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Calculation of relaxation rates from microscopic equations of motion
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For classical systems with anharmonic forces, Newton’s equations for particle trajectories are nonlinear,
while Liouville’s equation for the evolution of functions of position and momentum is linear and is solved by
constructing a basis of functions in which the Liouvillian is a tridiagonal matrix, which is then diagonalized.
For systems that are chaotic in the sense that neighboring trajectories diverge exponentially, the initial condi-
tions determine the solution to Liouville’s equation for short times; but for long times, the solutions decay
exponentially at rates independent of the initial conditions. These are the relaxation rates of irreversible
processes, and they arise in these calculations as the imaginary parts of the frequencies where there are
singularities in the analytic continuations of solutions to Liouville’s equation. These rates are calculated for
two examples: the inverted oscillator, which can be solved both analytically and numerically, and a charged
particle in a periodic magnetic field, which can only be solved numerically. In these systems, dissipation arises
from traveling-wave solutions to Liouville’s equation that couple low and high wave-number modes allowing
energy to flow from disturbances that are coherent over large scales to disturbances on ever smaller scales
finally becoming incoherent over microscopic scales. These results suggest that dissipation in large scale
motion of the system is a consequence of chaos in the small scale motion.@S1063-651X~99!07405-X#

PACS number~s!: 05.45.2a, 82.20.Mj, 02.70.2c
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I. FROM MICROSCOPIC TO MACROSCOPIC

Although the classical equations of motion for micr
scopic particles such as atoms and molecules conserve
ergy exactly, the macroscopic motion of systems of th
particles does not. Macroscopic disturbances evolve
smaller and smaller disturbances until the energy of th
disturbances is dissipated into incoherent microscopic
tion, and the system is in equilibrium. This difference b
tween macroscopic and the microscopic mechanics il
trates one of the difficulties in extracting macroscop
quantities from microscopic equations of motion, name
that the dissipation, which is central to macroscopic mech
ics, arises from disorganized motion on a microscopic sc
Other difficulties include the large number of interacting m
croscopic degrees of freedom compared to the relatively
macroscopic degrees of freedom, which describe the sys

The purpose of this paper is to show how macrosco
quantities, including those that involve dissipation, can
calculated in a practical way from microscopic equations
motion. The basic idea of our approach is to describe
microscopic mechanics by a linear equation, Liouville
equation@1# in the case of classical mechanics that is
focus of this paper and Schro¨dinger’s equation in the case o
quantum mechanics, see further in@2#. Starting with a func-
tion describing some initial state of the system, additio
functions are constructed to form the basis for a tridiago
matrix representation of the equation of motion. Diagon
ization of the tridiagonal matrix yields the frequencies th
dominate at long times and, if these are complex, then t
imaginary part is the rate of relaxation to equilibrium.

As examples, we study two systems, the inverted osc
tor, chosen because it is analytically tractable, and a cha
PRE 591063-651X/99/59~5!/5292~11!/$15.00
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particle moving in a plane through a perpendicular, perio
magnetic field, chosen because it is numerically tracta
Each system is uniformly hyperbolic in the sense that sm
changes in the initial positions and momenta of particles l
to exponentially increasing differences in position and m
mentum. Instead of calculating the trajectories of the p
ticles, we calculate the evolution of functions of position a
momentum, and, in particular, it is the overlap of the init
function and the evolved function, the autocorrelation, wh
describes how quickly the initial state of the system deca

We find two regimes in the time dependence of the au
correlation: the first is for short or microscopic times, mu
tiples of some time scale such as a collision time, where
autocorrelation depends sensitively on the initial distributio
and the second is in the limit of infinite time, macroscop
times, where the autocorrelation is independent of the de
of the initial distribution. The technical challenge in the
calculations is to extract the macroscopic relaxation ra
from the complexity and instability of the microscopic m
tion. Although both examples are of microscopic system
we find that energy flows from long length scales to sh
length scales, consistent with dissipation in macroscopic s
tems.

The flow of energy from long to short length scale
which produces the relaxation at macroscopic times, arise
our calculations from traveling-wave solutions to Liouville
equation which link low-wave-number and high-wav
number functions of position and momentum. The existe
of traveling waves depends first on there being an infin
number of nearly degenerate degrees of freedom. Altho
these systems are spatially finite, there are still an infin
number of independent functions of position and momentu
which have the same time dependence. The different fu
5292 ©1999 The American Physical Society
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PRE 59 5293CALCULATION OF RELAXATION RATES FROM . . .
tions simply pack more and more zeros into the same ran
of position and momentum, or in other words, they ha
larger and larger wave numbers in position and moment
The second requirement for traveling-wave solutions is t
the frequency spectrum of autocorrelation be smooth ra
than concentrated at a few frequencies. This latter requ
ment is met by uniformly hyperbolic systems where partic
never repeat, even approximately, their previous trajector
and so there are no real, singular frequencies in their mot

After discussing the general solution of Liouville’s equ
tion by tridiagonalization in Sec. II, we argue in Sec. III th
after macroscopic times, the evolution of the system is g
erned by the analytic continuation of the microscopic so
tions from real to complex frequencies. The developmen
a practical method for carrying out this analytic continuati
is our main result. In Secs. IV and V we illustrate th
method, particularly the analytic continuation, for the i
verted oscillator and the charge in a periodic magnet, an
Sec. VI we describe how similar calculations could be c
ried out for larger systems and draw a conclusion about
relation between chaos and dissipation.

