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Simple deterministic dynamical systems with fractal diffusion coefficients
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We analyze a simple model of deterministic diffusion. The model consists of a one-dimensional array of
scatterers with moving point particles. The particles move from one scatterer to the next according to a
piecewise linear, expanding, deterministic map on unit intervals. The microscopic chaotic scattering process of
the map can be changed by a control parameter. The macroscopic diffusion coefficient for the moving particles
is well defined and depends upon the control parameter. We calculate the diffusion coefficent and the largest
eigenmodes of the system by using Markov partitions and by solving the eigenvalue problems of respective
topological transition matrices. For different boundary conditions we find that the largest eigenmodes of the
map match the ones of the simple phenomenological diffusion equation. Our main result is that the diffusion
coefficient exhibits a fractal structure as a function of the control parameter. We provide qualitative and
guantitative arguments to explain features of this fractal strucf63-651X99)15105-3

PACS numbegs): 05.45—a, 02.50-r, 05.40—a, 05.60—k

[. INTRODUCTION deterministic dynamics could not be treated in full detail, and
thus the results were approximate, or the task could be per-
Over the past several years there has been a growing ifiermed exactly only for a few simple cases of parameter
terest in trying to understand the mechanism of nonequilibvalues.
rium transport on the basis of dynamical systems theory The idea of this paper is to apply methods of dynamical
[1-9]. One line of work is related to computer simulations of Systems theory, as discussed by Gasedral. [8,25,32,57,
nonequilibrium steady states, where interacting manyio the problem of parameter-dependent deterministic diffu-
particle systems are studied when placed under nonequilitsion in one-dimensional piecewise linear maps. In the re-
rium conditions, such as in a shear flow or an external fieldmaining part of this introductory section, we will explain the
The System is then thermostated to maintain a constant totigrm deterministic diffusion, and we will define the class of
energy, or constant kinetic ener§i¥0—14. Another line of ~dynamical systems we want to analyze. In Sec. Il, the nec-
research focuses on low-dimensional models such as the rafissary background of our approach will be discussed briefly,
dom[ls_la or periodic[lg_:{u Lorentz gas. An even sim- and in Sec. lll, a method will be presented which enables the
p|er model which shares certain properties of the periodi@xact Computation of deterministic diffusion coefficients for
Lorentz gas are two-dimensional multi-Baker mpa—39. a broad range of parameter values. The result for the diffu-
Lorentz gases and multi-Baker maps have become standa$iPn coefficient of the simple map considered here turns out
models in the field of chaos and transport, since, on the ont® be surprisingly complex so that additional investigations,
hand, they catch the physical essence of certain real noneqlperformed in Sec. IV, are required to understand the origin of
librium processes, and, on the other hand, they are stilihis unexpected nontrivial diffusive behavior. This paper is
simple enough such that they can be analyzed in detail thed?ased on the work of Reff58]; for a concise summary of the
retically. The most elementary models of transport are thosg'ain results we refer to Reff59].
describing deterministic diffusion in one-dimensional maps, In contrast to the traditional picture of diffusion as an
first studied by Grossmann and Fujisgk®—47, by Geisel ~uncorrelated random walk, the theory of dynamical systems
et al.[43—-45, and by Schell, Fraser, and Kapfdb]. These makes it possible to treat diffusion agleterministic dynami-
models are amenable to treatment by several methods af@! process Here, the orbit of a point particle with initial
have provided useful systems for the application of periodicconditionx, may be generated by ehaotic dynamical sys-
orbit expansiong47-51] and other techniquels2-56. A tem
very interesting problem in this context is to determinte the
value of the diffusion coefficient, when it exists, and to find Xn+1=M(Xp). 1)
its dependence upon the parameters that describe the chaotic
scattering of the moving particles. However, for computingM(x) is a one-dimensional map which determines how a
parameter-dependent diffusion coefficients so far either thparticle gets mapped from positiog, to positionx,, ., as
will be introduced in detail below. Defininiyl (x) together
with Eqg. (1) gives the full microscopic equations of motion
*Electronic address: R.Klages@physik.tu-berlin.de of the system. This way, theomplete memorgf the particle
"Electronic address: jrd@ipst.umd.edu is taken into account. The decisive new fact which distin-
*Present address: Center for Nonlinear Phenomena and Complguishes this dynamical process from that of a simple uncor-
Systems, UniversiteLibre de Bruxelles, Campus Plaine, Code related random walk is thus that hetg, ; is uniquely deter-
Postal 231, Boulevard du Triomphe, B-1050 Brussels, Belgium. minedby x,,, rather than having a distribution &f,. ; for a
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the slope of the mapx,, is the position of a point particle,
andn labels the discrete time. Since the map is expanding,
i.e.,a>1, its Lyapunov exponent, & is greater than zero.
Thus, M ,(x) is dynamically unstable and may in this sense
be called chaoti¢60]. In order for the map to be chaotic and
piecewise linear, it cannot be monotonic, so there must be
, points of discontinuity and/or nondifferentiability. The term
# “chain” in the characterization oM ,(x) can be made more

i precise as dift of degree 1

M,(x)
3

! w7 Ma(x+1)=Mu(x)+1, (@

A /

/ / for which the acronymold has been introducef61-63.

i X This means thatM ,(x) is to a certain extent translational
7= | Y A 2 3 invariant. Beingold, the full mapM 4(x) is generated by the
“j?/"?/ / map of one box, e.g., on the unit intervak@=<1, which

will be referred to as th&ox map It shall be assumed that
e g the graph of this box map is point symmetric with respect to
P / the center of the box atx(y)=(0.5,0.5). This implies that
the graph of the full mag ,(x) is antisymmetric with re-

FIG. 1. lllustration of a simple model of deterministic diffusion; spect tox=0,
see the dynamical system m#p Egs.(3) to (6), for the particular
slopea=3. The dashed line refers to the orbit of a moving particle. Ma(X)=—My(—X), (5)

Its initial condition is indicated by a black arrow close to thaxis.

The particle moves under the action of the one-dimensional piec%o that there is no “drift” in the chain of boxes. Merely for
wise linear map shown in the figure by jumping from box to box. the sake of simplicity, the class of maps defined by E8.

. L (4), and(5) shall be denoted adassP (whereP stands for
gIvenX, . In qt_her WorQS,_for the deterministic map the tran- piecewise linear and maps which fulfill the requirements of
sition probability density i$ 5(Xy..1=M(xy)) ], compared to classP shall be referred to adassP maps In Fig. 1, which

p(Xn+1—Xy) for a typical random walk. If the resulting dy- contains a section of a simple claBamap, the box map has
namics of an ensemble of particles, each governed by thgeen chosen to

same deterministic dynamical systeM(x), has the prop-

erty that the diffusion coefficientD, is well defined, this ax. 0O<x<!
process is denoted aketerministic diffusio40-51. Here M (X)= ' 2 a=2 (6)
the diffusion coefficient is defined by 2 ax+1-a, Li<x<1|’ ’
_ 2
D= lim M, (2)  cf. Refs.[40,57,6Q. This example can best be classified as a
n—o 2n Lorenz map with escap@®4—68. The chaotic dynamics of

these maps is generated by a “stretch-split-merge” mecha-
where( ) represents the average over the initial ensemblgism for a density of points on the real lif85]. As a class
of values ofx,. We will typically choose the initial ensemble P map, Eq.(6), together with Eqgs(3), (4), and(5), will be
as one in which the points are distributed uniformly overreferred to as mag. Other class® maps have been consid-
some small interval of the real line. Of course one musiered in Refs[40,41,47,57,58,69—12
argue thaD is largely independent of the choice of the initial |t has been proposdd1] to look at the dynamics in this
ensemble. chain of boxes in analogy to the processBobwnian motion
[73,74: If a particle stays in a box for a few iterations, its
The deterministic model internal box motion is supposed to get randomized and may

Figure 1 shows the model which shall be studied in this€S€mble the microscopic fluctuations of a Brownian par-

paper. This model has apparently first been introduced by cle, whereas |t$externa‘l‘1u_mp§’ between_ the boxes could be
Grossmann and Fujisaki0,41. It depicts a “chain of nterpreted as sudden “kicks” the particle suffers by some

boxes” which continues periodically in both directions to strong collision. This suggests that “jumps b(.etwe.en boxes_
infinity, and the orbit of a moving point particle. Let contribute most to the actual value of the diffusion coeffi-
' ' cient. Brownian motion is usually described in statistical

M. :R—R, XM (X)=Xp+1, a>1, X,eR, physics by introducing some stochasticity into the equations
which model a diffusion process. The main advantage of the
neN, €) simple model discussed here is that diffusion can be treated

by taking the full dynamics of the system into account, i.e.,
be a map modeling the chain of boxes introduced above, i.ethe complete orbibf the moving particle is considered, with-
a periodic continuationof discrete one-dimensional piece- out any additional approximations. This is another way to
wise linear expanding mapsith uniform slope The indexa  understand the notion of deterministic diffusion in contrast to
denotes a control parameter, which is the absolute value diffusion obtained from stochastic approaches. That is, in the
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purely deterministic case the orbit of the particle is immedi-therefore determined by quantities of the deterministic dy-

ately fixed by determining its initial condition. namical system. Fombsorbing boundary conditiops.e.,
One should note that the strength of diffusion, and thereP(0t)=P(L,t)=0 andp,(0)=p,(L)=0, the same proce-

fore the magnitude of the diffusion coefficient, are related todure leads to

the probability of the particle to escape out of a box, i.e., to

perform a jump into another box. This escape probability, . 2

however, as well as the average distance a particle travels by D(a)= lim (;) Yesd @), (10)

performing such a jump, changes by varying the system pa- Lo

rameter. The problem which will be solved in the following h is th te for th ¢ Thi

is to develop a general method for computing parameter\-N ere Yesd@) IS the escape rate for the open system. This

dependent diffusion coefficient® (a) for class P maps. quantity can be further determined by the escape rate formal-

Here, mapC will serve as a simple example. However, the > [9.78] to

» map p p )

methods to be presented should work as well for any other

class P map, evidently with analogous resul{see, e.g.,

[58,71).

