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Roger Haydock
Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1274

C. M. M. Nex and B. D. Simons
Cavendish Laboratory, Madingley Road, Cambridge CB3 OHE, United Kingdom
(Received 9 June 1998

For classical systems with anharmonic forces, Newton's equations for particle trajectories are nonlinear,
while Liouville’s equation for the evolution of functions of position and momentum is linear and is solved by
constructing a basis of functions in which the Liouvillian is a tridiagonal matrix, which is then diagonalized.
For systems that are chaotic in the sense that neighboring trajectories diverge exponentially, the initial condi-
tions determine the solution to Liouville’s equation for short times; but for long times, the solutions decay
exponentially at rates independent of the initial conditions. These are the relaxation rates of irreversible
processes, and they arise in these calculations as the imaginary parts of the frequencies where there are
singularities in the analytic continuations of solutions to Liouville’s equation. These rates are calculated for
two examples: the inverted oscillator, which can be solved both analytically and numerically, and a charged
particle in a periodic magnetic field, which can only be solved numerically. In these systems, dissipation arises
from traveling-wave solutions to Liouville’s equation that couple low and high wave-number modes allowing
energy to flow from disturbances that are coherent over large scales to disturbances on ever smaller scales
finally becoming incoherent over microscopic scales. These results suggest that dissipation in large scale
motion of the system is a consequence of chaos in the small scale n{@ii63-651X99)07405-X]

PACS numbes): 05.45-a, 82.20.Mj, 02.70-c

I. FROM MICROSCOPIC TO MACROSCOPIC particle moving in a plane through a perpendicular, periodic
magnetic field, chosen because it is numerically tractable.
Although the classical equations of motion for micro- Each system is uniformly hyperbolic in the sense that small
scopic particles such as atoms and molecules conserve ethanges in the initial positions and momenta of particles lead
ergy exactly, the macroscopic motion of systems of theséo exponentially increasing differences in position and mo-
particles does not. Macroscopic disturbances evolve intonentum. Instead of calculating the trajectories of the par-
smaller and smaller disturbances until the energy of thestcles, we calculate the evolution of functions of position and
disturbances is dissipated into incoherent microscopic momomentum, and, in particular, it is the overlap of the initial
tion, and the system is in equilibrium. This difference be-function and the evolved function, the autocorrelation, which
tween macroscopic and the microscopic mechanics illusdescribes how quickly the initial state of the system decays.
trates one of the difficulties in extracting macroscopic We find two regimes in the time dependence of the auto-
guantities from microscopic equations of motion, namely,correlation: the first is for short or microscopic times, mul-
that the dissipation, which is central to macroscopic mechartiples of some time scale such as a collision time, where the
ics, arises from disorganized motion on a microscopic scaleautocorrelation depends sensitively on the initial distribution,
Other difficulties include the large number of interacting mi- and the second is in the limit of infinite time, macroscopic
croscopic degrees of freedom compared to the relatively fewimes, where the autocorrelation is independent of the details
macroscopic degrees of freedom, which describe the systerof the initial distribution. The technical challenge in these
The purpose of this paper is to show how macroscopicalculations is to extract the macroscopic relaxation rates
guantities, including those that involve dissipation, can berom the complexity and instability of the microscopic mo-
calculated in a practical way from microscopic equations oftion. Although both examples are of microscopic systems,
motion. The basic idea of our approach is to describe theve find that energy flows from long length scales to short
microscopic mechanics by a linear equation, Liouville’slength scales, consistent with dissipation in macroscopic sys-
equation[1] in the case of classical mechanics that is thetems.
focus of this paper and Schtimger's equation in the case of ~ The flow of energy from long to short length scales,
guantum mechanics, see further{#]. Starting with a func-  which produces the relaxation at macroscopic times, arises in
tion describing some initial state of the system, additionalour calculations from traveling-wave solutions to Liouville’s
functions are constructed to form the basis for a tridiagonaéquation which link low-wave-number and high-wave-
matrix representation of the equation of motion. Diagonal-number functions of position and momentum. The existence
ization of the tridiagonal matrix yields the frequencies thatof traveling waves depends first on there being an infinite
dominate at long times and, if these are complex, then theinumber of nearly degenerate degrees of freedom. Although
imaginary part is the rate of relaxation to equilibrium. these systems are spatially finite, there are still an infinite
As examples, we study two systems, the inverted oscillanumber of independent functions of position and momentum,
tor, chosen because it is analytically tractable, and a chargashich have the same time dependence. The different func-
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tions simply pack more and more zeros into the same rangesnstraint that the particles carry the function with them.

of position and momentum, or in other words, they haveThis leads to Liouville’s equation,

larger and larger wave numbers in position and momentum. ) ]

The second requirement for traveling-wave solutions is that fou(Q,Pit)/at=—i[V(Q,P)-Vqu(Q,P;t)

the frequency spectrum of autocorrelation be smooth rather :

than cgncen'xatgd at a few frequencies. This latter require- TRQP)-Veu(Q.Pi], ®

ment is met by uniformly hyperbolic systems where particlesyhere the total time derivative af(Q,P;t) is zero and the

never repeat, even approximately, their previous trajectorieshain rule generates the scalar products of the time derivative

and so there are no real, singular frequencies in their motiorsf Q, the velocity, with theQ gradient ofu(Q,P;t), and of
After discussing the general solution of Liouville’s equa- the time derivative o, the force, with theP gradient of

tion by tridiagonalization in Sec. Il, we argue in Sec. Ill that y(Q,P;t). The factor ofi on each side of the equation makes
after macroscopic times, the evolution of the system is govine Liouvillian operator,

erned by the analytic continuation of the microscopic solu-

tions from real to complex frequencies. The development of L=—i[V(Q,P)-Vo+F(Q,P)-Vp], (4)

a practical method for carrying out this analytic continuation N . .

is our main result. In Secs. IV and V we illustrate the Hermitian with respect to the inner product between func-
method, particularly the analytic continuation, for the in-tions f(Q,P) andg(Q,P), defined as

verted oscillator and the charge in a periodic magnet, and in

Sec. VI we describe how similar calculations cpuld be car- <f'g>:f de dPf(Q,P)*g(Q,P). (5)
ried out for larger systems and draw a conclusion about the

relation between chaos and dissipation. When there is a Hamiltonian function, the Liouvillian opera-

tor is —i times the Poisson bracket of the Hamiltonian.