II. RECURSIVE SOLUTION OF THE MICROSCOPIC
EQUATIONS OF MOTION

The recursive solution of Liouville’s equation is describ
in a previous publication@3#, so here we just establish th
main results. Instead of attempting to solve the gener
nonlinear equations for the trajectories of atoms and m
ecules, we consider the time evolution of functions on ph
space, the space whose coordinates are the positions an
menta of each of the particles. Functions on phase sp
satisfy a linear equation of motion, Liouville’s equatio
which relates each function to its time derivative by an o
erator we call the Liouvillian. Starting with an initial func
tion, we construct a sequence of functions in terms of wh
the Liouvillian is a tridiagonal matrix. Taking advantage
the tridiagonal form of the Liouvillian, we expand the sol
tion to Liouville’s equation in the orthogonal polynomia
and the continued fraction associated with the tridiago
matrix.

For a system ofN particles, letQ be a vector whose 3N
components are the position coordinates of all the partic
and letP be a vector whose 3N components are the momen
of all the particles. Newton’s law of motion states that t
time derivative of each particle’s momentum is the force
that particle,

dP/dt5F~Q,P!, ~1!

which can depend on the momenta as well as the positi
The rate of change ofQ is just the velocity,

dQ/dt5V~Q,P!, ~2!

which can in general depend on the positions as well as
momenta. With few exceptions these equations are nonlin
and, therefore, difficult to solve.

We can transform the nonlinear problem of calculati
the evolution ofQ and P, into the linear problem of calcu
lating the evolution of a functionu(Q,P;t) by using the
chain rule for differentiation with respect to time, and t
es
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constraint that the particles carry the function with the
This leads to Liouville’s equation,

i ]u~Q,P;t !/]t52 i @V~Q,P!•¹Qu~Q,P;t !

1F~Q,P!•¹Pu~Q,P;t !#, ~3!

where the total time derivative ofu(Q,P;t) is zero and the
chain rule generates the scalar products of the time deriva
of Q, the velocity, with theQ gradient ofu(Q,P;t), and of
the time derivative ofP, the force, with theP gradient of
u(Q,P;t). The factor ofi on each side of the equation mak
the Liouvillian operator,

L52 i @V~Q,P!•¹Q1F~Q,P!•¹P#, ~4!

Hermitian with respect to the inner product between fun
tions f (Q,P) andg(Q,P), defined as

^ f ,g&5E dQE dP f~Q,P!* g~Q,P!. ~5!

When there is a Hamiltonian function, the Liouvillian oper
tor is 2 i times the Poisson bracket of the Hamiltonian.

Formally, the exponential of the Liouvillian applied to th
function att50, u(Q,P;0), solves Eq.~3! to give

u~Q,P;t !5exp$2 iLt %u~Q,P;0!. ~6!

It is computationally convenient to express this in terms
the resolvent operator, (v2L)21, using the residue theorem

u~Q,P;t !5~1/2p i !E dv exp$2 ivt%~v2L !21u~Q,P;0!,

~7!

where the integral encloses the realv axis to include the rea
spectrum of the Liouvillian. BecauseL is Hermitian with
respect to the inner product defined in Eq.~5!, u(Q,P;0) can
be decomposed into a sum of orthogonal solutions to
time-independent Liouville equation,

Lcv~Q,P!5vcv~Q,P!, ~8!

of which, at most, one functioncv(Q,P) is needed for each
value ofv. The expression becomes even simpler if the
lutions to Eq.~8! are normalized so that

^u,cv&51. ~9!

The evolution of the system starting withu(Q,P;0) is then
just the superposition of solutions to Eq.~8! with their time-
dependent phases,

u~Q,P;t !5~1/2p i !E dv^u,~v2L !21u&

3exp$2 ivt%cv~Q,P!, ~10!

where the imaginary part of (1/p i )^u,(v2L)21u& is the
relative intensity ofcv(Q,P) in u(Q,P;0), seealso @3#.

The next step in solving Liouville’s equation numerical
is to construct a set of functions, u0(Q,P),
u1(Q,P), u2(Q,P),...,un(Q,P),... in which Liouville’s
equation is tridiagonal. This can be done recu
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sively @2,3# as follows: The first of these functionsu0(Q,P)
is u(Q,P;0), normalized with respect to the above inn
product in whichL is Hermitian,

u0~Q,P!5u~Q,P;0!/b0 , b05^u,u&1/2. ~11!

The subsequent elements of the tridiagonal basis are com
nents of the solution to the three-term recurrence,

bn11un11~Q,P!5~L2an!un~Q,P!2bnun21~Q,P!,
~12!

takingu21(Q,P) to be zero, and taking the parameters to

an5^un ,Lun&, and

bn5^~L2an!un2bnun21 ,~L2an!un2bnun21&
1/2,

~13!

which make the$un(Q,P)% orthonormal to one another. I
this basisL is the tridiagonal matrix,

J53
a0

b1

0
.
.
.
0
.
.
.

b1

a1

b2

.

.

.

...

...

...

...

0
b2

a2

.

.

.
0
.
.
.

...
0
b3

.

.

.
bn

.

.

.

...
0
.
.
.
an

.

.

.

...

.

.

.
bn11

.

.

.

0

...

...

...
0
.
.
.

...

...

...

...

4 . ~14!

The tridiagonal basis$un(Q,P)% is ideal for expanding
the solutions to Eq.~8! that contribute to the evolution o
u0(Q,P) because the basis spans every power ofL on
u0(Q,P), that is, Lnu0(Q,P) for all n, and, consequently
n

is

th
in
e
ne

ul
f
on
o-

e

spans the states generated by the exponential of the Lio
lian in Eq. ~6!. Let the expansion coefficients be$pn(v)%,
with p21(v) zero because there is nou21(Q,P), andp0(v)
unity in order to satisfy Eq.~9! for the normalizedu0(Q,P),

cv~Q,P!5p0~v!u0~Q,P!1p1~v!u1~Q,P!1¯

1pn~v!un~Q,P!1¯ . ~15!

