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Preference of attractors in noisy multistable systems
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A model system exhibiting a large number of attractors is investigated under the influence of noise. Several
methods for discriminating two qualitatively different regions of the noise intensity are presented, and the
phenomenon of noise-induced preference of attractors is reported. Finally, the relevance of our findings for
detection of multiple stable states of systems occurring in nature or in the laboratory is pointed out.
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[. INTRODUCTION mechanism for memory storage and temporal pattern recog-
nition [22,9,10. A control study of systems with multiple

Typically, systems studied in the physical literature pos-coexisting attractors, and the steering of trajectories toward a
sess only a small number of coexisting attractors, which ar@esired attractor, was performed in Rdfs6,23. Work that
the asymptotic states in the state space, corresponding to tifeclosely related to the one presented here, but applied to
long-term behavior. The long-term behavior becomes moré&oupled map systems, was carried out by Kang225.
involved if a system exhibits a larger number of coexistingBy treating high-dimensional systems, he found noise-
attractors, because there exists a nontrivial relationship bdoduced selectivity for certain attractors. Similar results were
tween these coexisting asymptotic states and their basins 8fs0 obtained in Re{.26], investigating the Duffing oscilla-
attraction. The state which is finally approached depends crjor and a circle map. However, in both works the implemen-
cially on the initial condition. This behavior, called multista- tation of noise is different from ours. This paper aims at a
bility, is found in a variety of systems from different disci- Study of the influence of noise on highly multistable systems
plines of science, like semiconductor physi¢d—3], With a fractal basm_ bpundary. It is organized as follows. In
chemistry [4—7], neurosciencg8—10], and laser physics Sec. I, the model is introduced, and the relevant properties
[11-13. It was systematically investigated for the first time Of the system are presented. Basic dynamical effects pro-
in Refs.[14] and[15] by performing experiments with a gas duced by noise are described. In particular, we present four
laser and numerical simulations of the Duffing oscillator, re-methods for distinguishing between the dynamics dominated
spectively. Usually in multistable systems the basins of atby attractor hopping and the one characterized by diffusion
traction of different attractors are complexly interwoven, andthrough the state space. Both phenomena are caused by the
separated by one or several chaotic saddles. The dimensi@§ldition of noise, but yield qualitatively different dynamics.
of the basin boundaries is very close to the dimension of thé" Secs. Ill and IV the consequences of small and large
state space. In addition, the introduction of noise to the dyhoise, respectively, are discussed. As a main result, we argue
namics of such a multistable system enhances even more tieat certain attractors are preferred due to the presence of
“complexity,” by introducing new dynamical behavior. The Small amounts of noise. Section V gives a summary.
different basins of attraction, although they may already be
fractal, change in a very intricate fashion. There exists a Il. MODEL
competition between the attractiveness toward regular mo-
tion in the neighborhood of an attractor and the jumping As our prototype model, we study the behavior of a peri-
among the different attractors induced by the n¢isg). In  odically kicked mechanical rotor without gravity in the pres-
fact, the noise kicks the orbit out of the open neighborhoodence of noise. The motion of the rotor is usually modeled by
of the attractor into the basin boundary. There the trajectorglifferential equations. But taking into account that the kicks
spends a certain amount of time until it reaches again thare only applied at certain discrete tintes0,T,2T, ..., one
neighborhood of the same attractor or possibly another a€an also model it by the following two-dimensional map:
tractor. This process, in which the trajectory is in the neigh-

borhood of the attractor or in the basin boundary region, Xk+1= Xkt Yk T 6 (mod 27),

keeps repeating. The length of these two characteristic

phases of motion varies irregularly, and depends on the noise @
amplitude. This behavior is closely related to the so-called )

chaotic itinerancy{17—19, which has also been observed Yir1=(1=v) Y+ fosin(x+yy) + 6y,

experimentally[20]. Recent studies on coupled oscillator
systems with delay in the presence of nojgd] also re- wherex corresponds to the phasecorresponds to the an-
ported phase transitions. This kind of multistability is also agular velocity, the parameter is the damping, and, the
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strength of the forcing. The termg$, and 6,, where 20E7. 7 k