Yesé@) =N(R;a) —hgs(R;a), (11)

where the Lyapunov exponeRn{R;a) and the Kolmogorov-
Sinai (KS) entropyhgs(R;a) are defined on the repell&®
Il. FIRST PASSAGE METHOD of the dynamical system. This equation is an extension of

The methodology of first passage, as it has been deveResin’s formula to open systems, which is obtained in the
oped in the framework of statistical physifg3,74, deals Case Ofyes=0. Equationg9) and(10) have been applied to
with the calculation of decay or escape rates for ensembles & variety of models, such as the periodic Lorentz gas, two-
statistical systems with certain boundary conditions. In redimensional multi-Baker maps, and certain one-dimensional
cent work by Gasparelt al, these methods have successfully chains of maps, by Gaspard and co-workiegd,57. Equa-
been applied to the theory of dynamical systemstion (10), together with Eq(11), has first been presented for
[21,25,32,57,75,76 In the following, the principles of first the two-dimensional periodic Lorentz gg&l] and has later
passage for the clagd of dynamical systems defined above been generalized to other transport coefficients and dynami-
will be briefly outlined. The method will turn out to provide cal systems[75,76. However, although of fundamental
a convenient starting point for computing parameter-Physical importance, it seems in general to be difficult to use

dependent diffusion coefficients. this equation for practical evaluations bfa), because usu-
One may distinguish three different steps in applying theally the KS entropy is hard to calculafé0]. Instead, Eq.
method. (10) with Eqg. (11) can be inverted to get the KS entropy via
Step 1 Solve the one-dimensional phenomenologitiél ~ the decay rate of tlhe dynamical system of HE) to
fusion equation hks(R;a) =N(R;8) — 3 vaed@)(L—=), or by employing
Eq. (9) via the diffusion coefficient in the limit of largk.
P P
at D a2 () Il. SOLUTION OF THE FROBENIUS-PERRON

EQUATION

with suitable boundary conditions, whelRe=P(x,t) stands

for the density of particles at pointand timet. This equa-

tion serves here asdefinitionfor the diffusion coefficienD.
Step 2 Solve theFrobenius-Perron equation

As pointed out above, the problem of computing
parameter-dependent diffusion coefficients essentially re-
duces to solving the Frobenius-Perron equation for the dy-
namical system in a large size and long time limit. In this
section, a general method will be presented by which this
pnﬂ(x):J' dypn(y) [ x—Ma(Y)], (8)  goal can be achieved. Its principles will be illustrated by

performing analytical calculations for some special param-
which represents the continuity equation for the probabilityeter valqgs of maj. Our.method IS bgsed on fmdmg Mgr-
densityp,(x) of the dynamical systerM ,(y) [60,77. k0\_/ partitions a_nd on defining respective transition matrices.

Step 3 For a chain of boxes of chain length consider This _appr_oach is quite well known, especially in the math-
the limit chain lengthL and timen to infinity: If for given Zumtﬁg(r:sal flc')tﬂggurcggjggér?ng Z@i:;?cna;e?ypslfeymeg Zﬁ;?\?irt]iés
slopea the respective largest eigenmoded$aindp turn out [87,64.88-91,55.92-96We apply it here to compute the

to be identical in an appropriate scaling linthhen D(a) can AN L
be computed by matching the eigenmodes of the probabilit)f/u" parameter-dependent deterministic diffusion coefficient.

density p to the particle density. For periodic boundary

conditions i.e., P(0;t)=P(L,t) andp,(0)=p,(L), one ob- A. Transition matrix method
tains As a first example, the diffusion coefficieBt(a) shall be
L2 computed for mapC at slopea=4, as sketched in Fig. 2,
D(a)= lim <_) Yaed @), (9) s_upple_mented by perlod!c boundary conditions. The calcula-
L) 2 tion will be done according to the three-step procedure out-
lined above.

where yq4{a) is the decay rate in the closed system to be Step 1 The one-dimensional diffusion equati6f can be
calculated directly from the Frobenius-Perron equation andolved with periodic boundary conditions straightforward to
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‘ 2 0 0
:'I' 1 1 0 0
M,x) ’:' 0 1 2 1 0 0
N T(4)=
0 0 0

N 0 o 0o o

a 1 0 0 0 2

19

Tl NV NN S S S B

The matrix elements in the upper right and lower left edges
are due to periodic boundary conditions and reflect the mo-
tion of points from thelLth box of the chain to the first one

the case oh=4, can be written as

J X andvice versa
0 D1 2 3 In Eqg. (13), the transition matrixT(a) is applied to a
,:' column vectorp, of the probability density,(x) which, in

=|pa(X))=(pp P2, ... P, PR, (15
FIG. 2. Partition of map_ at slopea=4 (dashed grig po=lpn =Py Pn Pn

where “*” denotes the transpose arpxﬂ represents the com-

> 27m) 2 2mm ponent of the probability density in thkth box, p,(x)
P(x,t)=ap+ E exr{—(T) Dt amc05<TX> zpﬁ,k—1<xg k.k=1,...L, pﬁ being constant on each
m=1 part of the partition.
2am In the case oh=4, the transition matrix is symmetric and
+bmsin<Tx) : (120 can be diagonalized by spectral decomposition. Solving the
eigenvalue problem
whereay,a,,, andb,, are the Fourier coefficients to be de- T(4) | pm(X)) = xm(4) | dm(X)), (16)

termined by an initial particle density(x,0).

Step 2 To solve the Frobenius-Perron equation, the keywherexm(4) and|#n(x)) are the eigenvalues and eigenvec-
idea is to write this equation as a matrix equatj@2,87.  tors of T(4), respectively, one obtains
For this purpose, one needs to find a suitgiadition of the L
map, i.e., a decomposition of the real line into a set of sub-
intervals, calledelements or parts of the partition. The Pn100)= 7 mE:O Xm(4) [ m(X)) dm(X)|pn(X))
single parts of the partition have to be such that they do not

L-1

overlap except at boundary points, which are referred to as L-1 4

points of the partitionand that they cover the real line com- => exg —nin ) [dm(X) M Dm(X)] po(X)),
pletely [87]. In the case of slopa=4, such a partition is m=0 Xm(4)

naturally provided by the box boundaries. The grid of dashed 17)

e e Scoas oo oesd Sposn Al oanesHherel() i an il probabilty densiy vector and n
ated by the a Iifation of the ma ' 9 is the Lyapunov exponent of the map. Note that the choice of
y the app . _map. . ., initial ensemble densities is restricted by this method to those
Now an initial density of points shall be considered which_ . . ; .
covers, e.g., the interval in the second box of Fig. 2 uni—WhICh can be written in the vector form of EL5). For
» €.9., e 19- . matrices of the type of (4), it is well known how to solve
formly. By applying the map, one observes that points of th'giheir eigenvalue problenf87—94. This is performed in Ap-

interval get mapped twofold on the interval in the secon . N
. . . ._pendix Al for a more general case, which includes the ex-
box again, but that there is also escape from this box whic . )
ample under consideration. For slope 4, one gets

covers the third and the first box intervals, respectively.
Since mapL is old, this mechanism applies to any box of the 20
chain of chain length., modified only by the boundary con-  y.,(4)=2+2cos,,, 6Oy:=—m, m=0,...L—1,
ditions. Taking into account the stretching of the density by L
the slopea at each iteration, this leads to a matrix equation of

| (X)) =(dp, Do, - - - s - DR

1 ~ ~
Pn+1:aT(a) Pn, (13 d’lr(n: amd’rn,l"_ bm¢|r§n,2:

b 1:=C080n(k—1), ¢k y=sinby(k—1),
where fora=4 theL X L transition matrixT(4) can be con-
structed to k=1,...L, k—1<x<k (18
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with a,,, andb,,, to be fixed by suitable normalization condi- 1/2. According to this partition, a transition matfX3) can
tions. be determined, given schematically by

Step 3 To compute the diffusion coefficiem(4), it re-

mains to match the first few largest eigenmodes of the diffu- 1100--0 0 10
sion equation to the ones of the Frobenius-Perron equation: 1101 0 O
In the limit as the timet and the system size approach 1011 0 0. 0 0
infinity, the particle density?(x,t), Eq.(12), in the diffusion
equation becomes T3)=( 0011 0 1 0 0
9 001 0 1 1 0 O°-
2 2
P(x,t)=const+expg — T Dt||Aco TX
010 0 - 0 0 1 1
B si 2m 19
+Bsin x|/, (19 (24

. T Note that, in contrast to the casea@f 4, here the matrix is
where the constant represents the uniform equilibrium den; ; ; -

. X formed by submatribblockswhich move periodically to the
sity of the equation.

Analogously, for discrete tima and chain lengthL to right every two rows. Since the partition af=3 is a bit
infinity, one obtains for the probability densipy,, (x) of more complicated than fa=4, the blocks refer to the par-

X , . tition of each box, whereas the shift again is related to the lift
the Frobenius-Perron equation, &@7) with Eq. (18), property of theold map. The matrixT(3) is not symmetric.
5 o However, the eigenvalue problem of this matrix can still be
Acos(T(k—l)) solved analogously to the case @4 (see the Appendix,
Sec. ). The spectrum of the matrix turns out to be highly

Pn+1(X)=const-exp(— Yged 4)N)

_ 2 degenerate. Most importantly(3) cannot be simply diago-
+B sin( T(k_ 1)) } nalized anymore. This is due to the fact that the maf(8)
is non-norma) i.e., T(3)T*(3)# T*(3)T(3), which means
k=1 . . L k—1l<x<k (20) that it does not provide a system of orthogonal eigenvectors
B [100]. This is a well-known feature of deterministic dynami-
with a decay rate of cal systems of this typg8,93,95,96. Of course it is still

possible to transform this matrix into a Jordan block form.
However, this procedure is not necessary here as the first few
Yaed4)=In 2+2cog2m/L) (2D eigenvalues and eigenvectorsTqf3) can still be determined
using a method analogous to the analytical solutions of Egs.
of the dynamical system, determined by the second large$i9 and (20) for slopea=4. Figure 3 shows a plot of the
eigenvalue of the matriq(4), see Eq(18). Note that the two second largest eigenmodesIgR) in comparison to the
largest eigenvalue is equal to the slope of the map so that f@olution of the diffusion equation. Again, one observes total
the first term in Eq(20) the exponential vanishes, and one agreement, except for differences in the fine structure. The
obtains a uniform equilibrium density. Apart from generic same is true for the other first few largest eigenmodes of
discretization effects in the time and position variables,T(3). Thus, although straightforward diagonalization and,
which may be neglected in the limit of time to infinity and therefore, a simple solution of the Frobenius-Perron equation
after a suitable spatial coarse graining, the eigenmodes dike Eq. (17) are not possible anymore, the largest eigen-
Egs.(19) and(20) match precisely so that, according to Eq. modes ofT(3) behave correctly in the sense of the phenom-
(9), the diffusion coefficienD(4) can be computed to enological diffusion equation so that it is suggestive to com-

5 pute the diffusion coefficienD(3) via the second largest

D(4)=<2L Yol 4)— %+O(L‘4). 22 eigenvalue ofT(3) again. With

a

This result is identical to what is obtained from a simple ¥(3)=In 1+2cog2m/L)’ (25)

random walk mode[46,58,71. The procedure can be gen-

eralized straightforward to all even integer values of thesee the Appendix, Sec. 1, and Ef), one gets

slope, as is shown in the Appendix, Sec. 1, and leads to a

parameter-dependent diffusion coefficient of D(3)= £+O(L‘4) (26)
3 .

1
D(a)=55(a-1)(a=2), a=2k, keN, (23  Aqfor a=4, this result is obtained as well from a simple

random walk model. However, to produce this value, the
in agreement with the results of R¢#1]. respective random walk has to be defined in a slightly dif-
A slightly more complicated example is the case of slopeferent way than foa=4 [58,71]. Analogously to the case of
a=3, see, e.g., Fig. 1, which will be treated in the following. even integer slopes, the exact calculations can be generalized
In analogy to the previous example, far=3 a simple par- to all odd integer values of the slope and lead(d¢ee the
tition can be constructed, the parts of which are all of lengthAppendix, Sec. L
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the discretization of the position variabkein the diffusion
equation tok in the Frobenius-Perromatrix equation(13)

by means of a finite Markov partition, which was one of the
basic ingredients for the possibility to construct transition
matrices.