Il. RECURSIVE SOLUTION OF THE MICROSCOPIC Formally, the exponential of the Liouvillian applied to the
EQUATIONS OF MOTION function att=0, u(Q,P;0), solves Eq.3) to give
The recursive solution of Liouville’s equation is described u(Q,P;t)=exg—iLt}u(Q,P;0) (6)

in a previous publicatio3], so here we just establish the

main results. Instead of attempting to solve the generallyt js computationally convenient to express this in terms of

nonlinear equations for the trajectories of atoms and molthe resolvent operatore(— L) "1, using the residue theorem,
ecules, we consider the time evolution of functions on phase

space, the space whose coordinates are the positions and mo- . . 1

menta of each of the particles. Functions on phase spacH(Q*P?t):(llzm)J do exp—iot}(w—L) " u(Q,P;0),
satisfy a linear equation of motion, Liouville’'s equation, (7
which relates each function to its time derivative by an op-

erator we call the Liouvillian. Starting with an initial func- Where the integral encloses the reséxis to include the real
tion, we construct a sequence of functions in terms of whictspectrum of the Liouvillian. Becauske is Hermitian with
the Liouvillian is a tridiagonal matrix. Taking advantage of respect to the inner product defined in E8), u(Q,P;0) can
the tridiagonal form of the Liouvillian, we expand the solu- be decomposed into a sum of orthogonal solutions to the
tion to Liouville’s equation in the orthogonal polynomials time-independent Liouville equation,

and the continued fraction associated with the tridiagonal

matrix_ wa(Q,P):wl//w(Q,P), (8)

For a system ofN patrticles, letQ be a vector whosel8
components are the position coordinates of all the particle
and letP be a vector whose components are the momenta
of all the particles. Newton’s law of motion states that the
time derivative of each particle’s momentum is the force on (U g,y =1. ©)
that particle,

of which, at most, one functiot,,(Q,P) is needed for each
Salue of w. The expression becomes even simpler if the so-
lutions to Eq.(8) are normalized so that

The evolution of the system starting witl{Q,P;0) is then
dP/dt=F(Q,P), (D) just the superposition of solutions to E&) with their time-

. ... _dependent phases,
which can depend on the momenta as well as the positions.

The rate of change dD is just the velocity, )
u(Q,P;t)=(1/2m)f do{u,(w—L) tu)
dQ/dt=V(Q,P), (2

Xexp —iwt}y,(Q,P), (10
which can in general depend on the positions as well as the
momenta. With few exceptions these equations are nonlineavhere the imaginary part of (&l)(u,(w—L) u) is the
and, therefore, difficult to solve. relative intensity ofy,(Q,P) in u(Q,P;0), seealso[3].

We can transform the nonlinear problem of calculating The next step in solving Liouville’s equation numerically
the evolution ofQ and P, into the linear problem of calcu- is to construct a set of functions,uy(Q,P),
lating the evolution of a functiou(Q,P;t) by using the u;(Q,P), u,(Q,P),...,u,(Q,P),... in which Liouville’s
chain rule for differentiation with respect to time, and theequation is tridiagonal. This can be done recur-
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sively [2,3] as follows: The first of these functiong(Q,P) spans the states generated by the exponential of the Liouvil-
is u(Q,P;0), normalized with respect to the above innerlian in Eq. (6). Let the expansion coefficients @,(w)},
product in whichL is Hermitian, with p_;(w) zero because there is mo 1(Q,P), andpgy(w)

unity in order to satisfy Eq(9) for the normalizediy(Q,P),

¢w(Q!P): pO(w)uO(Q1P)+ pl(w)ul(QIP)—i_. o

Uo(Q,P)=u(Q,P;0)/by, bo=(u,uy*2 (12)

The subsequent elements of the tridiagonal basis are compo-
nents of the solution to the three-term recurrence, +Pa(@)Un(Q,P)+---. (15

__ _ Substituting Eq(15) into Eq.(8), using the tridiagonal form
P 1tin+2(Q,P)=(L =) Un(Q.P) b“u“’l(Q'P)’(lz) of L, and equating the coefficients of each of {e(Q,P)}
gives a recurrence relation for the coefficients,
takingu_4(Q,P) to be zero, and taking the parameters to be
' by 1Pn+1(@) = (0= 8n)Pa(®) ~bpPp-1(w).  (16)

a,=(u,,Lu,), and _ :
n={Un,LUn) This recurrence relates three components of each solution;

S0, a solution is uniquely determined by two of its compo-
(13) nents, and in the absence of any boundary conditions, there
are two linearly independent solutions for each valuevpf

which make the{u,(Q,P)} orthonormal to one another. In corresponding to the two linearly independent choices of two

bn:<(|-_an)un_bnun—lu(l-_an)un_bnun—l>1/21

this basisL is the tridiagonal matrix, components. However, sin(;e the tridiagonal b@s,iﬁ_Q,P)}
has no elements fan negative, thegp,(w)} are defined by
fag by O ... 0 7 the boundary condition that_;(w) is zero, and the normal-
b, a; b, 0 .. ization condition in Eq.9) makespg(w) unity. These are
0 b, a, bs 0 ... usually called the regular orthogonal polynomials because

they are polynomials i@ and can be shown to be orthogonal
with respect to integration over the spectrum of the resolvent
J=|" : : : ' ' . (14)  element appearing in EG10), see[2].
y ' y : ' . Having shown how to calculate solutions to the time-

