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Analytical approach for the Floquet theory of delay differential equations
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We present an analytical approach to deal with nonlinear delay differential equations close to instabilities of
time periodic reference states. To this end we start with approximately determining such reference states by
extending the Poincare´-Lindstedt and the Shohat expansions, which were originally developed for ordinary
differential equations. Then we systematically elaborate a linear stability analysis around a time periodic
reference state. This allows us to approximately calculate the Floquet eigenvalues and their corresponding
eigensolutions by using matrix valued continued fractions.@S1063-651X~99!14005-4#

PACS number~s!: 05.45.2a, 02.30.Ks
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I. INTRODUCTION

Over the last two decades considerable new interest in
theory of delay differential equations has led to various
markable results@1–4#. The reason is that the solution spa
for delay differential equations has to be considered as
nite dimensional, although only a finite number of dynami
variables is involved@5#. As a consequence, nonlinear del
differential equations reveal a broad class of instabilit
leading from oscillatory to chaotic behavior. Apart from th
period doubling route to chaos, quasiperiodic states, inter
tency, and locking behavior have also been observed in
tailed numerical studies@4#. In particular, in the chaotic do
main it has been suggested that the envelope to the Kap
Yorke dimension of a delay induced chaotic attractor
proportional to the time delay@4,6–8#. This fact offers the
possibility of generating high dimensional chaotic attract
by simply increasing the time delay.

Delay differential equations have been successfully
plied to model numerous nonlinear systems where dynam
instabilities are induced by the finite propagation time
signals in feedback loops. For instance, experiments on
tical devices, acousto-optic and electro-optic bistable dev
@9–11# have confirmed both the theoretical and numeri
predictions. But delay induced instabilities also play an i
portant role in other disciplines, such as population dynam
@1#, radio engineering sciences@12#, economics@13#, and bi-
ology @14#. In addition, it has been noted in medical scienc
that there exists a remarkable variety of clinically releva
dynamical phenomena under physiological and patholog
conditions. For example, oscillations or chaotic behavior
spontaneously occur or disappear as a function of extern
internal time delays, as has been demonstrated by
Mackey-Glass model of blood circulation@15#, the Cheyne-
Stokes respiration@16#, and the forearm tracking with visua
delayed feedback@17#.

The interesting properties of nonlinear delay different
equations have been mainly investigated in numerical s
ies. Therefore it becomes desirable to substantiate th
results—at least in comparably simple situations—by a
lytical methods. An interesting result in this direction h
PRE 591063-651X/99/59~5!/5344~10!/$15.00
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been recently obtained in@3# by rigorously analyzing the
instability of a time independent reference state. The ap
cation of the theory to a delay induced Hopf bifurcation h
been confirmed by numerical as well as experimental stud
We note that a different method, which is based upon a m
tiple scaling analysis, has been recently demonstrated
@18#. Here, however, it is our aim to generalize the approa
of @3# by starting from a time periodic reference state and
analytically investigating its stability.

Our paper is organized as follows. In Sec. II we introdu
two methods for approximately determining a time period
reference state. Section III then develops its linear stab
analysis. The resulting Floquet theory leads to a homo
neous vector valued recurrence relation determining the
quet eigenvalues and its corresponding eigensolutions
Sec. IV we offer two solution methods for this recurren
relation that are based on matrix valued continued fractio
Section V completes the Floquet theory by studying the
joint problem. Eventually Sec. VI is devoted to a short su
mary and several conclusions in view of possible futu
work. For a numerical derivation of the Floquet expone
and the corresponding eigenvectors for this case we refe
@19,20#.

II. DETERMINATION OF THE TIME PERIODIC
REFERENCE STATE

We assume that the dynamical behavior of the sys
under consideration can be characterized by a state ve
qW (t) in an n dimensional state spaceG and that the underly-
ing equation of motion is an autonomous delay differen
equation of the general form

d

dt
qW ~ t !5NW „qW ~ t !,qW ~ t2t!,$s i%…. ~1!

HereNW denotes a nonlinear vector field that depends on
state vectorqW at the timest and t2t, respectively, witht
representing the time delay. The set$s i% describes the con
trol parameters that measure external influences on the
5344 ©1999 The American Physical Society
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tem. We assume that these control parameters are kept
so that we can omit them in our notation.

The treatment of the nonlinear problem~1! close to an
instability strongly depends on the chosen reference stat
theory for an instability of a time independent reference s
has been recently developed in@3#. Here it is our aim to
generalize this method to situations where we start from
time periodic reference state. As such states cannot be
pressed by closed analytical forms, it becomes necessa
describe them by using proper approximation schemes
this section we extend methods that have been develope
the realm of ordinary differential equations towards de
differential equations. The Poincare´-Lindstedt approximation
allows us to determine the time periodic reference state
small values of a parameter, whereas its improvement,
Shohat method turns out to possess a wider range of a
cabilities @21,22#.