Moreover, one should note that, according to @@), the
smallest eigenvalue of (4) is equal to zero. Foff(3), a
large number of eigenvalues are even less than[ze® Eq.
(A16) in the Appendix, Sec. 1 fai=3]. Thus, except for the
first few largest eigenmodes, which still match reasonably
well to the eigenmodes of the diffusion equation in the limit
time n and chain length. to infinity, one cannot expect the

ev(x)

L L

T0 10 20 30 40 50 60 70 80 90 100 method to quk sjmply thfat. the components of.a “time-
dependent” diffusion coefficienD,(a) are determined by
X smaller eigenvalues of the transition matrices in straight

analogy to Eq.(9). This could be taken as a hint that, to
length L =100, for slopea=3 with periodic boundary conditions. obtain more details of the dynamics, refined methods are

ev(X) stands for the amplitude of the eigenmode. The eigenmodegee_d.ed' For examplg, In. Re[f106].the first orders of a
exhibit a steplike fine structure and differ by a phase shift. In compos't'on'dependem diffusion coefficient have been deter-

parison, the respective two eigenmodes obtained from solving thBlined for a classP map according to a procedure which
diffusion equatior(7) have been included as dashed lines. They aré2Voids the discretization of the real line.
almost indistinguishable from the map eigenmodes.

FIG. 3. The two second largest eigenmodes of nfapchain

3. Absorbing and periodic boundary conditions

The same procedure as outlined for periodic boundary
conditions can also be employed for absorbing boundaries. It
shall be sketched briefly, according to the three steps distin-
which again is identical to the result of R¢f1]. guished before.

Before this approach will be extended to other parameter Step 1 The one-dimensional diffusion equation with ab-
values of the slope in the following section, we discuss someorbing boundary conditions can be solved as
important features of the methods and results just presented,
and briefly outline the extension of the method to absorbing * )2

Dt

m
boundary condiditons. P(x,t)= 21 an exp{ - (T
m=

D(a)=2—14(a2—1), a=2k—1, keN, (27

N
sm(Tx) (29

1. Diffusion coefficients for integer slopes

Equations(22) and (26) show already thab(4)<D(3),
which is at first sight counterintuitive. By evaluating the gen-
eral formulas ofD(a) given by Eqs.(23) and (27) at other
even and odd integer slopes, one realizes that this inequali

reflects a general oscillatory behavior Di(a) at integer er, due to this slight change in their basic structure there is

lopes. This result has already been obtained by Fujisaka ang
é?pesr'n m§4f]su ndas ?m?lary eiﬁ tor ab F;] viyr #] Sabaﬁ'?\ general method to solve the eigenvalue problems for these
ossma » and a simiiar osciiiatory benhavior has bee types of matrices anymore, in contrast to the case of periodic

observed for deterministic diffusion in certain classes of two-

) ; ) . boundary conditions. At least fa=3 anda=4, it is still
dimensional map$101-109. This _behavpr cannot be un- ossible to obtain analytical solutions by straightforward cal-
derstood completely by one consistent simple random wal

model[58,71] ulations analogous to the ones performed in [R&Z] (see
e the Appendix, Sec.)2but for any higher integer value of the
slope even these basic methods fail. This appears to be
caused by strong boundary effects. Figure 4 shows numerical
There appear serious problems in trying to extend theolutions for the largest eigenmodes of the first odd integer
matching eigenmodes procedure to arbitrarily low eigenslope transition matrices in comparison to the solutions of
modes, even in the case @4, where the matrix is diago- the diffusion equation(7) (details of the numerics applied

with a,, denoting again the Fourier coefficients.
Step 2 The transition matrices fa=4 anda=3 at these
boundary conditions are identical to the ones of Hdd)
nd(24), except that the matrices now contain zeros as ma-
Yix elements in the upper right and lower left corners. How-

2. Matching lower eigenmodes

nalizable. With Eq(18), one can check that here are given in the following sectiprit can be seen that
near the boundaries, there are pronounced deviations be-
Pra= B m1r o=~ Bt oma k=1L tween the Frobenius-Perron and the diffusion equation solu-
tions. These deviations are getting smaller in the interior re-
m=1,...L-1, (28) gion of the chain, but are gradually getting stronger with

increasing the value of the slope, as is shown in the magni-
i.e., themth and the L —m)th eigenmodes are identical, ex- fication. The same behavior can be found for even integer
cept a minus sign. That is, in contrast to theigenmodes of slopes, although the quantitative deviation of these eigen-
the diffusion equatiori7), the frequency of each eigenmode modes from those of the diffusion equation solutions is
of T(4) does not increase monotonicallyrm This is due to  slightly less than for odd values of the slope. Thus, obviously
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B. Markov partitions

In the preceding section, the choice of simple partitions
1 enabled the construction of transition matrices. These matri-
ces provided a way to solve the Frobenius-Perron equation in
_ a certain limit. However, so far this method has only been
applied to very special cases of mé&p defined by integer
slopes. This raises the question whether an extension of this
method to other values of the slope is possible. For this pur-
d pose, the idea of choosing a suitable partition of the map has
02 | i ; solution of diffusier oy — %, to be generalized. Taking a look at Fig. 2 again, one observes
s { that the graph of the map “crosses” or “touches” a vertical
0 . e K line of the grid only at some grid points. Furthermore, the
0 10 20 30 40 50 60 70 80 90 100 local extrema of the map, which are here identical to the
points of discontinuity, are situated on, or just “touch’” hori-
zontal lines of the grid, whereas other crossovers of horizon-
tal lines occur at no specific point. The same characteristics
can be verified, e.g., for the respective partition of slape
=3. These conditions ensure that it is possible to obtain a
correct transition matrix from a partition, since to be mod-
eled by a matrix, a density of points, which covers parts of
absorbing boundary conditions disturb the deterministic dy{ne partition completely, has to get mapped in a way that its
namics significantly, whereas similar effects do not occur fofM29€ again covers parts of the partition completely, and not

periodic boundary conditions, which therefore could be charPartially. This basic property of a “suitable partition to con-
acterized as a kind of “natural boundary condition” for this struct transition matrices” is already the essence of what is
periodic dynamical system. known as aMarkov partition -

Step 3 The different boundary conditions not only show  Definition 1 (Markov partition, verbal definition)For
up in the eigenmodes of the transition matrices, but also ifPh€-dimensional maps, a partition is a Markov partition if
the calculation of the diffusion coefficients. In analogy to @nd only if parts of the partition get mapped agaitio parts

periodic boundary conditions, the escape rate of the dynamRf the partition, oronto unions of parts of the partitiof87].

08

0.6 [

ev(x)

X

FIG. 4. Largest eigenmodes of m#pfor odd integer values of
the slopea with absorbing boundary conditions and comparison to
the largest eigenmode of the diffusion equati@h The inset is a
magnification of the region around=0.

cal system aa=3 anda=4 is determined to A more formal definition of one-dimensional Markov par-
titions, as well as further details, can be found in Refs.
a [83,86,107. The next goal must be to find a general rule of

Yesd@)=In Y (300 how to construct Markov partitions for map at other, non-

trivial parameter values of the slope. Because of the period-
with yma(@) being the largest eigenvalue of the transitioniCity of the chain of maps, it suffices to find a Markov par-
matrix (see the Appendix, Sec),2 tition for a singlebox mapi.e., for the respective map in one
box without applying the modulus to restrict it onto the unit

T T interval. Here, the fact can be used that the extrema, which
Xmad3)=1+2c0s—— and xma(4)=2+2COS 7.  are thecritical pointsof the box map, have to touch horizon-

(31) tallines, as explained before, which means that to obtain a

Markov partition the extrema have to get mapped onto par-

Feeding this into Eq(10) via matching eigenmodes, one tition points. Since any box map of mapis symmetric with

obtains respect to the pointqy)=(0.5,0.5), the problem reduces to
considering only one of the extrema in the following, e.g.,

1 L? a1 the maximum. Changing the height of the maximum corre-
D(3)2§ (L+2)2 +O(L )—>§(L—>°°)- sponds to changing the slope of the map. Therefore, if one
needs to find Markov partitions for parameter values of the
1 ) 1 slope, one can do it the other way around by the following
D(4)= = FOL 4= (L ' 32 Markov condition
“) 4 (L+1)2 ( )H4( =) 32 Definition 2 (Markov condition, verbal definition)or

map £, Markov partition values of the slope are determined
which gives a convergence of the diffusion coefficient withby choosing the slope such that the maximum of the box map
the chain lengthL significantly below that obtained from gets mapped onto a point of the partition again.
periodic boundary conditions. For example, for a chain In Fig. 5, four examples of nontrivial Markov partitions
length of L=100 the convergence is about two orders offor map £ are depicted with respect to their box maps. One
magnitude worse. It can be concluded that the transition mamay check that the conditions extracted from the integer
trix method works in principle for absorbing boundary con- slope examples to motivate Definition 1 are fulfilled and es-
ditions as well, but that here its range of application to com-pecially that the partitions shown in the figure obey the Mar-
pute diffusion coefficients is qualitatively and quantitatively kov partition definition 1. The detailed structure of the par-
more restricted because of long-range correlations induceiitions can be arbitrarily complex. In Figs(& and 5b) a
by the boundaries. special orbit has been marked by bold black lines with ar-
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@ 12 (®) 14 Markov partition for the whole chain from i@duced map
1.2
! e ( M.(%)=M, % mod 1 (33
0.8 - 0817 /' ~
T 06 ; ; T 061 7 y via periodic continuation, whene:=x—[x] is the fractional
" 04l 1/ 7 " 04/ /’/ part of x, xe (0,1], and[x] denotes the largest integer less
/ 02/ / than x. Therefore, it remains to find Markov partitions for
02 , 0§ map M ,(X) of the equation above. This can be done in the
oW 021 following way: Let
02 {..} . -0.4 ; ~ ~
0 05 ! ¢t e=min {Ma(3),1-Ma(3)}, e<} (34
Xn Xn
© @ 4 be the minimal distance of a maximum of the box map
3 7 ; M,(X) to an integer value. With respect to the Markov con-
‘ 3 : dition given by Definition 2, it is clear tha¢ has to be a
j , partition point. SinceM ,(X) is point symmetric, 1 € also
2 ] f has to be a partition point, and because of nfapeingold,
/ 21 the fixed pointx=0 is necessarily another partition point.
' Thus, the reduced map governs its internal box dynamics
.1 - 1 according to
& / & ' j
* : s i < Y™ o NS v
0 / ; 0 3 Xn+l:Ma(Xn)v Xn:Ma(X)a XEXO- (35)
i Since O¢ and 1— € have to be partition points, the Markov
-1 ] condition Definition 2 can be formalized to
-1 H
2 j Mi(e)= 6, 6e{0,e,1— €}, (36)
2 ; 3 " i.e., the generating orbit of a Markov partition is defined by
0 05 1 0 05 1 the initial conditione, its end points, and the iteration num-
bern. According to Eq(34), € is determined by the slopee
Xn Xn Therefore, for mapZ Markov partition values of the slope