O ... 0 by a by 0O .. independent Liouville equation, the next problem is that of
evaluating the resolvent element, which also appears in Eq.
(10). This is accomplished with the same tridiagonalization
as for the stationary solutions becausé. is also tridiagonal
in this basis, and the required element is in the upper left-

The tridiagonal basigu,(Q,P)} is ideal for expanding hand corner of the inverse. Writing the inverse element as
the solutions to Eq(8) that contribute to the evolution of the ratio of the cofactor and determinant @fL, and ex-
ug(Q,P) because the basis spans every powerLobn  panding these alternately in rows and columns yields a con-
ug(Q,P), that is,L"ug(Q,P) for all n, and, consequently, tinued fraction expansion for

R(w)=(Ug.(@—L) o) =1H{w—ag—bZ[w—ay—-—bZ(0—a,—-)-]}. (17)

Using this continued fraction expansion for the resolventjs at infinite w, and the solutions to the time-independent
and taking account of the normalizationugfQ,P;0) gives a  Liouville equation{,(P,Q)} are analytic inw, for finite P
numerically tractable expression for the evolution of thisandQ, becausev is a parameter in the differential equation,

function, Eq. (8). From the residue theorem, only singularities in the
integrand of Eq(18) contribute to its value, and those occur
U(Q,p;t):(bo/zﬂ-i)f dwi,(Q,P)R(w)exp—iwt!, only in R(w) which, according to Eq(17), is singular for

18 every value ofw for which there is a solution of the time-
(18) independent Liouville equation containedu(Q,P;0). The

where the integral is around a contour, which encloses théingularities inR(w) can vary from a few isolated poles for
real w axis. This integral can be evaluated numerically usingSystems such as coupled harmonic oscillators, to the case
Gaussian quadratufd] with nodes and weights that are the whereR(w) is analytic in the limit asw becomes real, but
poles and residues of the finite continued fractions obtainewith the sign of its imaginary part depending on whether the
by truncatingR(w), see further i 3]. limit is taken from above or below the real axis. It is this
The relationships between the singular and nonsingulalatter case, which is of particular interest for what follows.
parts of the integrand in E418) determine the evolution of For real w, the magnitude of the imaginary part of the
the system. The only singularity in the exponential functionresolvent|Im{R(w)}|, is also called the power spectrum, and
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plays a fundamental role in the evolution of the systemandP without changing the resulting density; so solutions to

Given the power spectrum, rather than the Liouvillian andLiouville’s equation used in this paper have a gauge symme-
the initial functionu(Q,P;0), thetridiagonal matrix in Eq. try that leaves the observables, the densities, invariant.

(14) can still be obtained by orthogonalizing polynomials

with respect tqIm{R(w)}| [2]. From Eqs(15) and(18), the IIl. ANALYTIC CONTINUATION IN FREQUENCY

Fourier transforms of these polynomials weighted by

|Im{R(w)}|, then gives the time-dependent coefficient of each In the previous section we solved Liouville’s equation to

un(Q,P), even though thgu,(Q,P)} are not given. The find the time evolution of a function on phase space; how-
power spectrum determines the part of the evolution, whicrever, in order to determine the behavior at macroscopic
is independent of any realization of the system. times, we must analytically continug(w), defined in Eq.

For microscopic timest up to where 1/ is comparable (17), to its second sheet. This is the second of two analytic
with the scale of the finest structure in the power spectrumgontinuations, which are central to this approach; the first
the evolution of the system is well described by the Fourietbeing the continuation oR(w) to its first sheet from its
transforms of polynomials weighted by the power spectrumexpansion about infinite. The expectation values of powers
Typically thenth component of the state remains small whenof the Liouvillian (u,L"u), which are the moments of the
t is so small that the cycles of efxpiwt} are much bigger power spectrum, are also coefficients of inverse powets of
than those op,(w). The nth component has greatest mag- in an expansion oR(w) about infinity [5]. This moment
nitude when the cycles are of similar size, and decreasegxpansion does not necessarily converge for any values of
again once the cycles of ekpiwt} get smaller than those of but because the power spectrum is non-negative, the moment
pn(w). Itis the initial part of the recurrence that determineséxpansion can be analytically continued to its first sheet us-
both the general shape of the power spectrum and the earigg the continued fraction expansion B{w) [5]. The first
polynomials, and hence the evolution over microscopicsheet ofR(w) only determines the evolution of the system
times. for microscopic times, and for macroscopic times, the con-

