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Stabilization of unstable steady states and periodic orbits in an electrochemical system
using delayed-feedback control
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We report numerical and experimental results indicating successful stabilization of unstable steady states and
periodic orbits in an electrochemical system. Applying a continuous delayed-feedback technique not only
periodic and chaotic oscillations are suppressed via stabilization of steady-state solutions but also the chaotic
dynamics can be converted to periodic behavior. In all cases the feedback perturbation vanishes as a target state
is attained.@S1063-651X~99!02205-9#

PACS number~s!: 05.45.2a, 87.10.1e
in
he

a
s
y

a
nt
po
c
le
l

ll

w

n
g
d

nt
W
r

h

p

ical

s is
of
d a

er,
tabi-
re-
the

ere

rm
d-
the

on
he

bil-
the
lts
n-

d-
es.
f-

t-
on-
I. INTRODUCTION

It is well documented@1–9# that dynamical control of
chaotic behavior can be achieved by judiciously apply
small perturbations to an accessible control parameter. T
experiments employed flexible control strategies@10–12# to
convert chaotic behavior to periodic responses. There h
also been reports@14–18# on targeting the system dynamic
to nonoscillatory solutions~for example, to unstable stead
states! using feedback techniques@16,17#. Controlling the
dynamics such that a previously unstable fixed point is
tained could be of great practical importance in experime
situations where chaotic and/or periodic oscillations are
tentially harmful and may cause degradation in performan

In this article, we report the stabilization of unstab
steady states and periodic responses in a numerical mode
electrochemical corrosion@19# and in an electrochemical ce
@20# using a delayed-feedback control strategy@13,21#. In
both the numerical model and the experimental system
were able to convert chaotic and periodic oscillations to
steady state, and chaotic oscillations to a periodic respo
as well. The article is organized as follows. In the followin
section a brief introduction to the continuous delaye
feedback strategy is provided. Numerical and experime
results are presented in Secs. III and IV, respectively.
conclude in Sec. V along with a remark about future expe
ments.

II. DELAYED-FEEDBACK CONTROL

We consider an autonomous dynamical system whic
described by a general set of differential equations

ẋ5f„x~ t !,p…, ~1!

where x5(x1 ,x2 ,x3 , . . . ,xn) and p5(p1 ,p2 ,p3 , . . . ,pm)
are the system variables and the control~bifurcation! param-
eters, respectively. Depending on the values of control
PRE 591063-651X/99/59~5!/5266~6!/$15.00
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rameters, a given system may exhibit a wealth of dynam
responses such as steady state~s!, periodic or chaotic oscilla-
tions, etc. A discontinuous transition between these state
called a bifurcation, and the map showing the location
different dynamical states in the parameter space is calle
bifurcation diagram. With conventional methods, howev
one can map out the stable dynamical responses only. S
lization of the system dynamics on previously unstable
sponses requires a special targeting procedure for which
delayed-feedback control appears to be a viable tool.

Considering that in our electrochemical experiments th
is an easily measurable system variablex1 ~e.g., the anodic
current!, the accessible control parameterp1 ~e.g., the anodic
potential! can be continuously perturbed such that

p1~ t !5p1~0!1g@x1~ t !2x1~ t2t!#, ~2!

wherep1(0) is the initial value of the parameter and the te
g@x1(t)2x1(t2t)# gives the superimposed delayed fee
back. It is important to note that this feedback changes
stability of the target dynamics without altering the locati
of fixed points and/or creating new periodic orbits in t
phase space@16#. Recently Justet al. @21# elucidated the
mechanism of delayed-feedback control using a linear sta
ity analysis. Although their discussion concentrates on
problem of stabilizing unstable periodic solutions, the resu
are equally applicable for the stabilization of previously u
stable steady states as well.

