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Stabilization of unstable steady states and periodic orbits in an electrochemical system
using delayed-feedback control
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We report numerical and experimental results indicating successful stabilization of unstable steady states and
periodic orbits in an electrochemical system. Applying a continuous delayed-feedback technique not only
periodic and chaotic oscillations are suppressed via stabilization of steady-state solutions but also the chaotic
dynamics can be converted to periodic behavior. In all cases the feedback perturbation vanishes as a target state
is attained[S1063-651X%99)02205-9

PACS numbdis): 05.45~-a, 87.10+e

I. INTRODUCTION rameters, a given system may exhibit a wealth of dynamical
responses such as steady sefeeriodic or chaotic oscilla-

It is well documented1-9] that dynamical control of tions, etc. A discontinuous transition between these states is
chaotic behavior can be achieved by judiciously applyingcalled a bifurcation, and the map showing the location of
small perturbations to an accessible control parameter. Thestifferent dynamical states in the parameter space is called a
experiments employed flexible control stratedi#8—12 to  bifurcation diagram. With conventional methods, however,
convert chaotic behavior to periodic responses. There havene can map out the stable dynamical responses only. Stabi-
also been reportsl4—-18 on targeting the system dynamics lization of the system dynamics on previously unstable re-
to nonoscillatory solutiongfor example, to unstable steady sponses requires a special targeting procedure for which the
state$ using feedback techniqudd46,17. Controlling the delayed-feedback control appears to be a viable tool.
dynamics such that a previously unstable fixed point is at- Considering that in our electrochemical experiments there
tained could be of great practical importance in experimentais an easily measurable system variabje(e.g., the anodic
situations where chaotic and/or periodic oscillations are poeurren}, the accessible control parameggr(e.g., the anodic
tentially harmful and may cause degradation in performancepotentia) can be continuously perturbed such that

In this article, we report the stabilization of unstable
steady states and periodic responses in a numerical model for pP1(t)=p1(0)+ Y[ X1 (1) = X1 (t—7)], 2
electrochemical corrosidri9] and in an electrochemical cell
[20] using a delayed-feedback control stratdd,21. In  wherep,(0) is the initial value of the parameter and the term
both the numerical model and the experimental system we/[Xx;(t)—x.(t— 7)] gives the superimposed delayed feed-
were able to convert chaotic and periodic oscillations to éack. It is important to note that this feedback changes the
steady state, and chaotic oscillations to a periodic responssability of the target dynamics without altering the location
as well. The article is organized as follows. In the following of fixed points and/or creating new periodic orbits in the
section a brief introduction to the continuous delayed-phase spac¢l6]. Recently Justet al. [21] elucidated the
feedback strategy is provided. Numerical and experimentamnechanism of delayed-feedback control using a linear stabil-
results are presented in Secs. lll and 1V, respectively. Wdty analysis. Although their discussion concentrates on the
conclude in Sec. V along with a remark about future experifproblem of stabilizing unstable periodic solutions, the results

ments. are equally applicable for the stabilization of previously un-
stable steady states as well.
Il. DELAYED-FEEDBACK CONTROL Earlier implementations of the continuous delayed-

_ _ ~ feedback strategy can be categorized into two limiting cases.
We consider an autonomous dynamical system which is (1) In the limit 7—— 0 the delayed-feedback technique ef-

described by a general set of differential equations fectively reduces to the derivative contfdl6] which is ca-
. pable of stabilizing steady-state solutioriixed pointg
x=f(x(t),p), (1 [14,18.
(2) In the limit 7— 7ypg, Whererypg is the period of an
where x=(X1,X2,X3,....X,) and p=(p1,P2,P3; - - - :Pm) unstable periodic orbifUPO) embedded in the chaotic at-

are the system variables and the conthofurcation param-  tractor, the strategy is the so-called Pyragas method of con-
eters, respectively. Depending on the values of control patrolling chaos[13].
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FIG. 1. Stabilization of an unstable steady state in the model |G, 2. stabilization of an unstable steady state in the model
Egs.(3)—(5) exhibiting periodic oscillations. The system parametersgqg (3)—(5) exhibiting chaotic oscillations. The system parameters
p,qr,s ,8 are 2.0 1074, 1.0%X 1073, 2.0X 1075, 9.5% 1075, 50, P, qr, s B are 2.0 10*4’ 1.0% 10*3, 2.0X 1075’ 9.7% 1075l 50’

while the control parameters in ES) are y=—0.1 and7=24  pjle the control parameters ane= —0.11 andr=23 integration
integration steps. steps.

In an effort to stabilize both unstable steady-state and pefhe appropriate values of and = (see figure legendwere
riodic solutions, our numerical and experimental investiga-determined by trial and error. The same control formula but

tions involve choosing the value of<0r< 7 pg. with slightly different y and r values can be successfully
applied to convert chaotic oscillations to a steady-state re-
IIl. NUMERICAL RESULTS sponse(Fig. 2). Note that in both cases upon reaching the

target state the perturbation vanishes9gg(t) = 6on(t— 7).

