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Analytical approach for the Floquet theory of delay differential equations
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We present an analytical approach to deal with nonlinear delay differential equations close to instabilities of
time periodic reference states. To this end we start with approximately determining such reference states by
extending the Poincarkeindstedt and the Shohat expansions, which were originally developed for ordinary
differential equations. Then we systematically elaborate a linear stability analysis around a time periodic
reference state. This allows us to approximately calculate the Floquet eigenvalues and their corresponding
eigensolutions by using matrix valued continued fracti¢84.063-651X99)14005-4

PACS numbdps): 05.45—-a, 02.30.Ks

I. INTRODUCTION been recently obtained if8] by rigorously analyzing the
instability of a time independent reference state. The appli-
Over the last two decades considerable new interest in theation of the theory to a delay induced Hopf bifurcation has
theory of delay differential equations has led to various re-been confirmed by numerical as well as experimental studies.
markable result§l—4]. The reason is that the solution space \We note that a different method, which is based upon a mul-
for delay differential equations has to be considered as infitiple scaling analysis, has been recently demonstrated in
nite dimensional, although only a finite number of dynamicall18]- Here, however, it is our aim to generalize the approach
variables is involved5]. As a consequence, nonlinear delay ©f (3] by starting from'a time perl.qdlc reference state and by
differential equations reveal a broad class of instabilities@nalytically investigating its stability. _
leading from oscillatory to chaotic behavior. Apart from the ~ Our paper is organized as follows. In Sec. Il we introduce
period doubling route to chaos, quasiperiodic states, intermitWo methods for approximately determining a time periodic
tency, and |Ocking behavior have also been observed in déEference state. Sec.tlon 11l then develops its linear Stablllty
tailed numerical studief]. In particular, in the chaotic do- analysis. The resulting Floquet theory leads to a homoge-
main it has been suggested that the envelope to the KaplaR€0US vector valued recurrence relatlo_n dete_:rmmmg Fhe Flo-
Yorke dimension of a delay induced chaotic attractor isduet eigenvalues and its corresponding eigensolutions. In
proportional to the time delaj4,6—8. This fact offers the Sec.. IV we offer two solution methods for thls recurrence
possibility of generating high dimensional chaotic attractorsrelat[on that are based on matrix valued contmue_d fractions.
by simply increasing the time delay. _Sgctlon V completes the Floquet 'theory by studying the ad-
Delay differential equations have been successfully aploint problem. Eventually Se_:c. VI_|s d_evoted toa short sum-
plied to model numerous nonlinear systems where dynamicadnary and several conclusions in view of possible future
instabilities are induced by the finite propagation time ofWork. For a numerical derivation of the Floguet exponents
signals in feedback loops. For instance, experiments on Or5and the corresponding eigenvectors for this case we refer to
tical devices, acousto-optic and electro-optic bistable deviceld 9,20.
[9-11] have confirmed both the theoretical and numerical
predictions. But delay induced instabilities also play an im- Il. DETERMINATION OF THE TIME PERIODIC
portant role in other disciplines, such as population dynamics REFERENCE STATE
[1], radio engineering sciencg$2], economicg13], and bi- ) .
ology[14]. In addition, it has been noted in medical sciences We assume that the dynamical behavior of the system
that there exists a remarkable variety of clinically relevantunder consideration can be characterized by a state vector
dynamical phenomena under physiological and pathologicaj(t) in ann dimensional state spadeand that the underly-
conditions. For example, oscillations or chaotic behavior caring equation of motion is an autonomous delay differential
spontaneously occur or disappear as a function of external @quation of the general form
internal time delays, as has been demonstrated by the
Mackey-Glass model of blood circulatigd5], the Cheyne- d. L.
Stokes respiratiofil6], and the forearm tracking with visual g =N((),.at- m).{ai}). ()
delayed feedbackl7].
The interesting properties of nonlinear delay differential - . .
equations have been mainly investigated in numerical studH€reN denotes a nonlinear vector field that depends on the
ies. Therefore it becomes desirable to substantiate thestate vectorg at the timest andt— 7, respectively, withr
results—at least in comparably simple situations—by anarepresenting the time delay. The $et} describes the con-
lytical methods. An interesting result in this direction hastrol parameters that measure external influences on the sys-
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tem. We assume that these control parameters are kept fixed

so that we can omit them in our notation. q(t,u)=q
The treatment of the nonlinear problefh) close to an

instability strongly depends on the chosen reference state. A o o ]

theory for an instability of a time independent reference staté" the following it becomes useful to explicitly take into

has been recently developed [i8]. Here it is our aim to account the frequency shift from, to w(w) by rescaling

generalize this method to situations where we start from &he timet according to

time periodic reference state. As such states cannot be ex-

pressed by closed analytical forms, it becomes necessary to &) =w(u)t. (6)

describe them by using proper approximation schemes. In

this section we extend methods that have been developed

the realm of ordinary differential equations towards delay

differential equations. The Poincakéndstedt approximation

i 2T ) 5
otm M) ©

|Htroducing the new variable

allows us to determine the time periodic reference state for X(£,11)= @
small values of a parameter, whereas its improvement, the M w( ) B
Shohat method turns out to possess a wider range of appli-
cabilities[21,23. which is 27 periodic in¢,
A. The PoincareLindstedt expansion X(&, 1) =X(£+ 2, ) ®)