A. The Poincaré-Lindstedt expansion

A perturbative approximation method, such as t
Poincare´-Lindstedt expansion, relies on the existence o
suitable smallness parameterm. Dealing with the nonlinear
differential equation~1!, we have to distinguish in genera
two different origins for such a smallness parameterm. On
the one hand, the smallness parameterm can be generated b
a delay induced instability. Then it measures the relative
viation of the time delayt from the critical valuetc above
which the delay induced time periodic reference state ex
This case occurs, for instance, in the electronic phase loc
loop with time delay@3# where the underlying model equa
tion reveals a Hopf bifurcation at sometc . Considering the
corresponding normal form@23#

dZ

dt
5sZ2guZu2Z, ~2!

we may choosem5A(t2tc)/tc. On the other hand, the
smallness parameterm can also coincide with one of th
given control parameters of the system. An example is p
vided by a harmonic oscillator with frequencyv0, which is
driven by a nonlinear time delayed perturbation:

q9~ t,m!1v0
2q~ t,m!

5m f „q~ t,m!,q8~ t,m!,q~ t2t,m!,q8~ t2t,m!…. ~3!

Hereq(t,m) denotes a scalar variable, the prime abbrevia
the derivative with respect to the timet, and f represents a
nonlinear function of its arguments.

For the sake of simplicity we now discuss the Poinca´-
Lindstedt expansion, not for the general delay differen
equation~1!, but only for the model equation~3!. We start
with the situation of a vanishing smallness parameterm
where the solution of~3! is a periodic reference state

q~ t,0!5q~ t1T0,0!, ~4!

with T052p/v0 denoting the period of the unperturbed o
cillator. Switching on the smallness parameterm, this state
will be transformed to a new periodic state, which can
described by
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q~ t,m!5qS t1
2p

v~m!
,m D . ~5!

In the following it becomes useful to explicitly take int
account the frequency shift fromv0 to v(m) by rescaling
the timet according to

j~ t !5v~m!t. ~6!

Introducing the new variable

x~j,m!5qS j

v~m!
,m D , ~7!

which is 2p periodic inj,

x~j,m!5x~j12p,m!, ~8!

we can rewrite the equation of motion~3! as

v~m!2ẍ~j,m!1v0
2x~j,m!

5m f ~x~j,m!,ẋ~j,m!,x„j2v~m!t,m…,ẋ„j2v~m!t,m…!.
~9!

The dot indicates the derivative with respect to the dim
sionless new time variablej.

As already mentioned, we assume thatm represents a
small quantity so that we can expand the frequencyv(m)
and the periodic orbitx(j,m) in powers ofm according to

x~j,m!5x0~j!1mx1~j!1m2x2~j!1•••, ~10!

v~m!5v01mv11m2v21•••. ~11!

In addition to the similar procedure for ordinary differenti
equations@21,22#, we have also to consider a correspondi
expansion of the time delayed terms in Eq.~9!. This is
achieved by

x„j2v~m!t,m…5x0~j2v0t!1m„x1~j2v0t!

2v1t ẋ0~j2v0t!…1•••, ~12!

ẋ„j2v~m!t,m…5 ẋ0~j2v0t!1m„ẋ1~j2v0t!

2v1t ẍ0~j2v0t!…1•••. ~13!

If we apply these expansions to the equation of motion~9!
and combine terms of the same power ofm, we obtain in
each order a system of inhomogeneous linear ordinary
ferential equations of second order:

ẍ0~j!1x0~j!50, ~14!
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ẍ1~j!1x1~j!

522
v1

v0
ẍ0~j!

1
1

v0
2

f „x0~j!,ẋ0~j!,x0~j2v0t!,ẋ0~j2v0t!…, ~15!

A

ẍn~j!1xn~j!5I n~j!. ~16!

The inhomogeneityI n(j), which appears in thenth order
~16!, is purely determined by the lower order term
xm(j), 0<m,n. We have to guarantee that our periodic
condition ~8! is fulfilled in each order of the perturbatio
theory. However, if the Fourier expansion of the inhomog
neity I n(j) includes multiples of the first harmonic terms th
are proportional to sin(j) or cos(j), the solutionxn(j) of Eq.
~16! contains aperiodic secular terms of the formjsin(j) or
jcos(j), respectively. We can avoid these aperiodic solutio
by demanding

E
0

2p

I n~j!sin~j!dj50, E
0

2p

I n~j!cos~j!dj50. ~17!

In order to fulfill these two conditions we need two indepe
dent parameters. Here we choose the constantvn as the first
parameter, whereas the second one can be chosen by im
ing suitable initial conditions forxn21(j); for example,

xn21~0!5An21 , ẋn21~0!50. ~18!

In this way we obtain a systematic approximation scheme
determine our time periodic reference state order by order
small values of the parameterm.

B. The Shohat expansion

In a situation where the parameterm is not a small quan-
tity, the Poincare´-Lindstedt expansion for the calculation o
the time periodic reference state has to be modified. This
be achieved by introducing a new smallness parameterr(m)
by the prescription

r~m!5
m

11m
, ~19!

which maps the interval@0,̀ ) of m onto the interval@0,1) of
r. The resulting method of the Shohat expansion can be
scribed as follows. The equation of motion~9! is multiplied
by m2. In doing so we become able to expand the perio
reference statex(j,m) as well as the productmv(m) with
respect tor and obtain

x~j,m!5X0~j!1r~m!X1~j!1r~m!2X2~j!1•••,
~20!

mv~m!5r~m!V01r~m!2V11r~m!3V21•••. ~21!