The delayed-feedback control is first tested on a model folrhis important feature of the delayed-feedback control war-
electrochemical corrosiofil9] described by three dimen- rants that no new steady-state solution is being created but
sionless differential equations: only the stability of the originally unstable fixed point is

reversed. If the system under control were moved away from
the fixed point, for example, by temporarily changing the
Y=p(1- bon—00)—qY, (3)  Vvalue of another control parameter or one of the system vari-
ables, the effect of such perturbations would decay due to the
delayed-feedback control on paramgie©nce the control is
. turned off, however, the steady-state solution becomes un-
Oon=Y(1~ Oon— bo) —[exp(— Bbon) +1]bon stable again. Thugin the absence of contfothe smallest
_ _ perturbation would move the system away from the fixed
+2800(1~ fon~ o). @ point to finally settling on the original periodic orb{hot
shown in the figures
. Figure 3 shows the conversion of chaotic oscillations to
0o0=T1 o= S00(1— o~ bo). (5)  period-one dynamics using the Pyragas method. The value of
7= Typo iN the control formuld Eq. (6)] was calculated by
utilizing a return map in the following manner. Instead of
Variablesé, and 6oy represent the fractions of the electrode plotting consecutive extrema of one of the system variables,
surface covered by two different chemical species, wifile a return map is created by plotting the number of iteration
represents the concentration of metal ions in the electrolytestepsN encountered between successive minima of the same
Parametery, q, r, s, and 8 are determined by chemical system variable. Hence the constructed map is, in fact, a
reaction rates in the model. Previous numerical studies hav@mporal return map,,,; vs N,,. Using the intersection of
shown that depending on the parameter values this modehis map with the line of identity enables one to approximate
may result in simple periodic or chaotic oscillations as wellthe value ofrpg for the period-one orbit. As the delay time
[19]. We numerically integrate these equations using a fourtlin Eq. (6) now agrees withrypo, the feedback signal natu-
order Runge-Kutta algorithm with a fixed stepsize<(4.0).  rally vanishes upon approaching the stabilized periodic orbit.
For the purposes of control we change the valug.of Note that the delay times applied in Figs. 1 and 2 are an

At the parameter values given in Fig. 1 the model systenbrder of magnitude lower than the natural period of the UPO
exhibits periodic oscillations. Figure 1 also shows that theembedded in the chaotic attractor. The presented numerical
periodic response can be easily converted to a steady-statesults indicate that by appropriately choosing the value of
behavior by continuously varying paramefeaccording to  time delay between 0 ant|;po, the delayed-feedback algo-
the following control formula: rithm may work in the experimental setting as well, resulting

in the stabilization of different unstable dynamical states
p(t)=p(0)+ [ Oou(t) — Oon(t—1)]. (6)  (steady states or periodic responses choice.
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[ I L IV. EXPERIMENTAL RESULTS

The experimental system was an EG&G Princeton Ap-
plied Research Model K60066 three-electrode electrochemi-
04r ‘ cal cell set up to study the potentiostatic electrodissolution of

‘ | copper in an acetate buff¢20]. The anode is a rotating
copper disk(5 mm diametershrouded by Teflon. The elec-
trolyte is an acetate buffer, a mixture of 70 tglacial ace-

‘ tic acid and 30 crhof 2 mol dm 2 sodium acetate. The
anodic potential is measured relative to a saturated calomel
reference electrodéSCE), while the cathode is a platinum

0.2 foil disk (2.5 cn? ared. Under potentiostatic conditions, the

circuit potential is continuously adjusted by a potentiostat

0 50'00 10(')00 15500 20000 (EG&G Princeton Applied Resegrch Model 36a malntalr)

INTEGRATION STEPS a desired set value of the anodic potentfaland the anodic
currentl is measured between the anode and cathode. Time

FIG. 3. Controlling chaos in the model Eq8)—(5) using the  serjes current data are collected and stored in a computer by
Pyragas method. The system parameters are the same as in Fig-s%mpling the anodic current using a data acquisition card
while the control parameters ate= —0.11 andr=rypo=210 in-  \yith the sampling frequency fixed at 25 Hz.
tegration steps. At the anodic potential and rotation rate given in Figa)4
the electrochemical system exhibits periodic current oscilla-
tions. The unstable fixed point is being stabilizedntrol is

on
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FIG. 4. Stabilization of an unstable steady state in the electrochemical system exhibiting periodic oscillations. The rotation rate is 2400
rpm, while the anodic potentiadl(0) is 0.670 V. The control parameters used in &j.are y=—0.15 mV/mA andr=20 sampling steps.
(& Anodic current plotted over a period during which the delayed-feedback control is switched off, on, and off(Bg&alculated
feedback signal plotted over the same period but applied during the control sessiofcpRligase-space reconstruction for a segment of
time series current data from Fig(al The value ofrg used for reconstruction is the period of 30 sampling steps.
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turned on att=20 sec) by continuously perturbing the an-
odic potentialV(t) according to the following control for-
mula:

V() =V(0)+[I(t)—I(t=7)]. @)

1(mA)