Substituting Eq.~15! into Eq. ~8!, using the tridiagonal form
of L, and equating the coefficients of each of the$un(Q,P)%
gives a recurrence relation for the coefficients,

bn11pn11~v!5~v2an!pn~v!2bnpn21~v!. ~16!

This recurrence relates three components of each solu
so, a solution is uniquely determined by two of its comp
nents, and in the absence of any boundary conditions, t
are two linearly independent solutions for each value ofv,
corresponding to the two linearly independent choices of t
components. However, since the tridiagonal basis$un(Q,P)%
has no elements forn negative, the$pn(v)% are defined by
the boundary condition thatp21(v) is zero, and the normal
ization condition in Eq.~9! makesp0(v) unity. These are
usually called the regular orthogonal polynomials beca
they are polynomials inv and can be shown to be orthogon
with respect to integration over the spectrum of the resolv
element appearing in Eq.~10!, see@2#.

Having shown how to calculate solutions to the tim
independent Liouville equation, the next problem is that
evaluating the resolvent element, which also appears in
~10!. This is accomplished with the same tridiagonalizati
as for the stationary solutions becausev-L is also tridiagonal
in this basis, and the required element is in the upper l
hand corner of the inverse. Writing the inverse element
the ratio of the cofactor and determinant ofv-L, and ex-
panding these alternately in rows and columns yields a c
tinued fraction expansion for
R~v![^u0 ,~v2L !21u0&51/$v2a02b1
2/@v2a12¯2bn

2/~v2an2¯ !¯#%. ~17!
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Using this continued fraction expansion for the resolve
and taking account of the normalization ofu(Q,P;0) gives a
numerically tractable expression for the evolution of th
function,

u~Q,P;t !5~b0/2p i !E dvcv~Q,P!R~v!exp$2 ivt%,

~18!

where the integral is around a contour, which encloses
realv axis. This integral can be evaluated numerically us
Gaussian quadrature@4# with nodes and weights that are th
poles and residues of the finite continued fractions obtai
by truncatingR(v), see further in@3#.

The relationships between the singular and nonsing
parts of the integrand in Eq.~18! determine the evolution o
the system. The only singularity in the exponential functi
t,

e
g

d

ar

is at infinite v, and the solutions to the time-independe
Liouville equation$cv(P,Q)% are analytic inv, for finite P
andQ, becausev is a parameter in the differential equatio
Eq. ~8!. From the residue theorem, only singularities in t
integrand of Eq.~18! contribute to its value, and those occ
only in R(v) which, according to Eq.~17!, is singular for
every value ofv for which there is a solution of the time
independent Liouville equation contained inu(Q,P;0). The
singularities inR(v) can vary from a few isolated poles fo
systems such as coupled harmonic oscillators, to the c
whereR(v) is analytic in the limit asv becomes real, bu
with the sign of its imaginary part depending on whether
limit is taken from above or below the real axis. It is th
latter case, which is of particular interest for what follows

For real v, the magnitude of the imaginary part of th
resolvent,uIm$R(v)%u, is also called the power spectrum, an
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plays a fundamental role in the evolution of the syste
Given the power spectrum, rather than the Liouvillian a
the initial functionu(Q,P;0), thetridiagonal matrix in Eq.
~14! can still be obtained by orthogonalizing polynomia
with respect touIm$R(v)%u @2#. From Eqs.~15! and ~18!, the
Fourier transforms of these polynomials weighted
uIm$R(v)%u, then gives the time-dependent coefficient of ea
un(Q,P), even though the$un(Q,P)% are not given. The
power spectrum determines the part of the evolution, wh
is independent of any realization of the system.

For microscopic times,t up to where 1/t is comparable
with the scale of the finest structure in the power spectru
the evolution of the system is well described by the Fou
transforms of polynomials weighted by the power spectru
Typically thenth component of the state remains small wh
t is so small that the cycles of exp$2ivt% are much bigger
than those ofpn(v). The nth component has greatest ma
nitude when the cycles are of similar size, and decrea
again once the cycles of exp$2ivt% get smaller than those o
pn(v). It is the initial part of the recurrence that determin
both the general shape of the power spectrum and the e
polynomials, and hence the evolution over microsco
times.

For large values oft, macroscopic times, the situatio
changes. The cycles in the exponential are so short that
integral over any smooth function, such as a polynom
weighted by a smooth power spectrum, goes exponential
zero with increasingt. There is no matching of cycles, bu
the rate of the exponential decay is given by the location
the singularities nearest to the realv axis in the integrand. In
the cases of interest in this paper,R(v) has no singularities
in either the upper or lower halves of thev plane or even in
the limit as v goes to the real axis from either above
below, so the polynomials and hence the initial state of
system no longer affect its evolution. The only singularit
in the integrand are in the analytic continuation ofR(v)
through the realv axis from either above or below, to wha
is called the second sheet ofR(v). It is the imaginary parts
of the v, at which these singularities occur on the seco
sheet, that are the rates of exponential decay for compon
of the state, and determine the rates for dissipation of
chanical energy. In practical terms, the relaxation rates
macroscopic times are determined by the analytic contin
tion of the continued fraction in Eq.~17! from the upper half
to the lower half of thev plane where it can have singular
ties.

As a last note in this section on solving Liouville’s equ
tion, we should comment that the more usual approach@1# is
to evolve phase-space densities, functions on phase s
that are never negative, rather than more general function
is easy to show that when solved exactly, Liouville’s equ
tion preserves the non-negativity of densities; the problem
that it is very difficult to preserve non-negativity in approx
mate solutions. Because Liouville’s equation is first order
all its derivatives, the evolution of a product of functions
the product of the evolutions of the individual function
Consequently, the squared magnitude of the evolution o
arbitrary function is a density that is also a solution to Lio
ville’s equation, and this is the way we preserve no
negativity in approximate densities. However, the functio
can be multiplied by an arbitrary phase at each value oQ
.
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andP without changing the resulting density; so solutions
Liouville’s equation used in this paper have a gauge symm
try that leaves the observables, the densities, invariant.