In order to guarantee that the frequencyv(m) approaches
the frequencyv0 of the unperturbed harmonic oscillator
-
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the limit m→0 we have to chooseV05v0. From Eqs.~20!
and ~21! and the inversion of the relation~19!,

m5
r~m!

12r~m!
, ~22!

we deduce the expansions

v~m!5V01r~m!~V12V0!1r~m!2~V22V1!1•••,
~23!

x„j2v~m!t,m…5X0~j2V0t!1r~m!@X1~j2V0t!

2~V12V0!tẊ0~j2V0t!#1•••.

~24!

The further application of the Shohat method is complet
analogous to the Poincare´-Lindstedt approximation scheme
It has been conjectured, without proof@21#, that the method
works for arbitrary parameter valuesm>0. We thus note
that, although to our knowledge no known counterexam
for this conjecture exists, the validity of this expansion has
be confirmed for each case individually.

III. STABILITY OF THE TIME PERIODIC
REFERENCE STATE

We now generalize the linear stability analysis of a tim
independent reference state developed in@3# to the case of a
time periodic reference state. To that end we return to
general form of the delay differential equation~1! and re-
scale the time according to Eqs.~6! and ~7!:

d

dj
qW ~j!5

1

v
NW „qW ~j!,qW ~j2vt!,$s i%…. ~25!

Here v5v(m) abbreviates the frequency of the time pe
odic reference state, henceforth denoted byqW 0(j)
5qW 0(j,m).

Following the original notion of Krasovskii and Hal
@1,5#, as well as its detailed elaboration in@3#, we generalize
the n dimensional state spaceG to an infinite dimensional
state spaceC. This allows us to embed the given delay d
ferential equation~25! in the context of functional differen-
tial equations. It turns out that this reformulation represe
an adequate framework for a linear stability analysis arou
a time periodic reference state. The resulting Floquet the
leads to a homogeneous vector valued recurrence rela
that determines the Floquet eigenvalues as well as the co
sponding Floquet eigensolutions.

A. Formulation of the problem in the extended state space

It appears that solutions of the delay differential equat
~25! for times j>0 depend on initial values of the sta
vector qW (j) in the entire interval@2vt,0#. Therefore we
have to complete Eq.~25! with the initial condition

qW ~u!5gW ~u!, 2vt<u<0, ~26!

wheregW is a given continuous vector valued function in
suitable function spaceC. The initial value problem@Eqs.
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~25! and ~26!# then maps the functiongW onto a trajectory in
the n dimensional state spaceG. Therefore the problem
arises that different initial vector valued functionsgW may
yield crossings of the corresponding trajectories inG. This
means that the pointwise uniqueness of solutions canno
assured when we restrict our considerations to the state s
G.

In order to solve this problem one may introduce the
tension of the finite dimensional state spaceG to an infinite
dimensional function spaceC where the initial vector valued
functiongW is defined. According to Krasovskii and Hale@1,5#
this is achieved by regarding the trajectoryqW (j) in the origi-
nal state spaceG during the time interval@j2vt,j# as a
single pointqW j in the extended spaceC:

qW j~u!5qW ~j1u!, 2vt<u<0. ~27!

The dynamics of the delay system can then also be descr
in the extended state spaceC by introducing the nonlinea
solution operatorT(j):

qW j~u!5„T~j!gW …~u!, 2vt<u<0. ~28!

Its uniqueness is expressed by the fact that the operatorT(j)
has the properties of a semigroup; that is,

T~j1h!5T~j!T~h!, j,h>0, T~0!5I, ~29!

whereI denotes the identity operator. We now have to
formulate the original initial value problem@Eqs. ~25! and
~26!# in the extended spaceC. To this end we formally dif-
ferentiate Eq.~28! with respect to the timej,

d

dj
qW j~u!5~AqW j!~u!, 2vt<u<0. ~30!

HereA denotes the infinitesimal generator that correspo
to the solution operatorT(j):

~AqW j!~u!5 lim
e→0

1

e
$@T~e!qW j#~u!2qW j~u!%. ~31!

By evaluating this limit separately for the interval2vt<u
,0 and for the pointu50 we obtain the explicit expressio
@3#

~AqW j!~u!5H d

du
qW j~u!, 2vt<u,0,

N@qW j~• !#, u50.

~32!

The nonlinear functionalN is constructed as follows. We
assume that the original vector fieldNW in Eq. ~25! can be
expanded into powers of its argumentsqW (j) andqW (j2vt).
A typical term of second order in this expansion has,
instance, the form

Ni jk
(2)qj~j!qk~j2vt!, ~33!

where the explicit components of the respective vectors h
been introduced and summation is understood over dum
be
ce
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indices. The representation ofqW (j) and qW (j2vt) can be
given in terms of the extended state spaceC by taking into
account the relation~27!:

qW ~j!5E
2vt

0

dud~u!qW j~u!,

qW ~j2vt!5E
2vt

0

dud~u1vt!qW j~u!. ~34!

If we apply this procedure to every term in the series exp
sion and collect terms of the same order in the extended s
vector qW j , the nonlinear vector fieldNW becomes a vecto
valued functionalN with the components

Ni@qW j~• !#5 (
k51

` E
2vt

0

du1•••

3E
2vt

0

duk

1

v
V i , j 1 . . . j k

(k) ~u1 , . . . ,uk!