A perturbative approximation method, such as the
PoincarelLindstedt expansion, relies on the existence of
suitable smallness parameter Dealing with the nonlinear
differential equation(1), we have to distinguish in general )
two different origins for such a smallness parameieron  w(u)>X(&,u) + w3X(& 1)
the one hand, the smallness paramgte&an be generated by
a delay induced instability. Then it measures the relative de- . .
viation of the time delayr from the critical valuer, above :“f(x(fw‘*)vx(f’ﬂ)’x(f_w(M)T,M)'X@—w(M)T,M))-g
which the delay induced time periodic reference state exists. ©)
This case occurs, for instance, in the electronic phase locked
loop with time delay{3] where the underlying model equa- The dot indicates the derivative with respect to the dimen-

tion reveals a Hopf bifurcation at some. Considering the ~Sionless new time variablé.
corresponding normal forf23] As already mentioned, we assume thatrepresents a

small quantity so that we can expand the frequendgy)

4ve can rewrite the equation of moti@8) as

dz and the periodic orbik in powers ofu according t
H=aZ—g|Z|ZZ, @ p (&,u) in powers ofu according to
X(&, 1) =Xo( &)+ uXq (&) + u?xx(E)+ - - -, 10
we may chooseuw=(7—7;)/7.. On the other hand, the (6.1} =Xo(£)+ mxa(E) + 17xe{E) 10
smallness parametge can also coincide with one of the )
given control parameters of the system. An example is pro- o(p)= 0ot pw;+ p oyt .. (13)
vided by a harmonic oscillator with frequenay,, which is
driven by a nonlinear time delayed perturbation: In addition to the similar procedure for ordinary differential
equationg 21,22, we have also to consider a corresponding
q"(t, ) + wga(t, ) expansion of the time delayed terms in E§). This is
achieved by

=uf@Q(t,u),q'(t,u),q(t—7,),9"(t—7,)).  (3)

Hereq(t, ) denotes a scalar variable, the prime abbreviates X(§— o(p) 7, u)=Xo( €~ woT) + p(X1(§— woT)
the derivative with respect to the timeandf represents a _wlT)'(O(g_on))Jr e (12)
nonlinear function of its arguments.

For the sake of simplicity we now discuss the Poineare

Lindstedt expansion, not for the general delay differential X(E— w(p) T, 1) =Xo(E— woT) + w(X1(E— woT)
equation(1), but only for the model equatio(8). We start .
with the situation of a vanishing smallness parameier —01™X(§~ woT))+ - - (13

where the solution of3) is a periodic reference state

_ If we apply these expansions to the equation of moti@n
q(t,00=q(t+Ty,0), 4 and combine terms of the same power af we obtain in
each order a system of inhomogeneous linear ordinary dif-

with To=2m/w,y denoting the period of the unperturbed os- ferential equations of second order:

cillator. Switching on the smallness parameterthis state
will be transformed to a new periodic state, which can be )
described by Xo(&)+x0(£€)=0, (19
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X1(&)+X4(é) the limit ©—0 we have to choos®,= w,. From Egs.(20)
! ! and (21) and the inversion of the relatioii9),
2285 (&) p(u)
=—/2—X -
w0 T 22
2 6) Kol ) Yol €= wom) Yol £~ wor), (15 We deduce the expansions
w
° ()= Qo+ p() (1= Q) +p(1)2A( Q= Q1)+,
(23
Xn(£)+X()=14(£). g XE o)) =Xo(E= Qor)+ p(m)[Xa(£- Qo7)

The inhomogeneityl ,(£¢), which appears in tha@th order (1= Qo) TXo(E = Qo7) ]+ - -

(16), is purely determined by the lower order terms (29
Xm(£€), 0=m<n. We have to guarantee that our periodicity o _

condition (8) is fulfiled in each order of the perturbation The further application of the Shohat method is completely
theory. However, if the Fourier expansion of the inhomoge-2nalogous to the Poincaténdstedt approximation scheme.
neity 1 ,(£) includes multiples of the first harmonic terms that !t has been conjectured, without prd@1], that the method
are proportional to sigj or cosg), the solutionx,,(¢) of Eq. works for arbitrary parameter valugs=0. We thus note
(16) contains aperiodic secular terms of the fogsin(é) or that, although to our knowledge no known counterexample
£cosg), respectively. We can avoid these aperiodic solutiondor this conjecture exists, the validity of this expansion has to

by demanding be confirmed for each case individually.
2m . 2m lll. STABILITY OF THE TIME PERIODIC
fo Ih(£)sin(£)dé=0, fo In(§)cog§)d¢=0. (17) REFERENCE STATE