III. ANALYTIC CONTINUATION IN FREQUENCY

In the previous section we solved Liouville’s equation
find the time evolution of a function on phase space; ho
ever, in order to determine the behavior at macrosco
times, we must analytically continueR(v), defined in Eq.
~17!, to its second sheet. This is the second of two anal
continuations, which are central to this approach; the fi
being the continuation ofR(v) to its first sheet from its
expansion about infinitev. The expectation values of power
of the Liouvillian ^u,Lnu&, which are the moments of th
power spectrum, are also coefficients of inverse powers ov
in an expansion ofR(v) about infinity @5#. This moment
expansion does not necessarily converge for any values ov,
but because the power spectrum is non-negative, the mom
expansion can be analytically continued to its first sheet
ing the continued fraction expansion ofR(v) @5#. The first
sheet ofR(v) only determines the evolution of the syste
for microscopic times, and for macroscopic times, the c
tinued fraction must be analytically continued to its seco
sheet, which is the problem addressed in this section.
method developed here is illustrated both analytically a
numerically in Sec. IV.

Our approach to this problem is the analytic continuat
of solutions to the recurrence in Eq.~16!. Because this recur
rence connects three successive components of a solu
for any complex value ofv, two components must be spec
fied to determine the third, and hence the whole solution
the most general case, these two initial components can
any two complex numbers, so the space of solutions has
complex dimensions. One of these two, complex degree
freedom may be taken to be a complex normalizing fac
which multiplies every component of a solution. This leav
a single important degree of freedom, which is the ratio o
pair of components. There are two linearly independent po
nomial solutions to the recurrence, the regular orthogo
polynomials$pn(v)%, whose21st and 0th components ar
conventionally taken to be zero and unity, respectively, a
the irregular polynomials$qn(v)%, whose 0th and 1st com
ponents are taken to be zero and unity. When the recurre
is infinite, we show below thatR(v) is related to the solution
that goes to zero fastest asn goes to infinity in the recur-
rence, the solution whose ratios of successive compon
has the smallest magnitude at infinity, which for eachv we
denote by$cn(v)%.

The continued fraction expansion in Eq.~17! can be
viewed as a relation between the ratios of successive c
ponents of a solution to the recurrence. Using$cn(v)% as an
example, the recurrence forn50 gives

b1c1~v!5~v2a0!c0~v!2b0c21~v!, ~19!

which can be rearranged as a fraction,

c0~v!/@b0c21~v!#51/@v2a02b1c1~v!/c0~v!#.
~20!
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The recurrence forn51 can be similarly rearranged to giv
a fraction for c1(v)/@b1c0(v)# in terms of
c2(v)/@b2c1(v)# and so on. Linking these relations togeth
gives a continued fraction relation betwee
c0(v)/@b0c21(v)# andcn11(v)/@bn11cn(v)# for any n.

Shohat and Tamarkin@5# show that under conditions tha
apply to this work, and forv not real, the continued fraction
in Eq. ~17! converges with increasing number of levels.
terms of the above relation between ratios of succes
components of a solution, asn goes to infinity, the continued
fraction takes as its value the ratio of successive compon
of just one of the solutions to the recurrence. This must
the solution that depends least on what happens at largen, or,
in other words, it is the solution that goes to zero most r
idly with increasingn. Because the fraction converges, t
most convergent solution is unique forv not real. This result
can be seen informally by noting that a continued fraction
naturally evaluated from the bottom up, corresponding
evaluation of the recurrence, starting at largen and working
backwards ton50. The reverse evaluation of a recurrence
dominated by the solution, which increases most rapidly
magnitude asn decreases. Since solutions can be genera
by recurring in either direction, the one that increases
magnitude most rapidly asn decreases is the one that co
verges to zero most rapidly asn increases.

For the systems studied below, thean are all zero, andbn
are either proportional ton, or become proportional ton for
n large. For this reason we study the recurrence in whichbn
is an with a greater than 0. As for related second-ord
differential equations, we try a solution containing only e
ponential and algebraic singularities at infiniten,

cn~v!5gn~v!A~v!nnB~v!, ~21!

wheregn(v) is analytic at infiniten, meaning that it goes
smoothly to a constant asn goes to infinity. When this trial
solution is substituted into the recurrence, it becomes

a~n11!A~v!n11~n11!B~v!gn11~v!

5vA~v!nnB~v!gn~v!

2anA~v!n21~n21!B~v!gn21~v!.
~22!

Requiring thatgn(v) contain no positive powers ofn near
n5` leads to two possible solutions,

A~v!56 i , and B~v!52~16 iv/a!/2, ~23!

distinguished by taking either the upper or lower signs
both expressions. Each choice of sign gives a linearly in
pendent solution, and we could proceed to expandgn(v) in
powers of 1/n, but the exponential and algebraic singulariti
of the solution,A(v) and B(v), turn out to be all that is
needed from this analysis. Forv in the upper half plane, it is
clear that the lower choice of sign gives the most converg
solution $cn(v)%, which is related to the continued fractio
by Eq.~20!. The choice of the lower signs forv in the lower
half plane gives the most divergent solution$dn(v)%, one
which grows faster, or at least shrinks slower, than any o
as n goes to infinity. Forv not real, this most divergen
r
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solution is also unique for the same reason that the m
convergent solution is unique.