3qj, j 1
~u1!•••qj, j k

~uk!, ~35!

where theV i , j 1 . . . j k

(k) (u1 , . . . ,uk) represent matrix valued

densities. Thus we have reached our first goal, namely
derive a nonlinear functional differential equation for th
problem formulated in Eqs.~25! and ~26!.

B. The linearized equation of motion

According to the prescription~27! the time periodic ref-
erence stateqW 0(j) in the state spaceG transforms intoqW j

0(u)
in the extended state spaceC. In order to test its linear sta
bility we insert the ansatz

qW j~u!5qW j
0~u!1qW̃ j~u! ~36!

into Eqs.~30! and ~32!. Dropping the tilde we obtain in the
linear approximation for the infinitesimal deviationqW j(u),

d

dj
qW j~u!5~ALqW j!~u!, ~37!

where the linear infinitesimal generatorAL becomes explic-
itly time dependent:

~ALqW j!~u!5H d

du
qW j~u!, 2vt<u,0,

E
2vt

0

du8Vj~u8!qW j~u8!, u50.

~38!

The matrix valued densityVj(u) can be written as a func
tional derivative ofN evaluated at the time periodic refe
ence stateqW j

0 :

Vj~u!5FdN@qW j~• !#

dqW j~u!
G

qW j5qW
j
0

. ~39!



u

er

r

f
he

n

p
t

ns

s
f-
real
his
as
tate

tely

e

his
o-

le,
in a
n-

rst

ns

n,
nal

5348 PRE 59C. SIMMENDINGER, A. WUNDERLIN, AND A. PELSTER
C. Transformation of the linear problem

Due to the fact that the reference stateqW j
0(u) is 2p peri-

odic with respect toj, the matrix valued densityVj(u) in
Eq. ~39! is time dependent with the same period. We th
perform a Fourier expansion of the matrixVj(u):

Vj~u!5 (
k52`

`

Vk~u!eikj. ~40!

In close analogy to the Floquet theorem for ordinary diff
ential equations@24# we try to solve Eqs.~37!–~40! by the
ansatz

qW j~u!5eljfW j
l~u!. ~41!

Here l denotes the Floquet eigenvalue andfW j
l(u)

5fW j12p
l (u) is a 2p periodic Floquet eigensolution fo

which we also perform a Fourier expansion:

fW j
l~u!5 (

n52`

`

fW n
l~u!einj. ~42!

In order to determine the Fourier componentsfW n
l(u) we in-

sert the hypothesis~41!, ~42! into the linearized equation o
motion ~37!–~40!. We now have to consider separately t
interval 2vt<u,0 and the pointu50. In the interval
2vt<u,0 we conclude that the Fourier componentfW n

l(u)
has the form

fW n
l~u!5fW n

le(l1 in)u. ~43!

For the caseu50 we find

(
n52`

`

fW n
l~l1 in !e(l1 in)j

5 (
n52`

`

(
k52`

` E
2vt

0

du Vk~u!e(l1 in)ue„i (k1n)1l…jfW n
l .

~44!

We now introduce the matrix valued quantity

L k,n5E
2vt

0

du Vk~u!e(l1 in)u ~45!

and a new indexñ(n)5n1k. Comparing the contributions
of the various Fourier components in Eq.~44! and dropping
the tilde, we obtain a homogeneous vector valued recurre
relation for the Fourier componentsfW n

l :

05 (
k52`

`

@L k,n2k2dk,0~l1 in !I #fW n2k
l . ~46!

Thus we are left with the problem of constructing an a
proximate solution to Eq.~46! that leads to both the Floque
eigenvaluesl and the corresponding Floquet eigensolutio
s

-

ce

-

.

D. Remark

In the Floquet theory of ordinary differential equation
@24# it is shown that the derivative of the time periodic re
erence state represents a Floquet eigensolution where the
part of the corresponding Floquet eigenvalue vanishes. T
statement remains valid for delay differential equations
can be seen as follows. As the time periodic reference s
qW j

0(u) satisfies the nonlinear equation of motion~30!, ~32!, a
differentiation with respect to the timej leads to

d

dj

dqW j
0~u!

dj

55
d

du

dqW j
0~u!

dj
, 2vt<u,0,

E
2vt

0

du8FdN@qW j~• !#

dqW j~u8!
G

qW j5qW
j
0

dqW j
0~u8!

dj
, u50.

~47!

A comparison with Eqs.~37!–~39! reveals that the derivative
of the time periodic reference stateqW j

0(u) indeed fulfills the
linear problem. Due to Eqs.~41! and ~42! it therefore pos-
sesses the general form

dqW j
0~u!

dj
5elj (

n52`

`

fW n
l~u!einj. ~48!

From the 2p periodicity ofqW j
0(u) and its derivative~48!, we

conclude that the real part of its Floquet eigenvaluel has to
vanish.

IV. MATRIX VALUED CONTINUED FRACTIONS

We consider two methods that enable us to approxima
solve Eq. ~46! for the Floquet eigenvaluesl and for the
Fourier componentsfW n

l of the Floquet eigensolutions. In th
first part we formulate a new method based onn diagonal
continued fractions. In the second part we show that t
solution method is equivalent to a formulation with tridiag
nal continued fractions introduced by Risken@25#. It turns
out, however, that the first method is much simpler to hand
as the necessary inversion of matrices can be performed
low dimensional space. Furthermore, the criterion for tru
cating higher order terms in the smallness parameterm can
be formulated more precisely in the framework of the fi
method.