FIG. 5. Four examples of nontrivial Markov partitions of map ft?n be C(?[_mputed gs SOIL]J,“O”S :j)f E80). .Thﬁ evaluatlllon Oft
at different values of the slope. Diagrafa) is for the slopea IS e_qu(;;l lon can el p_erI(I)rmTe nt;Jm_erlca 3{ as \I/ve ais, ]9 a
~2.057,(b) for a~2.648, () for a~6.158, andd) for a=7.641. certain degree, analytically. To obtain analytical results for

In () and(b) the bold black lines with the arrows show the gener- Markov partition values of Fhe S'OPe,' one has t‘? determine
ating orbits of the partitions, that is, the orbits which define theth€ structure of the generating orbit in advance, i.e., one has

single partition pointgsee text The two large arrows below the O know whether it hits the left or the right branch of the box

orbits indicate the respective initial positions for the generating oriNap at the next iteration. Then one can write down an alge-

bits. braic equation which remains to be solved. For example, for
the Markov partition Fig. &), the generating orbit is deter-

rows. It represents what will be called tgenerating orbipf ~ Mined by

a Markov partition: For the two examples shown here, the - -

starting point of this orbit is given by the maximum of the ~ X1=Mj(€), e<3z and 6=M,(x)—3, x;=<3

preceding box map, since this maximum must also be a par- (37)

tition point. The iterations of this orbit, as indicated by the ] . )

arrows in the figure, define the single partition points. ThisWith a=2(3+¢€) and 6=0 at iteration numben=2. This

way, the number of partition parts is related to the number oféads to

iterations of the generating orbit. In the case of Figa) &nd 5 )

5(b) the orbit is eventually periodic, i.e., it finally gets a’-6a"-6=0, a=2, (39)

mapped onto the fixed point=0, however it can also be

periodic with a certain period, such as, for example, in thefor which one may verifya=6.158 as the correct solution.

case of Fig. &) (period fou). Thus, the generating orbit is This way, all Markov partition values of the slope are the

the key to finding Markov partition values of the slope in aroots of algebraic equations oh¢ 1)th order. More ex-

systematic way. amples with analytical solutions are discussed in the Appen-
On this basis, a general algebraic procedure to Compu]‘_@ix, Sec. 3. Since one usually faces the problem of solving

such values of the slope can be developed. One starts with@gebraic equations of order greater than 3, numerical solu-

further topological reductionof the whole chain of boxes tions of Eq.(36) are desirable, although one should take into

[108]. Since mapL is old, it is possible to construct the account that iterations of the reduced milg(x) contain
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many discontinuities, due to the original discontinuity of partition, by counting the number of these occurrences in

|\7|a(§() atx=1/2 as well as due to applying the modulus to €ach cell, and by writing down these_values as th_e matrix
M (X) in Eq. (33) [109]. e!ements. For mag, usually these matrix elemepts will con-
With respect to the three different end poingsof the sist of zeros and ones, but the way they are _deflned here they
generating orbit in the formal Markov condition E(B6), can also take other integer values, depending on the choice
three series of Markov partitions can be distinguished. Fopf the partition, as, e.g., illustrated in the caseaef4, Eq.
each series one can increase the iteration numpend one  (14).
can vary the range of the slopesystematically. These three ~ The construction of the box map transition matrix can be
series have been used as the basis for numerical calculatiosgnplified by taking the point symmetry of the box map into
of the diffusion coefficienD(a), as will be explained below. account. The transition matrix of the full chain of chain
However, there exist additional suitable end poifiter the  lengthL again follows by periodic continuation. These ma-
generating orbit. As an example, one can chofde be a trices can be denoted aspological transition matrices
point on a two-periodic orbit, since they reflect purely the topology of the map with respect
to the Markov partitions, without involving any transition
1 14 2¢ probabilities at this point. In Refi64,79,81,82,_8}3math-_
M2(8)=6, a=2(1+e), O<es:=6=—— ematically rigorous definitions of these transition matrices
2 4(1+e)?~-1 can be found. The property of map beingold induces a
(39)  certain structure in the topological transition matrices. They
are said to bebanded square block Toeplitz matrices.,
so that the generating orbit is again eventually periodic, buthey consist of certain submatrices, callbtbcks corre-
now being mapped on a periodic orbit which is part of thesponding to the box map Markov partitions, and these blocks
Markov partition instead of being mapped on a simple fixedare the same along diagonals of the topological transition
point. This way, certain periodic orbits can serve for definingmatrix parallel to the main diagonal, formingpands
an arbitrary number of new Markov partition series with re-[99,111,112 Applying periodic boundary conditions to the
spect to the choice of respective new end poifitOn the  chain of boxes defines a subclass of these Toeplitz matrices,
other hand, the set of Markov partition generating orbits iscalled block circulants where each row is constructed by
not equal to the set ohll periodic orbits. For example, for cycling the previous row forward one blod®7-99,11],
the range Za=<3, Eq.(39) shows that there exists a two- see, e.g., the matricé&4), Eq. (14), as an example for a
periodic orbit for any slope, but not anymaximum of the  simple circulant andl'(3), Eq. (24), for a block circulant.
map in this range necessarily maps onto this periodic orbitAccording to the transition matrix method outlined in the
as is already illustrated by Fig.(® and 3b), or by other  preceding section, it remains to solve the eigenvalue prob-
simple solutions of Eq(36), respectively. This proves that lems of these matrices and to match the respective eigen-
Markov partition generating orbits are in fact a subset of allmodes to those of the diffusion equation for computing the
periodic orbits of the map. corresponding diffusion coefficient®(a). Here, periodic
With respect to varying the iteration numbeand the end  boundary conditions are of great advantage. Analytically, as
point §, one can expect to get an infinite number of Markovmentioned before and as shown in the Appendix, Sec. 1,
partition values of the slope. In fact, for certain classes ofthere exists a general procedure how to solve the eigenvalue
maps the existence of Markov partitions can be considered gsroblems of simple circulanf97-99, and in some cases it
a natural property of the mdf#9,81,82,86 According to the is possible to reduce the eigenvalue problem of a block cir-
explanations above, this does not seem to be true forfnap culant to that of a simple circularisee the Appendix, Secs.
Instead, there is numerical evidence for the following con-1 and 3. If this method works, it automatically yields ‘“nice
jecture[110]. eigenmodes,” i.e., eigenvectors of the form of sines and co-
Conjecture 1 (denseness property of Markov partitions) sines with some fine structure. These eigenmodes are similar
For mapL, the Markov partition values of the slogeare  to the eigenmodes of the diffusion equation at this stage
dense on the real line wita=2. the Appendix, Sec.)3i.e., before iterating the matrices ac-
This denseness conjecture should ensure that it is possibé®rding to the Frobenius-Perron matrix equatidd). The
to obtain a representative curve for the parameter-dependesituation is quite different for absorbing boundary condi-
diffusion coefficientD (a) solely by computing diffusion co- tions, where no such general procedure exisee the Ap-
efficients at Markov partition values of the slope. Conjecturependix, Sec. 2
1 may hold for all other clas® maps as well. To do such If analytical solutions of the eigenvalue problems are not
computations, one needs to construct the corresponding trapessible anymore, one can obtain numerical solutions. Well-
sition matrices to the Markov partitions obtained, as it haknown software packages such ®a&G and IMSL provide
been shown for the slopes=3 anda=4 of map L. This  subroutines to solve the eigenvalue problems of these matri-
can be done according to the following rule: Take as arces. Unfortunately, the numerically obtained results for the
example any of the box map Markov partitions illustrated infull spectra turned out not to be very reliable to a certain
Fig. 5, e.g., cas€a). Any dashed rectangle of this partition extent: In comparison to analytical results for periodic
may be denoted ascell of the partition These single cells boundariegsee the Appendix, Sec),3heNAG package does
correspond to the single entries, or matrix elements, of thaot compute all eigenvectors correctly, i.e., in the numerical
transition matrix to be obtained. The transition matrix corre-results usually some linear independent eigenvectors are
sponding to this Markov partition can now be constructed bymissing. Moreover, both packages provide spectra of eigen-
checking where the graph of the map goes across a cell of thealues which, although partly identical to the analytical so-
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mw ”m ture of the eigenmodes is related to the existence of diffusion
MM'“ coefficients for nontrivial Markov partition values of the

02 y sl slope. In fact, the specific character of the eigenmodes dis-
02 . cussed above, which shows up in any analytical solution of
" Mwn (block) circulants and which is supported by numerical re-

@ - 'MWM } sults, forms the basis for the following conjecture.
’ Conjecture 2 (existence of diffusion coefficientkgt
M a(x) be a classP map. If for given value of the slope the
map is uniquely ergodic and if there exists a Markov parti-
tion, then the map is diffusive.

To our knowledge, so far no proof has been given in the
literature for the existence of diffusion coefficients in cl@ss

ev(x)
ev(x)

20 40 60 80 100
1

0.2

0.2

ev(x)
ev(x)

L«wh maps for a general value of the slope. However, dealing with
-02 mT -02 ng a rigorous foundation of the transition matrix method turns
0l ? 06l ® f out to be intimately connected to proving the existence of

23 25 27 29 31 33 35 670 71 72 73 74 75 76 77 . . .. . . .

x x diffusion coefficients in this class of dynamical systems.

Without going into too much detail here, some remarks are

FIG. 6. Second largest eigenmodes of niaat two nontrivial  in order to provide at least a motivation for this conjecture:
Markov partition values of the slope with periodic boundary condi- The existence of Markov partitions guarantees that exact
tions: full modes and magnifications of their fine structures. Fortransition matrices can be used. The restriction to cfass
both parameter values there are the two largest eigenmodes whigRaps ensures that topological transition matrices can be con-
differ by a phase shift. Diagramé) and (b) are for slopea  strycted in the simple way outlined before, and dieprop-
=3.0027, chain length = 100; (c) and(d) are fora=2.0148, chain gty jncluded in the definition of clasB determines the glo-
lengthL =90. bal structure of the topological transition matrices such that

lutions, differ in their full range quantitatively to those cal- the eigenmodes are "nice,” at least for periodic boundary

) . : onditions. The requirement to be uniquely ergodic estab-
Eﬂ%ﬁedsjgs Imﬁ‘g’cgf L:glgllggngngeg;gfgebr:?zhlgtrgnicg) O;Jr?ﬁshes the possibility of diffusion in the chain of boxes and

class of non-normal Toeplitz matrices, as has already be
pointed out by Beam and Warmirid11]. However, solely

%onfirms also the uniqueness of the diffusion coefficient to
Pe obtained(a simple counterexample shows that not any

for the purpose of computing diffusion coefficients, the full chain of boxes with escape out of one box is automatically

spectra of the transition matrices are not required, but onl)a_"gussé\;es)é ';']g?lg’ dti?fﬁ;i%r?cgffﬁiz\éﬁtsgzgtgzgr&i?i;sézog I?he
the few largest eigenvalues and eigenvectors are of interes y