Since A(v) has unit modulus, and since at infinity i
n $gn(v)% generally goes to a constant, which can be tak
to be unity, the convergence or divergence of a solution
the recurrence depends on the real part of the expo
B(v). The most convergent solution for a givenv hasB(v)
with a real part that is greater than21

2, and the most diver-
gent solution hasB(v) with a real part less than21

2. As v
goes through the real axis, the real part ofB(v) goes from
one side of2 1

2 to the other, and the most convergent a
divergent solutions interchange. This crossover between c
vergence and divergence is similar to that displayed
second-order differential equations. As in the case of diff
ential equations the crossover of the analytic part of the
lution can be complicated; however, such complications
unnecessary for the purposes of this paper provided tha
most divergent solution can be constructed for eachv off the
real axis. Since Eq.~20! relates the continued fraction to th
most convergent solution, which continues to the most div
gent solution, the second sheet value of the continued f
tion is

S~v!5d0~v!/@b0d1~v!#, ~24!

where $dn(v)% is the most divergent solution to the recu
rence.

In order to evaluate the second sheet of the contin
fraction, only the most divergent solution to the recurrence
required, and because the singular factors in this solution
given by Eq.~23!, only the analytic factor$gn(v)% remains
to be determined numerically. However, an expansion
$gn(v)% in inverse powers ofn converges very poorly for
smalln. A numerically stable approach is to expressS(v) as
a ratio of components of the most convergent solution
large n, and calculate these by subtracting fits to the m
divergent solutions from polynomial solutions to the recu
rence. The first step in deriving such an expression is
expand the regular polynomial solutions@p21(v)50 and
p0(v)51# and irregular polynomial solutions@q0(v)50
and q1(v)51# in the most convergent and divergent sol
tions,

qn~v!5qc~v!cn~v!1qd~v!dn~v!, and

pn~v!5pc~v!cn~v!1pd~v!dn~v!, ~25!

whereqc(v), qd(v), pc(v), andpd(v) are coefficients that
depend only onv and are determined by the initial cond
tions for the two kinds of polynomials. There are only tw
linearly independent solutions to the recurrence for e
value of v; so only two terms are needed for each expr
sion. Next, eliminatecn(v) from the above two equations
solve fordn(v), and substitute this into Eq.~24! to get

S~v!5qc~v!/@b1pc~v!#. ~26!

This expresses the second sheet of the continued fractio
terms of the ratio ofqc(v) to b1pc(v) that is the ratio of
coefficients ofcn(v) in qn(v) and b1pn(v) in Eq. ~25!.
This is just the ratio of the convergent components ofqn(v)
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andb1pn(v), or what is left when the divergent componen
are subtracted fromqn(v) andb1pn(v).

The polynomials$qn(v)% and $b1pn(v)% defined above
are dominated by their most divergent components asn in-
creases, and forv in the upper half plane; this part of eac
can be expanded in the form (2 i )nn2(12 iv/a)/2gn(v), Eq.
~21!, where gn(v) is analytic in n at infinity. In order to
approximate qc(v)cn(v) and b1pc(v)cn(v), we fit
q0(v),...,qn21(v) andb1p0(v),...,b1pn21(v) to Eq.~21!,
in each case expanding$gn(v)% in n nonpositive powers of
n11. These fits are used to estimate the divergent part
qn(v) andb1pn(v) that are subtracted from them to produ
approximate values ofqc(v)cn(v) and b1pc(v)cn(v).
These latter quantities are substituted into Eq.~26! where
cn(v) in the numerator cancelscn(v) in the denominator to
give S(v), the second sheet of the continued fraction. An
increases this approximation improves until rounding er
limits the significance of the differences betweenqn(v) or
b1pn(v) and their most divergent components. The dep
dence of errors onn is illustrated in Sec. IV.

The second sheet of the continued fraction may be in
preted physically as the complex admittance~the inverse of
impedence! of the system. The poles on the second sh
occur at complexv at which the system absorbs ener
without reflection and dissipates that energy ifv has an
imaginary part. The zeros occur atv for which the system is
perfectly reflective, and atv, which are neither zeros no
poles, the system absorbs some energy and reflects the
The eigenfunctions of the Liouvillian corresponding to fe
tures in complexv give the densities inQ andP for which
the system absorbs, dissipates, or reflects atv.

The analytic continuation ofR(v) is only possible if the
two extremal solutions to the recurrence continue into o
another on the realv axis, and we show here that this ha
pens only if there are traveling-wave solutions for realv.
The recurrence in Eq.~16! always has two linearly indepen
dent solutions, which for mostv can be taken to be the mo
convergent and the most divergent as above. In special c
the divergent and convergent solutions can become dege
ate in the sense that all solutions go to a constant magni
for n large. This degeneracy is necessary for one extre
solution to continue into the other asv varies; otherwise, the
continuation would be nonanalytic at the value ofv where
limiting behavior of the two solutions interchanged witho
becoming identical. The convergence of the continued fr
tion for all v except possibly on the realv axis @5# shows
that the converging solution is unique except possibly on
real v axis, and hence that there is no degeneracy ex
possibly on the realv axis. So, it is only along the realv
axis that the extremal solutions can continue into one
other, and only there can the solutions be degenerate.
real v at which the solutions are degenerate, we can c
struct two independent, real~because the coefficients in th
recurrence are all real! solutions to the recurrence whos
magnitudes go to the same value at infiniten. The traveling
wave is the complex combination of these two solutio
which is in quadrature in the limit of infiniten. Conversely,
if there are no traveling waves, then there is no degener
and hence no analytic continuation.