A. Pentadiagonal recurrence relations

We apply the method of matrix valued continued fractio
in order to solve the vector valued recurrence relation~46!
approximately. In order to avoid overloading the notatio
we restrict ourselves for the time being to the pentadiago
case where the summation in Eq.~46! is performed for22
<k<2:

05L22,n12fW n12
l 1L21,n11fW n11

l 1@L0,n2~l1 in !I #fW n
l

1L1,n21fW n21
l 1L2,n22fW n22

l . ~49!
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We start by defining a set of ladder operatorsSn
m for m

561,62 that relate neighboring Fourier components via

fW n1m
l 5Sn

mfW n
l . ~50!

This definition implies the following useful relations be
tween different ladder operators:

Sn
215@Sn21

11 #21, Sn11
11 Sn

115Sn
12 . ~51!

Applying the definition~50! of the ladder operators, the pen
tadiagonal recurrence relation~49! can be rewritten as

05$L22,n12Sn
121L21,n11Sn

111@L0,n2~l1 in !I #

1L1,n21Sn
211L2,n22Sn

22%fW n
l . ~52!

We now express the ladder operatorsSn
m(m561,62) in

terms of the matricesL k,n as well as the operator
Sn61

m ,Sn62
m . In order to evaluate this dependence, we isol

the termfW n11
l 5Sn

11fW n
l in Eq. ~52!. Then the equation as

sumes the form

L21,n11fW n11
l 52$@L0,n2~l1 in !I #1L22,n12Sn

12

1L1,n21Sn
211L2,n22Sn

22%fW n
l . ~53!

Shifting the index fromn to n21 and applying the definition
fW n21

l 5Sn
21fW n

l , we obtain from the validity for allfW n
l the

operator relation

Sn
2152„$L0,n212@l1 i ~n21!#I %1L22,n11Sn21

12

1L1,n22Sn21
21 1L2,n23Sn21

22
…

21L21,n . ~54!

Similarly we construct the operator relations

Sn
1152„$L0,n112@l1 i ~n11!#I %1L22,n13Sn11

12

1L21,n12Sn11
11 1L2,n21Sn11

22
…

21L1,n , ~55!

Sn
2252„$L0,n222@l1 i ~n22!#I %1L21,n21Sn22

11

1L1,n23Sn22
21 1L2,n24Sn22

22
…

21L22,n , ~56!

Sn
1252„$L0,n122@l1 i ~n12!#I %1L21,n13Sn12

11

1L1,n11Sn12
21 1L22,n14Sn12

12
…

21L2,n . ~57!

We perform an iteration procedure by starting from Eq.~52!
for the casen50,

05@L22,2S0
121L21,1S0

111~L0,02lI !1L1,21S0
21

1L2,22S0
22#fW 0

l , ~58!

and by recursively inserting the recurrence relations of
ladder operators~54!–~57!. Writing the successive inversion
of the matrices formally as fractions, we may visualize t
iteration procedure by a schematic representation of a pe
diagonal matrix valued continued fraction.

Thus far we have discussed the solution of the vec
valued recurrence relation~52! in the pentadiagonal case fo
m561,62. However, our method can be correspondin
e

e

s
ta-

r

extended to the general case where all Fourier compon
fW n

l are coupled to each other. To this end we introduce l
der operatorsSn

m with arbitrary m according to Eq.~50!,
where we identifySn

05I . The homogeneous vector value
recurrence relation~46! then yields a corresponding one fo
the ladder operatorsSn

m :

05 (
k52`

`

@L k,n2k2dk,0~l1 in !I #Sn
2k . ~59!

An iteration procedure similar to Eqs.~54!–~57! finally leads
to a homogeneous equation for the Fourier componentfW 0

l ,

M ~l!fW 0
l50, ~60!

where the resulting matrixM (l) consists of an infinite num-
ber of matrix valued continued fractions transcendentally
pending on the Floquet eigenvaluesl. Therefore the Floque
eigenvaluesl are determined from the condition that th
determinant of the matrixM (l) vanish:

detM ~l!50. ~61!

Once the Floquet eigenvaluesl are known, the yet unknown
Fourier componentfW 0

l is determined up to a constant from
solving the homogeneous equation~60!. All Fourier compo-
nentsfW n

l of the Floquet eigensolutions are then calculated
successively applying the ladder operatorsSn

m starting with

fW 0
l :

fW n
l5S0

nfW 0
l . ~62!

Note that the remaining normalization constant infW 0
l has to

be fixed by an adequate biorthonormality condition, whi
will be discussed in Sec. V D.

In applications, however, it is impossible to exactly eva
ate the infinite number of matrix valued continued fraction
From an analytical point of view we can therefore expect t
this solution method will allow us at most to approximate
determine Floquet eigenvalues and the corresponding ei
solutions. To this end we recall that the starting point of o
linear stability analysis, i.e., the time periodic reference sta
is only known as a finite power series in the smallness
rameterm. As a consequence the whole calculation can
simplified by approximately neglecting higher order terms
the smallness parameterm. In particular, it becomes suffi
cient to restrict the vector valued recurrence relation~46! to a
finite number of terms, so that the subsequent iteration p
cedure only leads to a finite number of matrix valued cont
ued fractions. Furthermore, each continued fraction can
evaluated in the leading order of the smallness parametem.
In spite of these successive expansions, the continued
tions have the property that the approximate results rap
converge towards the exact values if the leading order in
smallness parameterm is increased.