\65+ 87=<4, are the amplitude of the uniformly and inde- 10 :l i ;

pendently distributed noise. > 0 ﬁh BN e
The noiseless systend{= 6,=0) was studied in detail in -10 ih it ) . "’ il :

Ref. [27]. There are two limiting cases. If the damping is ~2°
maximal (v=1), a one-dimensional circle map with zero
phase shift is obtained. This map possesses only one attract

in large regions of the parameter space. For zero damping

the conservative limit, the Chirikov standard map results 2
[28]. Islands of stability and chaotic motion coexist. The 4
number of regular periodic states represented bykiAdv * g
islands is believed to be infinite. The two eigenvalues of 3

0 1.0x10%  20x10*  30x10*  40x10* s.ox10*

i

il

these periodic orbits are complex conjugate, but their abso 0 o0k o Oxmi ) 5 O><1O4 o><.1o'4 s ox10*

lute values are exactly 1. The dynamics takes place on the ) " iterations ’ ’
torus[0,27]X[0,27]. In particular, the family of period 1 _ ) _ )

orbits is given by = 7,y=m27),m=0,+1,...,which are, FIG. 1. Dynamics of the kicked single rotor under the influence

due to mod 2r, also in they coordinate, all mapped onto the of noise with intensityd=0.1. Top: angular velocity; bottom:
one withm=0. Orbits of higher periods, so-called secondaryPase of the rotox.

islands, are grouped around these period 1 orbits, which cor-

respond to primary islands. These islands around islandéough the investigations on probability transition and en-
build a highly intricate hierarchy. tropy [16] suggest the existence of preferred transitions and

The introduction of dissipation changes the periodic orbitsof an itinerancy; however, this needs further investigations.
into sinks, since the absolute values of both eigenvalues are For the noisy dynamics, we ascertain that the motion is in
now slightly less than 1. The motion is now located on athe vicinity of a given periodic orbit in the following way.
cylinder[0,2]X R, and the period 1 periodic orbits for dif- Every initial condition is checked after ea&h(~30) itera-
ferentm values become discernible. There is still some hiertions, whether the orbit stays for a certain number of time
archical organization of higher periodic orbits surroundingsteps (~5x period) close to the periodic orbit of the noise-
the period 1 orbits. However, the hierarchy known from theless system, whereby closeness was specified by a maximum
conservative case is disturbed by the dissipation. The numbélistance of abouf~104. If these conditions are satisfied,
of periodic orbits is finite in the dissipative case, but can bethe orbit is considered to be trapped in the neighborhood of
made arbitrarily large by reducing the damping. By fixing the specific attractor. However, the exact numerical values of
the damping but varying the kick strengfli, a complex these choicesk(l,j) do not possess any crucial meaning,
bifurcation diagram is obtained. Periodic orbits of low peri- and changing them by moderate amounts yields similar re-
ods are generated through saddle-node bifurcations and thé&ylts. Using these criteria to ensure that the orbit is in the
eventually undergo a period doubling cascade that ends ivcinity of a periodic attractor, we finally investigate how the
chaos. However, the chaotic intervals in, say, paramigter basins of attraction for different attractors change as we vary
are extremely small and hardly detectable numerically.  the noise level. For this purpose, we stop iterating the trajec-

Let us fix the values of the parametersvat 0.02, which ~ tory as soon as it reaches the neighborhpofian attractor
is a rather small damping, arfqz 3.5 for the kick Strength_ for the first time. Hereby we disregard the fact that the tra-
For these parameter values, the periodic orbits of period jectory can be kicked out of this neighborhood by the noise
have not yet undergone the first period doub”ng_ For th|§.t a |ater t|me In F|g 2 we i||ustl’ate the effect Of noise by a
parameter set, there are no chaotic attractors, as they are in
general rare in multistable systems with small dissipation (a) (b)

[29,30. We numerically find 111 coexisting periodic orbits 3
for the noiseless case, the highest period being 32. The) f
were found by iterating initial conditions on a grid in .. 0
part of the state spad®,2m] X[ —fo/v,fo/v]. This part of 1
the cylinder is the trapping region in state space, where all -2
attractors are located. More than 99.9% of all found orbits ~3
are of periods 1 and 3, so all other periods do not play an
important role in the following.