With respect to eigenvectors, thesL package has been statistical diffusion equatiofi7), which has been introduced

checked to be reliable in this range, and with respect to ei'EO the dynamical system by successiully performing the

genvalues, both packages provide exact and identical ndpatching eigenmodes procedure outlined in the preceding

merical results, especially for the second largest eigenvalu ﬁ;t't%r; ;gféﬁ{r?reéithgnng]ezroP(;)cséttljzrr]eo;cethbsirg?jntj)eCttr?éefiIrsst
which determines the diffusion coefficients. For computa- geqg P q y

tions of diffusion coefficients, it is also favorable to considerP2ssagdeé methlo.d works for.any value of the slop_e , if the re-
only the case of periodic boundary conditions, i.e., solvin spective conditions are fulfilled. A corollary to this conjec-

eigenvalue problems for block circulants, respectively, sinc ufriiitls t?ha; Igr;EZnIillT:fP%frrgweg ig?ioﬁhagp tlﬁgg:gs t((a)ctive
it has already been discussed in Sec. Il A that absorbing: Y, q P

boundaries lead to a poor convergence rate of the diffusio assP dynamlqal systems always provides “nice, |-€., cor
rect diffusive eigenmodes. As another corollary, it follows

coefficient with the chain length. ) e )
g hat there is no anomalous diffusion in claBsmaps, i.e.,

Figure 6 contains two examples of second largest eigen';—h t normal diffusion is “tvical” for h piecewise linear
modes for chains of boxes with periodic boundaries and non- at norma usion IS “typical” for Such piecewise linea
trivial Markov partitions. Again, one gets “nice” second maps. A rigorous mathematical proof of Conjecture 2 seems

largest eigenmodes, i.e., functions which behave like sine be possible along the lines of first passage and the transi-

and cosines on a large scale. However, the structure of the lgn matrix method 114].

eigenmodes is much more complex on a fine scale, as can be Rtesuli_s ba_?_ﬁd OR th|sbmethod .:hglllbbe pr;ahsented 'n.th?
seen in the magnifications of certain regions. The periodi(pex section. They have been verilied by another numerica

continuation of the fine structure suggests that it is related t ethqd[58,71,114, by anqther analytical method which has
the dynamics of the box map, and therefore varies wit een implemented num_encal]ﬁ&llﬂ, as well as, to a cer-
changing the slope, whereas the general large-scale behavi n degree, by_ straightforward computer S|mul_at|ons
of the eigenmodes seems to be a property of the chain 8,114. Mean_whne, the same results have been obtained by
boxes which shows up independently from such microscopi Iroenevtlald with a different metho[t}lG], and .they hﬁvg
details. These characteristics have been checked numericaﬁgSo partly been reproduced by cycle expansion techniques
for a variety of other Markov partition values of the slope
and seem to be a universal feature of nfa@nd probably of

all classP maps. One may assume that the fine structure is
somehow related to the strength of the diffusion coefficient Based on the methods presented in the preceding section,
and that, on the other hand, the universal large-scale struthe parameter-dependent diffusion coefficiBifa) has been

IV. FRACTAL DIFFUSION COEFFICIENTS: RESULTS
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to their strength, the smaller local maxima as respective
peaks of higher order, one can find one maximum of first
order belowa=3, three maxima of first order in the range
3=a=<5, five maxima of first order in the rangesa
<7,....This regularity even persists to a certain extent on
finer scales, although according to a slightly different rule, as
can be seen, e.g., in the magnification Fi¢f),76<a<7,
where exactly six peaks of second order appear between the
respective peaks of first order. In the same way, six peaks of
third order can be observed in this region in further magni-
fications, and similar structures show up in the region of 4
<a=<>5 with four peaks of second and four peaks of third
order. The region of Za<3 is somewhat special and will
be discussed separately. Thus, while the number of peaks of
first order increases by a step of two with increasing the
slope, the number of peaks of higher order remains constant
in the region between two respective peaks of first order,
even by increasing the order of the peaks to be considered.
On the other hand, magnifications of other regions of the
slope show that the structure of the curve is not that simple
everywhere. For example, blowups of the regiossa3<4,
Fig. 7(b), and 5<a<®6, Fig. 7d), do not enable a clear dis-
tinction between “peaks of different orders” anymore. In-
stead, they provide more complex structures that further
magnifications, such as, e.g., Figéc)7and 1e), reveal to be
self-similar.

It can be summarized at this stage that different regions of
the curve exhibit different kinds of self-similarity, partly be-

ing fairly simple, but partly also being highly nontrivial.
Thus, the results of Fig. 7 suggest that the parameter-
dependent diffusion coefficierid(a) for map L is fractal
[117]. More evidence for the fractality of the curve can be
obtained in three different waysi) Qualitative and quanti-
computed numerically for mag for a broad range of values tative explanations for the peaks in certain regions of the
of the slope. The main results are shown in Fig. 7. The nuslope can be provided, which demonstrate that these regions
merical precision obtained depends on the convergence @kxhibit nontrivial self-similar behavior. This will be demon-
the diffusion coefficient with the chain length, cf. E®2), strated belowJii) It is striking to observe that especially
and is better than 10 for eachD(a) so that error bars do diagrams(c), (e), and (f) resemble graphs of certain fractal
not appear in the diagrams. It should be emphasized that tHfenctions, which have been obtained in R¢&3,34,118 by
numerical method employed here was the first one by whichvorking on dynamical systems related to the one considered
these curves ob(a) have been obtained. It is by far not the here. The fractal dimensions computed for these functions
most efficient one of the procedures developed up to nowturned out to be close to on#18]. In fact, in Refs[58,119
such as matrix iteration methods, to compute deterministiét is shown howD(a) of map £ can be calculated on the
diffusion coefficient§58,71,114—11p However, it turns out  basis of such functions. Moreover, analytical and numerical
to be very useful as well to compute other deterministicapproximations oD (a) in terms of these functions can be
transport coefficients, e.g., chemical reaction raft88], constructed that reproduce the fractal fine structure of Fig. 7,
where more efficient methods fail. at least in certain regions of the paramede(iii) Numerical
Figure Ta) shows the diffusion coefficient of maf for ~ computations of the box counting dimensior capacity
values of the slope in the rangesa<8. The strength of [60] of the curve have been performed. The resinticate
diffusion clearly increases globally by increasing the slopethat the curves shown in Figs(&f — 7(f) have fractal dimen-
from a=2 toa=8. This might be expected intuitively, since sionsd very close to, but not equal to, 1 in a range if
the probability for a particle to escape out of a box, as well as=1+Ad,0<Ad= 10 2. However, a dimension ofi=1
the mean distance a particle travels by performing a jumpgannot be excluded on the basis of these computations, since
increase with the value of the slopg8,71. However, the the numerical error is approximately of the same order of
increase of the diffusion coefficient is not monotonic andmagnitude asAd. Because of the limited data set, better
consists of oscillations not only at integer values of the slopeyalues are difficult to get, especially since the fractal dimen-
as has already been mentioned in Sec. IlI, but also on mucs$ion is expected to be close to 1 in this case. With respect to
finer scales between integer values. In fact, Fig) 3hows a the magnifications in Fig. 7, it appears that the fDl{a)
certain regularity in the appearance of local maxima andurve has locally different values of fractal dimensions.
minima. If one denotes the local maxima at odd integer Figure 8 illustrates the principles of a first qualitative ap-
slopesa as peaks of Oth order and, systematically accordingroach to understand the occurrence of peaks of Oth and 1st

FIG. 7. Parameter-dependent diffusion coefficibiff)) of map
L with some enlargements. [i)—(e), the dots are connected with
lines. The number of data points is 7908 fay, 1078 for(b), 476
for (c), 1674 for(d), 530 for(e), and 1375 for(f).
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FIG. 8. First qualitative approach to under-
stand the structure of the parameter-dependent
diffusion coefficientD(a), denoted as the plus-
minus methodsee text The variation of the mi-
croscopic scattering process via changing the
slopea by Aa is heuristically related to variations
in the strength of the diffusion coefficient. The
plus (minusg signs refer to subintervals where
forward (backward scattering occurs at the next
iteration of the mapparticle moves to the right
or left, respectively. The qualitative argument is
that the sequence of dominant forward or back-
D) ward scattering by varying the parameter induces
@ oscillations in the strength of the diffusion coef-

e HEEEE ficient. (a) and (b) are for one iteration(c) and

+- +— +- H— 4

D(a)

order. It will be called theplus-minus approachThe basic the extrema in this graph give the symbolic dynamics of
idea is to establish a connection between the appearance ofbits close to, but less thar=1/2 after one iteration with
peaks in theD(a) graphs and the occurrence of certain dy-respect to the reduced map E83), where the region €x
namical correlations in the chain of boxes. These correlationss1/2 has been labeled with a plus and 4#<1 with a

are a main feature of transport of particles from one box toninus.

another, and they show up and disappear by varying the In Fig. 8(c) the number of iterations has been increased to
slope of the map. In the following, particles will be referred two. The method is the same as explained before, however a
to solely by their positions, i.e., by points on the real line.further distinction has been made after the first iteration: new
Figures 8a) and 8b) sketch correlations of Oth order: As a subintervals have been defined, which refer to points of the
starting point, the escape of particles out of one box in onescape region being mapped to another plus or minus region
direction, i.e., to the right, will be considered for varying the at the second iteration. One can see that increasing the slope
slope in the range €a<4. Such an escape of points is corresponds to creating different plus-minus sequences for
related to a certain subinterval of the box which will be orbits close to, but less thar=1/2. This leads to the par-
called theescape regionas is shown in the figure. If points ticles being in a good or bad position for going further in one
get mapped to the right at the next iteration, the respectivdirection with respect to the next iteration, depending on the
subinterval will be denoted with a plus sign. In the samevalue of the slope. Th®(a) graph in Fig. 8d) again gives
way, subintervals will be denoted with a minus if points getthe qualitative behavior dd(a) to be expected with respect
mapped to the left. Therefore, the escape region marked ito the dynamical correlations after two iterations, upato
Fig. 8 is part of a plus region, and for small enough slope=5. This result corresponds well to the number of peaks of
after only one iteration points of it get mapped directly intofirst order estimated in the respective regions of the slope.
another plus region. This enhances diffusion, since particledgain, the plus-minus sequences give the symbolic dynam-
can move continuously in one direction, i.e., here to thdcs of points close to, but less thax=1/2 after two itera-
right. The behavior persists for increasing the slope up to tions.