B. Sketch of Risken’s tridiagonal formulation

Following Risken@25# we show that then diagonal matrix
valued continued fractions can always be cast into a tridia
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nal form. For the sake of simplicity we demonstrate this o
for the pentadiagonal recurrence relation~49!, but the gen-
eral case is treated along similar lines. We start by dis
guishing between even and odd indicesn in the pentadiago-
nal recurrence relation~49!:

05L22,2n12fW 2n12
l 1L21,2n11fW 2n11

l 1@L0,2n

2~l1 i2n!I #fW 2n
l 1L1,2n21fW 2n21

l 1L2,2n22fW 2n22
l ,

~63!

05L22,2n13fW 2n13
l 1L21,2n12fW 2n12

l 1$L0,2n11

2@l1 i ~2n11!#I %fW 2n11
l 1L1,2nfW 2n

l 1L2,2n21fW 2n21
l .

~64!

We now construct new vectors according to the prescrip

FW n11
l 5S fW 2n12

l

fW 2n13
l D , FW n

l5S fW 2n
l

fW 2n11
l D , FW n21

l 5S fW 2n22
l

fW 2n21
l D .

~65!

Additionally we define the matrices

Q21,n115S L22,2n120

L21,2n12L22,2n13
D ,

Q1,n215S L2,2n22L1,2n21

0L2,2n21
D ,

Q0,n5S @L0,2n2~l12in !I #L21,2n11

L1,2n$L0,2n112@l1 i ~2n11!#I %
D . ~66!

Due to these definitions both pentadiagonal recurrence r
tions ~63!, ~64! can be combined in the following way:

Q21,n11FW n11
l 1Q0,nFW n

l1Q11,n21FW n21
l 50. ~67!

Thus we have reached our goal of finding a tridiagonal v
tor valued recurrence relation. At this stage we define ag
ladder operatorsRn

6 with the property

FW n11
l 5Rn

1FW n
l , FW n21

l 5Rn
2FW n

l . ~68!

These ladder operators can be determined when we rew
the tridiagonal recurrence relation~67! as

05@Q21,n11Rn
11Q0,n#FW n

l1Q1,n21FW n21
l ~69!

and, similarly, as

05Q21,n11FW n11
l 1@Q0,n1Q1,n21Rn

2#FW n
l . ~70!

Comparing these results with the original definitions~68!
and shifting the index, we find relations for the ladder ope
tors Rn

6 themselves:

Rn
752@Q61,n72Rn71

7 1Q0,n71#21Q71,n . ~71!

Again it is sufficient for our purpose to solve the tridiagon
recurrence relation~67! for the casen50:
y

-

n

la-

-
in

ite

-

l

05@Q21,1R0
11Q0,01Q1,21R0

2#FW 0
l . ~72!

Repeated application of the operator relations~71! then
yields a tridiagonal matrix valued continued fraction.

V. FORMULATION OF THE ADJOINT PROBLEM

In general, the linear infinitesimal generatorAL is not
self-adjoint in the extended state spaceC. Therefore it be-
comes necessary to define another extended state spacC †

dual to C and to investigate the properties of the adjo
infinitesimal generatorA L

† . In order to relate the linearized
problem with its adjoint, it turns out that the canonical bili
ear form for ordinary differential equations is not approp
ate. In the case of delay differential equations a modifi
bilinear form has to be introduced.

A. The bilinear form

The choice of the canonical bilinear form for delay diffe
ential equations is motivated by the Fredholm alternative.
this end we consider the inhomogeneous version of Eq.~37!,

S FAL2
d

djGqW jD ~u!5xW j~u!, 2vt<u<0, ~73!

with a 2p periodic vector valued functionxW j(u)
5xW j12p(u). We try to construct a particular solutionqW j(u)
of Eq. ~73! by the Floquet ansatz~41! with fW j

l(u)

5fW j12p
l (u). Inserting the Fourier expansion~42! for fW j

l(u)

and a corresponding one for the inhomogeneityxW j(u), we
obtain

(
n52`

`

~@AL2l2 in#fW n
l!~u!einj5 (

n52`

`

xW n~u!einj.

~74!

Taking into account the definition~38! of the infinitesimal
generatorAL in the interval2vt<u,0, we conclude from
Eq. ~74! the general form of the Fourier componentfW n

l(u):

fW n
l~u!5fW n

l~0!e(l1 in)u1E
0

u

ds e(l1 in)(u2s)xW n~s!.

~75!

Correspondingly Eq.~74! determines for the pointu50 the
yet unknown initial conditionfW n

l(0). With the definition
~45! it fulfills an inhomogeneous vector valued recurren
relation:

(
k52`

`

@L k,n2k2dk,0~l1 in !I #fW n2k
l ~0!

5xW n~0!2 (
k52`

` E
2vt

0

duE
0

u

ds e(l1 i (n2k))(u2s)

3Vk~u!xW n2k~s!. ~76!

