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Role of side chains in phase equilibria of disklike mesogens
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A theory of phase equlibria in solutions of discotic mesogens of a hard-core disklike center and attached side
chains is developed in the Flory lattice approximation. The role of the side chain stiffness and length in the
phase equilibria is studied numerically in detail for two cases of the hard-corexsiZzéand 10. It is found
that the chain stiffness has a profound effect on the molecular ordering, with stiff chains increasing and soft
chains decreasing the nematic order param®@terhe critical solute concentration for the first appearance of
the stable nematic phasé shifts towards lower values for stiff chains and to higher values for flexible ones.

In addition, the soft chains suppress while the rigid ones enhance the coexistence range of two nematic phases
observed fox=9.1[M. Wnek and J. K. Moscicki, Phys. Rev.33, 1666(1996]. [S1063-651X98)04909-5

PACS numbgs): 61.30.Cz, 64.70.Md

[. INTRODUCTION tion to the director by a suitable number of perfectly ordered
subparticlegsegmenty cf. Fig. 1. We considered a solution
In the field of approximating the spatial configurations consisting ofng isodiametric spherical solvent molecules and
and interactions of molecules in liquids one of the most com, rigid disklike molecules of the same thickness artimes
monly used approaches is the hard-particle model. This igs wide. The volume occupied by the solution is subdivided
due to the thoroughly accepted assumption that the maiinto a cubic array oh, cells of linear dimension equal to the
contribution to the intermolecular potential is the short-rangediameter of the solvent particland the disk thicknegsWe
repulsive forces(steric interactions rather than the long- assumed that each solvent molecule occupies fully a cell of
range attractive forces. Other interactions, e.g., dispersiothe lattice. Similarly, each disk consisted of contiguous fully
forces, are usually introduced as a perturbation. One of theccupied cells. No voidéempty cells were allowed in the
very efficient methods of studying configurational order ofsystem, thusiy=ng+x2n,.
hard particles is the Flory lattice approach developed over If the nematic director is along the lattigeaxis, then due
the years by Flory and his followef&—7]. The theory suc- to the cylindrical symmetry of disklike molecules and the
ceeded especially in describing the isotropic to nemati@xial symmetry of the nematic phase, the perfectly ordered
phase transitions in liquids of highly asymmetric rigid anddisk is approximated on the lattice by a rectangular parallel-
semirigid molecules in thermotropic and lyotropic systems.epiped of breath-to-width rati@ located in an elementary
The great advantage of the method is the absence of lowXY slice of the lattice; cf. Fig. 1 of7]. Disorientation of a
density expansions as in Onsager mod8|9]. disk is then described via two independent rotations aklout
The formation of the nematic phase by disklike moleculesand Y, producing segmentation of the parallelepiped into a
was envisioned and discovered by Chandrasekhar, Sadas$tairway structure of segments located in neighboring el-
iya, and Sureah over twenty years ago, and since then dis-
cotic mesogens have attracted increased attefliéh The
liquid crystallinity of disklike molecules is known to be ther-
motropic and lyotropic in nature, and the usual nematic
phase and a large variety of columnar phases are formed, th
latter corresponding to the smectic order in systems of rod-
like molecules[11-13. The anisotropy of the disklike me-
sogen unit can vary considerably from relatively simple to
large sheetlike rectangular structufd€l—17. At the fore-
front of current research are discotic metalomesogens be
cause of their unique conductive and magnetic properties
[18,19.
In a previous paper, we proposed a lattice method base: o
theory of phase equlibria in a solution of disklike particles
[7]. Disorder in disk orientation is limited in a dense system
by the requirement that an overlap of molecules be avoided
In order to quantify the implications of this requirement for
the steric part of the partition function we followed the cru-
cial idea of Flory to represent a molecule at a given inclina-  F|G. 1. Typical hard-core potentials for model disks and rods
and their lattice representations. The disorder of particles is de-
scribed by thep angle for rods and by a paie, , ¢,) for disks; see
*Electronic address: ufmoscic@cyf-kr.edu.pl the text.
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ementaryXY slices; cf. Fig. 1. The overall disorder of the changes in the concentration-temperature phase diagrams re-
disk y is defined by the arithmetic mean of two disorder sulting from the van Laar—type solute-solvent interactions as

indices,yx andyy referring to both declinations well as via disk anisotropy. The results showed a striking
_ similarity to the phase equlibria properties of solutions of
y=(yx+yv)i2. () rodiike molecules with the same molecular volume as disks,

In the spirit of the Flory method, we considered trains Ofin excellent agreement with results of extensive Monte Carlo

contiguous segments in neighboring slices as independegmulations and results from Onsager-type mod&l23].

from each other and their distribution in any giveN slice  1he phase diagrams for disks and rods of the same molecular

random, being uninfluenced by circumstances in neighborinyolume were almost identical and displayed all relevant fea-

slices. Furthermore, due to the positional disorder of thdures such as triple points, nematic-nematic coexistence re-

nematic phase, the composition of each slice should be thgions, and critical concentratiof].

same. Thus the model is independent of the shape of the However, there is one characteristic feature for all dis-

system volume. cotic thermotropic mesogens that is often ignored in the first
The combinatorics of putting particles into the lattice in- @Pproximation of theoretical modeling, i.e., the presence of a

corporated their disklike nature and were quite easily solvhumber of side chains laterally attached to the hard quasidis-

able. The configurational part of the partition functitg,,,  Cotic core. These side chains are usually of the alkyl type

for placingn, identical disks is [24]. The influence of side chains on phase transitions via
their length, conformation, and stiffness was observed in
N many experimentf25—30. The most recent studies of large
Zeomb=(Ny) ™1 1;[ L Vit (20 sheetlike complexes of palladium organyls in nonpolar sol-
j+1=

vents showed that, depending on the chain length and its
orientation with respect to the core, different phase diagrams
and different degrees of orientational order can be obtained
[31,32. What is even more striking is that two nematic

yx.yy indices and represented on the latticeygy+ yy— 1 phases with different degrees of order were found in this type

; : . : of solution. The importance of the chain “stiffness” in the
Er%;ns of contiguous subparticles to be. Figs. 4 and 5 of formation of the nematic order and in phase equlibria is em-

phasized by recent experimental results of Praefda,
&) which suggest that the chains preserve conformational struc-
ture to some extent and thus change the steric parameters of

with »;,, being the number of configurations available for
thej+1 disk, provided disks are already positioned on the
lattice. We estimated;,, for a disk characterized by its

_ (Yx+Yy—1) p(yxyy—yx—Yy+1)
Vj+1—n0P1 P2

e system. This becomes especially important when the
mperature is varied since conformational changes in the
side chains influence their stiffness. The experimental data
are not yet sufficiently rich for drawing any quantitative con-
clusions, but they definitely emphasize the importance of the
chains in the formation of mesophases and phase equilibria
solutions of discotic complexes.

