic back and forth changeg iassociated be included in the LK model in order to fully describe the
with CC and a dropout evergat least for the parameter set features observed experimentally. A phase-locked behavior
being considered due to multiple external reflections is the most likely candi-
Time series longer than 1 ms and that averaged over atate, since it has been noted that reducing the feedback
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FIG. 4. Mean time between dropouts versus normalized current
(a) to solitary laser threshold an@) to the threshold of the appear-
ance of LFF p5"). Points are calculated from numerical simula-
tions of the LK model. Solid lines correspond to the Henry-
Kazarinov approximation and dot-dashed lines are straight lines
with slope— 1. Three dot-dashed lines roughly delimit the LFF and
CEC regimes.

FIG. 3. Return map¥,, 1 vs T, for the time between dropouts
for the same currents as Fig. 2.

strength washes out the oscillations seen in the PDF.
Return mapg,,, , vs T, for the currents used in Fig. 2 are

shown in Fig. 3. A more or less uniform cloud of points in

both the LFF and CC regimes can be seen, indicating a la

of periodicity in the dynamical evolution, with no correlation . .
between dropouts. Qualitatively the same return maps arderstand the scaling properties of the system appears to be
LFF and thus the data should be normalized to this value.

obtained when the spontaneous emission noise term in E4€Pt i ; i

(1) is removed. These results are in good agreement withlowever, the exact value @i, " is not easy to find numeri-

previously reported experimental ddtt0], except that the cally and has been estimated to pff"=0.88+0.01. The

LK model is unable to reproduce the observed substructurgumerical results in the LFF regime scale very closely to

that appears in the CC regime. However, our interpretatiod/e, [Fig. 4(b)] when replotted using {T) vs Ine,. Figure

of the return maps is different from that given in REF0]. 4(b) shows that the HK theor{solid line) cannot be fitted to

The latter interprets LFFs as a consequence of the existentieese data.

of an Andronov bifurcation in which noise is essential to  The plot of IT) vs Ine; obtained from the theoretical

anticipate the bifurcation and avoid a periodic regime. model proposed by Egaiet al. [19] is only in qualitative
Finally, in Fig. 4 we plot the mean time between dropoutsagreement with the numerical results pre§ented here and

vs bias current normalized t@) the solitary threshold and those of Refs[8] and[16], if the eyresnoidOf EQu’s model is

(b) the threshold of the appearance of LFFs, which in thignterpreted as the threshold of the solitary laser.

case almost coincides with the threshold of the laser with

feedback. We define heeg=p—1 ande,=p/py  —1. The

last points of Fig. 4a), close to CC, can be fitted with &y/.

This dependence was experimentally found by Saehe. Egua et al. [19] introduced a dynamical model that pre-

[6]. However, this dependence has been observed to twist faficts that LFFs are induced by noise. Their model has dimen-

lower currents, in good agreement with more recent experision 2 (x,y) and codimension 2¢;, €,). Three fixed points

mental result$8,16). exist for some regions of the;-e, space: a saddle, a node,
The LK model predicts that stable emission will be ob-and a third point that always exists. The node is always lo-

tained for control parameter values less than some criticatated to one side of the saddle, and their relative distance

value ptLhFF. When the control parameter slightly exceeds thedecreases whes, is increased until the node and the saddle

critical value, stable emission is interrupted by occasionatollide and disappeafAndronov bifurcation. In the region

power dropouts. Hence, the natural threshold required to urin which the third point is spiraling unstable, and only the

IV. EXCITABILITY
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FIG. 5. Time trace of the optical power normalized to the power
of the saddle point and filtered with a lower-pass filter of bandwidth