In order to fulfill these two conditions we need two indepen-.n d\éveeggévn??;grzlr'f; t;ztgnggresigatzggning:f;:; 2ft|;ne
dent parameters. Here we choose the consigras the first indep veloperol

parameter, whereas the second one can be chosen by impgg-]e p(Tricodic r?fer:engel staéef.f To thalt end V\:Qe)retuc;n to the
: o . i general form of the delay differential equatigh) and re-
ing suitable initial conditions fok,_(&); for example, scale the time according to Eq$) and (7):

Xn-1(0)=A,_1, Xn_1(0)=0. (18

d. 1. . .
In this way we obtain a systematic approximation scheme to d_fq(f) - ZN(q(g),q(g— 7). {0i}). @9
determine our time periodic reference state order by order for _ _ )
small values of the parameter. Here w= w(u) abbreviates the frequency of the t|[ne peri-
odic reference state, henceforth denoted (&)
B. The Shohat expansion zﬁo(f,,u).

Following the original notion of Krasovskii and Hale
[1,5], as well as its detailed elaboration[i8], we generalize
aWe n dimensional state spadé to an infinite dimensional
State spac€. This allows us to embed the given delay dif-
ferential equation(25) in the context of functional differen-
tial equations. It turns out that this reformulation represents
p an adequate framework for a linear stability analysis around
p(p)= g (19 a time periodic reference state. The resulting Floquet theory
K leads to a homogeneous vector valued recurrence relation
which maps the intervdl0 ) of x onto the interva[0,1) of that dgtermines the.Fquuet (_aigenvalues as well as the corre-
p. The resulting method of the Shohat expansion can be dgPonding Floquet eigensolutions.
scribed as follows. The equation of moti¢® is multiplied
by MZ- In doing so we become able to expand the periodic A. Formulation of the problem in the extended state space

In a situation where the parametgris not a small quan-
tity, the Poincare.indstedt expansion for the calculation of
the time periodic reference state has to be modified. This c
be achieved by introducing a new smallness paramsie)
by the prescription

reference stat&(¢,u) as well as the produgiw(u) with It appears that solutions of the delay differential equation
respect tgo and obtain (25) for times é&=0 depend on initial values of the state
X(& 1) =Xo( &)+ p( ) X1 (&) + p( )2 Xo(E) + - - -, vector q(¢€) in the entire interval — w7,0]. Therefore we

(20) have to complete Eq25) with the initial condition
(i) =p() Qo+ p() 20 +p(u) gt . (2D) A(0)=9(0), —wr=6=0, (26

In order to guarantee that the frequeneyu) approaches whereg is a given continuous vector valued function in a
the frequencyw, of the unperturbed harmonic oscillator in suitable function spac€. The initial value problen{Egs.
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(25) and (26)] then maps the functiog onto a trajectory in indices. The representation (&) and q(é— w7) can be
the n dimensional state spacE. Therefore the problem given in terms of the extended state spécey taking into
arises that different initial vector valued functiogsmay account the relatioi@27):
yield crossings of the corresponding trajectoried inThis o
means that the pointwise uniqueness o_f solutions cannot be a(g):f dos( 9)5§( 0),
assured when we restrict our considerations to the state space —or1
I.

In order to solve this problem one may introduce the ex- - 0 -
tension of the finite dimensional state spdtéo an infinite ae-wn=|  dos(6+or)qe0). (34)
dimensional function spaawhere the initial vector valued
functiong is defined. According to Krasovskii and H4te5]  If we apply this procedure to every term in the series expan-
this is achieved by regarding the traject«ﬁ(;gf) in the origi-  sion and collect terms of the same order in the extended state
nal state spac& during the time interva[ - wr,£] as @  vector g,, the nonlinear vector fieldl becomes a vector
single pointﬁg in the extended space valued functionalV with the components

00)=q(+6), —wr<0<0. 2 . Z (o
q(0)=a(é+6), —or (27) M[qg(')]:k; ﬁ do,. -

The dynamics of the delay system can then also be described

in the extended state spaceby introducing the nonlinear 0 1 .
solution operatoff(£): X fﬁ dekzﬂi('j)l"'jk( 01, ....6y)
4e(0)=(T(§)G)(0), —wr=6<0. (28 X0y (1) Gg (80, (35