If noise is added to the dynamics, the trajectory alternates 3
between almost periodic motion in the neighborhood of an f
attractor and chaotic motion in the basin boundary region in,, g
a very complex way. This behavior is illustrated in Fig. 1, _1
where thex andy coordinates of the system are plotted fora -2
large number of iterations and a noise level &&0.1.
Clearly, there are almost periodic motions interspersed by
random bursts. Although the periodic orbits are located in
the state space in a hierarchical structure, there is not an FIG. 2. Basin of the fixed pointx=,y=0) for increasing
apparent hierarchy of the jumping between the attractorsjoise levels(a) §=0. (b) §=0.01.(c) §=0.1.(d) 6=0.3.

01 2 3 4 5 6 01 2 3 4 5 6
X X
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FIG. 3. Probability densit(x,y) in the rect-
angle [0,27] X[ —3,37r] for increasing noise
levels. The same noise levels as in Fig. 2 are
used.(a 6=0.001.(b) §=0.01.(c) 5=0.1. (d)
6=0.3. On the top of each figure, a contour plot
of a certain probability densitl?.(x,y) is shown.
P.(x,y) has the valuega) 2.4x10 %, (b) 2.5
X 1075, (c) 2.3x1074, and(d) 2.2x 107 5.

series of pictures of the basins of attraction for the main fixederent methods. First, we consider the Lyapunov exponent of
point (x=7r,y=0) for different noise amplitudes. For a tiny a trajectory, as depicted in Fig. 4. In the noiseless case, only
noise amplitude §=0.01) a great similarity with the noise- periodic motion occurs as long-term behavior, yielding a
less basin is seen, including the two embedded open neigimegative Lyapunov exponent. By contrast, the introduction
borhoods of the two period 3 attractors. The fine structuref noise yields a positive Lyapunov exponent. It becomes
becomes increasingly blurred with increasing noise intensitysignificantly positive for6~0.047. This value is determined
e.g., 6=0.1). For a large noise level5&0.3) the basic by using finite-time  Lyapunov  exponents At
structure is still present, but it starts to become washed out= (1/T)=[_, In|(df/dx);|. HereT is the length of the time in-
For each initial condition different noise realizations are usederval, and (f/dx); is the Jacobian of the map for each time
to create the picture of the basin of attraction. The size of thgtep i. When we compute thos&; for an ensemble of
basins and the qualitative structure remain the same under (L>1) trajectories at a given time interva) we obtain a
other noise realizations. Let us now use a probabilistic apset of positive finite-time exponents” , and a set of nega-
proach which is often employed in the study of noisy sys+jye ones\; corresponding to chaotic or almost periodic
tems. Instead of focusing on individual trajectories, we focusnotion, respectively. Using this distribution of finite-time
on the probability density depending on the state variables | yanunov exponents, we estimate the noise intensity for

andy. Similar conclusions to these obtained for single tra-~,nich the asymptotic Lyapunov exponentbecomes posi-
jectories are drawn from the behavior of the probability den+jye This noise value satisfies

sity, as shown in Fig. 3. In this figure we use 1000 initial
conditions, randomly distributed in the rectangl@ 2] X

[ —3,37], and we iterate each one for 10000 steps. This 1M . N _

region of the state space is covered with a 8300 grid, N =T iZl A +i21 A |=~0. 2
and every visit of a grid cell is counted, thus creating a - -
numerically generated probability density. The same noise

amplitudes as used in Fig. 2 are also chosen in Fig. 3, except 08[ ' ' ]

for the substitutiond=0.001 for =0 to avoid 5-peaked I .

distribution. As can be seen, the peaks of the period 1 and 3 £ gl 4

orbits become increasingly broad, until almost no structure is % i fﬁ@%ﬁf ' ‘ ' 1

present anymore, indicating the predominance of diffusion I £ 0.15F S |

due to the noise. Figures 2 and 3 also confirm our numerical % 0.4} § y 0.10 S1 1

procedure. For instance, they show that the period 3 orbits I & < Los é;?