=3. For slopes above this value, an increasing number of The plus-minus method works on this level as well for
points of the escape region is now mapped into the minugny higher values of the slope and leads to a qualitative
region of the next box. This way, one obtains a “plus- explanation of the number of peaks of first order for any
minus” correlation, which means that patrticles either getregion of the slope. To a certain degree, it can even explain
slowed down or even get scattered back into the previouadditional features of the structure of tb€a) curves: For
box at the next iteration, which tends to decrease the diffuexample, in Fig. #) one observes that the local maximum is
sion coefficient. Thus, by gradually increasing the value ofnot precisely aa=3, although this could be expected from
the slope, one is led to the qualitative “curve” in Figb8,  the results of the plus-minus method of Oth order. Actually,
which explains the oscillations at integer slopes and thearticles of the escape region closexte 1/2 can still reach a
peaks of Oth order, respectively. The sequences which marrood position for further movement in one direction, even
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for slopes slightly abova=3. This is due to the fact that, 0.35 . .
although such points first get scattered back into the previous o3l ::::::a o
box after two iterations, here they are now in an excellent se,iesﬁ o

025
0.2 r

position for further jumps to the right again. This way, these
orbits perform a kind of “spiral” and seem to be responsible

=

for the surprising fact that the odd integer slope values of & 15l

D(a) arenot precisely identical to the local extrema of the o1 |

curve, but that there is always a kind of overhang, i.e., a )

further increase of the diffusion coefficient right above odd 0.05

integer slopes, as, e.g., is shown in detail in Fig).7 0

Although the plus-minus method can be applied to
achieve a qualitative understanding of the peaks of Oth and a

first order, further refinements of this method to obtain peaks

of higher order generally turned out not to be very promis-  FG. 9. Enlargement of the region of slope=3 for mapZ£ with
ing. The main reason is that in the case of more iterations ohe solution for a simple random walk mod@ashed ling and
points of the escape region, the dynamics is getting quit@bels for parameter values which are significant for “turnstile dy-
complicated and it is not easy to capture the qualitative feanamics” (see text Turnstile dynamics establishes a quantitative
tures illustrated in Fig. 8. However, the basic idea of thisrelation between the local maxima and minima of the parameter-
method can be made more quantitative by a procedure whiattependent diffusion coefficient and the underlying microscopic cha-
shall be calledurnstile dynamicsThe principle of turnstile otic scattering process. For some parameter values, the turnstile
dynamics is to investigate the appearance and disappearan@®ipling is shown by pairs of boxes. The graph consists of 979
of long-range dynamical correlations by iterating points withsingle data points.
respect to varying the slope, but now the analysis is restricted
solely to the regions of the boxes where transport of particleg are defined by the condition that the second iteratex of
from one box to another occurs in form of jumps. These=1/2 is at the leftmost point of the upward turnstile in the
regions are calleturnstiles second interval (1,2) 8=2.732), or that the third iterate is
Definition 3 (turnstile) Turnstiles are the “coupling re- at the corresponding point in the third interval=2.920),
gions” of the single boxes of a chain of clagy where etc. The numbers on tHg(a) curve refer to the number of
points of one unit interval get mapped outside that particulaintervals that the image of=1/2 has traveled before it gets
interval into another unit interval. to the appropriate point on the turnstil&eriess points are
This notation has been adapted from the theory of transdefined in a similar way, but they have two or more internal
port of two-dimensional twist maps, such as sawtooth mapgeflections within an interval before reaching the left edge of
where turnstiles are crucial for understanding large-scale difa turnstile.Seriesy points are defined by the condition that
fusion[119-1232. The escape region introduced above in thesome image ok=1/2 has reached the rightmost edge of an
context of the plus-minus method represents precisely onatpward turnstile, i.e., some point=k+ 1/2, wherek is an
half of such a turnstile. The main idea is to study thier-  integer. One observes that each series produces a cascade of
action of turnstiles, i.e., by varying the slope it shall be in- apparently self-similar regions of decreasing size, as the lim-
vestigated whether one obtains “good” or “bad” conditions its a—2 ora— 3 are approached. These cascades provide a
for particles to get from one turnstile into another, or perhapdasis for a physical understanding of the featureB () in
to get mapped successively through a series of turnstiles. Ais region: Particles leave a particular unit interval through a
before in the case of the plus-minus method, such dynamicalrnstile and undergo a number of iterations before they are
correlations are expected to show up in the curve for thavithin another turnstile. Whether they continue to move in
parameter-dependent diffusion coeffici€nfa). The advan- the same or in the reverse direction at the next and later
tage of turnstile dynamics is that it can be made quantitativéurnstiles is a sensitive function of the slope of the map.
by exemplifying all turnstiles with certain points of these Thus, the fractal structure of thB(a) curve is due to the
regions. For instance, the extremum of the turnstile one startsffects of long-range correlations among turnstiles, and these
with is represented by the critical point=1/2. Now, one correlations lead to changes Bf(a) on an infinitely fine
can try to compute the slopes for which this point maps intascale. We note that another way to understand this fractal
other turnstiles again, being exemplified by certain pointsstructure is in terms of so-called “pruning” of the micro-
after certain numbers of iterations. scopic deterministic dynamics. That is, by varying the pa-
This has been done in detall for the regiose@<3, as  rametera, certain types of orbits may suddenly disappear.
shown in Fig. 9. The dashed line in the figure represents th&his means that with respect to a given symbolic dynamics
prediction ofD(a) for a simple random-walk model as sug- of the map certain symbol sequences, which identify the or-
gested in Ref[46], which is discussed in detail in Refs. bits, do not exist anymore. This can be related to the irregu-
[58,71,72. Note that, on a large scale, the model correctlylarities of the diffusion coefficienit6,50].
accounts for the behavior @(a) neara=2, but does not One should note that serigspoints completely label the
provide any reasonable explanation of the fine structuremaxima of higher order introduced before, and serfes
There are clearly three distinct series of valuesadh the  points mark the respective minima. This way, in the region
figure. To understand the nature of these series, one should the slopea<3 the picture of quantitative turnstile dynam-
consider the orbit of the critical point. The first iterateof ics is in full agreement with the results obtained by the quali-
=1/2 is in the second interval (1,2). Tiseriesa values of tative plus-minus method outlined aboftee agreement has
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been checked to persist at least up to a level of extrema gfarameter-dependent diffusion coefficient could be related to
second order However, the application of turnstile dynam- the second largest eigenvalue of the topological transition
ics has its limits. First, this method is of no use anymore formatrix. This method provides analytical solutions in simple
any higher value of the slope aboge-3. Thus, there is N0 cases and is also accessible to numerical implementations.
other understanding of the structure in this range than the (jii) The method described above has also been applied to
one provided qualitatively by the plus-minus approach. Andabsorbing boundary conditions. Long-range correlations in-
second, even for values beloa=3, turnstile dynamics is qyced by the boundaries have been found in the eigenmodes
quant_itr?ltively not .completely correct: Apart from the lack of of the deterministic dynamical system. They also show up in
explaining the existence of the overhang abave3, a de-  guantitative calculations of the diffusion coefficient.

tailed analysis reveals further “tiny overhangs” at maxima (iv) Certain limits of the first passage method in combi-

?f higt:jer (_)rdf]r, such a;, e<.g?;, righ_t gai\geltgg n|1axir;]1um Ohation with the use of transition matrices have been dis-
|rstdor tehr mtt € r(;,\_?lon | a\” at?(—d i F'[ 9]'bn Other  cussed: Drawbacks are especially the restriction to certain
Wc?i:]tz’re ereszmsnloet ':/hiu:;acrtnlircael rr:rz;xnlr?a of ﬁ'l Shee”reISr deinitial probability densities suitable for the application of
P P . . g ; ransition matrices, as well as the “external” definition of
of the curve. The true local maxima are in fact shifted cep - " X . .
. . . . the diffusion coefficient by the “matching eigenmodes” pro-
slightly to the right from these points, as in the caseaof ' . - ,
r?edure of first passage. This procedure is not well-defined for

=3. The phenomenon of overhangs is further elucidated i . )
Refs.[58,119. However, apart from the qualitative remarks other eigenmodes of the dynamical system, but these modes

in the context of the plus-minus approach and the additiona"Y nave a limited physical meaning. o
insight provided by the approach in Reff§8,115, a detailed (v) A systematical way to flnq Markov partitions for the _
explanation of these overhang effects is still missing. class of maps under consideration has been developed. This
At this point, it should be stressed that the region belowmethod has been used as the basis for computing the
a=3is SpeciaL Compared to any other region of the S|0peparameter'dependent diffusion coefficient for the dynamical
First, the structure of the curve is remarkably simple, asystem mentioned above. For this map, as well as for the
shown in Fig. 9. Second, the number of peaks of higher ordewhole class of maps under consideration, Markov partitions
is not constant with increasing order, but grows according t@re conjectured to be dense in the set of parameter values.
the structure described by the turnstile dynamics performed (vi) A large number of eigenvalue problems of topologi-
above. This is in contrast to the behavior Bfa) in the cal transition matrices, based on Markov partitions, have
ranges 4a<>5 and 6sa<7, where one may have expected been solved numerically to compute the parameter-
similar generalities. Third, the region belaw3 is the only  dependent diffusion coefficient for the model. In the course
one which is simple enough such that turnstile dynamics casf these calculations, the reliability of well-known standard
successfully be applied at all, and this region seems to prosoftware routines for computing eigenvalue spectra has been
vide some simple scaling law$8]. All this nice behavior  checked critically, and numerical uncertainties have been
suddenly breaks down at the valae 3, which is marked by pointed out.
the largest overhang of the whole curve. Therefore, it might (yjj) Certain large- and small-scale structures in the eigen-
be assumed that the pointat 3 separates regions of fun- modes of the topological transition matrices have been
damental different dynamical behavior of the map, i.e., th§ound. The large-scale structures support the existence of
dynamics seems to be sufficiently simple below, but sudstatistical diffusion in the dynamical system, whereas the
denly gets quite complicated above this value. In fact, thergmgaj|-scale structures refer to the specific microscopic deter-
is further evidence that such a transition exists, as is dismjnistic dynamics of the model system. These results sug-

cussed in detail in Ref$58,71]. gest that the strength of the fractal diffusion coefficient is
related to the fine-scale structure of the eigenmodes.
V. SUMMARY (viii) A conjecture about the existence of diffusion coef-

ficients for a broad class of one-dimensional maps has been
made. This conjecture may shed more light on the origin of
(i) A simple model for deterministic diffusion has been diffusion generated by a simple deterministic dynamical sys-
discussed where the microscopic scattering rules can bem and may show a way how to put the theory outlined in
changed by varying a single control parameter, the slope of this paper onto more solid mathematical grounds.
uniformly hyperbolic, piecewise linear map. The diffusion  (ix) Qualitative explanations for the structure of the
coefficient of this model shows a fractal structure as a funcparameter-dependent diffusion coefficient over the full range
tion of the slope of the map. This result appears to be the firsdf parameter values have, to a certain extent, been provided
example of a dynamical system whose diffusion coefficienby simple heuristic considerations.
has an unambiguously fractal structure. (x) A more refined “turnstile dynamics” has been devel-
(i) A general method to compute parameter-dependerdped as a more quantitative approach to explain the structure
diffusion coefficients for a whole class of piecewise linearof the parameter-dependent diffusion coefficient. It works in
maps has been developed. It is based on the first passagertain regions of the parameter values and provides a start-
method, which provides the definition of the diffusion coef-ing point for a scaling of certain self-similar structures.
ficient for the dynamical system, in combination with the use (xi) By employing these qualitative and quantitative
of Markov partitions and transition matrices, which havemethods, certain interesting features of the diffusion coeffi-
been employed to solve the Frobenius-Perron equation of theient have been discussed, i.e., the phenomenon of “over-
dynamical system. For periodic boundary conditions, thehangs” at local extrema, and the special simple character of

A. Conclusions
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an “initial region” for small parameter values, where diffu- particle interactions are not of primary importance. Physical
sion sets in. systems of this kind could — to a certain extent — already
be realized experimentally in the form of so-called antidot
B. Outlook lattices. Here, magnetoresistances which fluctuate irregularly