We therefore found it important to extend our simple
theory to a more realistic system of disks with side chains. In

where subparticles are divided into two categories depending1
on the conditional probability of finding room for the given *©
subparticle in the elementaryY slice; the probability of
finding the space for thefirst segment of each train
(yx+tyy—1 of them is P, and for everyotherit is P,. P,
andP, are in turn expressed via the conditional probabilities
of finding vacant sites for all constituent cells of each cat'"
egory of subparticlescf. Fig. 5 of[7])

p.= (xIyx+xlyy=2) (xlyx—1)(x/yy—1) 4 the lattice approach we are not constrained by mean field
1 plaplb plc ’ ( ) .. . “ . . .
virial expansions and “excluded volume” approximations
p.— (Xlyx+xlyy—=2) _(xlyx—1)(xIyy—1) 5) that strongly depend on the molecular cylindrical symmetry
27 P2aP3p P1c ) (cigars or disksand, in the case of side chains, are impos-

sible to calculate. The lattice method is the only one that
allows one to account for steric effects from side chains in
the molecular configurational partition function, as well as
Yor conformational changes in the chains. Other models, e.g.,
those of Onsagdi34] or Gay and Berng35], are limited to
pi= S— 6 the platelike symmetry of the shape of the molecular poten-
no— j[X2—Ki(x,y)] tial and thus incorporation of the chains is almost impossible.
_ For rodlike molecules, the influence of molecular flexibil-
Ki(x,y) being the average disk occupation factors, the estiity on the phase equlibria was considered in terms of the
mation of which are crucial for the theofy]. With Z.,,, lattice method by Matheson and FIdi§6] and for rods with
known, as well as the usual orientational and interactiorfully flexible side chains by Ballauff37]. Their important
parts of the partition function, the Gibbs free enef@ynd finding is that the presence of flexible side chains causes a
thus equlibria conditions were established;[@f. decrease of the system order, i.e., fully flexible chains act
Numerical calculations yielded the minimum value of themore or less as a virtual solvent weakening the steric inter-
disk anisotropy sufficient for the formation of the nematic actions between the anisotropic cores.
phase,X,i,=3.015. The result is in very good agreement It is well established experimentally that side chain ali-
with the anisotropy measured for discotic micelles in aquephatic chains are undergoing continuous conformational
ous solutions[13,15,20-22 We thoroughly discussed changes and their structure and the mean shape persistence

Except for the first cell of each train &), probabilities
p; (i=2a and Ic) are given by the mole fraction of vacant
sites in a random distribution of subparticles and empty site

No— jx?2
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depend on the symmetry of environement. The isotropic en-

vironment favors more randomized conformers, while the a
anisotropic one supports elongated structi2®-43. To

simplify the problem, we study here two extreme cases of

side chains attached in plane to the hard core, $téf,rod-

like and soft fully flexible ones. We assume for simplicity

that all side chains are identical and preserve their flexibility/

stiffness in all coexisting phases. Considering the soft side

chains, we follow the approach of Matheson and Fl@§]

and Ballauff[37] for rods with soft side chains, whereas the b
stiff chains are basically treated in a way similar to rodlike
moleculeq 1,2].

The details of the phase diagrams obtained do not differ
dramatically from the ones for pure diskg|. However, the
disordering effect of the flexible chains results in a shift of
the nematic-isotropic N-I) coexistence range towards
higher concentrations and a decrease in the nematic order
parameterS. The changes are roughly proportional to the C
chains volume fraction of the whole molecule. TRe co-
existence region, observed for bare disksxef9 (cf. [7]),
becomes smaller and for sufficiently long chains disappears.

The opposite effects are observed for stiff chains. The
shift of the N-I range is towards lower concentrations and
the range extent is strongly enhanced. For stiff chains we
also observe a proportionality between the changes in the FIG. 2. Lattice representation of model discotics: an example of
phase diagram and the chain’s length. The chang&sre (@ a discotic particle with soft chains in the perfectly ordefeard-
not so uniform, but are similar to those obtained 1} for core nematic state, and a discotic particle with stiff chains in the
pure disks on increasing their anisotropySo we conclude State of(b) perfect order andc) slight disorder.
that the stiff chains effectively increase the order in the
model solution. Finally, we also give some general ideas orells (cf. Fig. 2), resulting inz=8 chaing44]. However, for
how to incorporate more complicated chain structures suchenerality of presentation we allow the number of chains to
as chains attached at a certain angle to the hard core te a variable as long as possible. Eaclzdfide chains is
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chains that are partially stiff and partially flexible. then approximated as a Flory classical linear chilaxible
or stiff), occupying a sequence of adjacent cells; thus the
Il. THEORY discotic molecular volume now becomes equakte- zm

To retain most of the assumptions[af], we assume that

The theory presented here is a generalizatiofi7dfto a  the symmetry axis of the discotic molecule is predominantly
system of moleculegreferred to hereafter as discotics or defined by the hard core, thus by the orientational order of
solute moleculgswith disklike hard coregbare disks and  the system we understand the order of the normal to the hard
laterally attached identical side chains. In calculating thedisklike core of the molecule. The declined core will be de-
number of ways the solute molecules can be placed into scribed respectively by two independent rotation angles
limited volume, the theory follows closely from our previous and ¢, and the corresponding disorder indiggsandyy (cf.
work. What is significantly different is that side chains areabove. Consequently, the derivation of and the final result
now attached at the parallelepiped corners tlptrequire  for Z.,,,, retains a formal analogy to that §f], which we
additional empty cells on the lattice afit) themselves cause will exploit in the following.

additional packing restrictions. The model difference between the soft and stiff chain is in
The partition function of an assembly of the molecufes the orientational correlations between the subsequent lattice

is usually factorized, i.e., sites occupied by the chain, i.e., for the soft chain no such
correlations are assumed, while for the stiff chain model all

Z=Z:omtlorZint s (7) of the sites are orientationally correlated, i.e., a position of a

subsequent site is unequivocally given by the preceding ones
where the three factors are the combinatoric or steric factotcf. [1,45] and Fig. 3. The chemical potentials for the iso-
Z.omp, the orientational factoZ,,, and the factor introduc- tropic phase are approximated by settyig,=Yyx=Yy=X
ing the exchange free energies of interaction between theef. [7]).
moleculesZ;,;. A perfectly ordered hard core of volunx@
is approximated as before by arkxx 1 rectangular paral-
lelepiped with its long edges parallel to tkeandY axes of
the lattice; cf[7]. For simplicity and due to the natural sym-  Providedj molecules are already positioned on the lattice,
metry of the hard core, pairs of chains are attached at each tifie number of configurations available for the 1 molecule
the parallelepiped corners, where each chain’s first cell is the; . ; characterized by the hard-core disorder indiggsand
lateral extension of the respective side row of parallelepipedy becomes novicf. Eq. (3) and[7]]

A. Combinatoric or “steric” factor Z.omp
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| | FIG. 4. Side view of a discotic particle, with side chains at-
tached at some anglg to the core plane to form a bowl-like struc-
ture in the state ofa) perfect order andb) with some orientational
disorder described byp. Black and white squares symbolize 1
and b cells, respectively.

FIG. 3. Lattice representation ¢d) soft and(b) stiff side chains.
Broken lines indicate the position of the hard core.

nOP’(YXJFY\(*l)P’(yXYY*YX*YYJrl)P/ ®) the fraction of first cells in the side chains. Note that such a
! 2 . definition of P, encompasses all encounterable kinds of side

whereyyyy is the number of the disk subparticlase+yy chains: from. fully flexible or perfectly rigid chains to the
—1 is the number of trains of subparticles the inclined diskc@S€ ©of chains attached to the hard core at any arbitrary

is divided into,P; are the probabilities of finding free space a"9I€- Such a choice also ensures model consistency in the
for the “first” (i=1) and any “other” (=2) segment of isotropic phase and with models for rods. For example, in

each train, and®, is the probability of finding free space for order to describe chains of partially relaxed stiffness it

the side chainsg(The prime is introduced here to emphasizeShOu_Id be enough to redefine thefactor in powers in_Eq.
the presence of side chaips. (12) in such a way that someaicells are present even in the

P andP}, are given by Eq(5) with p replaced formally state of perfect ordefcf. above. In a similar way one can