Its uniqueness is expressed by the fact that the ope¥afdr

(k) i
has the properties of a semigroup; that is, where theQi,jl___jk(al, ...,0) represent matrix valued

densities. Thus we have reached our first goal, namely, to
Té+n)=T&ETn), &n=0, T0)=Z, (29 derive a nonlinear functional differential equation for the

) ) problem formulated in Eq425) and (26).
whereZ denotes the identity operator. We now have to re-

formulate the original initial value problerfEgs. (25) and

(26)] in the extended spaag To this end we formally dif-

ferentiate Eq(28) with respect to the timg, According to the prescriptiof27) the time periodic ref-
erence statéo(g) in the state spacE transforms intcﬁg(a)

B. The linearized equation of motion

d. = in the extended state spa€eln order to test its linear sta-
d_gqg( 0)=(Aa9(0), —wr<6=<0. (30 bility we insert the ansatz
Here A denotes the infinitesimal generator that corresponds ﬁg( g):ag( 9)+a’§( 0) (36)

to the solution operatdf( £):
into Egs.(30) and (32). Dropping the tilde we obtain in the

(Aﬁg)(6)= lim E{[ﬂ e)ﬁg](g)_ﬁg( 0)}. (31) linear approximation for the infinitesimal deviatim}g(e),
€

e—0

By evaluating this limit separately for the intervalw < 6 d—gag( 0)= (AL, (6), (37)
<0 and for the poind=0 we obtain the explicit expression
3] where the linear infinitesimal generatd; becomes explic-

d itly time dependent:

- —(ig(é’), —wT<6<0,
={ do d.
(Age)(6) ) (32 d_qf(a)’ —wr< <0,
Mag(-)], 6=0. .o ] de
(AG(O=1 4 ) (38)

The nonlinear functional\V' is constructed as follows. We J do'Q.(0')q.0"), 6=0.

assume that the original vector fie in Eqg. (25) can be

expanded into powers of its argumeni) andq(é— 7). The matrix valued densitf2,(¢) can be written as a func-

A typical term of second order in this expansion has, fortional derivative of A" evaluated at the time periodic refer-
instance, the form ence statei?:

NZq; (&) au( - w7), (33)

where the explicit components of the respective vectors have
been introduced and summation is understood over dummy

O(0)= (39

ww@«ﬂ]
89 6)

ag=ay
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C. Transformation of the linear problem

Due to the fact that the reference sté@é 0) is 2 peri-
odic with respect tc, the matrix valued densit§),(6) in
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D. Remark

In the Floquet theory of ordinary differential equations
[24] it is shown that the derivative of the time periodic ref-

Eq. (39) is time dependent with the same period. We thuserence state represents a Floquet eigensolution where the real

perform a Fourier expansion of the mat&k( 6):

0 0)= 2 00", (40)

In close analogy to the Floquet theorem for ordinary differ-
ential equation$24] we try to solve Eqs(37)—(40) by the

ansatz
qe(0)=eMPL(). (42)

Here N\ denotes the Floquet eigenvalue anﬁg(a)

=<Z§+27T(0) is a 2 periodic Floquet eigensolution for

which we also perform a Fourier expansion:
ng(a):n;m HN(0)e. (42)

In order to determine the Fourier componeﬁbﬁ(e) we in-

sert the hypothesi6ll), (42) into the linearized equation of
motion (37)—(40). We now have to consider separately the
interval —w7<6<0 and the pointd=0. In the interval

— 7= 0<0 we conclude that the Fourier componéjﬁt( 0)
has the form

(Zz(a)zéze()\ﬂn)ﬁ_ (43)

For the cas&#=0 we find

]

> Gh(n+in)el i

n=—x
— 2 z dﬁﬂk( e)e(h+|n)f)e(|(k+n)+)\)§(z)r;_
n=—wo k=—o J—-wr
(44)
We now introduce the matrix valued quantity
0 )
Lk,n=J’ do Q,(6)ettime (45)

and a new indexi(n)=n+k. Comparing the contributions
of the various Fourier components in Eg¢4) and dropping

part of the corresponding Floquet eigenvalue vanishes. This
statement remains valid for delay differential equations as
can be seen as follows. As the time periodic reference state
&2(0) satisfies the nonlinear equation of moti@9), (32), a
differentiation with respect to the timgleads to

d dgg(6)
dé  dé
d dgg(6)
@ df y —a)T\49<0,
o [oMa(1]  dgeny @D
do = d , 6=0.
—wr 50.(6") G0 3

A comparison with Eqs(37)—(39) reveals that the derivative

of the time periodic reference staﬁ@(&) indeed fulfills the
linear problem. Due to Eqg41) and (42) it therefore pos-
sesses the general form

da2(6) Sl .

DT 3 Ghoene @9
d¢ ==

From the 27 periodicity ofﬁg(a) and its derivative48), we

conclude that the real part of its Floquet eigenvaluleas to

vanish.