Earlier implementations of the continuous delaye
feedback strategy can be categorized into two limiting cas

~1! In the limit t→0 the delayed-feedback technique e
fectively reduces to the derivative control@16# which is ca-
pable of stabilizing steady-state solutions~fixed points!
@14,15#.

~2! In the limit t→tUPO, wheretUPO is the period of an
unstable periodic orbit~UPO! embedded in the chaotic a
tractor, the strategy is the so-called Pyragas method of c
trolling chaos@13#.
5266 ©1999 The American Physical Society
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In an effort to stabilize both unstable steady-state and
riodic solutions, our numerical and experimental investig
tions involve choosing the value of 0,t<tUPO.

III. NUMERICAL RESULTS

The delayed-feedback control is first tested on a model
electrochemical corrosion@19# described by three dimen
sionless differential equations:

Ẏ5p~12uOH2uO!2qY, ~3!

u̇OH5Y~12uOH2uO!2@exp~2buOH!1r #uOH

12suO~12uOH2uO!, ~4!

u̇O5ruOH2suO~12uOH2uO!. ~5!

VariablesuO anduOH represent the fractions of the electro
surface covered by two different chemical species, whileY
represents the concentration of metal ions in the electrol
Parametersp, q, r , s, and b are determined by chemica
reaction rates in the model. Previous numerical studies h
shown that depending on the parameter values this m
may result in simple periodic or chaotic oscillations as w
@19#. We numerically integrate these equations using a fou
order Runge-Kutta algorithm with a fixed stepsize (h54.0).
For the purposes of control we change the value ofp.

At the parameter values given in Fig. 1 the model syst
exhibits periodic oscillations. Figure 1 also shows that
periodic response can be easily converted to a steady-
behavior by continuously varying parameterp according to
the following control formula:

p~ t !5p~0!1g@uOH~ t !2uOH~ t2t!#. ~6!

FIG. 1. Stabilization of an unstable steady state in the mo
Eqs.~3!–~5! exhibiting periodic oscillations. The system paramet
p, q, r, s, b are 2.031024, 1.031023, 2.031025, 9.531025, 5.0,
while the control parameters in Eq.~6! are g520.1 andt524
integration steps.
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The appropriate values ofg and t ~see figure legend! were
determined by trial and error. The same control formula
with slightly different g and t values can be successfull
applied to convert chaotic oscillations to a steady-state
sponse~Fig. 2!. Note that in both cases upon reaching t
target state the perturbation vanishes asuOH(t)5uOH(t2t).
This important feature of the delayed-feedback control w
rants that no new steady-state solution is being created
only the stability of the originally unstable fixed point
reversed. If the system under control were moved away fr
the fixed point, for example, by temporarily changing t
value of another control parameter or one of the system v
ables, the effect of such perturbations would decay due to
delayed-feedback control on parameterp. Once the control is
turned off, however, the steady-state solution becomes
stable again. Thus~in the absence of control! the smallest
perturbation would move the system away from the fix
point to finally settling on the original periodic orbit~not
shown in the figures!.

Figure 3 shows the conversion of chaotic oscillations
period-one dynamics using the Pyragas method. The valu
t5tUPO in the control formula@Eq. ~6!# was calculated by
utilizing a return map in the following manner. Instead
plotting consecutive extrema of one of the system variab
a return map is created by plotting the number of iterat
stepsN encountered between successive minima of the s
system variable. Hence the constructed map is, in fac
temporal return mapNn11 vs Nn . Using the intersection of
this map with the line of identity enables one to approxim
the value oftUPO for the period-one orbit. As the delay tim
in Eq. ~6! now agrees withtUPO, the feedback signal natu
rally vanishes upon approaching the stabilized periodic or
Note that the delay times applied in Figs. 1 and 2 are
order of magnitude lower than the natural period of the U
embedded in the chaotic attractor. The presented nume
results indicate that by appropriately choosing the value
time delay between 0 andtUPO, the delayed-feedback algo
rithm may work in the experimental setting as well, resulti
in the stabilization of different unstable dynamical sta
~steady states or periodic responses! by choice.