For large values of, macroscopic times, the situation tinued fraction must be analytically continued to its second
changes. The cycles in the exponential are so short that thesheet, which is the problem addressed in this section. The
integral over any smooth function, such as a polynomiamethod developed here is illustrated both analytically and
weighted by a smooth power spectrum, goes exponentially toumerically in Sec. IV.
zero with increasing. There is no matching of cycles, but ~ Our approach to this problem is the analytic continuation
the rate of the exponential decay is given by the location opf solutions to the recurrence in Ed.6). Because this recur-
the singularities nearest to the reabxis in the integrand. In  rence connects three successive components of a solution,
the cases of interest in this pap&(w) has no singularities for any complex value ob, two components must be speci-
in either the upper or lower halves of taeplane or even in fied to determine the third, and hence the whole solution. In
the limit as w goes to the real axis from either above orthe most general case, these two initial components can be
below, so the polynomials and hence the initial state of theény two complex numbers, so the space of solutions has two
system no longer affect its evolution. The only singularitiescomplex dimensions. One of these two, complex degrees of
in the integrand are in the analytic continuation Rfw)  freedom may be taken to be a complex normalizing factor,
through the reab axis from either above or below, to what wWhich multiplies every component of a solution. This leaves
is called the second sheet B{w). It is the imaginary parts @ single important degree of freedom, which is the ratio of a
of the w, at which these singularities occur on the secondpair of components. There are two linearly independent poly-
sheet, that are the rates of exponential decay for componeni®mial solutions to the recurrence, the regular orthogonal
of the state, and determine the rates for dissipation of mepolynomials{p,(w)}, whose—1st and Oth components are
chanical energy. In practical terms, the relaxation rates agonventionally taken to be zero and unity, respectively, and
macroscopic times are determined by the analytic continughe irregular polynomial§q,(w)}, whose Oth and 1st com-
tion of the continued fraction in Eq17) from the upper half ponents are taken to be zero and unity. When the recurrence

to the lower half of thew plane where it can have singulari- is infinite, we show below tha(w) is related to the solution
ties. that goes to zero fastest asgoes to infinity in the recur-

As a last note in this section on solving Liouville’s equa- rence, the solution whose ratios of successive components
tion, we should comment that the more usual apprda¢is  has the smallest magnitude at infinity, which for eaclve
to evolve phase-space densities, functions on phase spadenote by{c,(w)}.
that are never negative, rather than more general functions. It The continued fraction expansion in E¢l7) can be
is easy to show that when solved exactly, Liouville’s equa-viewed as a relation between the ratios of successive com-
tion preserves the non-negativity of densities; the problem igonents of a solution to the recurrence. Usfog(w)} as an
that it is very difficult to preserve non-negativity in approxi- example, the recurrence for=0 gives
mate solutions. Because Liouville’s equation is first order in
all its derivatives, the evolution of a product of functions is —(— _
the product of the evolutions of th(le3 individual functions. b11(@)=(w=80)Co @) ~boC-1(w), 19
Consequently, the squared magnitude of the evolution of an | .
arbitrary function is a density that is also a solution to Liou-Which can be rearranged as a fraction,
ville's equation, and this is the way we preserve non-
negativity in approximate densities. However, the functions  cy(w)/[boc_1(w)]=1[w—ag—b c1(w)/co(w)].
can be multiplied by an arbitrary phase at each valu€ of (20
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The recurrence fon=1 can be similarly rearranged to give solution is also unique for the same reason that the most
a fraction for cq(w)/[bico(w)] in terms of convergent solution is unique.
c,(w)/[b,ci(w)] and so on. Linking these relations together  Since A(w) has unit modulus, and since at infinity in
gives a continued fraction relation betweenn {g,(w)} generally goes to a constant, which can be taken
Co(w)/[bgc_1(w)] andc,1(w)/[ by 1Cn(w)] for anyn. to be unity, the convergence or divergence of a solution to
Shohat and Tamarkifb] show that under conditions that the recurrence depends on the real part of the exponent
apply to this work, and fow not real, the continued fraction B(w). The most convergent solution for a giverhasB(w)
in Eq. (17) converges with increasing number of levels. Inwith a real part that is greater than;, and the most diver-
terms of the above relation between ratios of successivgent solution ha(w) with a real part less thar 3. As w
components of a solution, asgoes to infinity, the continued goes through the real axis, the real parBgiw) goes from
fraction takes as its value the ratio of successive componentme side of—3 to the other, and the most convergent and
of just one of the solutions to the recurrence. This must belivergent solutions interchange. This crossover between con-
the solution that depends least on what happens atfarge  vergence and divergence is similar to that displayed by
in other words, it is the solution that goes to zero most rapsecond-order differential equations. As in the case of differ-
idly with increasingn. Because the fraction converges, theential equations the crossover of the analytic part of the so-
most convergent solution is unique femot real. This result lution can be complicated; however, such complications are
can be seen informally by noting that a continued fraction isunnecessary for the purposes of this paper provided that the
naturally evaluated from the bottom up, corresponding tamost divergent solution can be constructed for eadif the
evaluation of the recurrence, starting at largand working  real axis. Since Eq20) relates the continued fraction to the
backwards tan=0. The reverse evaluation of a recurrence ismost convergent solution, which continues to the most diver-
dominated by the solution, which increases most rapidly irgent solution, the second sheet value of the continued frac-
magnitude as decreases. Since solutions can be generatetion is
by recurring in either direction, the one that increases in
magnitude most rapidly as decreases is the one that con- S(w)=dg(w)/[bedi(w)], (29
verges to zero most rapidly asincreases.
For the systems studied below, tagare all zero, andh,  where{d,(w)} is the most divergent solution to the recur-
are either proportional to, or become proportional to for  rence.
n large. For this reason we study the recurrence in whigch In order to evaluate the second sheet of the continued
is an with « greater than 0. As for related second-orderfraction, only the most divergent solution to the recurrence is
differential equations, we try a solution containing only ex-required, and because the singular factors in this solution are

ponential and algebraic singularities at infinite given by Eq.(23), only the analytic factofg, ()} remains
to be determined numerically. However, an expansion of
Cr(®)=0n(@)A(w)"B), (2)  {g,(w)} in inverse powers ofi converges very poorly for