: . : . also model a solution of discotics with stiff chains, which are
by p’ to emphasize the presence of side chains. The pro attached at some angle with respect to the hard-core plane
ability that a given site is free for thealcell of the first g b P '

segment is given by Let us consider, for example, an intuitively simple case of
bowlike discotic mesoger{€8,49, i.e., with the side chains
No—j (x2+2zm) bent in the same direction from the hard-core pléfeFig.
Pla=———, (9)  4). One might intuitively expect that on average a number of
Mo la cells in chains should remain constant for small declina-
tions of the particles from the state of perfect order. This
follows from the fact that while on tilting a particle away
from the perfect order the number o Xells in chains on
one side of the core increases, it is simultaneously compen-
sated for by the equal decrease of the numberao€dlls on
— , (100  the opposite side of the cofef. Fig. 4b)]. Such a compen-
No— [ +2zm) —Ki(x,y;z,m)] sation effect should be effective for declinations up to those
_ comparable with the chain attachment angle. Since it has
Ki(x,y;z,m) being the average occupation factors that defineheen observed experimentally in thermotropic discotic sys-
the probabilities of finding free sites for different cells of the tems with side chains attached at an angle of about 30° that
hard core in the presence of the chafob [7] and the Ap-  the orientational order of the discotic hard core in the nem-
pendix. atic phase is high, e.g$=0.7 at the clearing temperature
Benefiting from previous applications of the lattice [50], we expect that Eq(11) should work for the nematic
method to flexible and stiff chair[86,37,44, the P factor  phase of bowl-like discotics quite well. In such a case
in Eq. (8), which describes the probability of additionally shoyig therefore be essentially independeny ahd a weak
accommodating on the latticeside chains, each of length fynction of the core-chain bond angle. However, for simplic-
m, attached to the hard core, can, to a good approximationy and clarity of presentation we restrict our detailed consid-
be written ag47] erations to two limiting cases of the side chains attached in
the plane of the hard core only, as discussed below.

Vit1=

wheren, is the total number of sites in the systéthe sys-
tem volume. For every othei cell p/ is given by[cf. Eq.
(12 of [7]]

, (No—jx?)
pi =

P.=p;Z™pZM1-@)  with 0<a<1, (11)
where we have made use of the probabilities already defined 1. Flexible chains
from finding an empty site for the first cell of each sequence For soft side chains we assume, as usual, that every con-
of collinear cells into which the chains are brokej, and of  figuration of a chain is equally proballa6,37,43. In terms
finding a free site for each of the remaining cells in theof the lattice model the sites occupied by a given chain re-
sequence,, [cf. Egs.(9) and (10)], respectively;x is thus  main uncorrelated, i.e., every subsequent cell of the chain
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can occupy a lattice site with a probability uninfluenced by . v
the position of the preceding cell in the chain. To a good —InZ.ymp= 2nx(y—1+zm’2)+nsln(vs)+nxln2—X
approximation we can then take the probability that a given X“+zm
site on the lattice is free for a given cell of a chain to be the . In Qs
same as for & cells of the core disk and E¢l1) reduces to +no(y—1)°Q,, 7
2a
— In Qq
P’ =piZM, (12 (Y =) Quep
Cc
— — In Qzp
_ _1\2
Consequently, the average occupation factors +no(2x1y 1)[(3’ D" Qan M p
Ki(x,y;z,m) for discotics with soft chains are InQ
— 1b
+(2y=1)Qupy |, (16)
1b
fry _ "
Ki(xy;zm)=Ki(x,y) +zm, 13 WwhereQ;=1+(n,/ny)M; providedz=8 andM, is defined

in Eq. (15), andvs=n¢/ng andv,=n,(x?>+zm)/n, are the
o volume concentrations of the solvent and solute, respec-
whereK;(x,y) are the “old” factors for a system of bare tively.
hard disks developed if¥] and the superscrigt stands for
“flexible.” The particular form of the additional termm s

a consequence of the lack of any correlations between the \e assume that each rigid chain is coplanar with the core
chains cells, i.e., every lattice site can be occupied by evergnd forms a rodlike extension of the relevant hard-core side
cell of the soft side chairvirtual solven}. The chain cells  row of cells[cf. Fig. 2b)]. The particular position of the side
can randomly stick out of thXY slice of the segment they chain in the molecule is of no importance for the final result
are attached to, so given the statistical identity of X due to the phase symmettgf. [7]).
slices, they can in general block any possible site within any Clearly, the ordering of stiff-chain discotics at high con-
given slice. centrations will be more difficult than in the case of bare
With the aid of Egs.(2) and (8)—(13), the combinatoric disks. From simple geometric considerations of the solution
part of the partition function becomes in the close packing limit it becomes obvious that the solute
concentration in the limiv 4y rapidly decreases witm as

17

2. Rigid, rodlike chains

Y, , o vyaw=[X2+ (2= 2)m][ (x*+2m)(x*+m)] ",
—__ X Y 1 + X zm
Zeoms ny! 11;[1 o (Mo~ zm)] i.e., fromuvygw=1 for bare hard cores to about 0.8 for
=1 or 0.65 form=2, for illustrative values ok used in the
calculations below. The concentration can increase only at
the expense of orientational order of the system. Either the
system will tend to a situation in which particles are per-
fectly orientationally and translationally inplane ordered but
then, due to side chains, their centers of mass are separated
substantially, at least byx+m, and the system density is
low, or the system tends to the higher-density situation in
which hard cores are as close as possible, but this would
require some orientational disorder in the system to relieve
steric constraints of the side chains preventing centers of
mass from approaching each other more closely. These kinds
of steric constraints are accommodated by our model. Once
the discotic particle is tilted away from perfect order, the
core disks and side chains become segmented on the lattice.
Since the number and persistence of segméiisir size
depend on the degree of disorder, denser packing becomes
) . . . oo increasingly possible initially as the Flory disorder indices
providedz=8 andy} andy!, are the disorder indices of the j,crease.
j molecule. Equatior{15) closely resembles the expression |n order to evaluate the combinatoric part of the partition
for Z.omp in [7], the only differences being the presence offunction we begin with the limiting case of perfectly ordered

% F—;x/y"x+x/yiy—2)<ij+y"y—1>|:—<y"x—x><yiy—x>
1 1c

14

% F,(X,yixﬂ,in,z)(ij,1>(in,1>|: 7(y£(71)(y{(71)}
2b 2a

where
Fi:n0+jMi, (15)

M;= —(x2+zm)+Kif(X-zva)'

the zm “corrective” factor. Thus the procedures §7] can

be applied in order to rendef.,,, iINto a more tractable
form and the steric partition function for discotic moleculescells are statistically identical to the latter afad. Fig. 5 and
with soft side chains becomes

discotic molecules. Since in this case the side chains are the
ideal extensions of the core side row cells, the side chain

the Appendix
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1 b where F;=ny+jM;, and M;=— (x>+zm) +K°'(x,y;z,m)
providedz=28, or, applying again the usual simplifying pro-
cedure,

[B]
T
2b§ [ [ 2¢_| —
[R] [ P ] %CI_ —INZgomp=2Nk(y — 1) + ngIn(vg) + Nyln———
[ [ " ] V" 22111 X2+zm
le | 1c] | 2b’
I 2 2a
120017 oy 1Qaa'y Mo
1’
|| 1
[ ]5::=Pc(bl,b1’ or 1a) ] +n0(y X)ZQlc M. :