el
s

FIG. 2. Stabilization of an unstable steady state in the mo
Eqs.~3!–~5! exhibiting chaotic oscillations. The system paramet
p, q, r, s, b are 2.031024, 1.031023, 2.031025, 9.731025, 5.0,
while the control parameters areg520.11 andt523 integration
steps.
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FIG. 3. Controlling chaos in the model Eqs.~3!–~5! using the
Pyragas method. The system parameters are the same as in F
while the control parameters areg520.11 andt5tUPO5210 in-
tegration steps.
lla-
IV. EXPERIMENTAL RESULTS

The experimental system was an EG&G Princeton A
plied Research Model K60066 three-electrode electroche
cal cell set up to study the potentiostatic electrodissolution
copper in an acetate buffer@20#. The anode is a rotating
copper disk~5 mm diameter! shrouded by Teflon. The elec
trolyte is an acetate buffer, a mixture of 70 cm3 glacial ace-
tic acid and 30 cm3 of 2 mol dm23 sodium acetate. The
anodic potential is measured relative to a saturated calo
reference electrode~SCE!, while the cathode is a platinum
foil disk (2.5 cm2 area!. Under potentiostatic conditions, th
circuit potential is continuously adjusted by a potentios
~EG&G Princeton Applied Research Model 362! to maintain
a desired set value of the anodic potentialV, and the anodic
currentI is measured between the anode and cathode. T
series current data are collected and stored in a compute
sampling the anodic current using a data acquisition c
with the sampling frequency fixed at 25 Hz.

At the anodic potential and rotation rate given in Fig. 4~a!
the electrochemical system exhibits periodic current osci
tions. The unstable fixed point is being stabilized~control is

. 2,
is 2400

t of
FIG. 4. Stabilization of an unstable steady state in the electrochemical system exhibiting periodic oscillations. The rotation rate
rpm, while the anodic potentialV(0) is 0.670 V. The control parameters used in Eq.~7! areg520.15 mV/mA andt520 sampling steps.
~a! Anodic current plotted over a period during which the delayed-feedback control is switched off, on, and off again.~b! Calculated
feedback signal plotted over the same period but applied during the control session only.~c! Phase-space reconstruction for a segmen
time series current data from Fig. 4~a!. The value oftR used for reconstruction is the period of 30 sampling steps.
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turned on att520 sec) by continuously perturbing the a
odic potentialV(t) according to the following control for-
mula:

V~ t !5V~0!1g@ I ~ t !2I ~ t2t!#. ~7!

The applied values ofg andt are given in the figure legend
As a result of the delayed-feedback on the anodic poten
the current oscillations decay to eventually yielding a dc
sponse from the system. Though the current signal is a
noisy, we may say that the previously unstable steady s
has been successfully stabilized. When the control is tur
off at t575 sec, the system moves away from the fix
point and reverts to executing periodic oscillations aga
Values of the feedback signal are plotted in Fig. 4~b!. Note
that the values are shown over the whole time scale of
experiment but the feedback signals have been imposed
ing the control session~between 20 and 75 sec! only. The
applied corrections to the potential are max65% of the rest
potentialV(0), andthey basically go to zero as the syste
stabilizes itself on the fixed point. Figure 4~c! depicts the
dynamics in a reconstructed phase space for a segment o
time series data in Fig. 4~a!. When the control is turned on
the system leaves the limit cycle, spirals in, and eventu
approaches the previously unstable fixed point inside the
riodic orbit.