1 GHz. The time trace exhibits characteristics indicative of excit- 0 ‘ ‘ ‘ ‘ ‘ , . .
ability. The amplitudes of the input pulses @@ Ap=0.05 (cor- 0 10 20 30 0 10 20 30 40 50 60
responding to 2.75 mpand (b) Ap=0.25(corresponding to 13.75 t [ns] t [ns]

mA). The input current is plotted on the top of para).
FIG. 6. Response of the system to a couple of pulses with am-

node is stable, a dropout event is generated when noise dri litude Ap=0.25. In(b)—(f) we have increased the time separation
' P 9 between the two pulsega) a solitary perturbation(b) AT

the trajectory towards the unstable manifold of the saddle_, ¢ (©) AT=4 ns, (d) AT=10 ns, (&) AT=12 ns, and(f)
They define the threshold as the value of the control param;1_1g s ' ’ '
eter for which no dropouts occur in one integration time. The

excitability phenomenon can be also explained by this model . i
in terms of crossing the Andronov bifurcation. model is indeed excitable. The response of the system when

In our analysis excitability is taken to mean that the sys-& Sécond pulse is injected at a delay titié with respect to
tem can only develop dropouts if short input pulses are guthe first pul_se_|_s shown in Fig. 6. It is clear that the_ response
perimposed onto a bias current for which the laser wouldloes not significantly change f&rT<8 ns. Increasing\ T
otherwise be stable. At least three ingredients are required di/rther toAT=10 ns induces significant distortion. The sys-
any system before it can be described as being excitablé‘?m |s_ynable to respond to the stimulus. The system regains
first, the existence of a threshold above which an excitatiotS ability to respond to both pulses whexiT=18 ns. It
can occur; second, the form and size of the response must ¥euld thus appear that the refractory time~d0 ns.
invariant to any change in the magnitude of the perturbation;
third, a refractory time must exisif a second perturbation is
applied at a time shorter than the refractory time, the system
no longer responds

Numerically investigations of the LK model have re-
vealed the first evidence, to our knowledge, of excitability in
Fig. 5. The parameters used are the same as those described
in Sec. Il, except that the factor was lowered to increase
stability, «=3.5. Values ofr=0.6 ns, y=10 ns ! were
used and noise was neglected. A train of rectangular pulses
of period of 60 ns was superimposed onto a bias current of
Puias= 0.986. The rectangular wave had a duty cycle of 0.1%
and amplitudeA p=(Jon— Jpiad/Jin, WhereJ,, is the peak i : : : :
of the injection current andyi,<= Priasdin- Stable emission is —2=2 -%0 -18 -—16 -14 -1
obtained for small perturbatiof&ig. 5a)]. When the ampli- $(L)=¢(L-7) [rad]
“!d_e of the perturbatipn is increased th? _system starts to ex- gy 7, Phase-space evolution of the trajectory under the excit-
hibit dropout event§Fig. Sb)]. The transition was found t0 e condition ofAp=0.25. The system operates in the MGM. A
occur whenAp~0.19. The size and shape of the dropoutsyropout occurs after which the system goes back to the MGM. The
were found to be almost invariant to further increaseA|n  modes and antimodes are calculatedier0.986 for which stable

Numerical simulations have been undertaken to check fogmission is observed. H is a Hopf-bifurcated external cavity mode,
the existence of a refractory time in order to verify that thes is an antimode, and MGM is the maximum gain mode.
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The »—n phase space has also been used to investigagearance of the low frequency fluctuatiprsplotted using a
the dynamical evolution of the LK excitable scenario. Figureln-In scale, a linear dependence, with slope very close to
7 shows the trajectory in this phase spaceXp=0.25. The —1, was obtained. This is in agreement with experimentally
pulses excite the system and the trajectory moves towardsbserved behavior for a diode laser subject to optical feed-
the saddle point through the unstable manifold, causing thback. The numerical results also suggest that, at least for
trajectory to move towards the Hopf bifurcated point; a drop-these types of quantities, the assumption of an intrinsically
out is produced in the system, and at some later time thseingle mode laser is sufficient to explain the experimental

system returns to the MGM. results obtained with lasers that mainly operate with several
longitudinal modes.
V. CONCLUSIONS It has also been shown that the Lang-Kobayashi model is

_ _ ) _ _ ~able to reproduce an excitable scenario, under appropriate
In conclusion, extensive numerical simulations of a singlegonditions. Excitability in a semiconductor laser subject to

(longitudina) mode semiconductor laser subject to opticalgptical feedback has been experimentally reported recently.
feedback have been performed. The Lang-Kobayashi model

has been used to calculate the statistical properties of the
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