FIG. 5. Implemented segregation @) “first” u=1 and(b) n Qyp
“other” w=2 segment cells into statistically different kinds +no(2x/y—1)| (y—1)° Q2b Moo
ua, ub, ub’, anduc. Cells of the side chain adjacent to the hard

core are emphasized by thick lines and can bemf 1b’, or la n Qip In Qzp
type; cf. the text. +(2y— 1)Q1b My, mQyp My !
=" (18 @)
This leads to average occupation factors given(dy the  \yith the Q's andM s defined byk°"s via Eqs(16) and(20),
Appendiy respectively.
or Now let us introduce some disorder to the system. The
K9a(x.y;:z,m) =Kl (x,y;z,m), core disks and side chains become segmented on the lattice.
o o o Each break in the rigid chain results in generating a new
KIp(X,Y;2,m) =Kp(X,y) +3.25m—0.25¢/y + 0.25, segment beginning with aattype cell[1] (cf. Figs. 2 and R

The higher the molecule declination, the more segments and
(19) 1a cells will be generated amormgn chain cells. As a con-

sequence of the chain stiffness and collinearity of chains

with core edges, the fraction ofalcells generated by disor-

der is proportional to the core disorder indgxand is given

by a=(y—1)/(x—1). Thus, Eq(11) becomes

2606YiZm)=Kyo(X,y) +2,
KL (X,Y;Z,m)=Ka(X,y) +4m—2x/y,

o6(X,Y;2,m) =Kop(X,y)+2.5m—0.5x/y + 0.25,
where the superscriptr is introduced to distinguish this par- Py =piamy~ D/ D gmxe e, (22)
ticular case. In developing E¢L9) we explicitly setz=8 to
benefit from the system and molecule symmetry, i.e.,
interchangeability of th&X andY axes. The formulas in Eq.
(19) form a good quantitative approximation of the exact
occupation factors as long as<n=x; for very short side f
chains and for the chain length exceeding the hard-core sizﬁq
the approximation is less adequate and should be used wi
care for qualitative extrapolation only. Fortunately, illustra-
tive calculations show below that the orientational dlsorderIStlcalI Independence betwe(y slices. A similar problem
for highly disordered rods has been discussed by Flory and
of the nematic phase coexisting with the isotropic phase is

other author$2,37].
usua.lly. relatively s.ubs'Fa.ntl_aI so the use.of EL0) outside Since besides theattype cells the rest of the chain seg-
the limit 0O<m=x is minimized and of minor consequence

. ment cells remain statistically in the state of perfect order,
for the conclusions drawn here. . )
: . . - . we assume that each occupation factor can be written as a
The resulting combinatoric part of the partition function

for the system in the state of perfect order is weighted average of the appropriat¢s andK"s

th(?:or the state of perfect ordgr=1, Eq.(22) reduces to Eq.
(19). In the state of complete disordey=x, the isotropic
phase the number of segments is maximum, i.e., each cell is
the 1a type and Eq(22) becomes identical to Eq12) of
e soft chains. Although the latter result might seem some-
Wwhat artificial, it is a direct consequence of the assumed sta-

(1- i 2 _ _—]_ _
Zeomb™ H { yX yY [nO_](X2+Zm)](X zm K{(x,y;8,m)={1— y—l}Kior(X,y;S,m)
X—
% F*(x/yidxlyjyﬂ)(y%y‘f l)Ff(ka)(ijx} y—1 .
1 +13°1 Ki(x,y;z,m). (23

—(lyk+xtyl = 2)(yk - Dyl — 1) —zme — (yh — Dyl - 1)
X sz F2a }’

(20 or, with the use of Eq&L3) and(19), explicitly
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r(x ?z m) =K yp(X Y)+[(x—?)(3.25m+0.25</y The energy of short-range attractive interactions between
1A 1A the system components is usually written in the form of the
+0.25+(y—1)zm]/(x—1), van Laar heat of mixing1,7,37
R — — _ AE
Kop(X,Y;2,m) =Kyp(X,y) +[(X—y)(2.5m—0.5/y+ 0.2 R_T=Xsdnsvd+XscnsUc+XdcncUd' (26)

+ __ —
(y=Dzml/(x=1), (24)  whereR andT are the gas constant and temperature, respec-
P — _ — — — tively, andv. andvy are the volume concentrations of the
Kie(X.yizm)=Ka(xy) +[(x=y)2+(y=1)zml/(X=1),  gide chains and the hard cores, respectively,

Kha(X,Y;2,M) =Koa(X,y) +[(X—y)(4m—2x/y) n,zm 7m/x2 N2 1
o UC: :UX ,
+(y—1)zmli(x—1), To  “1+zmix?

vg= =v .
No “1+zm/x2

(27)

where the superscript distinguishes the case. Since Egs. B . e .
(16) and (21) differ only in two terms, averaging over the RTx; can be identified with the energy change per cell on
transferring a solute molecule from the pure solute to the

two sets of cells is straightforward and the steric partition.

function for z— 8 becomes infinitely diluted solution.
In the case when the hard core and side chain interactions

with the solvent are very similar, EGR6) reduces to

—INZoy =20, (y— 1)+ nglnv + N, In———
comb XY ) stils X +7m AE Z2myx2

—— = xNo(1-v,)vyF xgho—————=v2, (28
o In Qza o |n Qlc RT X 0( UX)UX XdC 0(1+Z|’TVX2)20X ( )
+n0(y_1)2Q2aM—+nO(y_X)2Qlc M _
2a lc with [37]

2x—y[ — 5 1IN Qap 2

— - zm/'x
Mo y [(y D™z My X~ Xsc + Xsd . (29

1+zm/x? 1+zm/x?
IN Q| [X=y  INQy

The contribution from interactions between side chains and
hard coresyg. is, in general, nonzero. For example, it is
commonly thought that the side chains in rodlike and disk-
—|zm, (25) like mesogens act, more of less, as a virtual solvent. One
may then assumg,. to be comparable toq if a need
arises. Note, however, that since the weighting factor
) (mzx%)(1+zm/x?) "2 in the last term of Eq(29) is rather
(20), respecuvelik . small (e.g., we found it to be less than 0.25 for a number of
Equation (25 reduces to Eq(21) in the perfect order ically relevant numerical examples studied hetee
limit, i.e., for y=1. Fory=x it becomes identical to Eq. contribution may become significant only at very high con-
(16), i.e., with the case of discotic molecules with flexible centrations, i.e., close to the neat System’ which is beyond
chains in the total disorder state. This result is inherent to thg’]e scope of the present paper. These interactions will then

Flory lattice method36,37). Due to theXY “slicing” ofthe  pe discarded in what follows and the formaj, is the same
model dicotics, the soft and the strongly disordered stiffas in[7], with y given now by Eq(29):

chains should be indistinguishable. However, we expect the
order of the nematic phase to be relatively high, so this small Zini=exp(—AE/RT)=exp —Ov,vy). (30
inconsistency of the Flory approach should not affect our
results dramatically. ®=yny may be generally thought of as a free energy of
interaction[1,36,51. On the other hand, for the convenience
B. Solute-solvent interactionsZ;,, of results presentation @ is alternatively frequently inter-

. . . ) . preted as the reciprocal of the normaliz&timensionless
We examine also weak interactions between side Cha'nt%mperature[3 5,46,52. Combining Eqs.(30) and (7), we

and other parts of the system. For the purpose we assumg. finally an expression for the Gibbs potentiaf. E
that the intermolecular forces are sufficiently weak not t%?s)]' y P P taf. Eq.