IV. MATRIX VALUED CONTINUED FRACTIONS

We consider two methods that enable us to approximately
solve Eq.(46) for the Floquet eigenvalues and for the

Fourier componentéﬁ of the Floquet eigensolutions. In the
first part we formulate a new method based rodiagonal
continued fractions. In the second part we show that this
solution method is equivalent to a formulation with tridiago-
nal continued fractions introduced by Riskg2b|. It turns
out, however, that the first method is much simpler to handle,
as the necessary inversion of matrices can be performed in a
low dimensional space. Furthermore, the criterion for trun-
cating higher order terms in the smallness parametean

be formulated more precisely in the framework of the first
method.

A. Pentadiagonal recurrence relations

the tilde, we obtain a homogeneous vector valued recurrence e apply the method of matrix valued continued fractions

relation for the Fourier componend) :

o

2 [hknk= oM +imIdh . (46

0=
k

in order to solve the vector valued recurrence relatid®)
approximately. In order to avoid overloading the notation,
we restrict ourselves for the time being to the pentadiagonal
case where the summation in E¢6) is performed for—2
<k=2:

Thus we are left with the problem of constructing an ap- O0=L _pn: 2682t L 1010hi1+[Lon— (N +in)1]1d}

proximate solution to Eq46) that leads to both the Floquet
eigenvalues. and the corresponding Floquet eigensolutions.

+|—1,n71<2’}r§71+|-2,n72<;’}r§72- (49
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We start by defining a set of ladder operat@8 for m
==+1,+2 that relate neighboring Fourier components via

$3+mzsr?§z)r;- (50)

This definition implies the following useful relations be-

tween different ladder operators:

S S R (51)

Applying the definition(50) of the ladder operators, the pen-

tadiagonal recurrence relati@gd9) can be rewritten as
0={L _on+2S7 2+ L1015t "+ [Lop— (A Fin)I]
+ Ll,n—lSr;l'i_ L2,n—28r:2}$z .

We now express the ladder operat@§(m==1,%=2) in

(52
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extended to the general case where all Fourier components
q?ﬁ are coupled to each other. To this end we introduce lad-
der operatorsS,' with arbitrary m according to Eq.(50),
where we identifySh=1. The homogeneous vector valued
recurrence relatiofd6) then yields a corresponding one for
the ladder operatorS;':

o

Zw [Lin—k— S A +im)I]1S, k.

0= (59
k

An iteration procedure similar to Eq&4)—(57) finally leads
to a homogeneous equation for the Fourier compoﬁ%nt
M(\) =0, (60)

where the resulting matribd (A) consists of an infinite num-

terms of the matricesL,, as well as the operators ber of matrix valued continued fractions transcendentally de-
S, ,,SM ,. In order to evaluate this dependence, we isolatdending on the Floquet eigenvaluesTherefore the Floguet

the term ¢, ;=S 14" in Eq. (52). Then the equation as-

sumes the form

Losne1dnii=—{[Lop— (A +in)I]+L 500802
+ Ll,n715;l+Lz,nfzS?2}<5ﬁ-

Shifting the index frorm to n—1 and applying the definition
\_,=S, P}, we obtain from the validity for allp} the
operator relation

St= (Lo 1~ [N +i(N=DI+L 50182

(53

L1281+ Lon-3Sh %) M _p. (54
Similarly we construct the operator relations

Sit=—({Lops1— INFI(N+D I} +L 50,387

+L_qp2SiirtLon-1S070) MLan, (55
Si2=—({Lop-2— A +i(n=2)]}+L_101S

+Lin-3S 2 Lon-aS, %) M2, (56)
Sv2=—(Lonr2a~INFi(N+2)]}+L 10,581,

+Line1ShiatLo2neaSi22) ton- (57

We perform an iteration procedure by starting from Exf)
for the casen=0,

0=[L_p,S§%+L_ 1,85+ (Log— M) +L1 15"

+Ly- S 216p, (58)

eigenvaluesh are determined from the condition that the
determinant of the matrik (\) vanish:

detM(\)=0. (61)

Once the Floquet eigenvalugsare known, the yet unknown

Fourier componentzg is determined up to a constant from
solving the homogeneous equati@0). All Fourier compo-

nents&ﬁ of the Floguet eigensolutions are then calculated by
successively applying the ladder operat8fs starting with

TN
&0

b= - (62
Note that the remaining normalization ConstantZi@'l has to

be fixed by an adequate biorthonormality condition, which
will be discussed in Sec. V D.

