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Synchronizing chaos in an experimental chaotic pendulum using methods
from linear control theory
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Linear feedback control, specifically model predictive conthdPC), was used successfully to synchronize
an experimental chaotic pendulum both on unstable periodic and aperiodic orbits. MPC enables tuning of the
controller to give an optimal controller performance. That is, both the fluctuations around the target trajectory
and the necessary control actions are minimized using a least-squares solution of the linearized problem. It is
thus shown that linear control methods can be applied to experimental chaotic systems, as long as an adequate
model is available that can be linearized along the desired trajectory. This model is used as an observer, i.e., it
is synchronized with the experimental pendulum to estimate the state of the experimental pendulum. In contrast
with other chaos control procedures like the map-based Ott, Grebogi, and York niBtngd Rev. Lett64,
1196(1990], the continuous type feedback control proposed by Pyrfgiags. Lett. A170, 421(1992)], or
the feedback control method recently proposed by Brown and R{iRb&os7 (3), 395(1997)], the procedure
outlined in this paper automatically results in a choice for the feedback gains that gives optimum performance,
i.e., minimum fluctuations around the desired trajectory using minimum control actions.
[S1063-651%99)09505-1

PACS numbes): 05.45—-a

I. INTRODUCTION model that is synchronized with the experimental system.
After synchronization, the observer’s state will be the same

Chaos control is a vast expanding field of research wittas the experimental system’s state. The full state feedback
many applications in, e.g., secure communicatiphs?], ~ Procedure is sketched in Fig. 1. ,
electronics[3,4], mechanical engineering-9], and fluidi- \éVSenkusw_lg(fulltsft;(tehfee?bakl)ck cor(ljtroli at(k:]hmce for g‘ve
zation engineering10-12. Many chaos control methods eedback gain matr as 10 be made. In this paper two

. methods are used for choosidgand each method is imple-
have been proposed in the past decade, see e.g., Chen

. oo 48nted in two different ways. The first method stabilizes the
Dong [_13]’ Rulkov [3], _Sh|nbrot[14], and Kapitania{15] | hgtaple poles of the system by choosing appropriate feed-
for reviews on the subject. A number of these control methyack gains and will be referred to as thele-placement

ods can be used only in specific cases like, e.g., control by r(t) _{P K(r(1)) U ! pendulum =X t)
+

the construction of Lyapunov functions, or are sensitive to
noise, like the OGY methofl6]. (a)
In this paper, ageneral control method for chaotic sys-
tems is proposed, based limear control theory{17,18. The
practical implementation of this linear control method will b . O _ U x(t) Cx(t)
be illustrated by the control of an experimental driven + ¥ K(r(®) Pendulum c
damped chaotic pendulum. To apply linear control methods +
to a nonlinear system, it is linearized along some nominal * Kobs \+>
trajectory, as is usual practice in classic linear control theory
[18]. Here the system is linearized along the desired unstable Model c
periodic orbit(UPO) or aperiodic orbit(AO), in a similar Cx,e(t)
way as has been recently proposed by Brown and Rulkov (b) Xons(t) >
[19].
The control methods described in this paper are all baseget
on full state feedback contrpl7], for which the full state of
the pendulum has to be knowfe., angular displacement

FIG. 1. (a) Full state feedback control scheme. The difference
ween the reference stat@t) and the dynamical system'’s state
X(t) is used to compute the control inputby multiplying this

| locit d dri hased ", dul ' difference with the feedback gain mati (b) If the full state of
angular velocity, and drive phaseHowever, the pendulum the dynamical system cannot be measured, it can be estimated using

used here only allows its angular displacement to be M3 observer. An observer is a model that is synchronized with the
sured[8,9]. For that reason the full state of the pendulumg,perimental system, using the difference between the measured
will be estimated by using an observer. An observer is &tate variable€x(t) and simulated state variabl€x,,{t). HereC
is the observation matrix that isolates the measured state variable
from the full state. For the experimental pendulum only the angular
*Present address: Laboratory of Chemical Reactor Engineeringlisplacement of the pendulum can be measured}xd)= 6(t).
Eindhoven University of Technology, P.O. Box 513, 5600 MB The observer gain matriK s is used to synchronize the observer
Eindhoven, The Netherlands. with the experimental system.
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method in the remainder of this paper. This technique is A. Full state feedback control

further described in Sec. IlA1. The experimental driven damped pendulum can be ad-

Usually it is not straightforward to choose feedback gainsequ‘.my described by the following set of ODE24], and
in such a way that both the deviations from the target trajecEq. (1) thus becomes

tory and the control actions become sufficiently small. The

second method for choosirg finds an optimum solution for ( dw _ _
this problem and will from now on be referred to as the qr = Piw—p2sin 6)+p3sin(¢),
optimal-controlmethod. Optimal control is implemented in do
two ways as will be discussed in Sec. Il A2. F=F@r(t),t)={ —=w,