disturb seriously the assumed randomness for specified d
gree of orientation, i.e., these interactions are spatially uni-
form. In assuming so, we neglect the effect of the component
stiffness, in particular of the side chaifw, on soft interac- Since in our model the orientation of the discotic mol-
tions in the system. The same kind of interactions have alecule remains defined by disorder indiggsyy of the hard
ready been considered between hard digksind solvents) core,Z,, has the same form as EO) in [7],

in [7] and in the Flory treatment of model solutions of rod- o

like particles with[37] and without side chaing36]. —In Zy,=—2n,In(y—1). (31

2y =1)Quo | +| i =7 Qv

with Q's andM's defined as usual b¢"s[cf. Egs.(16) and

C. Orientational factor Z,,,
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As before,Z,, is related to?by the simplifying assumption 0.00 a b 0.00
that the orientational distribution function of the disk sym- ’
metry axisf() is uniform over a solid angle out to some 9% 1r 008
angle between the disk axis and director and zero beyonc o.10| 4 Ho.10
[45,7]. The presence of the side chains enters via equilibrium® onsh 1 L dos
values ofy, which are strongly dependent @}, mp- 020 050
20F [ 4 F Ho.
D. Phase equilibria conditions 0.00 0.00
Phase equilibrium between two phagesindB requires 005N N+ o1 r \ 1908
equality of chemical potentials in both phases for all compo- o.10} 4 } Ho.10
nents: © I+N
- 0.15 - — —0.15
(i = m))A= (i = u))®, (3  owp o 1t 020
. X | | | | | | | 0.25
wherei =s or x denotes solvent or solute molecules, respec- 00 02z 04 " 06 08 1.0 08 S°~9 1.0

tively. By definition, the chemical potentials are

where¢=A or B, andT andV denote the absolute ttmpera- i, ig. 7. The critical concentration for the formation of the
ture and sample volume, respectively. The subs@sig- |\ piphasey* varies nearly linearly with the chain length,

nifies the o_rienta_tional equilibrium Of. sqlute molecules if aincreasing for the soft chains and decreasing for the stiff
phase is orientationally order¢dematig, i.e., ones. The rate of this change increases with decreasing hard-
core sizg[cf. Fig. 7(a)]. The shift inv} is accompanied by a
change in the order parameter of the coexisting nematic
phasdsee Fig. b)]. The S dependence on the chain length

is more pronounced for the larger hard core. A monotonic
reduction of the nematic order by the soft chains seems to
saturate on increasing the chain length. The addition of the
Results for bare disks in solution will serve as a referenceshortest rigid chains to hard-core disks leads to a decrease of

FIG. 6. (a) phase diagramu(,®) and (b) S vs ® for two
reference solutions of bare hard-core discoticxef7 and 10, re-
spectively.

dlnz?
an;

IG?
an;

p—pd
RT

. (33
T,Vieq

)T,Veq

d%ln Z2%
Jy?

dIn Z¢_
ay

(34)

[ll. ILLUSTRATIVE CALCULATIONS

The N-lI coexistence range on the dimensionless

concentration-inverse temperature, (®) phase diagrams a

obtained in[7] has, generally speaking, a bottlelike shape, 0.4 |

i.e., at high temperatures it is narrow in concentration

(“bottleneck”) and then, at sufficiently low temperatures, 0.3 AN

—— — flexible chains
------ — stiff chains

widens significantly and rapidly. For small disk axial ratios
3.015<x=9.1 only the coexistence of the isotropic and nem-
atic phases is found. However, fg=9.1 an additional re-
entrant nematic behavior just below the bottleneck shows up,
i.e., in some particular range of temperatures and concentra-
tions either of the two pairs of nematic-isotropic or nematic-
nematic (N-N’) phases coexidcf. Figs. 10 and 11 in7].

] ] | |
Numerical solutions of Eq932) and (34) are therefore %00 oz o4 06 08 10
performed for two illustrative hard-core sizes representative b zm/x
of these two different phase behavior regimes of bare disks, 0.9 T T T T

i.e., for x=7 and 10, respectivelycf. Fig. 6. Since the
number of side chains=8 is fixed in the model, the phase
diagram is studied as a function of stiffness and a succes-
sively increasing length of side chains. Calculations yield
also the equilibrium Flory disorder index of the coexisting

nematic phasg. For the reader’s convenience, the conven-

tion of [7] is also adopted in the figures below anpdalues
are converted to the nematic order param&er

0.6 ] ] | |

0.0 0.2 0.4 0.6

IV. RESULTS AND DISCUSSION zm/x*

First, we investigqte s_teriC effects arisin.g _Solel_y from  FIG. 7. Critical values ofa) v, and(b) S for the formation of
presence of side chains, i.e., the athermal li@it0 (i.e.,  the nematic phase in the athermal limit as a function of the chain
T=c). Results of calculations in the limit are summarizednormalized volumem/x?. Straight lines in(@) are linear fits.
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TABLE I. Critical values of parameters for the formation of the

- ) L - . 0.0
nematic phase in the athermal limit for different chain lengths.

Soft chains Stiff chains 02
m Xer Xer vy atx=2.05 ©
0.4
0 3.015 3.015 :
1 4.00 2.13 0.6 b TS
2 4.42 <1 0.604 —
3 4.72 <1 0.429
4 4.97 <1 0.333 0.0
5 5.18 <1 0.271 |
10 5.94 0.2
© S
04l

the order, but on their elongati@dbottoms out and begins to
increaseg cf. Fig. 7(b)]. The former is analogous to the de- 06
crease in the order parameter observed on increasinghe . . ' ' ' ' . '

) 00 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
bare disks systencf. [7]. B, U,
Some comment is necessary when comparing the results
in Fig. 7 for very short chains, i.em=1. The lattice theory FIG. 8. Soft chain discotics: two alternative representations of

does not differentiate substantially between such short chairf§e phase diagram for different hard cores @) x=7 and b,
and the sole but subtle difference is how and where they arg’) =10 and different length of the side cham v, andv are,
attached to the hard cotef. Sec. Il A). This leads to similar respectively, the concentrations of discotic particles and their hard
values ofS, but substantially different? . cores only.

Results in Fig. 7 clearly indicate that the chain’s presence i
influences the minimurtor critical) size of the hard core,, ~ depends only on the product of the chain number and length
necessary for the formation of the nematic phase. CalculategM=28m [cf. Eq.(16)], it is a function of neither where nor
minimum values ok for different chains are given in Table NOw the chains are attached to the hard defeFig. 2a)].
I. The inclusion of the soft chains necessitates an increase dine flexible chains thus play the role of an additional **vir-
the hard-core size and this effect seems to saturate, at ftual” sollvent.that, being isotropic, addltlona_lly separates th_e
=6 on increasingn. Having in mind the limitations of the mterac_:tlng disks cores. To demonst_rate this, the phase dia-
results in Eq.(19), we note, however, that phase diagramsgram is replotted in theu(y,®) coordinate system, i.e., the
for the rigid chains indicate the opposite effect. The criticalhard-core concentrationg is used rather than the solvent
hard-core size rapidly decreases below the model liyit

=2 on increasingn, roughly asm+x=const, i.e., form 00 a

=2 calculations give already. <2. x=1 corresponds to ' '

yet another interesting starlike or crosslike structure of the 01

particle. Some idea about the properties of such a system can o2l

be gained by assuming=2. As an exampley} vs m for o3l

x=2.05 andm=2 are also given in Table I. The variation is o

dramatic. A proper study of solutions of such starlike par- 04

ticles requires, however, an appropriate and substantial 05|

modification of the theory, e.g., elimination of the hard core o6 l=—m

altogether and reduction afto 4, which is beyond the scope i ~.

of this paper. In addition, typical results of the phase equi- O o o o8 o

libria calculations for different chains are compared with b S

those for bare disks in Figs. 8—11. 0.0 ——T——< , ,
For soft chains(cf. Figs. 8 and § independent of the R TN i