are still present in the noisy dynamics as well as in the long- f N g |

term behavior as approximated by the first visit to a periodic £ 0.2 3 M .

orbit. Both figure sequences, Figs. 2 and 3, illustrate the "~ @ _0‘0300 0.02 0.04 0.06 008 010

process of loss of fine-scale structure of the basins of attrac- 0.0 wg s

tion with increasing noise intensity. As we will describe 0.0 ‘0'2 ‘ 0‘4 ‘0'6‘ 0‘8 o

next, this process can be characterized as a transition from ’ ' s ’ ’

small to large noise levels with different consequences for

the dynamics of the system. FIG. 4. Maximum Lyapunov exponentX) and average length

of transients \) vs noise level. For each noise intensity,,, and

1. METHODS the length of the transients are calculated by averaging over 50

trajectories with 1Biterations each. The inset shows the crossing of
The characteristic change in the role of the noise at ahe Lyapunov exponent curve through zero. This takes plagk at
noise level of about 0.055<0.1 is examined by four dif- ~0.047 with a slope of 0.27.
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HerelL is the total number of trajectories, whiM(N) is the  tion of finite-time Lyapunov exponents. These distributions
number of trajectories yielding positiyaegative finite-time  are approximated by histograms of the finite-time exponents
Lyapunov exponenty;” (\;"), respectively. This effect is M\r. They are computed fof =5000 and using 50 time se-

an example of the so called “noise-induced chaos,” firstfies of length 1000 000. This yields 10000 Lyapunov expo-
observed in the logistic maf81,37, and subsequently in a Nent values which are enough for a sufficiently good statis-

variety of systems, like Josephson junctigBs], supercon- tics. Smaller time interval§ do not give good resultg, since
ducting quantum interference devidgst], and the Kramers (he €igenvalues are complex and, by this fact, spurious peaks
oscillator[35]. In Fig. 4, we also plot the average length of appear in the histograms, due to the rotation of the eigenvec-

the chaotic bursts between regular motions in the neighborl-ors' For the noiseless system, the motion is attractive, and

. . hence the finite-time Lyapunov exponents are negative,

hood of attractorgcf. Fig 1). We measure this length of the . .
. ) 7 ; . : t, wh -
chaotic transients by splitting 50 trajectories of li@rations peaking about the maximum Lyapunov exponent, whose nu

) A . L merical value is\;~—0.01. As the noise intensity in-
into blocks of five |terat'|on's, and Ch.e‘?"!”g in each of thesecrease:s, the peak is shifted towards higher valuas,gfand
blocks whether the motion is in the vicinity of an attractor or

: . : tarts to flatten out. At a noise level 6&=0.075, there is no
is chaotic. The functional form of these averaged lengths %fonger any negative Lyapunov exponent, and a second peak