_ _ o . . smalin. A numerically stable approach is to expr&w) as
where g,(w) is analytic at infiniten, meaning that it goes a ratio of components of the most convergent solution for
smoothly to a constant asgoes to infinity. When this trial |arge n, and calculate these by subtracting fits to the most

solution is substituted into the recurrence, it becomes divergent solutions from polynomial solutions to the recur-
i1 B(w) rence. The first step in deriving such an expression is to
a(n+1)A(w)" (n+1)"'gn 1 (@) expand the regular polynomial solutiofip_;(w)=0 and
= wA(w)"nB® Po(w)=1] and_ irregular polynomial solutlon_éqo(w)=0
wA(@) On( @) andg;(w)=1] in the most convergent and divergent solu-
tions,

—anA(0)" H(n-1)8g, ().
22
(2 40 @) = 0o ©)Co(@) + Gg(@)dn( @), and
Requiring thatg,(w) contain no positive powers af near
n=o leads to two possible solutions, Pn(@)=pe(w)Cn(w) + py(w)dn(w), (25

A(w)==*i, and B(w)=—(1*iw/a)/2, (23)  whereq(w), q4(w), pc(w), andpy(w) are coefficients that
depend only onw and are determined by the initial condi-

distinguished by taking either the upper or lower signs intions for the two kinds of polynomials. There are only two
both expressions. Each choice of sign gives a linearly indelinearly independent solutions to the recurrence for each
pendent solution, and we could proceed to expgg(d) in  value of w; so only two terms are needed for each expres-
powers of 1, but the exponential and algebraic singularitiession. Next, eliminatec,(w) from the above two equations,
of the solution,A(w) and B(w), turn out to be all that is solve ford,(w), and substitute this into Eq424) to get
needed from this analysis. Farin the upper half plane, it is
clear that the lower choice of sign gives the most convergent S(w)=0c(w)/[b1pcw)]. (26)
solution{c,(w)}, which is related to the continued fraction
by Eq.(20). The choice of the lower signs farin the lower  This expresses the second sheet of the continued fraction in
half plane gives the most divergent solutifd,(w)}, one terms of the ratio ofg.(w) to b;p.(w) that is the ratio of
which grows faster, or at least shrinks slower, than any othecoefficients ofc,(w) in g,(w) and b;p,(w) in Eq. (25).
as n goes to infinity. Forw not real, this most divergent This is just the ratio of the convergent components{fw)
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andb,p,(w), or what is left when the divergent components u,(Q,P) for infinite n, corresponding to functions of infinite

are subtracted from,(») andb;pp(w). wave number with respect © andP. A further interpreta-

The polynomials{q,(w)} and{b;p,(w)} defined above tion of this process is that a density that varies slowly \@th
are dominated by their most divergent components &  or P evolves, due to the nonlinear forces, into one which
creases, and fa® in the upper half plane; this part of each varies ever more rapidly wit) and P and finally into one
can be expanded in the form-¢)"n~(~1“/®2g (), Eq. that evolves infinitely rapidly witlQ andP. When the wave
(21), whereg,(w) is analytic inn at infinity. In order to numbers of the density variations become infinite, these
approximate g.(w)c,(w) and bips(w)c,(w), we fit variations become microscopic so the mechanical energy
go(®),...,.0n-1(w) andb;py(w),...,b1p,_1(w) to Eq.(21), they contained has been dissipated by some microscopic pro-
in each case expandiqg,(w)} in n nonpositive powers of cess, and the system has achieved equilibrium.
n+ 1. These fits are used to estimate the divergent parts of Another property of traveling waves is that they belong to
gn(w) andb;p,(w) that are subtracted from them to produce bands defined by the intervals efover which the complex
approximate values of.(w)c,(w) and bip(w)c,(w). phase difference between successive components varies from
These latter quantities are substituted into E2f) where  zero tom, in the limit asn goes to infinity. For example, the
cn(w) in the numerator cancets,(w) in the denominator to  traveling-wave solutions in Eq22) go to a limiting phase
give S(w), the second sheet of the continued fraction.nAs difference ofr/2 for all realw, and so the band extends over
increases this approximation improves until rounding erroithe entire reakw axis. If b, had been constant rather than
limits the significance of the differences betwesj{w) or  increasing inn, the band would have extended i from
b1ps(w) and their most divergent components. The depen—2b, to 2b,,, with the limiting phase zero atl® and = at
dence of errors om is illustrated in Sec. IV. —2b,.

The second sheet of the continued fraction may be inter- The trial solution adopted in Eq21) has an exponential
preted physically as the complex admittartee inverse of  singularity at infiniten, but such simple singularities occur
impedencg of the system. The poles on the second sheeenly for recurrences in whicl, goes to a constant ariuj,
occur at complexw at which the system absorbs energy becomes linear im asn goes to infinity. When the recur-
without reflection and dissipates that energy«ifhas an rence parameters have more complicated behavior, for ex-
imaginary part. The zeros occur atfor which the system is ample in electronic structure calculations where multiple
perfectly reflective, and ab, which are neither zeros nor bands are presef], the singularity at infinity in the solu-
poles, the system absorbs some energy and reflects the ref§en to the recurrence is not a simple exponential, and there
The eigenfunctions of the Liouvillian corresponding to fea-does not seem to be any form comparable to @4). The
tures in complexw give the densities i) and P for which ~ same problems arise in ordinary differential equations with
the system absorbs, dissipates, or reflecis.at irregular singularities at infinity, sg&], where simple expo-