The physical significance of the traveling waves is th
they allow the initial state of the system to propagate
of
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un(Q,P) for infinite n, corresponding to functions of infinite
wave number with respect toQ andP. A further interpreta-
tion of this process is that a density that varies slowly withQ
or P evolves, due to the nonlinear forces, into one wh
varies ever more rapidly withQ and P and finally into one
that evolves infinitely rapidly withQ andP. When the wave
numbers of the density variations become infinite, the
variations become microscopic so the mechanical ene
they contained has been dissipated by some microscopic
cess, and the system has achieved equilibrium.

Another property of traveling waves is that they belong
bands defined by the intervals ofv over which the complex
phase difference between successive components varies
zero top, in the limit asn goes to infinity. For example, the
traveling-wave solutions in Eq.~22! go to a limiting phase
difference ofp/2 for all realv, and so the band extends ov
the entire realv axis. If bn had been constant rather tha
increasing inn, the band would have extended inv from
22bn to 2bn , with the limiting phase zero at 2bn andp at
22bn .

The trial solution adopted in Eq.~21! has an exponentia
singularity at infiniten, but such simple singularities occu
only for recurrences in whichan goes to a constant andbn
becomes linear inn as n goes to infinity. When the recur
rence parameters have more complicated behavior, for
ample in electronic structure calculations where multip
bands are present@6#, the singularity at infinity in the solu-
tion to the recurrence is not a simple exponential, and th
does not seem to be any form comparable to Eq.~21!. The
same problems arise in ordinary differential equations w
irregular singularities at infinity, see@7#, where simple expo-
nential singularities are the only ones for which solutions c
be expanded about infinity.

IV. THE INVERTED OSCILLATOR

The inverted oscillator is the simplest system whose so
tions to Newton’s equations, Eqs.~1! and~2!, diverge expo-
nentially in phase space, a characteristic of chaotic mo
and related to the existence of traveling-wave solutions
Liouville’s equation. The inverted oscillator consists of
particle with massM moving in a quadratic potential,

U~x!52KX2/2, ~27!

whereX is displacement. Despite the absence of oscillat
motion, there is a natural phase velocity,

v05~K/M !1/2, ~28!

which sets a time scale. Since Newton’s equations can
solved analytically for this system, the trajectories of t
particle can be compared directly with results from the me
ods developed above.

Liouville’s equation can also be solved both analytica
and numerically for this system@3,8#. In terms ofv0 , the
Liouvillian is

L52 iv0@y]/]x1x]/]y#, ~29!

wherex is the displacement scaled by any unit of distan
andy is the velocity of the particle scaled by the same unit
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distance and divided byv0 . Following Haydock and Kim
@3# and the procedure described in Sec. II, we tridiagona
L analytically starting with an initial distribution, chosen
be Gaussian. Letu0 be the normalized Gaussian,

u05exp$2~x21y2!/2%/p. ~30!

It can then be shown that the rest of the tridiagonal ba
consists of the functions,

un5~ i !nhn~x!hn~y!u0 , ~31!

wherehn(x) is the nth Hermite polynomial, normalized to
Ap with respect to integration over exp$2x2%. The recur-
rence parameters are

an50 and bn5nv0 , ~32!

which is just the kind of recurrence analyzed in Sec. III.
More generally, the Liouvillian for the inverted oscillato

is tridiagonal in the isotropic oscillator functions,

uk,m5~ i !khk~x!hm~y!exp$2~x21y2!/2%/p, ~33!

which form a complete set of functions on the phase spac
this system whenk and m take values from 0, 1, . . . . The
tridiagonal matrix elements are given by

Luk,m5v0$@~k11!~m11!#1/2uk11,m11

1~km!1/2uk21,m21%, ~34!

and each tridiagonal subspace starts with the functionu0,m ,
or uk,0 . The recurrences for stationary solutions to Lio
d
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ville’s equation are satisfied by Meixner polynomials of t
second kind@9# of which the mth set of polynomials are
orthogonal with respect to integration over realv with the
weight distribution,

wm~v!52mG„~m1 iv/v011!/2…

3G„~m2 iv/v011!/2…/~2pm! !, ~35!

whereG(z) is the gamma function. These weight distrib
tions are also the power spectra of the motion of the inver
oscillator for the initial stateu0,m . In the case whereu0 is
given by Eq.~30! the relations between the gamma functi
and hyperbolic functions make this weight distributio
$2v0 cosh@pv/(2v0)#%

21.
The continued fractions for the inverted oscillator can

analytically continued by inspection. The weight distrib
tions in Eq.~35! have poles along the imaginaryv axis at
either odd or even integer multiples ofiv0 starting at6(n
11)iv0 . The property that the continued fractionR(v) has
no poles or zeros other than on the realv axis and that it
varies as 1/v at infinity, uniquely determines its analytic con
tinuation,Rn

1(v) for wn(v) in Eq. ~35!. For n zero,

R0
1~v!5b„~12 iv/v0!/2…/~2i !, ~36!

for n one,

R1
1~v!5 i 2vb~2 iv/2v0!/2, ~37!

and in general,
Rn
1~v!5 H sn~v!1~12 iv/v0!~32 iv/v0!¯~n212 iv/v0!b~1/22v i /2v0!/~2in! ! for n even,

sn~v!2~v/v0!~22 iv/v0!¯~n212 iv/v0!b~2v i /2v0!/~2n! ! for n odd, ~38!
wn
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where the functionb(x) is defined in Gradshteyn an
Ryzhik @10#, and thesn(v) are polynomials inv, which
cancel the polynomial behavior of the second term at infin
in the upper half plane.