This result suggests how to introduce both the dual spaceC †

and the bilinear form. We assume thatC † consists ofn di-
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mensional vector valued functions defined on the inter
@0,vt# and that the bilinear form is given by

@cW j
†~s!,fW j~u!#j5^cW j

†~0!,fW j~0!&2E
2vt

0

duE
0

u

ds

3^cW j
†~s2u!,Vj1s2u~u!fW j~s!&

~77!

for all fW jPC and cW j
†PC †, where ^& denotes the usual ca

nonical scalar product. Note that each delay system and
time periodic reference state induces its own bilinear fo
due to Eq.~39!. Furthermore, we observe that the expli
time dependent bilinear form~77! for a time periodic refer-
ence state reduces to the corresponding one for a time i
pendent reference state@3#.

With the bilinear form ~77! the inhomogeneous recu
rence relation~76! can be rewritten according to

(
k52`

`

@L k,n2k2dk,0~l1 in !I #fW n2k
l ~0!

5
1

2pE0

2p

dj„Aj,n
† ~s!,xW j~u!…j , ~78!

where the matrix valued functionsAj,n
† (s) are given by

Aj,n
† ~s!5e2 inje2(l1 in)sI , 0<s<vt. ~79!

Thus we obtain the following Fredholm alternative for so
ing the inhomogeneous equation~73!. If the parameterl
does not coincide with a Floquet eigenvalue, we read
from Eq. ~78! that there exists a unique solution. Otherwi
we can only expect a solution if the inhomogeneityxW j fulfills
a solvability condition that involves the bilinear form~77!.
This solvability condition will be concretized below afte
having defined the adjoint operatorA L

† and its corresponding
Floquet eigensolutions.

B. The adjoint operator

The bilinear form~77! can be applied to describe the ev
lution of the linearized delay system also in the dual e
tended state spaceC †. To this end we require that the bilinea
form between the state vectorqW jPC and its dualqW j

†PC †

become time independent:

05
d

dj
„qW j

†~s!,qW j~u!…j . ~80!

As the bilinear form~77! does explicitly depend on the tim
j via the matrix valued densityVj(u), we derive from Eqs.
~37! and ~80! the evolution equation inC †,

d

dj
qW j

†~s!52~A L
†qW j

†!~s!, 0<s<vt, ~81!

where the adjoint infinitesimal generatorA L
† obeys
l

ch

e-

ff

-

~A L
†qW j

† ,qW j!j5~qW j
† ,ALqW j!j2E

2vt

0

duE
0

u

ds

3 K qW j
†~s2u!,

]

]j
Vj1s2u~u!qW j~s!L .

~82!

When we use the definition~38! of the infinitesimal operator
AL , we obtain from Eq.~82! after a partial integration the
following expression for the adjoint infinitesimal generat
A L

† :

~A L
†qW j

†!~s!5H 2
d

ds
qW j

†~s!, 0,s<vt,

E
0

vt

ds8qW j
†~s8!Vj1s8~2s8!, s50.

~83!

C. The adjoint recurrence relation

We are now in a position to solve the adjoint proble
defined by Eqs.~81! and~83!. In close analogy to the proce
dure in Sec. III C we perform the Floquet ansatz

qW j
†~s!5e2ljcW j

†l~s!, ~84!

with the 2p periodic adjoint Floquet eigensolution

cW j
†l~s!5(

j
cW j

†l~s!e2 i j j. ~85!

Evaluating Eqs.~81! and~83! in the interval 0,s<vt fixes
the form of the Fourier components according to

cW j
†l~s!5cW j

†le2(l1 i j )s, ~86!

whereas the cases50 leads to the corresponding homog
neous vector valued recurrence relation

05 (
k52`

`

cW j 1k
†l @L k, j2dk,0~l1 i j !I #. ~87!

In order to solve Eq.~87! for the Fourier componentscW j
†l of

the adjoint Floquet eigensolutions and the respective Floq
eigenvaluesl, we proceed along lines similar to those
Sec. IV A. First we define adjoint ladder operatorsZ j

m with
arbitrarym and the identityZ j

05I in analogy to Eq.~50!:

cW j 1m
†l 5cW j

†lZ j
m . ~88!

Inserting Eq.~88! in the homogeneous vector valued recu
rence relation~87!, we then obtain a corresponding one f
the adjoint ladder operators:

05 (
k52`

`

Z j
k@L k, j2dk,0~l1 i j !I #. ~89!

A careful comparison between Eqs.~59! and~89! reveals that
the recurrence relations for the ladder operatorsSn

m and their
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adjoint Z j
m are not independent of each other. Indeed, th

are mapped onto each other by the prescription

L k,n2kSn
2k5Zn

2kL2k,n . ~90!

This means that the adjoint ladder operatorsZ j
m can imme-

diately be calculated, once the ladder operatorsSn
m are

known. However, this does not imply that the solution of t
adjoint problem directly follows from the linear problem
Iteratively inserting the operator recurrence relation~89! in
the vector valued recurrence relation~87! for j 50 yields
with Eq. ~90!

cW 0
†lM ~l!50. ~91!