The design of the observer is discussed in Sec. IIB. In dt
Sec. Il the results of the two control methods will be illus- do
trated by four different implementations. Finally, in Sec. IV [ dt ~ “°-
the conclusions will be presented. (5)

Il THEORY Herep,, p,, andp; are constants related to friction, gravity,

and the driving force, respectively. The angular velogiby,

This section presents the methods used to synchronize thibe angular displacemert¥), and the drive phaséd) to-
experimental chaotic pendulum with target trajectories thagether represent the pendulum’'s full state(t)
are embedded in the pendulum’s chaotic attractor. These tae=[ w(t) 8(t) ¢(t)]". The JacobiarDF of the set of ODE’s in
get trajectories are UPO’s and AO’s. Examples of AO’s areEg. (5), becomes
previously measured time series of the state of the pendulum
(x(t)) or the chaotic trajectory of anothéout dynamically —p1 —p2cog6,(t)) +pzcode,(t))
identica) pendulum. The theory is applicable to both stabi- DF=| 1 0 0
lizing UPO'’s and synchronizing two AO’s since stabilization 0 0 0
and synchronization of chaotic systems are similar phenom-
ena. In both cases the response system, i.e., the system thehere 6,(t) and ¢,(t) denote the angular displacement and
has to be controlled, has to follow @maginary driving  drive phase corresponding to the target trajecidty. For

. (6)

system that moves on a desired trajectory. the experimental chaotic pendulum, the drive phase of the
Let us consider the following driving system: response systend(t) always equals the drive phase of the
drive systeme¢,(t). This means that the dynamics of rel-
F(t)=F(r(t),t), (1)  evance are described by the following Jacobian,
where the desired trajectory is represented by veotby, —p1 —pocod6,(t))
which is the system’s state. Functiéhis a vector-valued DF:( 1 0 ’ @)

function. The dynamics of the response system become
Now the deviatiorg(t) from the target trajectory(t) is de-

x(t)=F(x(t),t)+EX(t)—r(t)), 2 scribed by
whereE is a vector-valued function and represents the cou- . . |[—P1 —P2cog6,(t)) Ke1 ke
pling between the driving and response systems. When both &t)= 1 0 1o 0 e(t),
systems are synchronized, hendg)=r(t), the coupling (8)

between both systems becomes zeroEer0. The motion

linearization along this target trajectory, matrix K. The second row oK. will contain zeros, since
there is no way of directly changing the angular displace-
St (t)=[DF,(r(t),t)+ DE,(r(t))]sr(t), (3  ment. The pendulum can only be controlled by applying an
extra force on it.
Here or(t) is the deviation from the target trajectoryt), An intuitive approach of choosiné(. in Eq. (8) is to

and DF, and DE, are the Jacobians df and E, evaluated make sure the poles of the system lie in the left half-plane. If
alongr(t). By substitution ofA=DF, and —K =DE,, this  the system described by E¢B) would be time invariant,
equation can be written in a different, more familiar form aschoosing the poles in the left half-plane would yield the de-

sired synchronization. Since the system is not time invariant,

e(t)=[A(r(t),t)—K(r(t))]et), (4) negative real parts of the poles do not guarantee successful

synchronizatiorj19]. However, if the poles are placed suffi-
whereeg(t) =x(t) —r(t), i.e., the deviation from the desired ciently far away from the imaginary axis, synchronization
trajectory. Now we have to find the appropriate couplingwill occur. Hence, this intuitive approach will be used to find
gain matrixK that will synchronize the response system withan estimate foK .. Through a rigorous linear stability analy-
the drive system, i.elle(t)||—0 if t—oe. In linear control sis, Brown and Rulkoy19] derived a sufficient condition to
theory, Eq.(4) is usually considered as the closed-loop re-place the poles of systems with time-dependent parameters,
sponse of a full state feedback controlled system. How tdike Eq. (8), sufficiently far into the left half-plane. For Eg.
determine the appropriate coupling gain, or feedback matrix8), the intuitive condition satisfies the rigorous condition
K is the subject of Sec. Il A. derived by Brown and Rulkof19]. In general, this does not
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have to be the case. However, since the rigorous condition is Noq
only sufficient and not necessary, the intuitive approach carMSE:z N N N
be used to give an initial guess fir, . Although this linear =1 e ¢ ¢
stability analysis promises stable synchronous motion, noise —MSE. +MSE.+MS 10
and nonlinear effects, like e.g., the bubbling of attracfay E, o Ey (10
may prevent long-term stable synchronous motion. Two pos-

sible ways of choosing the location of the poles are discusseg \well ie. constant gain optimal controHere MSE is the

in the Sec. IIA1. mean-square error per drive cyché, is the number of drive
cycles, andN is the number of discrete time steps at which
the control output is evaluated. The deviations from the tar-
The poles of Eq(8) are get trajectory(86 and éw) are normalized by dividing them
by the standard deviations @f and w. The control action
1 (ke 10w+ K. 260) is normalized by dividing it by the stan-
Ni2=— §(P1+ Ke,1) dard deviation of the drive term. The standard deviations are
determined from time series of the uncontrolled pendulum
1 and are thus a measure for the size of the pendulum’s attrac-
*5 V(p1tke 1)’ =4[pacodb () tkeo]. (9  tor,