) ) ] ) ) by varying the field strength have already been observed ex-
The class of one-dimensional piecewise linear maps Wgarimentally in a classical limif127,128, and to a certain

have studied here by analyzing an example appears to be tigtent they have been explained theoretically by identifying
most simple type of deterministic diffusive systems one Canpecial orbits in the microscopic dynamigs29,13Q. An-
think of. Nevertheless, we have shown that the diffusion coother candidate of a system where certain irregularities in
efficient of such a map changes in a fractal way by varying aransport could be of a deterministic origin are so-called
control parameter. Starting from this fundamental resultratchets, where negative currents have already been found
there are at least two directions in which our research can bexperimentally, as well as in theoretical modéiee, e.g.,
pursued: One way is to study whether other transport quarRefs.[131,133 and further references thergifn fact, it can
tities, like electric conductivities, chemical reaction rates, orbe argued that there exists a relation between certain types of
magnetoresistances can exhibit such an irregular behavior #&tchets and the class of one-dimensional méqsple-
well. Another way is to investigate whether fractal transportmented by a bigsstudied her¢114,133.
coefficients exist in more complicated, and thus more realis- Fractal transport coefficients in one-dimensional maps ac-
tic, dynamical systems. tgally appear to be stable vyith respect to imposing different
The first steps in these directions have already been takekinds of random perturbations on the syst¢id]. This
For example, a bias has been added to the simple map dig€ans 'that the fractal structure gradually smoothes qut by
cussed in this paper. This generates an average current Hcréasing the perturbation strength and thus survives in the

particles which again exhibits fractal structures by varyingf_orm_mc irregular oscillations on finer scales if the perturba-
the bias as a parametéil4,116. Moreover, for small tion is small enough. Although there are exceptions to this

enough bias the current can run opposite to the bia}gehavior[li’ué_[l, we beIieye this to be the typical scenario of
[114,116, and for other parameter values the diffusion coef- ow a possible fractahty. of parametef-dependent transport
ficient is zero with nonzero curreft14]. Deterministic dif- coefflc_lents may appear if the system is not completely de-
fusion coefficients and deterministic currents which changéermm'suc‘
irregularly by varying respective parameters have also been
found in parameter-dependent two-dimensional multi-Baker ACKNOWLEDGMENTS
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simulations of several groups show clearly a very irregular

behavior of the conductivity by varyjng the field strength APPENDIX: TRANSITION MATRIX METHOD
[20,28,29,3] In one case, the numerical results could even FOR CALCULATING DIFEUSION COEFFICIENTS
be confirmed by calculations based on cycle expangi®hls

Whether deterministic phenomena of this kind play a role In this appendix, we present the analytical solution for the
in real statistical, experimentally accessible systems is a vergigenstates of the topological transition matridgs) for-
open question. Following the chaotic hypothesis of Gal-mally introduced in Sec. Ill A. These transition matrices are
lavotti and Coheh125,126, one may believe that these phe- the main ingredients for our solution of the Frobenius-Perron
nomena are rather due to the simplicity of the models andnatrix equation, Eq(13), and their eigenmodes and eigen-
should eventually disappear if the systems are getting morealues determine the deterministic diffusive dynamics of the
complex. Respectively, we would expect that certain necesmap at the respective parameter value of the slope, as out-
sary conditions must be fulfilled for systems to exhibit char-lined in Sec. 1. Two simple examples of such transition
acteristics of fractal transport coefficients which may contra-matrices have already been given by Etyd) and Eq.(24);
dict the spirit of the chaotic hypothesis, such as beinghe problem of transition matrices for more complicated
spatially periodic, low-dimensional, and such that particle-Markov partitions has been discussed in Sec. Il B.
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In the first subsection of this appendix, we will consider We find that the matrix corresponding to this Markov parti-
integer slope, and periodic boundary conditions. We solveion is a simple circulant with matrix elements of
the eigenvalue problems of these transition matrices by stan-
dard methods and compute the parameter-dependent diffu- t1=2,t2=1, ... tap=1.1ap4+1=0, ...t —ap41
sion coefficients as defined by the first passage method. In 0t -1 =1 (AB)
the second subsection, we solve the eigenvalue problems of CLmazt2 T S e LT

the respective transition matrices for two integer sloges, The (s+al2— 1)th row, 1=<s<L —a/2, of the corresponding

=3,4, and absorbing boundary conditions. In the third subgigenvalue problem defined by E@2) is thus determined
section, we describe some nontrivial Markov partitions forby

noninteger slopes.

¢rsn+ . +¢§]+a/2—2+2¢rsn+a/2—l+¢rsn+a12+ . +¢ﬁ1+a—2

— s+a/l2—1
As discussed in Sec. lll, for periodic boundary conditions XinPm ' (A7)
all topological transition matrices corresponding to Markov according to Eq.(A3), the eigenvalues are
partitions are block circulants. For certain values of the slope
it is possible to reduce these block circulants to simple cir-  y =2+r +... +r§§_2)’2+rh((a_2)/2+ . +rhq—1,
culants with known solutions for the eigensta{@3—99.

1. Integer slopes with periodic boundary conditions

. . A8
We employ here the approach of Berlin and Kac as described (A8)
in Appendix A of Ref.[97]. and by using Eq(A4) we obtain explicitly
Let T be a cyclic matrix of the type
(a—2)/2
,a(@a-1)(a-2)
ty, t, tz3 - t_q ot Xm=212 2 coffS)=a—Op—————
= 24
Lt ot tL2 t

Te=| tiy t0 ty - tis tio|. (A (L—o0). (A9)

The corresponding eigenvectors are given by &%). Note
t, tz t, .-t t, that the largest eigenvalug, is equal to the slope of the
map. This is a consequence of the fact that the topological
We want to calculate the eigenvalugs and the eigenvec- transition matrices discussed here can be mapped onto sto-

tors | ¢,y associated witfT, that is, chastic transition matrices and that the Perron-Frobenius
theorem for non-negative matrices appli2,133. It can be
T|ém)=Xm|bm), m=0,...L-1. (A2)  proven that this property holds for any topological transition

matrix of map L which is defined on the basis of Markov
partitions with periodic boundary conditiof$14]. Accord-
L ing to the matrix Frobenius-Perron equation, EfQd), the
Xm= E tsrfn‘l (A3) corresponding largest eigenmode determines the equilibrium
s=1 state of the system, which is here simply uniform. In analogy
to Eg. (21), the second largest eigenvalue gives the decay
rate, and the respective second largest eigenmode governs
;{ 27rm) the diffusive transport in the map. For slope 2k we thus
rm=€x ,

According to Ref[97], the eigenvalues are given by

with

L (A4) obtain a decay rate of

2 (g— —
and the corresponding eigenvectors are _ 4m° (a—1)(a-2)

. , ) ] ‘}/de(.(a)zlnxl(a)_? 24 (L-)OO)
|om)=(bm. dms - Do - - D), (A10)
¢fn:5m¢ﬁ]vl+’5m¢rn’2, ¢Fn,1‘=005[9m(k—1)], With Eq. (9), this gives a diffusion coeficient of
2 L? (a—1)(a—2)
bk =sim O(k—1)], k=1,...L, 0m==%m D(a)= 4_7727de<,(a): — 2 (A11)

A5

(A9 We now want to do the same calculation for all odd integer
with a,,, andb,, to be fixed by suitable normalization condi- slopesa=2k—1ke N, again by employing periodic bound-
tions. ary conditions. As a Markov partition for all these slopes we

We now compute the diffusion coefficient for all even use the same partitioning underlying the transition matrix as

integer slopesa=2k,ke N, of map £ by solving the eigen- given by Eq.(24), that is, its parts are all of length 1/2. Here,
value problem of the respective general transition matrixhe corresponding-dependent transition matrix is a block
T(a) of the system. This transition matrix can be constructectirculant where the single blocks consist 0k2 matrices.
as discussed in Sec. Ill A by using the same Markov parti-To illustrate the general structure of this matrix, we give the
tion for all slopes, that is, the one which is depicted in Fig. 2.first rows and columns of the special case 5, which is
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2

24

D(a)= 2 (A19)

2. Integer slopes with absorbing boundary conditions

T(5)= For absorbing boundary conditions, the corresponding
transition matrices are not block circulants, but they belong
to the broader class of banded square block Toeplitz matri-
ces, as pointed out in Sec. Ill A. For these matrices no gen-
eral methods are known for solving their eigenvalue prob-
lems analytically. However, in certain cases analytical

(A12) solutions can still be obtained by straightforward calcula-

tions, as we will show for the two integer values of slape

=3 anda=4.
We first consider the case=4. The transition matrix for

this parameter value is identical to the one given by @d)

O O R B R R R
O O 0O 0O O R B
N e = =)
O 0O O R Rk kB R
B P P O O O O
O R B B B L O
O O O o o o
B P P B O O O
O O 0O 0o oo o
m B O O O O O

By using the notationi¥, for thekth odd component dfe,,)
andv¥, for the kth even component we obtain férodd, 1
<ksL-3,0sm=<L-1,

k+1 k+1 k+2  k+3_ k+1 except that the upper right and the lower left corners are
u +uy, “tv +uy, “tung XmUm . . . . .
filled with zeros because of absorbing boundaries. The eigen-
u n uk+1+ Ulr(n+2+vﬁ1+2+vlr(n+3=xmulr(n+2, (A13) value problem of this matrix can now be solved in analogy to

the calculations performed by Gaspard in R82]. The ei-
supplemented by periodic boundary conditions for the regenvalue equation, EGA2), reads here
spective first and last rows of the matrix. This leads fp

k kil gk+2_ k+1 .
k“, yielding an equation fou which reads Pt 2hm T+ m "= Xm , OsksL—1,

m

(A20)
U +uk+1+uk+2+uk+3+uk+4 Xmut(n+2 (A14)

supplemented by the absorbing boundary conditimﬁ#

again by providing respective periodic boundary conditions= % *=0. Since this equation is of the form of a dis-
Thus, we have reduced the eigenvalue problem for the initiafretized ordinary differential equation of degree 2, we make
block circulant of Eq(A12) to the eigenvalue problem of a the ansatz

simple circulant as given by EgA14). The same reduction ‘ _

procedure can be carried out for a general odd integer value ¢pm=acogkd)+bsin(kd), OsksL+1. (A21)

of the slope. The reduced eigenvalue equation then reads .
The two boundary conditions then lead to

a=0 and sif(L+1)6]=0 (A22)
supplemented by respective periodic boundary conditions.
With the Berlin-Kac method we obtain for the eigenvalues Yielding
(a—1)/2 2,2 2
47°m° a(a*—1) mar
Xm=1+2 521 cog 6,,5)=a ¥ o m=1 11 (A23)
(L—), O=m=L-1. (A16) The eigenvectors are then determined by
k .
The eigenvectors are given here by $m=b sin(kby,) (A24)
|pmy= (Ul vk, .. Uk ok, ke, with b as the normalization constant. Putting this equation

into Eq. (A20) gives as the eigenvalues

K ~ K ~ k k+l
us=amnun +baus vk =Up,
m=amUm 1+ bmug, - m Xm=2+2 cosb,. (A25)

kK ._ _ kK i —
Um,1=C0 Om(k=1)], U 2=sinIm(k=1)], Note that in the case of absorbing boundary conditions the
largest eigenvalue is not equal to the slope of the map, but
2 . '

k=1,...L, 6p=—m (Al7)  determines the escape rate of the system. Correspondingly,

L the largest eigenmode is the diffusive mode of the map.