The above analytic forms for the power spectrum, E
~35!, and the second sheet of the continued fraction, Eq.~36!,
serve as a check on the numerical methods for obtain
these quantities. Since numerical errors in tridiagonaliz
operators are well understood@11#, we begin the numerica
studies with the exact tridiagonalization given in Eq.~32!
and solve Eq.~16! numerically to obtain its extremal solu
tions, convergent and divergent, for parts of the real a
imaginaryv axes. Forv real, the imaginary parts of the tw
solutions give the power spectrum, and forv imaginary, the
two solutions combine to give the analytic continuation
the power spectrum to imaginary frequencies.

Figure 1 shows part of the normalized power spectrum
u0,0, calculated using Eq.~25! with an expansion ofdn(v)
to order (1/n)9 from the 10310 submatrix in the upper left
hand corner of Eq.~14!. The figure includes only the positiv
frequencies from 0 to 5, in units ofv0 because the spectrum
y

.

g
g

d

f

r

is symmetric about zero. The largest error in the range sho
is about 1.4531029/v0 at v equals zero, while the smalles
error is about 10212/v0 . There is no indication in the dat
that the magnitude of the errors change systematically
side the range shown.

Figure 2 shows errors in the reciprocal of the analy
continuation of the power spectrum along part of the ima
naryv axis. As can be seen from Eq.~35!, w0(v) has poles
at 6 iv0 , 63iv0 , and so on, but no zeros. In order to ma
sense of the error near the poles ofw0(v), we plot the error
in 1/w0(v), which has zeros at6 iv0 , 63iv0 , and so on.
The numerical continuation of the power spectrum is ve
sensitive to the order of the approximation, so we have p
ted the errors for expansions of order (1/n)5, (1/n)7, and
(1/n)9 for the solutions to the recurrence, and these exp
sions were obtained, respectively, from the 535 submatrix to
the 939 submatrix in the upper left-hand corner of Eq.~14!.
The most remarkable feature of the calculations behind
figure is that where the approximate spectra have poles,
locations of the poles are accurate to order 10213v0 , essen-
tially the full precision of the calculation. This phenomen
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appears similar to the Lanczos’ phenomenon@12# in which,
as the order of approximation increases, successive eige
ues, in this case of the Liouvillian, converge to full arit
metic precision despite other eigenvalues remaining unc
verged. Increasing the order of approximation beyond (1/n)9

leads to no further reductions in errors because at this l

FIG. 1. The power spectrum for the inverted oscillator start
from a Gaussian distribution in phase space.

FIG. 2. Errors in the reciprocal of the power spectrum for t
inverted oscillator, numerically continued to the negative imagin
frequency axis for different orders of approximation.
al-

n-

el

of approximation the errors are determined by the precis
of the arithmetic used, as discussed at the end of Sec. I

Figure 3 displays contours equally spaced in the logarit
of uR(v)u, continued into the complex plane just below th
real axis. Like the spectrum, the continued fraction and
second sheet are symmetric about the imaginaryv axis, so
only v with positive real parts are included. The most s
nificant features are the first three poles of the continuat
on the negative imaginaryv axis at 2 iv0 , 23iv0 , and
25iv0 . There is also a zero of the continuation near t
center of the figure. The presence of a zero in that part of
complexv plane is consistent with the partial fraction e
pansion of theb function @10#, but we do not know of any
study of the zeros of this function.

V. A CHARGED PARTICLE IN A PERIODIC MAGNETIC
FIELD

The transverse motion of a classical charged particle in
inhomogeneous, periodic magnetic field is particula
simple because when all the unit cells of the lattice
mapped onto a single cell, the phase space of the particle
three torus, two of whose dimensions are position in the
and the third is the angle of the velocity vector. TakeX, Y,
andZ to be a right-handed system of Cartesian coordina
and let the field be2B@cos(X/a)1cos(Y/a)# times a unit vec-
tor in the Z direction. A particle of chargeQ and massM
moves with speedV in the X-Y plane. Newton’s equations
for this system are

dX/dt5V cosu,

dY/dt5V sinu,

du/dt5QB@cos~X/a!1cos~Y/a!#/M , ~39!

whereu is the angle the velocity vector makes with theX
axis. The phase space of this system is three-dimensi
because the magnitude of the velocity of the particle ne
changes, just its direction.

The Liouvillian for this system is
y

FIG. 3. Contours of constant magnitude in the analytic conti
ation of the continued fraction for the inverted oscillator.
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L52 i @v cosu]/]x1v sinu]/]y

1~QB/M !~cosx1cosy!]/]u#, ~40!

wherev, x, andy areV/a, X/a, andY/a, respectively. The
natural choice of basis functions for this Liouvillian are t
plane waves on the reciprocal lattice,

f j ,k,n5exp$ i ~ jx1ky1nu!%, ~41!

where j, k, and n vary over the integers. The action of th
Liouvillian on f j ,k,n gives

Lf j ,k,n5~v/2!~ j 2 ik !f j ,k,n111~v/2!~ j 1 ik !f j ,k,n21

1@QB/~2M !#n~f j 11,k,n1f j 21,k,n1f j ,k11,n

1f j ,k21,n!. ~42!

This is similar to electronic band theory in that a recipro
lattice of plane waves is coupled together, but it differs
that the matrix elements grow linearly with wave numb
Note thatf0,0,0 is invariant because it is just the consta
density in phase space.

A convenient choice of starting state is to makeu0 equal
f0,0,1, which is a function whose phase varies with the an
of the velocity. Constructing the solution to the recurrence
Eqs. ~12! and ~13!, it is easy to see that thean are exactly
zero, but that thebn can only be calculated approximatel
Carrying out the recursive tridiagonalization ofL in the case
wherev andQB/M are both unity, produces thebn given in
Table I.