Instead of using a fixed combination of feedback gains,
To keep the real parts of these poles in the left half of thdnde! predictive controlMPC) uses target state dependent
complex plane, the conditions,,>—p; and kg,> values of t_he elements &f; . Thl_s is advantageous since the
—p,cos(,) have to be met. local stability of the target trajectory can now be used to

Here, two ways of meeting these conditions are considkm\a/shthe (;]ontrol acltlo?shas s_mall as po§3|ble. hed in th
ered. The first one is keepirkg , andk, , constant. Hence, in en the control of chaotic systems Is approached in the

_ _ ; drive-response way, cf. Eqél) and(2), this results in a full
I/C:ywoofrscthg?;ien\gljv Tﬁ;erfeez,bgtc:'lizginin\?vill(lcyéz regéfr;—c? I?o agtate feedt_)ack algorithm t_hrough the Iineariz_atio_n of the cou-
constant gain pole placement pling functionE. Whe_n using MPC, no coupling is _assumed
The second way of making sure RE€O0, is to allowk, and _only the dynamics tre_msverse the target trajectory are
to vary along the trajectory, by choosir;g it equal H‘éz considered. These dynamics are captured by the following

—Ke0- P 0S@,). Now Re@)<0, if ke 1> —py and ke, ~ JESCTiPtON:
>0. It is expected that by using this type wériable gain
pole placemennhecessary control actions are smaller than &(t)=DF.(r.t)e(t) + Bu(t 11
when using constant gains. This is because the variable gain &) (r.Det) ), (D
is allowed to be smaller, while still meeting the conditions
for Req)<0. whereu is a scalar control input, anB=[1 0 0]", which

Itis not straightforward to chose exact values for the feedyetermines in which of the ODE'’s of Ed5) the control
back gains, andk;, since there are two requirements to 4ction takes effect. When only the deviations of the angular
be met. The first requirement is to make the pendulum foIIOV\(,e|OCity and of the angular displacement from the target tra-

some predefined driving signa(t), while the second re- jeciory are considered, E¢L1) becomes
quirement is to do this with as little control energy as pos-

sible. In Sec. IIA2, two possible ways of optimizing the
choices for the values of the elementskof are discussed. —p;  —pacod6,(t))

1
&t)= 1 0 )e(t)+(0) -u(t). (12

Sw\?2 1/686\%2 1 [k, 8w+k.,50\2
_‘”) +_(_) " (M“’—CZ)
0w/, Ty oy i

1. Pole placement

2. Optimal control

In this section, two implementations of optimal control o o o ]
are introduced. Before discussing how to design the controll he goal of MPC is, given an initial deviaticg at timet,,
ler, it should be clear what is meant by optimal control. Thet0 find u(to) - - -u(to+T) that minimizes the weighted sum
goal of the controller is to keep the experimental chaoticof the squared future deviations from the target trajectory
pendulum on a target trajectory, using as little effort as pos@nd of the total control energy used within a certain predic-
sible. In practice this goal is achieved by finding the mini-tion horizonT. For that purpose, the following cost function:
mum of a cost functiori17]. This cost function is then de-
fined as the sum of squared deviations from the target .
trajectory plus the sum of squargd contrpl actions peeded to V:f O+T[e(t)TQe(t)+ BTu(t)RBu(t)]dt, (13)
keep the system close to the desired trajectory. In linear con- to
trol theory, this is achieved by model predictive control or
linear quadratic contrdl17].

The most straightforward way to obtain optimal control isis minimized by choosingi(tg)- - -u(tg+T). Matrices Q
by choosing a fixed combination &f ; andk, , that results ~andR are diagonal weighting matrices that are used to tune
in synchronization of the model equations with data from thethe controller. These matrices are chosen in such a way, that
experimental pendulurand that minimizes a cost function the cost function becomes equal iy times MSE, which
of the form, will be called the sum of squared erraiSSB. Here N, is
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the number of drive cycles over which the cost function wasvhereX=[e!. ,e', ,---e', \]" is a column vector containing
evaluated. MatrbR will then have 1672 on its diagonal, and the future deviations from the target trajectory, abd
Q=diag(1/ai,1/cr§). =[UpUps1 " "Unin-—1]" is @ column vector that contains the
When MPC is used to control the experimental pendulumgurrent @(,) and all future control actions.Q and R are
the equations have to be written in discrete time, since meaoth square weighting matrices. The optimal control actions
surements of the pendulum’s state are not continuouslyUgyima), corresponding to the minimum of the cost func-
available. Using a first-order approximatif#l, Eq.(12) can tion of Eq.(15), are given by
be written as