. . . . . ‘ L ~

hard-core size, the increasing chain length shifts the phase Lo S \

diagrams to higher concentrations, at the same time narrow- i TN

ing and extending towards lower temperatures the bottleneck 0.3} Y .

section of the diagrams. The order of the nematic phase, °© ol \\' RERE i

coexisting with the isotropic phase within the bottleneck sec- S

tion of the phase diagram, becomes substantially suppressed oo r Tl

and its temperature dependence weaker on increasing the 0.6 —_—__;EE; N~

chain length. However, once the biphasic range broadening ol I™® oy

is reachedS begins to rapidly rise towards unity & in- 06 07 Og 0.8 1.0

creases further and the effect quickly saturates on increasing

m (cf. Figs. 8 and @ FIG. 9. Soft chain discoticsS vs © for the hard core ofa) x

Since in the case of soft chains the Gibbs free energy=7 and(b) x=10 and different length of the side chaim
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FIG. 10. Stiff chain discotics:u,,®) phase diagram for the
hard core ofl@) x=7 and(b) x=10 and different length of the side

chainm.

concentratioricf. Eq. (27) and Figs. 8(8 and 8(B)]. The
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0.00

absence in calculations of chain—hard-core interactions, i.e.,
x4c=0 in Eqg. (30). Trial calculations not shown here for
several values of. indicate that inclusion of these interac-
tions in the model indeed produces modifications of the
phase diagram in the expected direction. Some of the similar
disordering effects of the soft chains on a model solution of
rodlike molecules were observed and discussed by Ballauff
[37].

This virtual solvent effect has a consequence for the re-
entrant behavior observed in the system. On the one hand,
calculations forx=10 show that the introduction ah=1
chains is already sufficient for the suppression of the nematic
reentrant feature present for bare disks witn9.1 [cf. Figs.

8(b) and 9b)]. In accord with numerical results in the ather-
mal limit (cf. Table I, trial phase diagram calculations not
presented here clearly indicate that the nematic reentrant
phenomenon can be preserved on increasing the side chain
length if the hard-core anisotropy is enlarged adequately. On
the other hand, orm approachingx the phase diagram
changes qualitatively in that now we have triple and critical
points on the low-concentration side of the diagram, corre-
sponding to additional coexistence region between two iso-
tropic phase§cf. Fig. 8b) for m=5]. Such a phenomenon is
not unusual for discoticE53,54] and has been seen already
in model lattice calculations for a solution of main-chain
polymer liquid crystal§55] and mixtures of cigarlike nem-
atogens with flexible chair{$6,57]. Relative interactions be-
come, on increasing), strong enough to cause liquidard-
core -liquid (solven) demixing in the isotropic phagd&8—

60].

shift of the bottleneck towards the higher concentrations on ]Although soft chains act as a virtual solverigid chains

increasingm notably disappears, but the narrowing and thejncrease the discoticity of the particles, i.e., the effects of the
offset temperature of the bottleneck range dependence on yigiq chains closely resemble those arising from increasing

is still pronounced. The latter can in turn be explained by thgnhe axial ratio of bare disk&f. [7]). Typical results for stiff

FIG. 11. Stiff chain discoticsS vs O for the hard core ofa)
x=7 and(b) x=10 and different length of the side chaim

a
0.0 r

02
0.3
0.4
05

—_— - m=0

0.6 [ = = m=1

= mem3

- = - m=5

0.6 0.7 0.8 0.9 1.0

0.0 — T —~—~T—— T
01 1 N \—
ozl 4 " —- o~

03} N e .

0.4} . e

05} Tl B
—_— — m=0 '~

0.6 ——-m=t N -
T s

_.__m-1P

L | L | L |
0.6 0.7 0.8 0.9 1.0
S

0.7

chains are shown in Figs. 10 and 11. On increasing the chain
length thel-N biphasic range becomes narrower and pro-
gressively shifted towards lower concentrations while the
bottleneck section extends to lower temperatures. The former
effect is opposite to what is observed for soft chains and
reflects the enhanced discoticity of particles by the presence
of stiff chains, The latter effect is analogous to that of soft
chains and results from the solvent-solute interaction model
adopted in the calculations, the same for both kinds of
chains.

Increased discoticity results also in stabilizing the reen-
trant nematic behaviofcf. Fig. 1Qb)]. The concentration
range of theN-N’ coexistence slightly decreases while the
temperature range increases pronouncedly on increasing
The enhanced discoticity is also manifested in éevs S
behavior. In addition to the effects associated with the initial
introduction of side chains, i.e., fan=1, the presence of
stiff chains leads to an increased order of the nematic phase.
While the order parameter of the highly ordered nematic
phaseN’ is already close to unity and thus is essentially
insensitive to the presence of stiff chairlsof the less or-
dered nematic phase shows an isothermal increase as a func-
tion of m [cf. Fig. 1(b)].

Both principal side chain effects observed in this study,
i.e., the virtual solvent effect of the soft chains and the en-
hanced discoticity by the stiff chains, are clearly present in
thermotropic systems. Side chains in these systems are nec-
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essary for both stabilizing the liquid crystallinity and provid- to the opposite regime when the latter prevail. As a result of
ing the virtual solvent. It is very well documented in the these dramatic changes, the phase diagram bulges on the
literature that portions of aliphatic chains close to the rodlikehigh-concentration side. The same density changes of the
or disklike core are rather stiff, with increasing flexibility Nématic phase are of course also present at the low-
along the chairf39,40. This leads to a substantially larger concentration boundary. However, since the volume fraction
effective hard-core part of the moleculgtabilizing effecy, of the gmsotropl_c _phase is then_ infinitely small, they show up
with the remaining flexible part of the side chain playing the3S & shght Eut visible suppression of the critical volume con-
role of a solvent preventing crystallization of the system. Ccentrationv; (cf. Ref.[7] and Figs. 6, 8, and 30

Recent experiments with large sheetlike molecules such The universality of this behavior can be easily understood
as palladium organyls ang-diketinate compounds confirm if one recalls the Boltzmqnn exponential of intermolecular
the importance of the side chains in their phase behavioghergylct. Eq.(30)] and thinks of® rather as a free energy
[32]. These molecules have a flat, rigid, and more or les§f interaction rather than the inverse of normalized tempera-
rectangular core and possess a large number of chains, &We- In the absence of attractive interactions the density of
tached to four corners in a very similar way to our modelthe _S'Fable nematic solutlon_ls relatively low and requires a
molecules. They have lyotropic properties in mixtures withSufficiently large shape anisotropy of the mesogenic par-
apolar organic solvents. Some of the compounds also hai€les, i.e., sufficient elongation of rodlike systerfts or
two nematic phases in addition to the columnar one and thiatness of disklike systenig]. Various Flory method calcu-
existence of these phases is strictly connected with the sid@tions show that if the anisotropy is below the critical value,
chain’s length and solvent type. The two phases differ withleven the maximum density of the system€ 1) is insuffi-
respect to the order parameter. The highly ordered nematig€nt fpr the formation of the nematic ph_ase in the absence of
phase appears at lower temperatures and the nematic-nemai¢ractive forces. However, the nematic phase usually ap-
coexistence region is also observed. These properties canrfars in such a system if attractive forces are allowed to play
be addressed at the moment within the framework of théheir role, e.g., by lowering the temperatuie. Fig. 4 of
present theory. One should consider not only solute-solverftef.[5] and Ref[3]), which is characteristic of thermotropic
isotropic interactions, chain length, and stiffness, but alsdiquid crystallinity [69,70. _ .
anisotropic interactions between the solute molecules. For For sufficient shape anisotropy, the nematic phase is
rods these kind of interactions have been considered by FIorer?d even in the absence of attractive forces. The onset of
and Ronca and followers some time af®5,6,61. Our e biphasic range occurs at ever higher solute concentrations
theory on the same problem in solutions of disks is well@S the shape anisotropy decreases. The transition of the
advanced62] and on its completion we plan to return to Whole system to a neat anisotropic state requires then a rela-
these problems in the future. tively small further increase of the solute concentration, i.e.,