The same control formula@Eq. ~7!# but with slightly dif-
ferentg andt values can be applied to convert chaotic c
rent oscillations to a steady-state response as well. At
anodic potential and rotation rate given in Fig. 5~a! the elec-
trochemical system exhibits chaotic current oscillations. D
ing control~between 40 and 140 sec!, the chaotic oscillations
decay yielding a noisy dc response. When control is tur
off the system moves away from the fixed point and reve
to executing chaotic oscillations again. Values of the app
feedback signals are plotted in Fig. 5~b!. That the control is
less successful than in Fig. 4~a! is clearly reflected by the
oscillatory character of the feedback signal upon attainm
of the target steady state as shown in Fig. 5~b!. On the other
hand, both Figs. 5~a! and 5~b! prove that by the application
of the feedback perturbation the stability of the steady s
is, indeed, being reversed.

Implementation of the Pyragas method to stabilize
UPO embedded in the chaotic attractor involved a precon
procedure to determinet UPO similar to that described in Sec
III. A temporal return map has been constructed by plott
the time elapsed~sampling time3 number of samples taken!
between successive minima of the anodic current, and
intersection of this map with the line of identity gave us
approximate value fortUPO. Figure 6~a! shows time series
current data while control is off, turned on~at t570 sec),
and then shut off again. During the control session, the c
otic current oscillations are tamed~within the experimental
error! to a periodic response. When the control is turned
~at t5135 sec) the system moves away from the perio
orbit and reverts to executing chaotic oscillations again. T
occasional spiking in the applied feedback signal shown
Fig. 6~b! may originate from the imperfect targeting of th
periodic orbit due to several reasons: Experimental error
measuring the current, a limit of variation in the anodic p
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tential by the potentiostat (60.001 mV) and the error in
determiningtUPO. Figure 6~c! depicts the dynamics in the
reconstructed phase space for a segment of the time seri
Fig. 6~a!. As the control is turned on, the system trajector
depart from the chaotic attractor and settle down on the p
viously unstable limit cycle. This figure clearly shows th
the UPO is, indeed, embedded in the chaotic attractor
only its stability is being changed by the introduction of t
feedback perturbation.

V. CONCLUSIONS

The presented numerical and experimental results indi
that delayed feedback control can be successfully applie
stabilize unstable steady states and periodic orbits in diss
tive electrochemical systems. The great advantage of the
plied self-controlling feedback is that it renders unification
two distinct control strategies, namely, the derivative cont
strategy and the Pyragas method for controlling chaos.

FIG. 5. Stabilization of an unstable steady state in the elec
chemical system exhibiting chaotic oscillations. The rotation rat
2700 rpm, the anodic potentialV(0) is 0.720 V. The control pa-
rameters used in Eq.~7! are g520.15 mV/mA andt515 sam-
pling steps.~a! Anodic current plotted over a period during whic
the control is switched off, on, and off again.~b! Calculated feed-
back signal plotted over the same period but applied during
control session only.
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FIG. 6. Controlling chaos in the electrochemical system using the Pyragas method. The rotation rate is 2900 rpm, while th
potentialV(0) is 0.715 V. The control parameters used in Eq.~7! are g520.19 mV/mA andt565 sampling steps.~a! Anodic current
plotted over a period time during which the control is switched off, on, and off again.~b! Calculated feedback signal plotted over the sa
period but applied during the control session only.~c! Phase-space reconstruction for a segment of time series data from Fig. 6~a!. The value
of tR is the same as in Fig. 4~c!.
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judicious variations of the two available control paramet
g andt, stabilization of unstable steady states and perio
orbits can be attained by choice. Our results also prove
the feedback perturbations do not change the projection
the unstable steady states and UPOs in the original p
space, and the additional degree of freedom due to the
turbation changes only the stability of these objects. Mo
over, since the control signal vanishes subsequent to at
ment of the target state, it is ensured that the system has
drifted to a regime where the target dynamics were natur
stable. Initial results for the implementation of this contr
strategy to tracking of fixed points and periodic orbits
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slowly drifting systems@22# and for mapping out otherwise
unattainable unstable dynamical states in the bifurcation
gram of other electrochemical systems as well are encou
ing.
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