In applications, however, it is impossible to exactly evalu-
ate the infinite number of matrix valued continued fractions.
From an analytical point of view we can therefore expect that
this solution method will allow us at most to approximately
determine Floguet eigenvalues and the corresponding eigen-
solutions. To this end we recall that the starting point of our
linear stability analysis, i.e., the time periodic reference state,
is only known as a finite power series in the smallness pa-
rameteru. As a consequence the whole calculation can be
simplified by approximately neglecting higher order terms in
the smallness parameter. In particular, it becomes suffi-
cient to restrict the vector valued recurrence relatif) to a
finite number of terms, so that the subsequent iteration pro-
cedure only leads to a finite number of matrix valued contin-
ued fractions. Furthermore, each continued fraction can be
evaluated in the leading order of the smallness parameter
In spite of these successive expansions, the continued frac-

and by recursively inserting the recurrence relations of thgjons have the property that the approximate results rapidly
ladder operatort54)—(57). Writing the successive inversions .,nyerge towards the exact values if the leading order in the
of the matrices formally as fractions, we may visualize thisgy41iness parametgr is increased.
iteration procedure by a schematic representation of a penta-
diagonal matrix valued continued fraction.

Thus far we have discussed the solution of the vector
valued recurrence relatioid2) in the pentadiagonal case for  Following Risken 25] we show that the diagonal matrix
m==*1,+2. However, our method can be correspondinglyvalued continued fractions can always be cast into a tridiago-

B. Sketch of Risken'’s tridiagonal formulation
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nal form. For the sake of simplicity we demonstrate this only 0= RE+ i R-1HA 79
for the pentadiagonal recurrence relati@®), but the gen- [Q-1.1Ro +Qoo* Qu-1Ro JPo (72
eral case is treated along similar lines. We start by distinRepeated application of the operator relatiofild) then

guishing between even and odd indice® the pentadiago- yields a tridiagonal matrix valued continued fraction.
nal recurrence relatio¥9):
0= L72,2n+2¢)2\n+2+Lfl,m+l¢én+1+[|-0,21 V. FORMULATION OF THE ADJOINT PROBLEM
- - . In general, the linear infinitesimal generatd; is not
—(N+i20m)1]@5,+ Lin—1650- 1+ Laon-2$50_2, self-adjoint in the extended state spateTherefore it be-
(63) comes necessary to define another extended state €pace
dual to C and to investigate the properties of the adjoint

0=L_yp:3é) +3+|——12n+2(;5)2\ ot {Lomen infinitesimal generatomz. In order to relate the linearized
' A ’ " ‘ problem with its adjoint, it turns out that the canonical bilin-
—IN+i2n+ D)1t L@t Lo 15,1 . ear form for ordinary differential equations is not appropri-

ate. In the case of delay differential equations a modified
(64 bilinear form has to be introduced.

We now construct new vectors according to the prescription
A. The bilinear form

n

~ + -
P = Pan+2 M= b2n G = Pon-2 The choice of the canonical bilinear form for delay differ-
M sl d5ne) M\ Bhy) ential equations is motivated by the Fredholm alternative. To
(65)  this end we consider the inhomogeneous version of(&q,
Additionally we define the matrices

L_2:+20 )

L—Lm+2L—zm+3

([AL—d%}q’g)(a):)}g(e), —wr<0<0, (73
ler( with a 27 periodic vector valued function)?g(a)
. . = Xe+24(6). We try to construct a particular soluticEi}( 0)
Ql’nl:( 2n-2 1'2“‘1)’ of Eq. (73 by the Floquet ansat41) with ¢}(6)

Olon—1 = <Z2+27( 0). Inserting the Fourier expansida?2) for &2(6)
and a corresponding one for the inhomogensity), we

[Lom—(A+2in)I]L g ;41 ) 66  obtain

Lioilom+1—[N+i(2n+1)]I}

Due to these definitions both pentadiagonal recurrence rela- >, ([A —A—in]gd)(0)eMé= D, xq(6)em.
tions (63), (64) can be combined in the following way: n=—c n=-e

QQn:

(74)

£\ £\ A _
Q-1a+1Pns1t QonPntQi1n-1Pny =0 (67) Taking into account the definitiof88) of the infinitesimal

Thus we have reached our goal of finding a tridiagonal vecgeneratord, in the interval— wr=< 6<0, we conclude from
tor valued recurrence relation. At this stage we define agaifd. (74) the general form of the Fourier componefji(6):
ladder operator®,, with the property

$n(8)=n(0)eM MO+ f:dsé“im”-s);n(s).
(75

®) =Ry by, By =R, D). (68)

These ladder operators can be determined when we rewrite
the tridiagonal recurrence relatidf7) as Correspondingly Eq(74) determines for the poin=0 the
. R yet unknown initial condition&ﬁ(O). With the definition
0=[Q_15+1Ry +QonlP)+ Q1 1P}, (69 (45 it fulfills an inhomogeneous vector valued recurrence