the chaotic bursts very much resembles the behavior of thg; 5 higher value begins to develop; see Fig).5This sec-
Lyapunov exponents. This has to be expected, according tgnd peak becomes increasingly dominant and develops into a
Eq. (2), since the bursting corresponds to a positiveGaussian distribution, displayed in Figgbband 5c). For
Lyapunov exponent, while periodic motion corresponds to 85=0.125 [Fig. 5(e)] the Gaussian part is fully developed,
negative exponent. Thus for higher noise amplitudes th@nd the peak associated with the periodic motion is no longer
overall motion is chaotic, albeit almost periodic phases are&isible. Increasing the noise further yields a single Gaussian
interspersed into the dynamics. This indicates that the phasefstribution[Fig. 5f)], whose mean is in accordance to the
of jumping in the intertwined basin boundary, consisting ofmaximal Lyapunov exponent of Fig. 4. The peak corre-
chaotic saddles, gain increasingly more weight. sponding to the periodic motion has disappeared completely.
The second method consists of searching for the minimarhis transition thus takes place at around 6:@8<0.12.
noise level to escape from an attractor into the basin bound- The fourth method is provided by considering the Fourier
ary region. We require that noise should be able to removepectrum of a noisy time series. The investigation of the
the trajectory from every neighborhood of a periodic orbit.spectra is motivated by a claim of Arecchi and co-workers
Though the noise level depends on the size of the neighbof36,37], who stated that a multistable system with a fractal
hood as well as the eigenvalues of the periodic orbit, as wéasin boundary disturbed by noise in such a way that attrac-
will argue later, we consider the largest basin of attractiortor hopping occurs exhibits a f#/ spectrum. This claim is
(x=1,y=0). We increase the noise intensity gradually, andvalidated by our Figs. 6—8. Only in the case of an interme-
look for the minimum value ofé at which the trajectory diate noise level of6=0.085 can the nontrivial low fre-
leaves the open neighborhood of the attractor for the firstjuency part of the spectrum be observed, which is well de-
time. By averaging over 200 trajectories with different noisescribed by S(f)~1/f¢ and a~1 (Fig. 7, solid ling. In
realizations and a very large number of iterations< (%), contrast, if the noise is too weak for exiting the attra¢fag.
this results in6~0.06. Below this value, the trajectory, al- 6) or too large for staying close to an attractor for a longer
though being contaminated by noise, may be trapped in théme (Fig. 8), the spectrum is similar to that of Brownian
open neighborhood of this attractorever Above this value  motion. Therefore, it can be very well fitted by a Lorentzian
the trajectory diffuses freely over the whole state space, staywith a flat (white) low frequency part and a i high fre-
ing only a finite timein the neighborhood oény attractor. quency part. Hence this is a criterion for distinguishing
A third method is considered by looking at the distribu- among different noise levels.
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FIG. 6. Time series of the angular velocigy(top) and the cor- FIG. 8. Time series of the angular velocigy(top) and the cor-

responding fast Fourier transfortFT) spectrumS(f) (bottom) for responding FFT spectrur8(f) (bottom for a noise level ofé

a noise level 0f§=0.01 and a length of $=65536. The noise is =0.2. For such a high noise intensity diffusive motion dominates,
not strong enough to kick the orbit out of one of the attractors;and the trajectory does not remain for an appreciable length of time
therefore, no hopping takes place and the whole spectrum follows m the neighborhood of an attractor. The entire spectrum is again
Lorentzian. very well fitted by a Lorentzian.

Altogether there exists a qualitative change in the systemgure on the period 1 orbits with differenim is plotted
dynamics around a certain noise level of 6:05<0.1. Be-  against the noise level. It can clearly be seen that the curves
low this transition the dynamics of the system is characterfor differentm all possess roughly the same features, namely,
ized by a motion consisting of regular phases in the neighthere is an increase up to a maximum value, followed by an
borhood of attractors and chaotic phases on the basiexponential decrease taking place at lower noise intensity for
boundary, establishing the hopping between attractors. Berigher m values. The relevant region for this behavior
yond the crossover, noise induced diffusion over the statgtretches to about=0.08, confirming once again the thresh-
space is the dominating process. Because of this phenoraid for the dynamics dominated by attractor hopping. As
enology, we split the treatment into small and large noisestated above, the decay after the maximum value is well
effects. fitted by an exponential. The determination of the slopes of
these exponentials reveals that the slopes also yield roughly
an exponential scaling. Furthermore, the starting points of
the decrease in the dependencenofields an exponential

As pointed out in Sec. lll increasing noise results in a losdaw as well.
of fine structure in the basins of attraction. The small basins All these features are even more robust by considering
seem to be more sensitive than the large ones. To explof@ultiplicative noise. Generally, multiplicative noise is ap-
this effect in more detail, we investigate the influence ofplied by perturbing the form of the function. In our case this
noise on the size of the basins. In Fig. 9, the number of initiaRmounts to altering the kick strengfl, and we do this by
conditions terminatinglaccording to our numerical proce- introducing a noise term viéyg—fy+ & into the second of

Egs.(1). This results in the additive terdisin(x+Y;) acting

IV. EFFECTS OF SMALL NOISE

+
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+
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FIG. 7. Time series of the angular velocigy(top) and the cor-
responding FFT spectrur§(f) (bottom for a noise level ofd FIG. 9. Number of initial conditions converging to period 1
=0.085. Here a competition between hopping and remaining in amttractors with increasingn from top (m=0) to bottom (= 10).
attractor exists, which results in the low frequency part of the specBecause of the symmetmp= +k andm= —k are averaged. Alto-
trum, which can be fitted b$(f)~1/f« for f<0.005(solid line). gether 16 initial conditions are iterated.
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TABLE I. The modulus of the eigenvalues, the minimal noise
3 intensity necessary for escape, and the “potential” from Kramers
F law.