Finally, some comment is needed on the characteristi€he biphasic range is narrotef. Fig. 6. A dramatic broad-
bottleneck shape of the coexistence range on the phase di@ing of the phase diagram signals that attractive forces are
grams. This particular shape is charactristic of many liotropidecoming important. The attractive forces bring mesogen
rigid mesogens with a sufficiently high shape anisotropy ofnolecules much closer to each other, thus augmenting sub-
molecules[63—66. It appears to be a universal feature of Stantially the minimum density of the stable anisotropic
such systems and is also obtainable theoretically independePfase. The nematic phase is formed more easily, so the first
of the mesogen molecular shafmtisks or rods[7,46], poly- ~ Signs of the nematic phase occur at Io_wer concentrations. It
dispersity[5,52,67, partial flexibility [36], the character of requires, however, far more mesogenic solute molecules to
the intermolecular force®rientation dependent or isotropic  SuStain the continuous increase of volume fraction of the
[1,5,7,61,63 and the absence or presence of side chains an@isotropic phase in the system. Consequently, the biphasic
their stiffness37,38 and is uninfluenced by external fields "ange extends to much higher concentrations. The shape of
[51,68. the phase diagram for large values@becomes similar to a

Note additionally that the shape of the phase diagram idypical demixing phase diagram of a binary syster, e.g.,
asymmetric. The low-concentration boundary of the coexistRefs.[56-58). .
ence range} (®) is more or less linear i®. It is defined Since the densities of typical mesogen compounds are
by the first appearance of the anisotropic phase in the syste¥§Y Similar, one may expect that attractive forces between
on increasing the solute volume fraction from the infinite différent parts of the systefsolvent, solute, or different sub-
dilution limit. The density of the isotropic phase saturatesS€dments of the formprare of the same magnitude. Not
and the just formed anisotropic pha®emati¢ has the low- surprisingly, the bottleneck transition feature shows up on
est possible density at this point. A further increase of théh@ny phase diagrams. There are, of course, some subtle dif-
solute concentration does not produce any variation of théerences between the phase diagrams in this region, which
densities(for monodisperse mesogensntil the whole sys- équire separate attention. Such a study is under way and the
tem becomes nematic at the upper concentration limit of th&esults will be presented elsewhere.
coexistence range. Since the last bit of the isotropic phase
disappears at this point, the upper concentration boundary ACKNOWLEDGMENTS
line v* (®) can be identified with the temperature depen- This work was supported under State Committee for Sci-
dence of the minimunicritical) density of the anisotropic entific Research, PolantKBN), Grant No. 2P03B221008
phase. The latter is a function of steric and attractive interand EC Human Capital and Mobility Network Project No.
molecular forces and varies quite dramatically on going fromERBCIPDCT 940607. Special appreciation goes to Dr. K.
the regime of dominance of steric over attractive interactiong&arle for his many valuable suggestions.
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FIG. 13. Blocking ability of the terminal segment of a train with
two stiff side chains of lengtm attached at position 1. The block-
FIG. 12. Implemented labeling of hard-core corners for calcu-ing train of type Il is to the right, the placed train is to the left. Solid

lating contributions t&Z.,m, from the side chains. rectangles denote segments already positioned in the Istiesotes
the position of a chain cell with respect to cornexfyy andx/yy
APPENDIX define the size of the blocking big rectangle; cf. the text.

The general methodology adopted here is similar to thagy the type-I traingcf. [7]). Each particular site is discussed
developed in[7] and we will when possible benefit from i the following.

results derived therg’]. We consider a solution of stiff chain
discotics in a state of perfect or nearly perfect order, by
which we understand that the allowed disorder of the discot-
ics is such thax/y=x. Furthermore, we assume that the A Site for the Ia cell can be occupied by any cell of the
chains are not longer than the core edyecx; thus the chains, consistent with the result for soft side ch4sfsEq.
chains’ presence causes only some perturbation to the pha(sjeg)]-
equilibria behavior of sole hard-core disks in solution.

Let the corner cells of the hard core the chains are at- 2. Factor K3;

tached to be labeled from 1 to 4, as shown in Fig. 12. A A sjte for the 2 cell can already be occupied by trains
disordered discotic core on the lattice is segmented into cong;ith the side chains in several different ways and the number
nected trains of segmentsf. Fig. 4 in[7]). It follows from 4 \yays side chains can do this is summarized in Table II.
inspection of Fig. 2 that the side chains are at most attached |1 tgllows from Table Il that the sole difference between

to three such trains. The blocking ability of the remainingtyPe-I and type-II blocking trains is in the blocking ability of
trains is the same as in the case of bare disks and the relevant . —

occupation factors developed|ifi] will be applicable also in chains attached "?lt position 4, i.e., si TOE= X and x/ywx.,

the present casgef. Egs. (17)—(20) in [7]]. Thus our task for the type-Il trains access of the chains to the dte is

reduces only to an estimate of the additional hinderance tBIOCked by. the segment t_hey are attached o.

placing cells arising from trains with side chains Combining the results in Table Il and contributions from
We consider the blocking ability of trains from already the 2y—1—3 chainless trains, one gets the occupational fac-

dissolved] discotic molecules. In the spirit df7], it is as-  tor of the 2a site by type-I blocking trains,

sumed that the disorder index of all these molecules has its

ensemble average valug.+yy=2y. Thus each of these
molecules is segmented into either type-l or type-Il trains, +4m—2x/? (A1)
depending on the particular orientation of a given molecule ’

(cf. Fig. 4in[7]). Due to the system symmetry, both types of 3ng py type-I trains,

trains should be equally probable. As we argued7h the

final result for a given occupation factor is the arithmetic il — 2 o (2 v

mean of results for both types of trains. Since the system Nza=(y = D23y —1) +4m—1=(y")(2x/y 1)+ 4m
should be in equilibrium, we assume that the disorder index —2xly. (A2)
of j+1 molecule is also close to the system mean value

Without limiting the generality of considerations, we assumeThe arithmetic average of results in Eq#1) and (A2)
that the considerepH+ 1 discotic is represented on the lattice yields

1. Factor K,

Nb,=(2y—2)(2x/y—1)+4m—1=(2y—1)(2x/y—1)

TABLE Il. Number of ways trains with side chains can block a site for thec2Il.