€ 1=An-€+B-u,, with Uooptima= — (R+BgQBo) ""BgQA¢ey=—Keo.  (16)
1-pi-At  —pycog6,(t,))- At
A(p:( 1?2,{ P2 S(lr( ) ) and These optimal control actions are found by substitution of

X=A-e+B-U into Eqg.(15) and then differentiating the re-
At sult toU and solving for the minimum. As can be seen from

Bz( 0 ) (14 Eq. (16), the optimum sequence of control actions is given

by a feedback control law. This means that MPC provides an

This approximation is valid if the sample ima{) is suffi- ~ OPtimum way of choosing the feedback matkix Matrix Aq
ciently small. The discrete version of the cost function of Eq.gives the open loop response of the system during the pre-

(13) can now be written as a matrix multiplication, diction horizonT=N-At. Matrix B, gives the influence of
the control actions on the system during this prediction ho-
V(U)=XTQX+U'RU, (15  rizon. These matrices are defined as follows,
|
A, B 0 0 0 0
AniiAn A.B B 0 . 0 0
A,.1AB A, 1B B . 0 0
Ap= , Bo= Ani2Ani1AnB ApAR B AnB B 0 0 (17)

0 0
. . . . Ce B 0
Aninot--A, Anin-1---AB . . . ... Ajin-1B B

In practice, only the first control action of the optimum se-of differentiating the measured angular displacemenplan

guence (,) is implemented; when time advances, Ebp) serverwill be used to estimate the pendulum’s full state.

is reevaluated to yield the new control action, etc. It is im- As mentioned in Sec. | an observer is a model that is

portant to notice that these optimal control actigieedback synchronized with the experimental system. If the observer is

gaing can be determined off line, if the target trajectory is successfully synchronized, it's state is an estimate for the

known. experimental system’s full state. In this case the set of
There are now three adjustable parameters, i.e., th®pg’s given in Eq.(5) is used as the observer model. The

weighting matrice® andR, and the prediction horizofi(or  gitference between the observer's state and the state of the
N=T/At), to tune the controller to give optimum perfor- experimental pendulum can be described by
mance, i.e., to have a minimum value for the mean-square

( —P2 —P2 Coiﬁ(t))) . ( 0 kobs.;) } . e(t),

error per drive cycle. This tuning process is still a matter of
trial and error. an=|| 1 0 0 Kgpe

(18)
B. Observer design

The four ways of controller implementation mentioned in ) ) .
the previous section, i.e., constant and variable gain pol¥hen the observer is driven by the experimental system, spe-
placement, and constant gain optimal control and MPC, algifically the measured values @i(t). The values for both
rely on knowledge of the full state of the dynamical system.observer gaingps ; and kqps » should be chosen in such a
However, the full state of the experimental pendul[89]  Wway that synchronization between the observer and the ex-
cannot be measured. This means it has to be estimated bagegfimental pendulum is successful, i.e., the difference be-
on only one measured variable, the angular displacemeritveen the measured angular displacemé(t) and the an-
6(t). One way of estimating the angular velocity is by dif- gular displacement predicted by the observer, becomes
ferentiation ofd(t). However any noise and/or measurementsmall. The constant gain pole-placement technique is used to
error present irg(t) is amplified by differentiation. Instead get an initial estimate for the observer gakggs ;andkqps ».
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200 v v T T J v v T A. Observer design

The design of the observer is split into two steps. In the
first step, a model is estimated that describes the pendulum’s
dynamics. In the second step, the observer feedback gains
Kobs,1@NdKyps o are estimated.

Step 1: determination of observer model. In principle for
the observer any type of model is adequate, as long as it is
possible to linearize the model along the target trajectory.
Black box type of models as neural networks, as well as sets
of ordinary differential equations can be used to describe the
functional relationship between the current state, the control
input, and the future state, the output. There are methods
available in literaturg¢21,22 to determine differential equa-

. . . . . . . tion models from measured data. In this case the set of ordi-
1 2 3 4 nary differential equations that describes the pendulum’s dy-
Time (s) namics are known, Eq5). The unknown parametergq{,
p,, andps) were estimated by fitting,