106§ T T T T
POV Y YT YT T TR

E

'8 105;i§ 6000000000000 000 0 E

i E o E

E 4KZZAAAAAAAAAAAAAAA M m |)\| min(&escapl U

., 10"Fggoopooooooooo E

< pE BRRREERIK ] 0 0.98994952 0.061 0.034
g 107F 1 0.98994952 0.05 0.022
5 of 2 0.98994952 0.041 0.015
3 OF 3 0.98994952 0.031 0.0086
E olf 4 0.98994952 0.026 0.0065
N 5 0.98994952 0.021 0.0038
s 1000

=4

005 010 015 020 025 0.30
6 our nonlinear model, we study a very simple linear system

FIG. 10. Same as in Fig. 9 fon=0 (top) to m=7 (bottom), but with noise, given by

with multiplicative noise.
XK+1: an+ 5 y

on the angular velocity only. The strength of the resulting 3
noise depends then on the present location of the trajectory
and it is always< 4. Figure 10 exhibits the corresponding Yi+1= BYkt Oy,
information to Fig. 9. The expected behavior occurs at higher . N
noise intensities, and is due to the effective reduction of th&vherea and 8 are less than 1. All nonlinearities and cou-
influence of the noise by multiplying with the sin term. In ~ Plings from the original model are absent here. A stable fixed
particular, for the fixed pointg=27m, X is close torr, and ~ Point exists atX=0,y=0), from which the orbit cannot es-
thus the sin term is very small. For multiplicative noise thecape. The maximum distand®=max(x|,|y|) of the orbit
exponential decay is even more pronounced. Again th&om the fixed point is given by
slopes and the snap-off points scale exponentially. "

For higher noise strength the attractors with small basins _ o
lose part of their basins, while the ones with an already large D‘EO max| e, B])' = 1- max|el|,|B]) @
basin are preferred. Thus the fine structure of the system is
washed out due to the noise. This leads to an important conn our nonlinear system, however, the norm of the maximal
sequence for the behavior of multistable systems. Even if theigenvalues for the period 1 fixed poirid is exactly iden-
number of coexisting attractors is very high in a deterministical for all m, while the minimum noise intensity
tic system, one observes only few of those attractors in theénin(S,scap), for which the trajectories leave the attractors for
presence of noise. The behavior is dominated by a few pree first time, decreases with, as shown in Table I. This
ferred attractors, while the majority of them “disappears.” result underlines the importance of the nonlinearities in this
Since in nature or in experimental systems noise is alwaygodel. Furthermore, it is important to note that the eigenval-
inevitable, one can expect that only a tiny number ofues are close to the stability threshdld=1. For noise in-
asymptotic states can be “measured” while the majority re-tensities larger than the minimum noise intensity
mains “hidden.” On the other hand, if the noise level cor- MiN(Jescap), the trajectories leave eventually the open neigh-
responds to the maxima in Fig. 9, the opposite effects occurgiorhood of the attractor. The escape times differ for each
that is, attractors with a small basin gain more initial condi-noise realization yielding an exponential distributier)
tions, and the basins of many of them become even larger as y exg —(7— Topd ], @ shown in Fig. 11 fom=0. In prin-
compared with the no noise basin. This is especially true iriple, by using the relatiofir— Top = 11y, the optimal es-
the case of the period 3 attractors. This remarkable effect
may be explained by the fact that the eigenvalues of the
period 3 orbits are slightly smaller than those of the period 1 g E
fixed points. Additionally, the open neighborhoods of the 5gx10=4H E
period 3 attractors are located within the open neighborhooc
of the fixed points; see Fig. 2. Fog=4, this is not the case, > 4.0x10'4§- E
and the effect cannot be observed. This effect of a noiseZ _af
induced increase in the size of the basin of attraction has§ 3-0x10 ~= ~y exp[=y (T=To)]
been also observed in coupled map latti€24,25 and a g
bistable systeni26]. The bistable system exhibits two peri- g
odic orbits with a fractal basin boundary, and the condition  ; gx10=4F
that one basin has to be “inside” the other one is trivially g

g.ox10" % ' ' '