The analytic continuation dR(w) is only possible if the nential singularities are the only ones for which solutions can
two extremal solutions to the recurrence continue into onde expanded about infinity.
another on the reab axis, and we show here that this hap-
pens only if there are traveling-wave solutions for real IV. THE INVERTED OSCILLATOR
The recurrence in Eq16) always has two linearly indepen- ] ) ] )
dent solutions, which for mosé can be taken to be the most  1he inverted oscillator is the simplest system whose solu-
convergent and the most divergent as above. In special casdins to Newton's equations, Eqdl) and(2), diverge expo-
the divergent and convergent solutions can become degendtentially in phase space, a characteristic of chaotic motion
ate in the sense that all solutions go to a constant magnituddd related to the existence of traveling-wave solutions to
for n large. This degeneracy is necessary for one extremd-}'OU.V'"e’S_ equation. Thg myerted oscnlgtor consists of a
solution to continue into the other asvaries; otherwise, the Particle with massvi moving in a quadratic potential,
continuation would be nonanalytic at the value@wfvhere . 2
limiting behavior of the two solutions interchanged without U(x)=—-KX2, (27)
becoming identical. The convergence of the continued frac
tion for all w except possibly on the real axis[5] shows
that the converging solution is unique except possibly on th
real ® axis, and hence _that thgrg iS no degeneracy except wo=(KIM)¥2, (28)
possibly on the reab axis. So, it is only along the rea
axis that the extremal solutions can continue into one anwhich sets a time scale. Since Newton’s equations can be
other, and only there can the solutions be degenerate. F@plved analytically for this system, the trajectories of the
real o at which the solutions are degenerate, we can conparticle can be compared directly with results from the meth-
struct two independent, redecause the coefficients in the ods developed above.
recurrence are all reabolutions to the recurrence whose  |jouville's equation can also be solved both analytically

magnitudes go to the same value at infimiteThe traveling  and numerically for this systeif8,8]. In terms of wg, the
wave is the complex combination of these two solutions jouvillian is

which is in quadrature in the limit of infinita. Conversely,
if there are no traveling waves, then there is no degeneracy, L=—iwo[ydlox+xdldy], (29
and hence no analytic continuation.

The physical significance of the traveling waves is thatwherex is the displacement scaled by any unit of distance,
they allow the initial state of the system to propagate toandy is the velocity of the particle scaled by the same unit of

where X is displacement. Despite the absence of oscillatory
énotion, there is a natural phase velocity,
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distance and divided bw,. Following Haydock and Kim ville’s equation are satisfied by Meixner polynomials of the
[3] and the procedure described in Sec. I, we tridiagonalizesecond kind[9] of which the mth set of polynomials are
L analytically starting with an initial distribution, chosen to orthogonal with respect to integration over realwith the

be Gaussian. Laiy be the normalized Gaussian, weight distribution,

Up=exp{ — (x*+y*)/2}/ . (30) Win( @)= 2" ((M+i w/ 0o+ 1)/2)
It can then be shown that the rest of the tridiagonal basis XT(M—iwlwg+1)/2)/(27m!), (35)
consists of the functions,

(0 whereI'(z) is the gamma function. These weight distribu-
Un= (1) n(X)hn(y) o, (31) tions are also the power spectra of the motion of the inverted

whereh,(x) is the nth Hermite polynomial, normalized to oscillator for the initial stataly,. In the case whereg is

J7 with respect to integration over expx2. The recur- given by Eq.(30) the relations between the gamma function
rence parameters are and hyperbolic functions make this weight distribution

{20 cosh ol (2wo) |} 2.

a,=0 and b,=nwy, (32 The continued fractions for the inverted oscillator can be

analytically continued by inspection. The weight distribu-
which is just the kind of recurrence analyzed in Sec. lll.  tions in Eq.(35) have poles along the imaginary axis at
More generally, the Liouvillian for the inverted oscillator ejther odd or even integer multiples b, starting at=+ (n
is tridiagonal in the isotropic oscillator functions, +1)iwg. The property that the continued fracti®fw) has

no poles or zeros other than on the reabxis and that it
varies as I at infinity, uniquely determines its analytic con-

which form a complete set of functions on the phase space dinuation,Ry (w) for wy(w) in Eg. (35). Forn zero,

Ui m= (D) () hi(y)exp{ = (P +y?)/2}m, (33

this system wherk and m take values from 0,,1 .. . The N . .
tridiagonal matrix elements are given by Ro (@)= B(1-iwl/wy)l2)/(2i), (36)
L m= wof[(K+1)(M+1) 1"y, s g for n one,
+(km)Y2u 04, (34)

R (w)=i—wB(—iwl2wy)/2, (37
and each tridiagonal subspace starts with the funatigp,
or Uxo. The recurrences for stationary solutions to Liou-and in general,

Sp(w)+ (1—iw/wg)(3—Tw/wg) (N—1—iw/wy) B(1/12— wil2wg)/(2in!) for n even,

Ry (@)= Sp(®) — (@ wg)(2—iwl ) --(N—1—iw/wy) B(— wil2we)/(2n!) for n odd,

(38)

where the functionB(x) is defined in Gradshteyn and is symmetric about zero. The largest error in the range shown
Ryzhik [10], and thes,(w) are polynomials inw, which  is about 1.4% 10 % w, at w equals zero, while the smallest
cancel the polynomial behavior of the second term at infinityerror is about 10'%w,. There is no indication in the data

in the upper half plane. that the magnitude of the errors change systematically out-
The above analytic forms for the power spectrum, Eq.side the range shown.
(35), and the second sheet of the continued fraction (&4), Figure 2 shows errors in the reciprocal of the analytic

serve as a check on the numerical methods for obtainingontinuation of the power spectrum along part of the imagi-
these quantities. Since numerical errors in tridiagonalizinghary w axis. As can be seen from E5), wy(w) has poles
operators are well understoddil], we begin the numerical at=*iwg, *=3iwy, and so on, but no zeros. In order to make
studies with the exact tridiagonalization given in Eg§2) sense of the error near the polesgf{ w), we plot the error
and solve Eq(16) numerically to obtain its extremal solu- in 1Mwg(w), which has zeros atiwg, *3iwgy, and so on.
tions, convergent and divergent, for parts of the real and’he numerical continuation of the power spectrum is very
imaginaryw axes. Fomw real, the imaginary parts of the two sensitive to the order of the approximation, so we have plot-
solutions give the power spectrum, and feimaginary, the ted the errors for expansions of orderr(, (1/n)’, and

two solutions combine to give the analytic continuation of (1/n)® for the solutions to the recurrence, and these expan-
the power spectrum to imaginary frequencies. sions were obtained, respectively, from theSsubmatrix to

Figure 1 shows part of the normalized power spectrum fothe 9<9 submatrix in the upper left-hand corner of E#i4).