FIG. 2. Result of the least-squares-fit procedure to estimate the q
unknown parameters of the pendulum mofd&d). (19)]. The solid w . .
line shows the measured daE[)a that was oiﬂn(ed)g)y differentiating  dt f(@,0,¢)==piw—Pp;sin(6) + pasin(4), (19
the measured angular displacement twice according t¢2By.The
broken line shows the model fit with parameter valggs-0.74  to experimental data, using a method similar to that of Baker,
+0.001s?, p,=78.26+0.26 rad 52, and  p;=66.18 Gollub, and Blackburri21]. The acceleration of the pendu-
*0.21rad 2 The pendulum model will be used as an observer, tolum (dw/dt) and its angular velocityw) are estimated by
estimate the pendulum’s full state from measurements of only thejifferentiating the measured anglt), which is sampled
angular displacemerd(t). using a sample timat, according to

100

-1001

f(w,0,4) as given by Eq. (19) (rad s%)

-200
0

B+ AD - B(t— A1)
Ill. RESULTS w(t)= 2At ’

) _ do(t) O(t+At)—26(t)+ 6(t—At)
The pendulum used is a tygeM-50 chaotic pendulum TR INZ .
produced by the Daedalon Corporati@®alem, MA, USA

[9]. The pendulum arm itself is connected to an axis with lrhe drive phasep(t) is known and iswp-t. Sincedw/dt,
optical encoder wheel and a ring magnet attached to it. Fo%, sin(9), and sing) are all known, parameters;, p,, and
eIectromagnetlc drlve_ coils act as a motc_)r that generates 5 can be estimated by using a linear least-squares-fit proce-
torque acting on the ring magnet. The optical encoder wheedyre. Due to the amplification of noise by differentiating
contains a large number of slots that can optically be demeasured data, it is not wise to usét) andde/dt obtained
tected so that the ang(@) of the pendulum can be measured from Eq. (20) as estimates for the full state during control.
with a resolution of 4000 positions=27 rad. An 80486- However, for the off-line estimation of the unknown param-
based computer with a digital-to-analog converter generatesters, it is wise to use E¢R0). Figure 2 shows the fitted and

a sinusoidal voltage that is transformed to a sinusoidal torquemeasured angular acceleratioda(/dt), for the given pa-

by the pendulum’s electronics and driving mechanism. Theaameter values. The model thus obtained exhibits chaotic be-
frequencyf =27/ wp of this sinusoidal drive voltage is 0.85 havior and has a Poincareap similar to the experimental
Hz. The pendulum’s angle is read 50 times per drive cyclependulum(see Fig. 3.

(20

so the sample timeAt=1/50T., where T,=1/f is the Step 2: determination of observer gains. An adequate
length of a drive cycle in seconds. model for the observer is now available and the observer
Experimental data Model simulated data
7 7
4;} FIG. 3. Poincarenaps of both the experimen-
P Jg},a" tal pendulum and the model, E() with the es-
j )‘f’," timated parameter values. This Poincarap was
§d

constructed by recording the angular velodi®)
and the angular displacemeft), each time the
drive phasd ¢) was equal to a multiple of2rad.

Angular displacement, 6 (rad)

Angular displacement, 6 (rad)

ST
-20 -10 0 10

Angular velocity, o (rad s™) Angular velocity, » (rad ")

1 2

i o o
A IR~ 5 o i
30 -10 ) 10

20
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Sw\R [860\% [kops1060\% [k 6\?
VZZ (_) +(_> +< obs. 1 ) +( obs.25 ) ,
=1\ 0a/y 196/ Tu /i To /i
(21

-40

Angular velocity, w (rad s™)

10 15 20 25 30 35 40
Drive phase, ¢ (rad)

o
(5]

0 5 10 15 20 25 30 35 40
Drive phase, ¢ (rad)

Angular displacement, 0 (rad)

was minimized for optimizing the observer. The differences
between the pendulum’s and observer’'s siai and dw)
were normalized using,,, o4, ando,, the standard devia-
tions of w(t), 6(t), and the drive signal, respectively. These
standard deviations are determined from the data with which
the observer is synchronized. Figure 4 shows the observer
performance using the optimum values Qs ; andKqpg ».
These values were obtained by using a simplex minimization
routine.

B. Full state feedback control

To illustrate the suggested control methods, six different
target trajectories were used) AO-1 (aperiodic orbit }, an
arbitrary continuous piece of time series consisting of 40

FIG. 4. To determine the optimal observer constants the pendudrive periods,(ii) P-1, a period-1 orbit calculated from the
lum model[Eq. (5)] was synchronized with a time series of previ- model. (ii) P-2, a period-2 orbit calculated from the model.