We have calculatedbn for n up to 400, and find thatbn
becomes linear inn with a coefficient that we have fit to th
coefficienta, which appears in Eq.~23!. Another way to see
how bn grows withn is to note that the matrix elements o
the plane-wave representation ofL also increase linearly with
the band indices. This leads to a linear increase inbn with a
coefficient, which is similar to the one obtained by fitting

Figure 4 shows the power spectrum obtained from t
continued fraction and Fig. 5 shows a contour map for
analytic continuation of this fraction over a portion of th
frequency plane similar to that in Fig. 1., calculated nume
cally by the method described in Sec. III. Although the
currence produced by the periodic magnet is similar to t
of the inverted oscillator, the relaxation processes seem
different. While the power spectrum of the inverted oscilla
has only a central peak, the periodic magnet has a reson

TABLE I. Tridiagonal matrix elements for the charged partic
in a periodic magnetic field.

a050.000 000 00 b151.000 000 00
a150.000 000 00 b251.322 875 98
a250.000 000 00 b351.700 839 04
a350.000 000 00 b452.536 593 44
a450.000 000 00 b552.796 948 43
a550.000 000 00 b653.547 017 10
a650.000 000 00 b754.088 612 56
a750.000 000 00 b854.617 911 34
a850.000 000 00 b955.535 735 13
a950.000 000 00 b1056.030 636 79
l
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at about 1.4 frequency units, associated with some ne
periodic motion of the charge such as a cyclotron orbit. T
same resonance shows up as a pole in the continuation o
fraction, with anv whose real part is about 1.5 and who
imaginary part is about 0.4.

The inverted oscillator had an infinite hierarchy of rela
ation times, which produce poles at the odd integers of
negative imaginaryv axis on the second sheet, while th
periodic magnet only produces one, at least within 30 f
quency units of the origin. This makes sense because
linear forces of the inverted oscillator leave different ha
monics uncoupled allowing them to have different relaxat
times, and the periodic magnet couples all modes and g

FIG. 4. The power spectrum for the charged particle in a p
odic magnetic field.

FIG. 5. Contours of constant magnitude in the analytic conti
ation of the continued fraction for the charged particle in a perio
magnetic field.
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them the same relaxation time. In order for the power sp
trum to decrease exponentially at infinite frequency, th
must be an infinite number of poles and zeros on the sec
sheet. It seems that in the case of the periodic magnet,
one of the poles is on the negativev axis.

VI. MORE PARTICLES, CHAOS, AND DISSIPATION

The first conclusion, which we wish to draw from th
paper is that solution of Liouville’s equation is a practic
even efficient, method for determining the motion of clas
cal systems. For microscopic times, the approach prese
above gives results comparable with other methods, bu
conjunction with the analytical continuation of the continu
fraction, it allows the determination of macroscopic rela
ation times, which are difficult to calculate by other metho
In addition to its practical advantages, this approach ha
mathematical foundation, which gives error estimates
establishes a range of validity.

In comparison with other methods, it is appropriate to a
how the computational effort scales with the size of the s
tem. In each of the above examples there is a single par
whose motion changes because of the presence of force
most problems of interest, there are many particles wh
motion is determined by forces due to interactions betw
them. While we leave the problem of many interacting p
ticles for future work, in this section we point out the sim
larities between the problem of one particle in a force fie
and that of several interacting particles.

The most important point is that the computational eff
required to solve Liouville’s equation does not depend on
number of interacting particles because, as we shall sh
the Liouvillian operator is infinite dimensional for any num
ber of particles. Phase space for one particle has coordin
which are the position and momentum of the particle. FoN
particles, the phase space has dimension 6N if each particle
is free to move in three dimensions: three position coo
nates for each particle, and three components of momen
for each particle. However, the Liouvillian operator acts
the space of functions on phase space, not the coordin
themselves, so whether there are one, two, orN particles,
there are infinitely many independent functions of the po
tion and momentum coordinates. In other words, the Li
villian is an infinite dimensional operator as was shown
the above, single-particle examples, and it remains so
systems of several particles.

The only way the problem changes when there are m
particles is that the basic functions used to represent the
n
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ouvillian acquire more indices. For the periodic magnet,
phase space is three-dimensional, and forN particles con-
strained to move in a plane with similar speed-conserv
interactions, the phase space is 3N dimensional. A similar
basis of plane waves for this phase space has 3N indices
corresponding to the components of the wave numbe
each of the 3N directions in phase space. The procedure
constructing a tridiagonal basis out of combinations of
plane waves is the same; there are simply more plane w
combining to form each element of the tridiagonal basis
starting state for the tridiagonalization, similar to the o
used above, is constant in all coordinates except the direc
of the velocity of one particle. The only difference in th
resulting recurrence is that for smalln the bn are larger re-
flecting the increased number of ways the initial disturban
can distribute over theN particles. The power spectrum in
creases in width with the number of interacting particles;
the computational effort required to resolve a feature of fix
width in frequency also increases with the number of p
ticles, but it is only this and related single-particle-like qua
tities, which require more effort to calculate for more pa
ticles. The macroscopic properties of the system,
relaxation rates at long times, do not depend on the mo
of individual particles and so require the same computatio
effort independent of the number of particles, consistent w
the fact that relaxation rates in real systems are indepen
of the system size, once it is larger than some correla
length.

The second and more general conclusion we wish to d
from this paper is that macroscopic dissipation depends
microscopic chaos. The way by which motion is dominat
at long times by singularities with complex frequencies d
pends on the analyticity of autocorrelation functions for re
frequencies that depends in turn on traveling-wave soluti
to Liouville’s equation, and the traveling-wave solutions d
pend on the lack of any cyclic component to the motion. In
finite system, the only way functions can generate an infin
dimensional space is with unbounded increase in wave n
ber. If the functions increase in wave number, the trajecto
of the system must evolve into ever finer tangles, which
the link between chaos and dissipation.
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