Upo, calculated using Eq25) with an expansion ofl,(w) The most remarkable feature of the calculations behind this
to order (1h)° from the 10< 10 submatrix in the upper left- figure is that where the approximate spectra have poles, the
hand corner of Eq(14). The figure includes only the positive locations of the poles are accurate to order £@,, essen-
frequencies from 0 to 5, in units @f, because the spectrum tially the full precision of the calculation. This phenomena
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FIG. 3. Contours of constant magnitude in the analytic continu-
ation of the continued fraction for the inverted oscillator.

of approximation the errors are determined by the precision
of the arithmetic used, as discussed at the end of Sec. .
Figure 3 displays contours equally spaced in the logarithm
of |R(w)|, continued into the complex plane just below the
real axis. Like the spectrum, the continued fraction and its

FIG. 1. The power spectrum for the inverted oscillator startingSecond sheet are symmetric about the imagina®xis, so
from a Gaussian distribution in phase space.

appears similar to the Lanczos’ phenomefd8] in which,

only w with positive real parts are included. The most sig-
nificant features are the first three poles of the continuation,
on the negative imaginary axis at —iwg, —3iwg, and

as the order of approximation increases, successive eigenvat-5iwgy. There is also a zero of the continuation near the
ues, in this case of the Liouvillian, converge to full arith- center of the figure. The presence of a zero in that part of the
metic precision despite other eigenvalues remaining uncorcomplex w plane is consistent with the partial fraction ex-

verged. Increasing the order of approximation beyond)CL/

pansion of thed function[10], but we do not know of any

leads to no further reductions in errors because at this leveitudy of the zeros of this function.
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-0.0001
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V. A CHARGED PARTICLE IN A PERIODIC MAGNETIC
FIELD

The transverse motion of a classical charged particle in an
inhomogeneous, periodic magnetic field is particularly
simple because when all the unit cells of the lattice are
mapped onto a single cell, the phase space of the particle is a
three torus, two of whose dimensions are position in the cell
and the third is the angle of the velocity vector. TakeY,
andZ to be a right-handed system of Cartesian coordinates,
and let the field be- B[ cos/a)+cos(Y/a)] times a unit vec-
tor in the Z direction. A particle of charg€® and masiv
moves with speed/ in the X-Y plane. Newton’'s equations
for this system are

dX/dt=V cos#,
dY/dt=Vsing,
do/dt=QB[cogX/a)+cogY/a)]/M, (39

where 6 is the angle the velocity vector makes with the
axis. The phase space of this system is three-dimensional

FIG. 2. Errors in the reciprocal of the power spectrum for thebecause the magnitude of the velocity of the particle never
inverted oscillator, numerically continued to the negative imaginarychanges, just its direction.

frequency axis for different orders of approximation.

The Liouvillian for this system is
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TABLE I. Tridiagonal matrix elements for the charged particle
in a periodic magnetic field.

a,=0.000 000 00 b,;=1.000 000 00

a,=0.000 000 00 b,=1.32287598 0.6

a,=0.000 000 00 b;=1.700 839 04

a;=0.00000000 b,=2.536 593 44 L

a,=0.000 000 00 bs=2.796 948 43 08

as=0.000 00000 bg=3.547 017 10

ag=0.000 000 00 b,=4.088 61256 04 L0

a,;=0.000 000 00 bg=4.617 911 34

ag=0.000 000 00 by=5.53573513 Power [ '.

ay=0.000 000 00 b1o=6.030 636 79 Density o F  °

(s/rad) i '..
02| ™ *
L=—i[v cosédl dx+uv sin Bl dy i “
+(QB/M)(cosx+ cosy)ala6], (40) o
wherev, X, andy areV/a, X/a, andY/a, respectively. The I k .,
natural choice of basis functions for this Liouvillian are the o L R B
plane waves on the reciprocal lattice, 0 1 2 3 4 5
o (rad/s)
dj kn=expli(jx+Ky+no)}, (41

FIG. 4. The power spectrum for the charged particle in a peri-
wherej, k, andn vary over the integers. The action of the odic magnetic field.
Liouvillian on ¢;  , gives

at about 1.4 frequency units, associated with some nearly

Lj kn=(0/2)(j=iK) @) kn+1F (/2 ([ 1K) bj kn-1 periodic motion of the charge such as a cyclotron orbit. The
+[QB/(2M)IN( )+ 1xn+ D) 1knt D)kt 1 same resonance shows up as a polg in the continuation of the
w a T fraction, with anw whose real part is about 1.5 and whose
+ &jk—1n)- (42 imaginary part is about 0.4.