ously measured angular displaceme(sislid lineg using feedback

This calculation was done by locating a close returning point

control according to Eq(18). The observer constants were adjustedin the Poincaresection(Fig. 3) of the model that was used as
using a simplex minimization routine, to minimize the sum of a first estimate for a fixed point. Then this estimate was
squared deviations from the measured data of both the angular digefined by using a simplex minimization that minimized the
placement and angular velocity predicted by the model. Since thgistance on the Poincasection between the close returning
angular velocity of the pendulum could not be measured, it wagoints. The coordinates of the fixed point thus obtained were

calculated from the angular displacement according to ). The

used to generate the complete orbit, divd P-3a to P-3c,

broken lines show the observer's state when the optimal ObserV%eriod-S periodic orbits extracted from measured data. Again

constants Kops .= 182 52, Kops =465 %) are used to synchronize
the model with the experimental data.

gains can be determined. The observer gaikg,( and
Kobs,d Were determined by synchronizing the mofted). (5)]
with a previously measured time series containikdime
steps using the feedback scheme proposed in(E). The
following cost function:

close returning points were located, but now using experi-
mental data.

1. Pole placement

The experimental pendulum was first synchronized with
AO-1 using theconstant gain pole-placemetgchnique dis-
cussed in Sec. IlA1l. Three arbitrary combinationskegf
andk, , were chosen that satisfy the worst case conditions to
keep ReX)<0. Table | shows the synchronization results

TABLE |. Results of theconstant gain pole-placememethod. Here the experimental pendulum is

synchronized with different target trajectories using constant feed back gains. These gains are chosen in such
a way that the poles of the controlled system that is linearized along the target traj&zjoi§) ], will always

have negative real parts. If these real parts are chosen to be sufficiently negative, this always results in

successful synchronization. The controller performance is expressed by the MSE per drive cycle, which is the

sum of normalized squared deviations from the target trajectory plus the sum of normalized squared control

actions, averaged over one drive cycle of the experimental pendulum. Here target trajectory P-3a is best

stabilized using this specific combination of feedback constants.

Target Individual contributions to the MSE
trajectory Feedback gains MSE [Eqg. (10)]

Ke1 Ke2 MSE, MSE, MSE,
AO-1 48.58 78.26 2.433 0.021 0.342 2.070
AO-1 54.49 117.39 1.710 0.051 0.196 1.495
AO-1 69.31 234.78 1.347 0.018 0.080 1.249
P-1 54.49 117.39 1.050 0.195 1.399 8.456
P-2 54.49 117.39 5.932 0.111 0.846 4.974
P-3a 54.49 117.39 0.417 0.003 0.014 0.401
P-3b 54.49 117.39 4.360 0.063 0.536 3.760
P-3c 54.49 117.39 1.382 0.017 0.126 1.238
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TABLE Il. Results of thevariable gain pole-placememhethod. In contrast to the constant gain pole-
placement methodTable ), k., is allowed to vary along the target trajectory accordingktg=K; 2o
—p, cog6,(t)). Here the values fok. ; andk, ,o are chosen in such a way that the poles of the controlled
system, which is linearized along the target trajectdries (8)], have negative real parts. If these real parts
are sufficiently negative, this will result in synchronization. Clearly for the first two choices of the feedback
gains, synchronization fails as is indicated by the large values for the MSE per drive cycle.

Target Individual contributions to the MSE
trajectory Feedback gains MSE [Eg. (10)]

Ke1 Ke.20 MSE,, MSE, MSE,
AO-1 0.75 0.141 102.697 41.379 43.036 18.280
AO-1 7.50 4.254 44,411 11.215 19.441 13.721
AO-1 37.50 91.44 1.236 0.015 0.171 1.050
AO-1 75.0 358.63 1.443 0.016 0.037 1.390
P-1 37.50 91.44 8.398 0.125 1.306 6.967
P-2 37.50 91.44 4.956 0.064 0.623 4.269
P-3a 37.50 91.44 0.211 0.002 0.074 0.196
P-3b 37.50 91.44 4.602 0.054 0.589 3.959
P-3c 37.50 91.44 0.373 0.003 0.024 0.346

where MSE, Eq(10), and its three components are shown as 2. Optimal control

an _|nd|cat|on of controll_er performance. One of th_e combi-  \when inspecting the results presented in Tables | and I, it
nations of feedback gains was used to synchronize the exs not obvious which values to choose for the feedback gains
perimental pendulum with the other target trajectories. Usingn, order to obtain a minimal MSE. When a certain combina-
this specific choice of gaink;=54.49 andk.,=117.39), tion of feedback gains results in a small MSE for one target
P-3a is best stabilized (MSE0.417). trajectory, it does not necessarily result in a small MSE for
The variable gain pole-placemenechnique was used to another target trajectory. When using optimal controllers,
synchronize the pendulum with AO-(see Table ). The this is dealt with since optimal controller design is based on
combination ok, ; andk. 5o that gave the smallest value for minimizing the sum of squared erraiSSB; that is the prod-
MSE (=1.236 was used to synchronize the pendulum withuct of N, and MSE.
the other target trajectories. Again P-3a is best stabilized, Synchronization is more successful, i.e., smaller values
MSE is almost twice as low as when usiegnstant gain  for MSE, for all target trajectorie¢Table Ill), when using