Thus the adjoint problem leads to the same condition~61! for
the Floquet eigenvaluesl, but the Fourier componentcW 0

†l

has to be determined independently from the Fourier com
nentfW 0

l defined by Eq.~60!.
With these definitions we are now able to concretize

Fredholm condition for solving the inhomogeneous equat
~73!. Multiplying Eq. ~78! from the left withcW n

†l , perform-
ing the summation over alln, and taking into account the
homogeneous vector valued recurrence relation~87!, we
yield

1

2pE0

2p

djS (
n52`

`

cW n
†lAj,n~s!,xW j~u!D

j

50. ~92!

Due to Eqs.~79!, ~85!, and ~86! this solvability condition
takes the concise form

1

2pE0

2p

dj„cW j
†l ,xW j~u!…j50. ~93!

Only in the special case in which all quantities do not exp
itly depend on the timej does this reduce to the usual Fre
holm condition; i.e., the inhomogeneityxW j must be orthogo-
nal to the respective eigensolution of the adjoint operatorA L

†

@3#.

D. Biorthonormality relations

Finally we show that the Floquet eigensolutionsfW j
l and

cW j
†l of the infinitesimal generatorAL and its dualA L

† , re-
spectively, can be chosen to form a biorthonormal set iC
and C †. First we derive the biorthogonality condition fo
different Floquet eigenvaluesmÞl. Using the explicit ex-
pression for the bilinear form~77! and applying our previous
results~40!–~42! and Eqs.~85! and ~86!, we obtain
y

o-

e
n

-

„cW j
†l~s!,fW j

m~u!…j5 (
n, j 52`

` H ^cW j
†l ,fW n

m&ei (n2 j )j

2 (
k52`

`

ei (n1k2 j )j

3E
2vt

0

duE
0

u

dŝ cW j
†l ,Vk~u!fW n

m&

3e[l1 i ( j 2k)]ue[m2l1 i (n1k2 j )]sJ .

~94!

An integration with respect tos yields for the second term on
the right hand side

2 (
n, j ,k52`

`

ei (n1k2 j )jE
2vt

0

du^cW j
†l ,Vk~u!fW n

m&

3
e(m1 in)u2e[l1 i ( j 2k)]u

m2l1 i ~n1k2 j !
. ~95!

With the definition~45! of the matricesL k,n this reduces to

2 (
n, j ,k52`

`

ei (n1k2 j )j
^cW j

†l ,@L k,n2L k, j 2k#fW n
m&

m2l1 i ~n1k2 j !
, ~96!

so that we obtain from the homogeneous vector valued
currence relations~46!, ~87!,

2 (
n, j 52`

`

^cW j
†l ,fW n

m&ei (n2 j )j. ~97!

From Eqs.~94!–~97! we conclude the biorthogonality fo
mÞl:

„cW j
†l~s!,fW j

m~u!…j50. ~98!

To normalize the biorthogonal set of Floquet eigenfunctio
we introduce a proper normalization constant in a symme
way:

fW n
l5NlFW n

l , cW n
†l5NlCW n

†l . ~99!

From the requirement

~cW j
†l~s!,fW j

l~u!!j51, ~100!

we then determine the normalization constantNl by per-
forming similar calculations as above:

Nl5F (
n, j 52`

` K CW j
†l ,S d j ,n2E

2vt

0

du ue(l1 in)uVj 2n~u! D
3FW n

lL G21/2

. ~101!

As expected the normalization constantNl does not explic-
itly depend on the timej. Summarizing the results~98! and
~100!, the biorthonormality relation reads
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„cW j
†l~s!,fW j

m~u!…j5dm,l . ~102!

VI. SUMMARY AND CONCLUSIONS

The present paper was devoted to systematically deve
ing a Floquet theory for delay differential equations. At fir
we approximately determined a time periodic reference s
by extending two standard methods for ordinary differen
equations, namely, the Poincare´-Lindstedt and the Shohat ex
pansions. Then we tested the stability of this reference s
by constructing Floquet eigensolutions and their correspo
ing eigenvalues from matrix valued continued fractions.
nally the Floquet theory was completed by studying the
joint problem. The applicability of our Floquet theory wa
demonstrated in@27#. In particular, our analytical treatmen
provides a means of understanding the mechanism of
continuous control of chaos by self-controlling feedba
@28,29#. Previous investigations have indicated that it b
comes crucial to decide whether an observed stabilized l
cycle corresponds to an unstable cycle of the system o
r,

.

,

.

s

.

o

p-
t
te
l

te
d-
-
-

he

-
it
is

produced by the control mechanism itself@27,30#.
As the Floquet theory represents a linear stability analy

for a time periodic reference state, there still remains
nonlinear problem of constructing the normal form for
emerging instability. We expect that this problem can
tackled in a way similar to@3#, where synergetic method
@26,24# are extended to investigate delay differential equ
tions in the local neighborhood of a time independent ref
ence state. Also close to the instability of a time period
reference state the inherent time scale hierarchy should a
us to adiabatically eliminate the fast modes by using proj
tors that are induced by the bilinear form~77! of the linear
stability analysis. As in@3# the resulting order paramete
equations for the slow modes should turn out to be of
form of ordinary differential equations. We stress that t
normal form theory is indispensable for classifying the ins
bilities of time periodic reference states. Whereas the lin
stability analysis is sufficient to identify the instabilities o
time independent reference states, this is no longer true
time periodic ones@24#.
ce
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