Side chains attached at positi¢ef. Fig. 12 Type of
1 2 3 4 blocking train
2x/y+m—2 2m+1 2x/y+m-2 2m+1 l

2x/y+m—2 2m+1 2x/y+m—2 0 n
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TABLE lll. Number of ways type-Il trains with side chains can block the dite.

m—1<0 m—1=0
Chains Small Big Small Big
1 x/y+m m+1 m+ (x/y—1)
2 x/y+m (m=1)+xly
3 x/y+m 0 x/y+m m—|
4 x/y+m Xy+m
N Xy+4m (2y—1)x/y+3m Xy—x/y+4m—1+1 (2y—1)x/y+4m—3l

_ 1 1 _ . segments are appropriately taken care of in the respeldtive
K3a(x,y,2.m) = 5 (Nga+N3o) = 5 (2x/y—1)(y?+2y=1) factors.
Occupancies are averaged first for-1=0 overl from O
+4m—2x/y. (A3) to m by again setting =m/2 and next we arithmetically
average over the rectangle sizes. For | <0 we obtain

3. Factor K9,

_ _ Ny =xXy+3.5m (A7)
The side row b and 1b’ cells are placed interchangeably
(cf. [7]) Let us now consider a site within a distarickom  gnd form=|
the segment’s & corner. For type-Il blocking trains we need
to consider four separate cases due to different relations be- Nm>|=XV— 0.5x/?+3m+0.5 (A8)

tweenl and the chain lengthnf—1<<0 or m—1=0) and the

segment sizex(yy>1 or x/yy<lI) see(Fig. 13. Note that .+ Tapje 1v). Thus, the final contribution to the occupation

under the assumptiopy+yy=2y, if x/yy>1 thenx/yx<I' " factor from the “average” molecule built of type-I trains is
and the vice versa. The segments wiity,>| are further

referred to as “big,” and those witk/yy<<| as “small.” An 1 - o
example of a big blocking segment is shown in Fig. 13. N'lbzz(NLK,JrN:pl):xy—o.25</y+0.25+3.2511
Occupancies for chains attached at different positions and the (A9)
occupation factorsN arising from type-ll blocking trains
(chainless includedfor the each case are summarized in
Table Il

Note that form—1<0 occupancies areindependent, as 1
one should expect. We_ average occupanmemfprl =0 .and Kip(X,y,8m)= §(N|1b+ N'l'b) =[3y%/4+ (2y—1)/4]xly
| from O to m by settingl =m/2. Next, we arithmetically
average over the rectangle size, i.e., we take the average of
theN in small and big columns in Table Ill. Fon—1<0 we
get from Table llI

and using Eq(A6) one finally gets

+3.25m—0.25¢/y +0.25 (A10)

4. Factor K3y

—T1/992 il v
Nm<i =[1/2y"+1/22y=1)]x/y+3.5m (A4) Since for type-ll trains the blocking ability of their sub-

sequent segments is independent of the presence of the pre-
ceding segments in the train being placed, the contribution
from type-Il trains to the occupancy of thé Bite will be the
same as for thel sites[cf. the case of bare disks, E@\15)

in [7]]. Thus, we need to estimate in this case the contribu-

Since results in Eqs(A4) and (A5) do not differ signifi-  tions from type-I trains only.
cantly, we expect that the occupation factor far diteskK

should be approximated with a satisfactory accuracy by th%l
arithmetic mean of the two: °

and form—1=0

Ny =[1/2y2+ 1/2(2y — 1) |x/y + 3m—1/2(x/y — 1).
(A5)

TABLE IV. Number of ways type-I trains with side chains can
ck the b site.

m—I1<0 m—1=0

1 - — _
N'l'bzz(Nm<|+Nm>|)=1/2(y2+2y—1)(x/y)+3_25m Chains  Small Big Small Big
v 1 x/y+m m+1 m+(x/y—1)
—0.25¢/y+0.25. (AB) 2 Xiy+m (m=1)+x/y
In the case of type-l blocking trains, corrections intro- 3 xly+ m_ Xy xly+m B Xy+m—|
duced by the presence of chains are similar to those of 4 x/y+m x'y+m
type-Il trains, except for chains attached at cornefcB N Xy+4m xy+3m xy-x/y+4m—I+1 xy+4m-3l|

Table 1V). Again, contributions from the remaining chainless
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TABLE V. Number of ways type-| trains with side chains can 0.00
block the 2 site.
0.05
Side chains attached at positief. Fig. 12
1 2 3 4 0.10
Case Small Big Both Small Big Both @
0.15
m—1<0 xly+m  xy+m xy+m Xy 0 .
m—1=0 xy-| 1 m—l  x/y+m xy+m-1 O 0.20

The presence in thEY slice of the just placed preceding
segment creates severe restrictions on the blocking ability of _ o
the type-I train, i.e., access to any considered site for the 2  FIG. 14. Effect of theh correction factor appearing in EGA13)
cell by cells of any other segment but the first one in the®" the ¢x.0) phase diagram for=10. The phase diagram for the
blocking train is forbidden. In particular, there will not be Pure hard-core system &t=10 is also shown; cf. the text.
any contribution from chains attached to corner 4 since it
belongs to the last segment in the train. The number of ways
type-I trains can block a given site for the the 2b cell will conclusions from numerical results of the present work, we
again depend on the relative magnitudd afith respect to  decided to find some reasonable approximate mean value of
m and on the size of the blocking segmeetther big or the parameter, which would allow the main features of the
smal). Following the procedure of Sec. I, we get results System behavior on varying to be preserved. Note, for
summarized in Table V. example, that the value &f increases from 2, characteristic

Repeating the same procedure as in the previous subsd@r the innermost cells, to 6 for the outermost cells. Since the
tions, i.e., by adding up relevant contributions and averagingiumber of equivalent celléand thus the statistical weight

over the segment size and oderl <m, we get increases with the distance from thea cell, one should
expect the average value bfto be greater than the arith-

Nb,=(y—1)x/y—0.75/y+1.75m+0.25. (A11)  metic mean of both extrema, i.e., 4. To get a more realistic
approximation of the mean we consider the segment middle
Since N3, =Ny, with the aid of Eq.(A6) the occupation cell i.e., the one at a positid/2y,x/2y] with respect tqua
factor becomes corner (cf. Fig. 5. Particular values ofp;, depend on
. 1 o . o Whetherm<x/2yor m>x/2y For m<x/2ywe have
50(x,y.8m) = 5 (Nay+ Nyp) =[y*/4+3(2y — 1)/4]x/y
_ P=1l p2=2, PaE=1 (A14)
—0.5¢/y+2.5m+0.25, (A12)

or and form>x/2y
5. Factor K7,

Blocking of sites destined fopc cells, u=1 or 2,
strongly depends on how the considered cell position in the
segment compares with the obstructing chain length. The
sites for more “outer”u.c cells can be blocked even by very  The average oh from Egs.(A14) and (A15) is 5. The
short chains, whereas the inner ones can only be blocked byalue enhances the contribution from very short chains
the longer. We note also that chains attached at corner 4 ¢ 2=m in particular, but should work better for chains with
any of the potentially obstructing trains do not participate inm approachingc. Nevertheless, we decided to use it in our
the blocking. One thus needs to consider only chains atilustrative calculations. This leads obviously to some uncer-
tached to the remaining three corners. Furthermore, contrtainty in the phase diagram behavior wnapproaching 0, as
butions from the chains are the same regardless of the traitlustrated in Fig. 14. Note that the phase diagram is essen-
type, i.e., | or Il, the chains are attached to. The mean occuially insensitive toh in the bottleneck part of the biphasic
pation factor foruc cellsK{{ can be written generally as  range. The main effect ¢f is then a shift of the broad part of

3 the phase diagram towards lower temperatures on increasing
or, — 1 — h from 5 to 6. The effect becomes quickly less pronounced

Koe(X,y,z,m)=3[(y*~3)+2y—4]+h, h:izl P on increasingn, thus the approximation gives more realistic

(A13)  results for longer chains. Of course, if the need arises, a
value ofh for any particular fixed chain length can be pre-
where the blocking contributions;) from chains attached to cisely estimated and used in E@\13). Substitution of the
the ith corner areexplicitly separated. As trial calculations mean valueh=5 into Eq.(A13) gives
show, the phase diagram turns out to be very sensitive to the
value theh parameter takes on. Nevertheless, in order to _ . _
simplify the final formulas and to facilitate drawing some KSe(x,y,z,m)=3[(y*=3)+2y—4]+5.  (Al6)

Pun=2, P2=2, P@E=2. (A15)
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