pole placemen(see Fig. 5. constant gain optimal contrplcompared to the results that

g g2

22 22
18 Nc 36
18 NC 36

TURURORITRE < . o a
Wikt N AR

18 N 36

FIG. 5. Results of theonstant gain optimal-contrdkchnique. The figures show the normalized deviations from the target trajectories,
and the size of the control actions relative to the drive amplitysld ©f the pendulum[Eq. (5)]. The broken lines indicate levels
corresponding ta-10% of the standard deviatiowr or o) of the uncontrolled, chaotic dynamics of both the angular velgayyand the
angular displacementf). (a) Although the experimental pendulum follows target trajectory P-1 well, a considerable control input is
needed. Most of the time control actions exceeding 10% of the drive amplitude are needed. The broken lines indid&i&theundary.

The MSE[Egq. (10)], which is indicative for the controller performance, has a value of 7.093. The largest contribution to this value is due
to the control actions, 5.582=78.7%99. (b) The experimental pendulum synchronizes very well with target trajectory P3-b. The control

actions needed stay well within thel0% boundary. The MSE in this case is 0.156 and the contribution of the control actions to MSE equals
0.075(=48.1%.
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TABLE Ill. Results of theconstant gain optimal-controinethod. The optimal feedback gains were
obtained by synchronizing the model E§) with the different target trajectories with simultaneous minimi-
zation of the MSE per drive cycle using a simplex minimization roufM&E optimization. The optimal
feedback gains thus obtained were then used to synchronize the experimental pendulum with the different
target trajectorie§MSE measurementClearly target trajectories P-3a and P-3b are best stabilized using only
very little control effort.

Individual contributions to

Target the measured MSEEQ.
trajectory Feedback gains MSE (10]
Kea Ke.2 Optimization Measurement MSE MSE, MSE,

AO-1 36.28 332.97 13.131 0.940 0.025 0.018 0.897
P-1 19.95 30.19 0.010 7.093 0.172 1.339 5.582
P-2 591 80.68 0.017 1.742 0.151 0.125 1.466
P-3a 7.28 41.56 2.363 0.156 0.014 0.024 0.118
P-3b 3.26 34.17 1.703 0.156 0.040 0.041 0.075
P-3c 10.41 101.94 4.543 0.183 0.012 0.010 0.161

were obtained using the pole-placement method. Another re- Choosing the optimal tuning paramet€fsW,,, W,, and
markable result is that the MSE’s of P-1 and P-2 are theV,) is still a matter of trial and error. However, this can be
largest in the experiment, and the smallest in the simulatiomutomated by simulation of the controlled nonlinear process
that was done to estimate the gains. This result is best exand tuning of the weight parameters until the minimum in
plained by considering the origin of the P-1 and P-2 orbitsthe MSE is reached. Here this automation process is not
Both orbits were calculated using the model, whereas thémplemented, rather just a number of possible combinations
other orbits are all determined from experimental data. are screened for the AO-1 as target trajectory. Then after
Although constant gain optimal contrdhas a better per- reducing the number of possible combinations, the other tar-
formance(smaller MSE’$ than both methods based on pole get trajectories were stabilized as well.
placement, model predictive control results in even better The AO-1 was chosen as the target trajectory for the pur-
performance. This is expected since with MPC the gaingose of screening a number of possible prediction horizon
vary along the target trajectory, taking advantage of the locdlengths. The number of time steps in the prediction horizon
stability of the target trajectory. (N) was chosen to be 5, 10, 25, and 50 time steps, which is
When using MPC the weighting matric€sandR as well  equivalent to 0.1, 0.2, 0.5, and 1 times the driving period of
as the length of the prediction horizdnhave to be chosen. the pendulumT,.). Three fixed combinations for the weights
In this paperQ andR are chosen in such a way that the costwere used, i.e. fW W W, ]=[1 1 1] that is equivalent to
function given in Eq.(15 becomes the same &&-MSE  minimizing MSE, and/W,W,W,]=[155], or [1 10 10,
when the weightswW,,, W,, andW,) on the individual con- which puts a larger penalty on differences between the mea-
tributions to MSE (MSE, MSE,, and MSE) are set to sured and target angle and the magnitude of the control ac-
unity. HereNc is the number of drive cycles over which Eg. tions.
(15) is evaluated and MSE is defined by EG0). The twelve resulting MSE’s are shown in Table IV. As is

TABLE IV. Results of the model predictive control method. The MSE'’s per drive cycle are shown for the
synchronization of the experimental pendulum with AO-1. The feedback gains that were used are calculated
by minimizing the SSE over a certain prediction horizon. This $5d (15)] consists of three contributions,

i.e., the squared normalized deviations of the angular velocity, the squared normalized deviations of the
angular displacement, and the squared normalized control actions. A weidghtlofl] means that each
contribution to the SSE is weighted equally in the calculation of the optimal feedback gains. A prediction
horizon of 5 time steps is too small for successful synchronization. The most successful synchronization
(smallest MSE’s is obtained when a prediction horizon of 25 time steps, or half a drive cycle, is used.
Putting more weight on the contributions of the control actions and the angular displacement to the SSE does
not result in improved controller performance.