The applied values of and r are given in the figure legend.
As a result of the delayed-feedback on the anodic potential
the current oscillations decay to eventually yielding a dc re-
sponse from the system. Though the current signal is a bi
noisy, we may say that the previously unstable steady stat
has been successfully stabilized. When the control is turnec
off at t=75 sec, the system moves away from the fixed
point and reverts to executing periodic oscillations again. 15 - - '
Values of the feedback signal are plotted in Figh)4 Note (a) t(s)
that the values are shown over the whole time scale of the
experiment but the feedback signals have been imposed du
ing the control sessiofbetween 20 and 75 seonly. The
applied corrections to the potential are ma®%% of the rest
potential V(0), andthey basically go to zero as the system 30
stabilizes itself on the fixed point. Figurgc} depicts the
dynamics in a reconstructed phase space for a segment of trg
time series data in Fig.(d. When the control is turned on ¥ T
the system leaves the limit cycle, spirals in, and eventuallys
approaches the previously unstable fixed point inside the pe$
riodic orbit.

The same control formulgEq. (7)] but with slightly dif- -10
ferenty and = values can be applied to convert chaotic cur-
rent oscillations to a steady-state response as well. At the
anodic potential and rotation rate given in Figasthe elec- . . .
trochemical system exhibits chaotic current oscillations. Dur- -0 50 100 150
ing control(between 40 and 140 gegthe chaotic oscillations (o) ts)

decay yielding a noisy dc response. When cqntrol is turned FIG. 5. Stabilization of an unstable steady state in the electro-
off the system moves away from the fixed point and revertgpemical system exhibiting chaotic oscillations. The rotation rate is
to executing chaotic oscillations again. Values of the applie700 rpm, the anodic potentisl(0) is 0.720 V. The control pa-
feedback signals are plotted in Fighh That the control is  rameters used in Eq7) are y=—0.15 mV/mA andr=15 sam-
less successful than in Fig(a4 is clearly reflected by the pling steps.(a) Anodic current plotted over a period during which
oscillatory character of the feedback signal upon attainmente control is switched off, on, and off agaifh) Calculated feed-
of the target steady state as shown in Figp) 50n the other back signal plotted over the same period but applied during the
hand, both Figs. &) and 5b) prove that by the application control session only.
of the feedback perturbation the stability of the steady state
is, indeed, being reversed. tential by the potentiostat0.001 mV) and the error in
Implementation of the Pyragas method to stabilize thejeterminingrpo. Figure Gc) depicts the dynamics in the
UPO embedded in the chaotic attractor involved a precontraleconstructed phase space for a segment of the time series in
procedure to determineypg similar to that described in Sec. Fig. 6a). As the control is turned on, the system trajectories
ll. A temporal return map has been constructed by plottingdepart from the chaotic attractor and settle down on the pre-
the time elapsesampling timex number of samples takgn viously unstable limit cycle. This figure clearly shows that
between successive minima of the anodic current, and thghe UPO is, indeed, embedded in the chaotic attractor and
intersection of this map with the line of identity gave us anonly its stability is being changed by the introduction of the
approximate value forypo. Figure &a) shows time series feedback perturbation.
current data while control is off, turned datt=70 sec),
and then shut off again. During the control session, the cha-
otic current oscillations are tameduithin the experimental
erron to a periodic response. When the control is turned off The presented numerical and experimental results indicate
(att=135 sec) the system moves away from the periodichat delayed feedback control can be successfully applied to
orbit and reverts to executing chaotic oscillations again. Thetabilize unstable steady states and periodic orbits in dissipa-
occasional spiking in the applied feedback signal shown irtive electrochemical systems. The great advantage of the ap-
Fig. 6(b) may originate from the imperfect targeting of the plied self-controlling feedback is that it renders unification to
periodic orbit due to several reasons: Experimental errors itwo distinct control strategies, namely, the derivative control
measuring the current, a limit of variation in the anodic po-strategy and the Pyragas method for controlling chaos. By

50

V. CONCLUSIONS
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FIG. 6. Controlling chaos in the electrochemical system using the Pyragas method. The rotation rate is 2900 rpm, while the anodic
potential V(0) is 0.715 V. The control parameters used in Efj.are y=—0.19 mV/mA andr=65 sampling stepga) Anodic current
plotted over a period time during which the control is switched off, on, and off agaiiCalculated feedback signal plotted over the same
period but applied during the control session oifity.Phase-space reconstruction for a segment of time series data fronidrig.t& value
of 7 is the same as in Fig.(d.

judicious variations of the two available control parametersslowly drifting systemdq22] and for mapping out otherwise

v and 7, stabilization of unstable steady states and periodiznattainable unstable dynamical states in the bifurcation dia-
orbits can be attained by choice. Our results also prove thajram of other electrochemical systems as well are encourag-
the feedback perturbations do not change the projections gfig.

the unstable steady states and UPOs in the original phase

space, and the additional degree of freedom due to the per-

turbatio_n changes only t_he stabili_ty of these objects. More;- ACKNOWLEDGMENTS
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