The inverted oscillator had an infinite hierarchy of relax-
This is similar to electronic band theory in that a reciprocalation times, which produce poles at the odd integers of the
lattice of plane waves is coupled together, but it differs innegative imaginaryw axis on the second sheet, while the
that the matrix elements grow Iinearly with wave number.periodic magnet 0n|y produces one, at least within 30 fre-
Note thateg o is invariant because it is just the constantquency units of the origin. This makes sense because the
density in phase space. linear forces of the inverted oscillator leave different har-

A convenient choice of starting state is to makgequal  monics uncoupled allowing them to have different relaxation
$0,0,1, Which is a function whose phase varies with the anglaimes, and the periodic magnet couples all modes and gives
of the velocity. Constructing the solution to the recurrence in
Egs.(12) and (13), it is easy to see that the, are exactly
zero, but that thd, can only be calculated approximately. Re(w) tadi
Carrying out the recursive tridiagonalizationlofn the case
wherev andQB/M are both unity, produces thx, given in 0.0 ¢
Table I.

We have calculatety,, for n up to 400, and find thalb,
becomes linear im with a coefficient that we have fit to the 0.
coefficienta, which appears in Eq23). Another way to see
how b, grows withn is to note that the matrix elements of
the plane-wave representationloélso increase linearly with
the band indices. This leads to a linear increaske,imith a
coefficient, which is similar to the one obtained by fitting. 15

Figure 4 shows the power spectrum obtained from this
continued fraction and Fig. 5 shows a contour map for the
analytic continuation of this fraction over a portion of the -2.0
frequency plane similar to that in Fig. 1., calculated numeri- /
cally by the method described in Sec. Ill. Although the re- A2

2.5 1 1 1 V=

-1.0

|m( (0] ) (rad/s)

currence produced by the periodic magnet is similar to that
of the inverted oscillator, the relaxation processes seem very FIG. 5. Contours of constant magnitude in the analytic continu-
different. While the power spectrum of the inverted oscillatoration of the continued fraction for the charged particle in a periodic
has only a central peak, the periodic magnet has a resonangeagnetic field.
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them the same relaxation time. In order for the power speceuvillian acquire more indices. For the periodic magnet, the
trum to decrease exponentially at infinite frequency, thergphase space is three-dimensional, and Noparticles con-
must be an infinite number of poles and zeros on the seconstrained to move in a plane with similar speed-conserving
sheet. It seems that in the case of the periodic magnet, onipteractions, the phase space i 8limensional. A similar

one of the poles is on the negatiueaxis. basis of plane waves for this phase space hssir8lices
corresponding to the components of the wave number in
VI. MORE PARTICLES, CHAOS, AND DISSIPATION each of the 8l directions in phase space. The procedure for

) ) ] ) . constructing a tridiagonal basis out of combinations of the

The first conclusion, Wh'Ch_W‘? wish to draw from this yane waves is the same; there are simply more plane waves
paper is that solution of Liouville’s equation is a practical, compining to form each element of the tridiagonal basis. A
even efficient, method for determining the motion of classi-giarting state for the tridiagonalization, similar to the one

cal systems. For microscopic times, the approach presentgieq ahove, is constant in all coordinates except the direction

above gives results comparable with other methods, but igf the velocity of one particle. The only difference in the
conjunction with the analytical continuation of the Com'”uedresulting recurrence is that for smallthe b,, are larger re-
fraction, it allows the determination of macroscopic relax-fecting the increased number of ways the initial disturbance
ation times, which are difficult to calculate by other methods..;n distribute over thél particles. The power spectrum in-
In addition to its practical advantages, this approach has greases in width with the number of interacting particles; so
mathematical foundation, which gives error estimates anghe computational effort required to resolve a feature of fixed
establishes a range of validity. n _ width in frequency also increases with the number of par-
In comparison with other methods, it is appropriate t0 askjcles, put it is only this and related single-particle-like quan-
how the computational effort scales with thg size of the SYStities, which require more effort to calculate for more par-
tem. In eaqh of the above examples there is a single particlg;jes. The macroscopic properties of the system, the
whose motion changes because of the presence of forces. lgjaxation rates at long times, do not depend on the motion
most problems of interest, there are many particles whosgg jngividual particles and so require the same computational
motion is determined by forces due to interactions betweeRgort independent of the number of particles, consistent with
them. While we leave the problem of many interacting parhe fact that relaxation rates in real systems are independent
ticles for future work, in this section we point out the simi- ot the system size, once it is larger than some correlation
larities between the problem of one particle in a force f'eld’length.
and that of several interacting particles. _ The second and more general conclusion we wish to draw
The most important point is that the computational effortsom this paper is that macroscopic dissipation depends on
required to ;olve Llpuvnle s equation does not depend on themicroscopic chaos. The way by which motion is dominated
number of interacting particles because, as we shall showys |5ng times by singularities with complex frequencies de-
the Liouvillian operator is infinite dimensional for any num- nends on the analyticity of autocorrelation functions for real
ber of particles. Phase space for one particle has coordinatggsquencies that depends in turn on traveling-wave solutions
which are the position and momentum of the particle. Ror 4 | joyyille’s equation, and the traveling-wave solutions de-
particles, the phase space has dimensilnifeeach particle  heng on the lack of any cyclic component to the motion. In a
is free to move in three dimensions: three position coordifinite system, the only way functions can generate an infinite
nates for each particle, and three components of momentugimensional space is with unbounded increase in wave num-
for each particle. However, the Liouvillian operator acts onper |f the functions increase in wave number, the trajectories

the space of functions on phase space, not the coordinatgs ihe system must evolve into ever finer tangles, which is
themselves, so whether there are one, twoNoparticles,  he |ink between chaos and dissipation.

there are infinitely many independent functions of the posi-
tion and momentum coordinates. In other words, the Liou-
villian is an infinite dimensional operator as was shown in
the above, single-particle examples, and it remains so for The authors acknowledge assistance from Guna Rajago-
systems of several particles. pal. This paper was supported by the National Science Foun-

The only way the problem changes when there are moreation’s Office of Science and Technology Infrastructure un-
particles is that the basic functions used to represent the Lder Grant No. STI-9413532.
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