. relation:
and, similarly, as
0=Q_1p+1P}: 1+ [Qon+ Qup_1R; 1P} (70 kz [Licn—k— Sko(A+inm)11d)_(0)
Comparing these results with the original definitiof@s) o o )
and srln‘tlng the mdt?x, we find relations for the ladder opera- :/\jn(o)_ 2 dﬂf ds drHi(n=k)(o-9)
torsR,, themselves: k== J-wr Jo
Ry =-[Qs1ns2R1z1+ Qopz1] 'Qz1p. (7D X (0) Xn-K(9). (76)

Again it is sufficient for our purpose to solve the tridiagonal This result suggests how to introduce both the dual spdce
recurrence relatio67) for the casen=0: and the bilinear form. We assume that consists ofn di-
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mensional vector valued functions defined on the interval fop = - R 0 0
[0,07] and that the bilinear form is given by (ALdg,9) = (0g, ALGe) e~ J_ deJO ds
-4 > -4 - 0 o - Jd -
[F1(9), $e(0)1e=(L(0), $4(0)) — f_mdefo ds ><<q§<s— e),&—§9§+59<0)q§<s>>.

X (P 0), Q5 o(0) $(5)) (82

(77) When we use the definitiof88) of the infinitesimal operator
A, , we obtain from Eq(82) after a partial integration the

for all (dec and ngeCT, where() denotes the usual ca- following expression for the adjoint infinitesimal generator

nonical scalar product. Note that each delay system and eac‘ilnI:

time periodic reference state induces its own bilinear form d

due to Eq.(39). Furthermore, we observe that the explicit - _ag(s), O<s<wr,

time dependent bilinear forv7) for a time periodic refer- Fo ds

ence state reduces to the corresponding one for a time inde- (AL9e)(s)= or

pendent reference staftg]. f ds'qy(s") Qs s(—5"), s=0.
With the bilinear form(77) the inhomogeneous recur- 0

rence relation76) can be rewritten according to (83

C. The adjoint recurrence relation

kZ_m [Licn—k— Sko A +im)1 1y (0) We are now in a position to solve the adjoint problem
- defined by Egs(81) and(83). In close analogy to the proce-

1 (2= ‘ R dure in Sec. Ill C we perform the Floquet ansatz
I CEOSCRON 79 ) '
q/(s)=e MyiNs), (84)
where the matrix valued function] ,(s) are given by with the 27 periodic adjoint Floquet eigensolution
T — a—inéa—(N+in)s <s< R N -
Agn(s)=e e I, Osssowr (79 cpg”(s):; (,//]'T)\(S)eiljg- (85)

Thus we obtain the following Fredholm alternative for solv-
ing the inhomogeneous equati@A3). If the parametem Evaluating Egs(81) and(83) in the interval 6<s< w7 fixes
does not coincide with a Floquet eigenvalue, we read ofthe form of the Fourier components according to

from Eq. (78) that there exists a unique solution. Otherwise R . N

we can only expect a solution if the inhomogeneipyfulfills PiNs)=gre” (M FIDs, (86)

a solvability condition that involves the bilinear for(i7). )

This solvability condition will be concretized below after Whereas the case=0 leads to the corresponding homoge-
having defined the adjoint operatdr’ and its corresponding "€0Us vector valued recurrence relation

Floguet eigensolutions. %
0= 2 g{idLij= oA i), 87
B. The adjoint operator k=—o

The bilinear form(77) can be applied to describe the evo- In order to solve Eq(87) for the Fourier component™ of
lution of the linearized delay system also in the dual ex- J

) X . the adjoint Floquet eigensolutions and the respective Floquet
tended state spack . To this end we require that the bilinear eigenvalues, we proceed along lines similar to those in

- - =t
form between the state vectopeC and its dualgieC’  sec. Iv A. First we define adjoint ladder operatd$ with
become time independent: arbitrarym and the identityZJQ=I in analogy to Eq(50):

d . N . N
0= d—§<qg<s>,q§< 0)); - (80) o =9z (88)

Inserting Eq.(88) in the homogeneous vector valued recur-

As the bilinear form(77) does explicitly depend on the time yence relation87), we then obtain a corresponding one for
& via the matrix valued densit@2,(6), we derive from Eqgs.  the adjoint ladder operators:

(37) and (80) the evolution equation ig T,

d., - 0= 2 Zf[Li;— o\ +iDI]. (89)
qgiie=—(AlaD(s), oOss<or (8 k=

A careful comparison between E¢59) and(89) reveals that
where the adjoint infinitesimal generatdr[ obeys the recurrence relations for the ladder operagitsnd their
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adjoint ij are not independent of each other. Indeed, they . R * o T i
are mapped onto each other by the prescription (" (s), P ( 6’))g:n JZ% (g™ Ppyeln-DE
Lin-kSh “=Z7 L. (90) - > el
k=—o
0 o 5
This means that the adjoint ladder operatdf’scan imme- xf daj ds(:pj“ 0 (0) PF)
—oT 0

diately be calculated, once the ladder operat6fs are
known. However, this does not imply that the solution of the
adjoint problem directly follows from the linear problem. ><e[“‘(j‘k)]"e[“‘“‘(”““j)]s}.
Iteratively inserting the operator recurrence relat{8g) in
the vector valued recurrence relatiéd7) for j=0 yields (94)
with Eq. (90)
An integration with respect teyields for the second term on
the right hand side