£ 2
2 o ox104E

fulfilled, while in the coupled map lattice case the attractors 0¢ b b 2 bt ! 5
possess riddled basins of attraction. This riddling also pro- 0 1.0x107 2.0x107 3.0x107 4.0x107 5.0x10
vides the seemingly necessary condition for the appearance T

of noise-induced selectivity of certain attractors. FIG. 11. Distribution of escape timés) for the fixed pointm

To obtain a better understanding for the effect of noise in=0 (the bin size is 50 000
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autocorrelation. This fact is also apparent in Figd)2 Al-
though much of the fine structure of the basin is blurred by
the noise, it is still present. To classify this effect with mea-

10 sures of complexity is a current topic of our investigations.
A VI. DISCUSSION
4
v 10 . . . .
In summary, we have investigated the influence of noise
on a multiattractor system. In this paper, we exclusively use
10 independent and uniformly distributed noise. However, the

main results are also obtained working with Gaussian noise,
which does not seem to introduce any significant difference,
100 150 200 250 300 350 400 except for the fact that for each attractor a specific and finite
1/6°% amount of noise is necessary to “kick” the trajectory out of
its open neighborhood. The treatment of the behavior of the
FIG. 12. Escape timer) vs 1/5* for different fixed pointsina  system in the presence of noise is split into two regions of
semilogarithmic plot ;1=0,1,2, and 3 from top to bottomThe  npjse intensity. The existence of a crossover region separat-
slopes U correspond to the potential values of Kramers lawing them is demonstrated by four criteria. Although the exact
(7(8))~ expUl&). numerical values resulting from these different methods do
. . _ not agree completely, they yield a coherent and conclusive
cape time can be determined. However, we numerically Obyjicyre. For low noise, attractor hopping is the dominant part
tain only the approximate resut,=300. _of the dynamics, and the interesting phenomenon of noise-
_Let us now look at the scaling of the mean escape timeg, g, ced preference of certain attractors is observed. Above
with increasing noise level. In Fig. 12 the mean escape imeg,q crossover region, mainly diffusive motion exists, and the
for differentmvalues are depicted. They follow Kramers law ¢4 scale dynamics is not relevant anymore. By and large,

2 . . .. .
(7())~ expU/&7) very well, which is far from trivial in  yhe jnyestigation sheds some light on the measurement of
cases where, like here, no potentidlexists[38,39. The 1 tistable systems in nature, where in spite of the large

ratio U/min(Sescapd” is roughly constant, which suggests numper of attractors only few ade factodetected. Conse-
that,.in first order, the stgbility of' each attractor can be ap'quently, the observation of only a small number of stable
proximated by a parabolic potential. states in physical systems may not necessarily lead to the
conclusion that the system does not possess more of them.
V. LARGE NOISE There may still be a larger number of attractors, which the

When the noise intensity is increased over the transitiorﬁaxperlmenter is not aware of: they are just hidden by the

region of about 0.05 §<0.1, the stochasticity is the domi- inherent noise.
nant part of the dynamics. This behavior is reflected in the
autocorrelation functiorC,( 7) = (L/T) = o(%— (X)) (X¢s

—(xy)) of a noisy trajectory. It decreases exponentially with  We would like to thank H. Kantz, A. Pikovsky, and U.
an exponent sharply rising at aboét0.09, the qualitative Schwarz for valuable discussions. U.F. thanks the University
behavior following roughly the curve of the maximal of Maryland for their hospitality. This work was supported
Lyapunov exponentFig. 4). However it is still different by the Deutsche Forschungsgemeinschaft and a NSF/CNPq
from a pure random process, which is characterized by ngint grant.
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