Prediction horizon

(time stepy Weights on the individual contributions to SSE
[11q [1505 [110 10
5 51.966 92.187 76.086
10 2.168 4.372 14.813
25 0.418 0.436 0.428

50 0.874 0.861 0.753
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TABLE V. Results using MPC. In this table the results are shown of using MPC to synchronize the
experimental pendulum with the different target trajectories. The length of the prediction horizon was taken
as 10 time steps. The most striking result of using MPC is that the experimental pendulum is synchronized
well with P-1 and P-2, opposed to the results presented in Tables I, Il, and Ill. Again increasing the weight
on the contribution of the control actions to the optimization criteri8®B, does not result in smaller
control effort needed to stabilize the pendulum; see also Table IV.

Target
trajectory Weights on the individual contributions to SSE
111 [155] [1101Q
MSE MSE, MSE MSE, MSE MSE,

AO-1 2.168 0.681 4.372 0.927 14.813 2.504
P-1 1512 0.346 1.568 0.361 2.620 0.516
P-2 1.190 0.272 1.290 0.203 1.210 0.181
P-3a 0.204 0.074 1.089 0.252 1.657 0.390
P-3b 1.549 0.267 0.290 0.039 0.302 0.045
P-3c 0.237 0.079 0.399 0.100 0.734 0.164

clear from Table IV the optimal choice is taking the numberAO-1 is the target trajectory, is more than halved when using
of time steps in the prediction horizon equalNe=25 and MPC andN=25 (MSE=0.418, Table Iy compared to the
the weights| W, W,W,]=[1 1 1]. A prediction horizon of constant gain case (MS$E.940, Table II}.

N=5 is too small to synchronize the experimental pendulum

with the target trajectory. However, whéh= 10, the pendu- IV. CONCLUSIONS
lum synchronizes with AO-1. In this paper a general procedure has been outlined to
A prediction horizon ofN=10 is chosen when synchro- bap 9 P

. : , control chaotic systems using linear control methods. In con-
e o s s st o a8t Wi ot chaos conol procecf-15.19. te
yield successful synchronization, but is still small enough top;](z)?ggl;fr ?#é“?gg dlbnagllls giigetrh:tutoi'y::coalI%i/mrﬁz]unsegjof
avoid large computation times. The weights on the individual® . . gain 9 ptimum_ pert i
contributions of the MSEW,, . W,, andW,), were chosen mance, i.e., minimum fluctuations around the desired trajec
the same as when synchroﬁi,zingvol Tuhé resulting MSE'story’ using minimum control actions. The procedure consists
as well as the contribution of the contrél actions to MSE ar O four steps. In the first step, a model of the system is buil.
reported in Table V €n the second step target trajectories are defined, which may

plncreasin the énalties on the MSEn MSE, does not be AO’s corresponding to previously observed trajectories,

) 9 P . . ! or UPO's. In the third step, the optimal feedback constants

result in smaller MSE'’s for all target trajectories but P-3b. . ; . : y
Furthermore, the effect on the contribution of the controlalong the target trajectories are determined using MPC. Fi

: ' . nally, in the fourth step, the controller is implemented in the
actions to the MSE of an increased penalty on MSE not

L . experimental setup. This approach shows that linear control
clear. In most cases MGEgrows with increasing penalty, P P bp

however, not when P-2 and P-3b are the target trajectoriemethOdS’ specifically model predictive control, are well ap-

. - . ; ?)‘Iicable to control nonlinear chaotic dynamical systems. The
This result indicates that by changing the penéityweigh? g g
on the different contributions to MSE, controller perfor- approach is illustrated by the successful control of an experi

: mental chaotic system, i.e., a driven damped pendulum.
mance can be enhanced in some cases.

The constant gain optimal controinethod has the best
performance, i.e., smallest MSE's for all target trajectories
but P-1 and P-2. In these cases model predictive control The investigations were supported in part by the Nether-
clearly has the better performance. However, closer inspedands Foundation for Chemical Resea@0ON) as part of
tion of the results in Table IV suggest that MPC will outper-the SON Program “Young Chemists” with financial aid
form the constant gain optimal control method, when thefrom the Netherlands Organization for Scientific Research
prediction horizon is chosen to bé=25. The MSE, when (NWO).
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