. ~ _ ) o _ However, forL—o the largest eigenvalue goes to the exact
with ap, andby, to be fixed by suitable normalization condi- vajue of the slope, which therefore serves as an upper limit

tions. For the decay rate we obtain of the eigenvalue spectrum. This is conjectured to be true for
5 any topological transition matrix of maf which is defined
477 (a®-1) Lo A18 on the basis of Markov partitions by employing absorbing
Vaed @)= L2 24 (L=e), (A18) boundary conditiong114]. In the limit of chain lengthL

—oo these results lead to the escape rate and diffusion coef-
which leads to a diffusion coefficient of ficient presented in Sec. Il A, Eq§30) — (32).



5378 R. KLAGES AND J. R. DORFMAN PRE 59

We now treat analogously the case of sl@pe3 for ab-
sorbing boundary conditions. We know from the preceding
subsection that for odd integer slopes the Markov partitions,

and thus the respective transition matrices, are a bit more / """ : ey
complicated. The transition matrix fa=3 is identical to ' 7
the one given by Eq(24) except that the upper right and /2 // :
lower left corners are filled with zeros because of absorbing P
boundaries, as before. NN i
To write down the eigenvalue equation, £42), for this
matrix we use the same notation as in the preceding subsec-
tion for odd integer slopes. Withﬁ] being thekth odd com-
ponent of| ¢, and v‘fn being thekth even component we
obtain fork odd, O<k<L, FIG. 10. Markov partitions for ma at values of the slope
where the diffusion coefficients are computed analyticd#lyis for
UK+ oK Fokil=y ok Uk Uk k= kT slopea=2.732 05(b) for a=4.828 43(c) for a=2.561 55, andd)
for a=4.70156.
(A26)
supplemented by the absorbing boundary conditiulﬂ$ following, we will only consider periodic boundary condi-
=ern+1=0. This again leads to‘r‘n=uﬁ1+1, yielding an equa- tions, because then the general method of Berlin and Kac to
tion for u; which reads solve the respective eigenvalue problems can be applied.

We discuss two different series of Markov partitions. For
Uk Ul iy gki2=y Ukl o<k=L, (A27) the simplest case of the first series we briefly outline how to
perform the calculations, and we give the results for the ei-
with the respective absorbing boundary conditions. We agaigenvalues and the diffusion coefficient. For the next param-
use Eq.(A21) as an ansatz to solve this equation. The twoeter value of this series we give only the main results, before

boundary conditions then lead to writing down the respective general formulas for the whole
) series. For the second series we only deal with the first two
a=0 and sifi(L+2)0]=0 (A28)  parameter values by giving the main results.
ieldin In each case we proceed by first depicting a box map of
y 9 the full chain of boxes with its Markov partition in a figure.
mar We indicate how the respective Markov partition has been
0m:m’ lsmsL+1. (A29) computed and give the exact value of the slope by which it is

defined. On this basis, we sketch the corresponding transition
matrix for the full chain of boxes and give the main results

The eigenvectors are then determined b . e .
g y for eigenvalues and diffusion coefficient.

uk=bsin(kfy), v<=bsin(k+1)6,] (A30)

a. Series 1
with b as the normalization constant. Putting this equation As has been pointed out in Sec. Ill B, a Markov partition
into Eq. (A27) gives as eigenvalues is defined via a generating orbit which obeys E86). By
using the notation of this equation, the first series of Markov
Xm=1+2C0SOp. (A31)  partitions discussed here is characterizedssy0 with the

number of iterations of the reduced map bemgl. The

In the limit of chaln_ Ien_gth_eoc _th_|s leads to the FeS“'tS for first case of this series is obtained from the solution of this
escape rate and diffusion coefficient presented in Sec. Il A

Egs. (30) — (32) equation for the slopa being restricted between 2 and 4.
qWe rer;ark tﬁat we do not have analytical solutions of theThe second case refers to<@<6; the general case is for
y solutions X<a<2(k+1),keN.

eigenvalue problems for integer values of the slope above Case 1 This is the simplest case and corresponds to the

a=4 with absorbing boundary conditions. Here, the ansat . ; . .
of Eq. (A21) does not seem to be sufficient because of IongfgmalleSt slope of this series, as illustrated in Figal0As

. ; : .Zone can infer from the figure, the precise value of the slope
range correlations which are induced by the absorblng:an be computed from the equation
boundary conditions, see also the remarks in Sec. Ill A to

this problem.

1=2(1+e)e 0=e<1/2, (A32)
3. Nontrivial Markov partitions with periodic boundary wherea=2(1+ €), which leads to the solution
conditions ’
In this subsection, we discuss some examples of non- az(\/§— 1)/2=2.73205. (A33)

trivial Markov partitions where analytical solutions of the

respective eigenvalue problems of the transition matrices cafihe partition of the full chain of boxes can be constructed by
still be obtained analytically. This can be done by reducingcontinuing the box map of Fig. 18 periodically. The cor-
block circulants onto simple circulants in the way illustratedresponding transition matrix can then be obtained from this
in the preceding subsections for odd integer slopes. In thpartition as described in Sec. Ill B and reads
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T(2.73205 4 and 6. Its box map patrtition is illustrated in Fig.(hpand
corresponds t@=2+ /8=4.82843. The transition matrix
1 0100 0O0O0O0O:
10101 0O0O0O0 O- T(4.8289
0101010 0O0O0- 1 01 001 0UO0TO0 O-
looo0o1010000--]| 101001000 O-
0 001 061 01 0 O 101 001010 0-
000010101 0: 1 0 01 01 0O 1 O-
1001 01001 0-
(A34) =1 00101001 0:
where the first, second, third,. . , three rows correspond to 010100101 0:
the first, second, third, . ., box of thechain. We now re- 0001 00101 0-:
duce this block circulant to a simple circulant. Since the
Markov partition of each box consists of three parts, we use 6601001010
three different symbolsi¥, vk WX, as components of the 000010100 1-

eigenvectors to write down the eigenvalue equation, Eq.
(A2), of this matrix,

K ok k K ok oo K+l k (A40)
+
UntWin=XmUm:  UntWnt v "=XmWy,
vﬁq+uﬁ1+l+wﬁq+l=xmufn+ly 1<k<L, (A35) Again, this block circulant can be reduced to a simple circu-

lant. By some calculations which are quite analogous to the

supplemented by respective periodic boundary conditions fopnes of the previous example, we obtain as eigenvalues
the first and the last row of the matrix. From these equations

it is immediately obtained that Y= 14086, = \(1+c0S0,,)2+ 2 c0$ 26,,) + 2 CO$ 36,7
k+1 k k k+1
K Um tXmUm 1 UmT XmUm 62 15
wy=——, U, =——, (A36) =o_ M g2
m o m o 2- 5 +.8] 1 5| (L=, (A41)

which leads to
0., andm as before, with a diffusion coefficient of

vk opk ppkrl= 2k (A37)
with respective periodic boundary conditions. This again de- 1+ 1_5\/5
fines the eigenvalue problem of a simple circulant which we
can solve by the methods used before. For the eigenvalues D(4.8284= m=0-652 73. (A42)
we obtain ( )
‘9% General case of this serie®Ve now gi -
_ M5 nen _’m - give the general so
Xm=1%\1+2 cosbp=1= \/§( 1 6 ) (L=ee), lution for eigenvalues and diffusion coefficients of all cases
of this series of Markov partitions. Let
27m
0m=T, O0<m=L-1, (A38)
1
a(p)=2(p+1+e) with e=z[—-p—1
where the second largest eigenvalue yields a diffusion coef- P P 2 P
ficient of +\2p+2+(p+1)%, peNy,  (A43)
D(2.73205= —\/§ 0.10566 A39
(2. 5= 6(1+/3) e ' (A39) be the slope of mag. Thena(0) is the value of the slope of

case 1 anda(1) is the value of the slope of case 2. Any

As pointed out above, the largest eigenvalue is again identhigher value of(p),p>1, defines a Markov partition which
cal to the slope of the map. It is related to an equilibriumis of the same type as in the two previous examples, that is,
eigenmode which is here a periodically continued piecewisét fulfills the general definition of this series given at the
constant function, based on the single parts of the Markoweginning. For this series of Markov partitions the general
partition. eigenvalue problem of the corresponding transition matrices

Case 2 The second case of this series is the Markovcan be solved by generalizing the calculations above. This
partition defined by the respective value of the slope betweepields for the eigenvalues
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P The eigenvalues are
xm=1+ >, cogke,,)
k=1

N

In the limit of L — oo, this leads to a diffusion coefficient of

(2p%+p)V(1+p)(3+p)+2p3+17p2+20p+6

2 p+1l

1 /9 2mm
+2k§=:lcoi(9+k)9m]’ Xm:§¢\/2+2cosam, bm=—7—, O=m=L-1,

(A48)

P
1+ >, cogké,,)
k=1

Osms<L-1. (A44)

and the diffusion coefficient is

D(p)=

12 V(1+p)(3+p)+3+p] A2
D(2.56155= ——=0.094 68. (A49)
b. Series 2 ( X \/1—71"' \/1—7

By again referring to Eq(36), and using the notation of
Sec. lll B, a second series of Markov partitions is defined by
6=1— € with the number of iterations of the reduced map

. . . . to
beingn=1. In the following we give the main results for
only the first two cases of this series, which are based on the
solution of this equation for the slogebeing 2<a<4 and

Case 2 The partition illustrated in Fig. 1) corresponds
the slope

4<a<6, respectively. e 3+ \/4_1:4 o156 50
Case 1 The partition illustrated in Fig. 16) corresponds 2 '
to the slope
A 1+ \/1—722 56155 (A46) and defines, periodically continued, a transition matrix of
5 .
and defines, periodically continued, a transition matrix of
T(2.56155 T(4.70156
1100 0 0 00 O0 O- 101 01 0O0O0O0 O-
1 01 0 0O OO OO O:- 101 0 01 0 0 O O-
011010000 O0- 101001010 0-
01 01 1 0 0 OO O- 1 00101010 O-:
O 001 01 0O O O- =1 0 0 1 01 0 0 1 O0-
=foooo0o110100: 010101001 0-:
000010110 0- 0 1 0100101 0:-
O 0O0OO O O 1 0 1 O0- 0O 001 0 0O1 0O 1 O°-
0 00O OO OT1110-
0 00O0OO0OOT1O01: (A51)
(A47) The eigenvalues are
|
1+2 cosé,, 1 )
Xm:Ti Z(1+Zcosem) +2+2 cosf,+2 cog26,,) +2 cog36,,), (A52)

0., andm as before, and the diffusion coefficient is
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31
1+ —

41
=0.62122.

3+.41

D(4.70516= (A53)
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We finally remark that analytical calculations which
are similar to the ones performed here have been carried
out in Refs[6,50,5]1. These calculations are based on cycle
expansions, and the diffusion coefficient has been computed
for different piecewise linear maps.
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