JEM(N)=0. (91) , .
—njkE:_w e““*k‘“ff_ do(g™ , u(0) pt)

Thus the adjoint problem leads to the same conditidn for (M0 A+ —K)]0

the Floquet eigenvalues, but the Fourier componen}“ % 95
e 7o : : (95)

has to be determined independently from the Fourier compo- pm=AFi(n+k=j)

e
nent ¢, defined by Eq(60). _ With the definition(45) of the matriced., , this reduces to
With these definitions we are now able to concretize the ’
Fredholm. cor]dition for solving the inhorpog(?r?eous equation i i(ﬂﬂ_j)g@;m [Ln—Liji] )
(73). Multiplying Eq. (78) from the left with i, , perform- T e A NHi(nFk—]) (96)

ing the summation over al, and taking into account the
homogeneous vector valued recurrence relati®?, we so that we obtain from the homogeneous vector valued re-

yield currence relation$46), (87),
Ll S iva s = X (e ©7)
37, Q€ 2 U0 Aen(s)xe(0)] =0. (92 !
£ From Egs.(94)—(97) we conclude the biorthogonality for
MFEN:

Due to Egs.(79), (85), and (86) this solvability condition

TN _’,u. —
takes the concise form (:(5), 4 (6))=0. (98)

To normalize the biorthogonal set of Floquet eigenfunctions,
we introduce a proper normalization constant in a symmetric

1 27
i P N _ .
o= | T4 oo 03 Wy
Fn=N\ B}, it =NT . (99

Only in the special case in which all quantities do not explic-From the requirement
itly depend on the time does this reduce to the usual Fred- . .

ition: i i i (F£N(9), $(0) =1 (100
holm condition; i.e., the inhomogeneify; must be orthogo- ¢\ P £ b

nal to the respective eigensolution of the adjoint operﬁt{)r we then determine the normalization constat by per-

[3]- forming similar calculations as above:

)

- o .
> <«1r,-“,(5j,n—f_ do e MiQ, _ (4)

nj=—o

D. Biorthonormality relations N, =

Finally we show that the Floquet eigensolutio&% and

g of the infinitesimal generatad, and its dualA, re- qu” 12
spectively, can be chosen to form a biorthonormal sef in n '
and C'. First we derive the biorthogonality condition for

different Floquet eigenvalueg #\. Using the explicit ex- As expected the normalization constjt does not explic-
pression for the bilinear forrt¥7) and applying our previous itly depend on the tim&. Summarizing the result®8) and
results(40)—(42) and Eqgs.(85) and(86), we obtain (100, the biorthonormality relation reads

(10D
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(lzgx(s)’qg,g( 0))¢= 5, (102 produced by the control mechanism itsg27,30.

' As the Floquet theory represents a linear stability analysis
for a time periodic reference state, there still remains the
nonlinear problem of constructing the normal form for an

The present paper was devoted to systematically develogmerging instability. We expect that this problem can be
ing a Floquet theory for delay differential equations. At firsttackled in a way similar td3], where synergetic methods
we approximately determined a time periodic reference statf26,24 are extended to investigate delay differential equa-
by extending two standard methods for ordinary differentialtions in the local neighborhood of a time independent refer-
equations, namely, the Poincdrandstedt and the Shohat ex- ence state. Also close to the instability of a time periodic
pansions. Then we tested the stability of this reference stateference state the inherent time scale hierarchy should allow
by constructing Floquet eigensolutions and their correspondds to adiabatically eliminate the fast modes by using projec-
ing eigenvalues from matrix valued continued fractions. Fi-tors that are induced by the bilinear for("i7) of the linear
nally the Floquet theory was completed by studying the adstability analysis. As in[3] the resulting order parameter
joint problem. The applicability of our Floquet theory was equations for the slow modes should turn out to be of the
demonstrated ih27]. In particular, our analytical treatment form of ordinary differential equations. We stress that the
provides a means of understanding the mechanism of theormal form theory is indispensable for classifying the insta-
continuous control of chaos by self-controlling feedbackbilities of time periodic reference states. Whereas the linear
[28,29. Previous investigations have indicated that it be-stability analysis is sufficient to identify the instabilities of
comes crucial to decide whether an observed stabilized limitime independent reference states, this is no longer true for
cycle corresponds to an unstable cycle of the system or i8me periodic one$24].
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